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The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the
coming years, with compact binary coalescence events a likely source for the first detections. The
gravitational waveforms emitted directly encode information about the sources, including the masses and
spins of the compact objects. Recovering the physical parameters of the sources from the GWobservations is
a key analysis task. This work describes the LALInference software library for Bayesian parameter
estimation of compact binary signals, which builds on several previous methods to provide a well-tested
toolkit which has already been used for several studies.We show that our implementation is able to correctly
recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We
demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron
star–black hole binary and a binary black hole, where we show a cross comparison of results obtained using
three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and
generic spin configurations respectively, showing that consistent results can be obtained even with the full
15-dimensional parameter space of the generic spin configurations.We also demonstrate statistically that the
Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior
assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of
these algorithms, and describe the general and problem-specific sampling techniques we have used to
improve the efficiency of sampling the compact binary coalescence parameter space.
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I. INTRODUCTION

The direct observation of gravitational waves (GWs) and
the study of relativistic sources in this new observational
window is the focus of a growing effort with broad impact*john.veitch@ligo.org
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on astronomy and fundamental physics. The network of
GW laser interferometers—LIGO [1], Virgo [2] and GEO
600 [3]—completed science observations in initial con-
figuration in 2010, setting new upper limits on a broad
spectrum of GW sources. At present, LIGO and Virgo are
being upgraded to their advanced configurations [4,5], a
new Japanese interferometer, KAGRA (formerly known as
the Large-scale Gravitational-wave Telescope) [6] is being
built, and plans are underway to relocate one of the LIGO
instruments upgraded to Advanced LIGO sensitivity to a
site in India (LIGO-India) [7]. Advanced LIGO is currently
on track to resume science observations in 2015 with
Advanced Virgo following soon after [8]; around the turn of
the decade LIGO-India and KAGRA should also join the
network of ground-based instruments.
Along with other possible sources, advanced ground-

based interferometers are expected to detect GWs
generated during the last seconds to minutes of life of
extragalactic compact binary systems, with neutron star
and/or black hole component masses in the range
∼1M⊙–100M⊙. The current uncertainties on some of
the key physical processes that affect binary formation
and evolution are reflected in the expected detection rate,
which spans three orders of magnitude. However, by the
time interferometers operate at design sensitivity, between
one observation per few years and hundreds of observations
per year are anticipated [8,9], opening new avenues for
studies of compact objects in highly relativistic conditions.
During the approximately ten years of operation of the

ground-based GW interferometer network, analysis devel-
opment efforts for binary coalescences have been focused
on the detection problem, and rightly so: how to unambig-
uously identify a binary coalescence in the otherwise
overwhelming instrumental noise. The most sensitive
compact binary searches are based on matched-filtering
techniques, and are designed to keep up with the data rate
and promptly identify detection candidates [10,11]. A
confirmation of the performance of detection pipelines
has been provided by the “blind injection challenge” in
which a synthetic compact binary coalescence signal was
added (unknown to the analysis teams) to the data stream
and successfully detected [12].
Once a detection candidate has been isolated, the next

step of the analysis sequence is to extract full information
regarding the source parameters and the underlying phys-
ics. With the expected detection of gravitational waves
(CBCs) in the coming years, this part of the analysis has
become the focus of a growing number of studies.
The conceptual approach to inference on the GW signal

is deeply rooted in the Bayesian framework. This frame-
work makes it possible to evaluate the marginalized
posterior probability density functions (PDFs) of the
unknown parameters that describe a given model of the
data and to compute the so-called evidence of the model
itself. It is well known that Bayesian inference is

computationally costly, making the efficiency of the PDF
and evidence calculations an important issue. For the case
of coalescing binary systems the challenge comes from
many fronts: the large number of unknown parameters that
describe a model (15 parameters to describe a gravitational
waveform emitted by a binary consisting of two point
masses in a circular orbit assuming that general relativity is
accurate, plus other model parameters to account for matter
effects in the case of neutron stars, the noise, instrument
calibration, etc.), complex multimodal likelihood functions,
and the computationally intensive process of generating
waveforms.
Well-known stochastic sampling techniques—Markov

chain Monte Carlo (MCMC) [13–21], nested sampling
[22,23] and MultiNest/accelerated multimodal Bayesian
inference (BAMBI) [24–27]—have been used in recent
years to develop algorithms for Bayesian inference on GW
data aimed at studies of coalescing binaries. An underlying
theme of this work has been the comparison of these
sampling techniques and the cross validation of results with
independent algorithms. In parallel, the inference effort has
benefited from a number of advances in other areas that are
essential to maximize the science exploitation of detected
GW signals, such as waveform generation and standardized
algorithms and libraries for the access and manipulation of
GW data. The initially independent developments have
therefore progressively converged towards dedicated algo-
rithms and a common infrastructure for Bayesian inference
applied to GW observations, specifically for coalescing
binaries but applicable to other sources. These algorithms
and infrastructure are now contained in a dedicated
software package: LALInference.
The goal of this paper is to describe LALInference. We

will cover the details of our implementation, designed to
overcome the problems faced in performing Bayesian
inference for GW observations of compact binary coales-
cence (CBC) signals. This includes three independent
sampling techniques which were cross compared to provide
confidence in the results that we obtain for CBC signals,
and compared with known analytical probability distribu-
tions. We describe the postprocessing steps involved in
converting the output of these algorithms to meaningful
physical statements about the source parameters in terms
of credible intervals. We demonstrate that these intervals
are well calibrated measures of probability through a
Monte Carlo simulation, wherein we confirm the quoted
probability corresponds to frequency under correct prior
assumptions. We compare the computational efficiency of
the different methods and mention further enhancements
that will be required to take full advantage of the advanced
GW detectors.
The LALInference software consists of a C library and

several postprocessing tools written in PYTHON. It
leverages the existing LSC Algorithm Library (LAL) to
provide the following:
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(i) standard methods of accessing GW detector data,
using LAL methods for estimating the power spec-
tral density (PSD), and able to simulate stationary
Gaussian noise with a given noise curve;

(ii) the ability to use all the waveform approximants
included in LAL that describe the evolution of point-
mass binary systems, and waveforms under develop-
ment to account for matter effects in the evolution of
binary neutron stars (BNSs) and generalizations of
waveforms beyond general relativity;

(iii) likelihood functions for the data observed by a
network of ground-based laser interferometers given
a waveform model and a set of model parameters;

(iv) three independent stochastic sampling techniques of
the parameter space to compute PDFs and evidence;

(v) dedicated “jump proposals” to efficiently select
samples in parameter space that take into account
the specific structure of the likelihood function;

(v) standard postprocessing tools to generate probability
credible regions for any set of parameters.

During the several years of development, initial imple-
mentations of these Bayesian inference algorithms and
LALInference have been successfully applied to a variety
of problems, such as the impact of different network
configurations on parameter estimation [28], the ability
to measure masses and spins of compact objects [17,29,30],
to reconstruct the sky location of a detected GW binary
[19,31,32] and the equation of state of neutron stars [33],
the effects of calibration errors on information extraction
[34] and tests of general relativity [35–37]. Most notably
LALInference has been at the heart of the study of detection
candidates, including the blind injection, during the last
LIGO/Virgo science run [38], and has been used for the
Numerical INJection Analysis project [39]. It has been
designed to be flexible in the choice of signal model,
allowing it to be adapted for analysis of signals other than
compact binaries, including searches for continuous waves
[40], and comparison of core-collapse supernova models
based on [41].
The paper is organized as follows: Section II provides a

summary of the key concepts of Bayesian inference, and
specific discussion about the many waveform models that
can be used in the analysis and the relevant prior assump-
tions. In Sec. III we describe the conceptual elements
concerning the general features of the sampling techniques
that are part of LALInference: Markov chain Monte Carlo,
nested Sampling and MultiNest/BAMBI. Section IV deals
with the problem of providing marginalized probability
functions and (minimum) credible regions at a given con-
fidence level from a finite number of samples, as is the case
of the outputs of these algorithms. In Sec. V we summarize
the results from extensive tests and validations that we have
carried out by presenting representative results on a set of
injections in typical regions of the parameter space, as well
as results obtained by running the algorithms on known

distributions. This section is complemented by Sec. VI in
which we consider efficiency issues, and we report the run
time necessary for the analysis of coalescing binaries in
different cases; this provides a direct measure of the latency
time scale over which fully coherent Bayesian inference
results for all the source parameters will be available after a
detection candidate is identified. Section VII contains our
conclusions and points to future work.

II. BAYESIAN ANALYSIS

We can divide the task of performing inference about the
GW source into two problems: using the observed data to
constrain or estimate the unknown parameters of the
source1 under a fixed model of the waveform (parameter
estimation), and deciding which of several models is more
probable in light of the observed data, and by how much
(model selection). We tackle both these problems within the
formalism of Bayesian inference, which describes the state
of knowledge about an uncertain hypothesis H as a
probability, denoted PðHÞ ∈ ½0; 1�, or about an unknown
parameter as a probability density, denoted pðθjHÞ, whereR
pðθjHÞdθ ¼ 1. Parameter estimation can then be per-

formed using Bayes’ theorem, where a prior probability
distribution pðθjHÞ is updated upon receiving the new data
d from the experiment to give a posterior distribution
pðθjd;HÞ,

pðθjd;HÞ ¼ pðθjHÞpðdjθ; HÞ
pðdjHÞ : ð1Þ

Models typically have many parameters, which we collec-
tively indicate with θ ¼ fθ1; θ2;…; θNg. The joint proba-
bility distribution on the multidimensional space pðθjd;HÞ
describes the collective knowledge about all parameters as
well as their relationships. Results for a specific parameter
are found by marginalizing over the unwanted parameters,

pðθ1jd;HÞ ¼
Z

dθ2…dθNpðθjd;HÞ: ð2Þ

The probability distribution can be used to find the expect-
ation of various functions given the distribution, e.g., the
mean

hθii ¼
Z

θipðθijd;HÞdθi; ð3Þ

and credible regions, an interval in parameter space that
contains a given probability (see Sec. IV).
Model selection is performed by comparing the fully

marginalized likelihood, or evidence, for different models.
The evidence, usually denoted Z, is simply the integral of

1The whole set of unknown parameters of the model can also
contain parameters not related to the source, such as noise and
calibration parameters [42–45].
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the likelihood, LðdjθÞ ¼ pðdjθ; HÞ, multiplied by the prior
over all parameters of the model H,

Z ¼ pðdjHÞ ¼
Z

dθ1…dθNpðdjθ; HÞpðθjHÞ: ð4Þ

This is the normalization constant that appears in the
denominator of Eq. (1) for a particular model. Because
we cannot exhaustively enumerate the set of exclusive
models describing the data, we typically compare two
competing models. To do this, one computes the ratio of
posterior probabilities

Oij ¼
PðHijdÞ
PðHjjdÞ

¼ PðHiÞ
PðHjÞ

×
Zi

Zj
ð5Þ

where Bij ¼ Zi=Zj is the Bayes factor between the two
competing models i and j, which shows how much more
likely the observed datad is undermodel i rather thanmodel j.
While the Bayesian methods described above are con-

ceptually simple, the practical details of performing an
analysis depend greatly on the complexity and dimension-
ality of the model, and the amount of data that is analyzed.
The size of the parameter space and the amount of data to be
considered mean that the resulting probability distribution
cannot tractably be analyzed through a fixed sampling of
the parameter space. Instead, we have developed methods
for stochastically sampling the parameter space to solve the
problems of parameter estimation and model selection,
based on the MCMC and nested sampling techniques, the
details of which are described in Sec. III. Next we will
describe the models used for the noise and the signal.

A. Data model

The data obtained from the detector is modeled as the
sum of the compact binary coalescence signal h (described
in Sec. II B) and a noise component n,

d ¼ hþ n: ð6Þ
Data from multiple detectors in the network are analyzed
coherently, by calculating the strain that would be observed
in each detector:

h ¼ Fþðα; δ;ψÞhþ þ F×ðα; δ;ψÞh× ð7Þ

where hþ;× are the two independent GW polarization
amplitudes and Fþ;×ðα; δ;ψÞ are the antenna response
functions (e.g. [46]) that depend on the source location
and the polarization of the waves. Presently we ignore the
time dependence of the antenna response function due to
the rotation of the Earth, instead assuming that it is constant
throughout the observation period. This is justifiable for the
short signals considered here. Work is ongoing to include
this time dependence when analyzing very long signals
with a low frequency cutoff below 40 Hz, to fully exploit

the advanced detector design sensitivity curves. The wave-
forms hþ;× are described in Sec. II B.
As well as the signal model, which is discussed in the

next section, we must include a description of the observed
data, including the noise, which is used to create the
likelihood function. This is where knowledge of the
detectors’ sensitivity and the data processing procedures
are folded into the analysis.
We perform all of our analyses using the calibrated strain

output of the GW detectors, or a simulation thereof. This is
a set of time-domain samples di sampled uniformly at times
ti, which we sometimes write as a vector d for convenience
below. To reduce the volume of data, we down-sample the
data from its original sampling frequency (16384 Hz) to a
lower rate fs ≥ 2fmax, which is high enough to contain the
maximum frequency fmax of the lowest mass signal
allowed by the prior, typically fs ¼ 4096 Hz when ana-
lyzing the inspiral part of a BNS signal. To prevent aliasing
the data is first low-pass filtered with a 20th order
Butterworth filter with attenuation of 0.1 at the new
Nyquist frequency, using the implementation in LAL
[47], which preserves the phase of the input. We wish to
create a model of the data that can be used to perform the
analysis. In the absence of a signal, the simplest model
which we consider is that of Gaussian, stationary noise with
a certain power spectral density SnðfÞ and zero mean.
SnðfÞ can be estimated using the data adjacent to the
segment of interest, which is normally selected based on the
time of coalescence tc of a candidate signal identified by a
search pipeline. The analysis segment d spans the period
½tc − T þ 2; tc þ 2�, i.e. a time T which ends two seconds
after the trigger (the 2s safety margin after tc allows for
inaccuracies in the trigger time reported by the search, and
should encompass any merger and ringdown component of
the signal). To obtain this estimate, by default we select a
period of time (1024s normally, but shorter if less science
data is available) from before the time of the trigger to be
analyzed, but ending not later than tc − T, so it should not
contain the signal of interest. This period is divided into
nonoverlapping segments of the same duration T as the
analysis segment, which are then used to estimate the PSD.
Each segment is windowed using a Tukey window with a
0.4s roll-off, and its one-sided noise power spectrum is
computed. For each frequency bin the median power over all
segments is used as an estimate of the PSD in that
bin. We follow the technique of [48] by using the median
instead of the mean to provide some level of robustness
against large outliers occurring during the estimation
time.
The same procedure for the PSD estimation segments is

applied to the analyzed data segment before it is used for
inference, to ensure consistency.
For each detector we assume the noise is stationary, and

characterized only by having zero mean and a known
variance (estimated from the power spectrum). Then the
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likelihood function for the noise model is simply the
product of Gaussian distributions in each frequency bin

pðdjHN; SnðfÞÞ

¼ exp
X
i

�
−

2j ~dij2
TSnðfiÞ

−
1

2
logðπTSnðfiÞ=2Þ

�
; ð8Þ

where ~d is the discrete Fourier transform of d,

~dj ¼
T
N

X
k

dk expð−2πijk=NÞ: ð9Þ

The presence of an additive signal h in the data simply
adjusts the mean value of the distribution, so that the
likelihood including the signal is

pðdjHS; SnðfÞ; θÞ ¼ exp
X
i

�
−
2j ~hiðθÞ − ~dij2

TSnðfiÞ

−
1

2
logðπTSnðfiÞ=2Þ

�
: ð10Þ

To analyze a network of detectors coherently, we make the
further assumption that the noise is uncorrelated in each.
This allows us to write the coherent network likelihood for
data obtained from each detector as the product of the
likelihoods in each detector [49].

pðdfH;L;VgjHS; SnfH;L;VgðfÞÞ ¼
Y

i∈fH;L;Vg
pðdijHS; SniðfÞÞ:

ð11Þ
This gives us the default likelihood function which is used for
our analyses, and has been used extensively in previous work.

1. Marginalizing over uncertainty in the PSD estimation

Using a fixed estimate of the PSD, taken from times
outside the segment being analyzed, cannot account for
slow variations in the shape of the spectrum over time
scales of minutes. We can model our uncertainty in the PSD
estimate by introducing extra parameters into the noise
model which can be estimated along with the signal
parameters; we follow the procedure described in [43].
We divide the Fourier domain data into ∼8 logarithmically
spaced segments, and in each segment j, spanning Nj
frequency bins, introduce a scale parameter ηjðfiÞ which
modifies the PSD such that SnðfiÞ → SnðfiÞηj for
ij < i ≤ ijþ1, where the scale parameter is constant within
a frequency segment. With these additional degrees of
freedom included in our model, the likelihood becomes

pðdjHS; SnðfÞ; θ; ηÞ ¼ exp
X
i

�
−
2j ~hiðθÞ − ~dij2
TηðfiÞSnðfiÞ

−
1

2
logðπηiTSnðfiÞ=2Þ

�
: ð12Þ

The prior on ηj is a normal distribution with mean 1 and
variance 1=Nj. In the limit Nj → 1 (i.e., there is one scale
parameter for each Fourier bin), replacing the Gaussian
prior with an inverse chi-squared distribution and integrat-
ing pðdjHS; SnðfÞ; θ; ηÞ × pðθ; ηjHS; SnðfÞÞ over η, we
would recover the Student’s t-distribution likelihood con-
sidered for GW data analysis in [42,50]. For a thorough
discussion of the relative merits of Student’s t-distribution
likelihood and the approach used here, as well as examples
which show how including η in the model improves the
robustness of parameter estimation and model selection
results, see [43]. In summary, the likelihood adopted here
offers more flexibility given how much the noise can drift
between the data used for estimating the PSD and the data
being analyzed. Further improvements on this scheme
using more sophisticated noise models are under active
development.

B. Waveform models

There are a number of different models for the GW
signal that is expected to be emitted during a compact
binary merger. These models, known as waveform families,
differ in their computational complexity, the physics they
simulate, and their regime of applicability. LALInference
has been designed to easily interface with arbitrary wave-
form families.
Each waveform family can be thought of as a function

that takes as input a parameter vector θ and produces as
output hþ;×ðθÞ, either a time domain hðθ; tÞ or frequency-
domain hðθ; fÞ signal. The parameter vector θ generally
includes at least nine parameters:

(i) Component masses m1 and m2. We use a repar-
ametrization of the mass plane into the chirp mass,

M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5; ð13Þ

and the asymmetric mass ratio

q ¼ m2=m1; ð14Þ

as these variables tend to be less correlated and
easier to sample. We use the convention m1 ≥ m2

when labeling the components. The prior is trans-
formed accordingly (see Fig. 1). Another possible
parametrization is the symmetric mass ratio

η ¼ ðm1m2Þ
ðm1 þm2Þ2

; ð15Þ

although we do not use this when sampling the
distribution since the Jacobian of the transformation
tom1; m2 coordinates becomes singular atm1 ¼ m2.

(ii) The luminosity distance to the source dL.
(iii) The right ascension α and declination δ of the

source.
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(iv) The inclination angle ι, between the system’s orbital
angular momentum and the line of sight. For aligned
and nonspinning systems this coincides with the
angle θJN between the total angular momentum and
the line of sight (see below). We will use the more
general θJN throughout the text.

(v) The polarization angle ψ which describes the ori-
entation of the projection of the binary’s orbital
momentum vector onto the plane on the sky, as
defined in [46].

(vi) An arbitrary reference time tc, e.g. the time of
coalescence of the binary.

(vii) The orbital phase ϕc of the binary at the reference
time tc.

Nine parameters are necessary to describe a circular binary
consisting of point-mass objects with no spins. If spins of
the binary’s components are included in the model, they are
described by six additional parameters, for a total of 15:

(i) dimensionless spin magnitudes ai, defined as ai ≡
jsij=m2

i and in the range [0, 1], where si is the spin
vector of the object i, and

(ii) two angles for each si specifying its orientation with
respect to the plane defined by the line of sight and
the initial orbital angular momentum.

In the special case when spin vectors are assumed to be
aligned or antialigned with the orbital angular momentum,
the four spin-orientation angles are fixed, and the spin
magnitudes alone are used, with positive (negative) signs
corresponding to aligned (antialigned) configurations, for a
total of 11 parameters. In the case of precessing waveforms,
the system-frame parametrization has been found to be
more efficient than the radiation frame typically employed
for parameter estimation of precessing binaries. The ori-
entation of the system and its spinning components are
parametrized in a more physically intuitive way that
concisely describes the relevant physics, and defines
evolving quantities at a reference frequency of 100 Hz,
near the peak sensitivity of the detectors [51]:

(i) θJN : The inclination of the system’s total angular
momentum with respect to the line of sight;

(ii) t1; t2: Tilt angles between the compact objects’ spins
and the orbital angular momentum;

(iii) ϕ12: The complimentary azimuthal angle separating
the spin vectors;

(iv) ϕJL: The azimuthal position of the orbital angular
momentum on its cone of precession about the total
angular momentum.

Additional parameters are necessary to fully describe
matter effects in systems involving a neutron star, namely
the equation of state [52], or to model deviations from the
post-Newtonian expansion of the waveforms [e.g. [36,53]],
but we do not consider these here. Finally, additional
parameters could be used to describe waveforms from
eccentric binaries [54] but these have not yet been included
in our models.
GWs emitted over the whole coalescence of two compact

objects produce a characteristic chirp of increasing ampli-
tude and frequency during the adiabatic inspiral phase,
followed by a broadband merger phase and then damped
quasisinusoidal signals during the ringdown phase. The
characteristic time and frequency scales of the whole
inspiral merger ringdown are important in choosing the
appropriate length of the data segment to analyze and
the bandwidth necessary to capture the whole radiation. At
the leading Newtonian quadrupole order, the time to
coalescence of a binary emitting GWs at frequency f is [48]

τ ¼ 93.9

�
f

30 Hz

�
−8=3

�
M

0.87M⊙

�
−5=3

sec : ð16Þ

Here we have normalized the quantities to an m1 ¼ m2 ¼
1M⊙ equal mass binary. The frequency of dominant mode
gravitational-wave emission at the innermost stable circular
orbit for a binary with nonspinning components is [48]

fisco ¼
1

63=2πðm1 þm2Þ
¼ 4.4

�
M⊙

m1 þm2

�
kHz: ð17Þ

The low-frequency cutoff of the instrument, which sets
the duration of the signal, was 40 Hz for LIGO in initial/

FIG. 1. Prior probability pðm1; m2jHSÞ, uniform in component
masses within the bounds shown (left), and with the same
distribution transformed into the M, q parametrization used
for sampling.
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enhanced configuration and 30 Hz for Virgo. When the
instruments operate in advanced configuration, new sus-
pension systems are expected to provide increased low-
frequency sensitivity and the low-frequency bound will
progressively move towards ≈20 Hz. The quantities above
define therefore the longest signals that one needs to
consider and the highest frequency cutoff. The data
analyzed (the “analyzed segment”) must include the entire
length of the waveform from the desired starting frequency.
Although any waveform model that is included in the

LAL libraries can be readily used in LALInference, the
most common waveform models used in our previous
studies [e.g., [55]] are the following:

(i) frequency-domain stationary phase inspiral-only
post-Newtonian waveforms for binaries with non-
spinning components, particularly the TaylorF2
approximant [56];

(ii) time-domain inspiral-only post-Newtonian wave-
forms that allow for components with arbitrary,
precessing spins, particularly the SpinTaylorT4
approximant [57];

(iii) frequency-domain inspiral-merger-ringdown phe-
nomenological waveform model calibrated to
numerical relativity, IMRPhenomB, which describes
systems with (anti)aligned spins [58];

(iv) time-domain inspiral-merger-ringdown effective-
one-body model calibrated to numerical relativity,
EOBNRv2 [59].

Many of these waveform models have additional options,
such as varying the post-Newtonian order of amplitude or
phase terms. Furthermore, when exploring the parameter
space with waveforms that allow for spins, we sometimes
find it useful to set one or both component spins to zero, or
limit the degrees of freedom by only considering spins
aligned with the orbital angular momentum.
We generally carry out likelihood computations in the

frequency domain, so time-domain waveforms must be
converted into the frequency domain by the discrete Fourier
transform defined as in Eq. (9). To avoid edge effects and
ensure that the templates and data are treated identically
(see Sec. II A), we align the end of the time-domain
waveform to the discrete time sample which is closest to
tc and then taper it in the same way as the data (if the
waveform is nonzero in the first or last 0.4s of the buffer),
before Fourier-transforming to the frequency domain and
applying any finer time shifting in the frequency domain, as
described below.
Some of the parameters, which we call intrinsic param-

eters (masses and spins), influence the evolution of the
binary. Evaluating a waveform at new values of these
parameters generally requires recomputing the waveform,
which, depending on the model, may involve purely
analytical calculations or a solution to a system of differ-
ential equations. On the other hand, extrinsic parameters
(sky location, distance, time and phase) leave the basic

waveform unchanged, while only changing the detector
response functions Fþ and F× and shifting the relative
phase of the signal as observed in the detectors. This allows
us to save computational costs in a situation where we have
already computed the waveform and are now interested in
its reprojection and/or phase or time shift; in particular, this
allows us to compute the waveform only once for an entire
detector network, and merely change the projection of the
waveform onto detectors. We typically do this in the
frequency domain.
The dependence of the waveform on distance (scaling as

1=dL), sky location and polarization [detector response
described by antenna pattern functions Fþ;×ðα; δ;ψÞ for the
þ and × polarizations; see Eq. (7)] and phase [ ~hðϕcÞ ¼
~hðϕ ¼ 0Þeiϕc] is straightforward. A time shift by Δt
corresponds to a multiplication ~hðΔtÞ ¼ ~hð0Þe2πifΔt in
the frequency domain; this time shift will be different
for each detector, since the arrival time of a GW at the
detector depends on the location of the source on the sky
and the location of the detector on Earth.
The choice of parametrization greatly influences the

efficiency of posterior sampling. The most efficient para-
metrizations minimize the correlations between parameters
and the number of isolated modes of the posterior. For the
mass parametrization, the chirp mass M and asymmetric
mass ratio q achieve this, while avoiding the divergence of
the Jacobian of the symmetric mass ratio η at equal masses
when using a prior flat in component masses. With
generically oriented spins comes precession, and the
evolution of angular momentum orientations. In this case
the structure of the posterior is simplified by specifying
these parameters, chosen so that they evolve as little as
possible, at a reference frequency of 100 Hz near the peak
sensitivity of the detector [51].

1. Analytic marginalization over phase

The overall phase ϕc of the GW is typically of no
astrophysical interest, but is necessary to fully describe the
signal. When the signal model includes only the funda-
mental mode (l ¼ m ¼ 2) of the GW it is possible to
analytically marginalize over ϕc, simplifying the task of the
inference algorithms in two ways. First, the elimination of
one dimension makes the parameter space easier to explore;
second, the marginalized likelihood function over the
remaining parameters has a lower dynamic range than
the original likelihood. The desired likelihood function
over the remaining parameters Ω is calculated by margin-
alizing Eq. (10),

pðdjHS; SnðfÞ;ΩÞ ¼
Z

pðϕcjHSÞpðdjθ; HS; SnðfÞÞdϕc

ð18Þ
where pðϕcjHSÞ ¼ 1=2π is the uniform prior on phase.
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Starting from Eq. (11) we can write the likelihood for
multiple detectors indexed by j as

pðdjjHS;SnjðfÞ;θÞ∝ exp

�
−
2

T

X
i;j

j ~h0ijj2þjdijj2
SnjðfiÞ

�

×exp

�
4

T
ℜ

�X
i;j

~h0ijeiϕcd�ij
SnjðfiÞ

��
ð19Þ

where h0 is the signal defined at a reference phase of 0.
Using this definition, the integral of Eq. (18) can be cast
into a standard form to yield

pðdjjHS;SnjðfÞ;ΩÞ

¼ exp

�
−
2

T

X
i;j

j ~h0ijj2þjdijj2
SnjðfiÞ

�
I0

�
4

T

����
X
i;j

~h0ijd�ij
SnjðfiÞ

����
�

ð20Þ

in terms of the modified Bessel function of the first kind I0.
Note that the marginalized likelihood is no longer express-
ible as the product of likelihoods in each detector. We found
that using the marginalized phase likelihood could reduce
the computation time of a nested sampling analysis by a
factor of up to 4, as the shape of the distribution was easier
to sample, reducing the autocorrelation time of the chains.

C. Priors

As shown in Eq. (1), the posterior distribution of θ (or θ)
depends both on the likelihood and prior distributions of θ.
LALInference allows for flexibility in the choice of priors.
For all analyses described here, we used the same prior
density functions (and range). For component masses, we
used uniform priors in the component masses with the
range 1M⊙ ≤ m1;2 ≤ 30M⊙, and with the total mass con-
strained by m1 þm2 ≤ 35M⊙, as shown in Fig. 1. This
range encompasses the low-mass search range used in [12]
and our previous parameter estimation report [55], where
1M⊙ ≤ m1;2 ≤ 24M⊙ and m1 þm2 ≤ 25M⊙. When
expressed in the sampling variable M; q the prior is
determined by the Jacobian of the transformation,

pðM; qjIÞ ∝ Mm−2
1 ð21Þ

which is shown in the right panel of Fig. 1.
The prior density function on the location of the source

was taken to be isotropically distributed on the sphere of the
sky, with pðdLjHSÞ ∝ dL2, from 1 Mpc out to a maximum
distance chosen according to the detector configuration and
the source type of interest. We used an isotropic prior on the
orientation of the binary to give pðι;ψ ;ϕcjHSÞ ∝ sin ι. For
analyses using waveform models that account for possible
spins, the prior on the spin magnitudes, a1; a2, was taken to
be uniform in the range [0, 1] (range ½−1; 1� in the spin-
aligned cases), and the spin angular momentum vectors
were taken to be isotropic.

The computational cost of the parameter estimation
pipeline precludes us from running it on all data; therefore,
the parameter estimation analysis relies on an estimate of
the coalescence time as provided by the detection pipeline
[12]. In practice, a 200 ms window centered on the trigger
time is sufficient to guard against the uncertainty and bias
in the coalescence time estimates from the detection pipe-
line; see for instance [10,60]. For the signal-to-noise ratios
(SNRs) used in this paper, our posteriors are much narrower
than our priors for most parameters.

III. ALGORITHMS

A. MCMC

Markov chain Monte Carlo methods are designed to
estimate a posterior by stochastically wandering through
the parameter space, distributing samples proportionally to
the density of the target posterior distribution. Our MCMC
implementation uses the Metropolis-Hastings algorithm
[61,62], which requires a proposal density function
Qðθ0jθÞ to generate a new sample θ0, which can only
depend on the current sample θ. Such a proposal is
accepted with a probability rs ¼ minð1; αÞ, where

α ¼ Qðθjθ0Þpðθ0jd; HÞ
Qðθ0jθÞpðθjd; HÞ : ð22Þ

If accepted, θ0 is added to the chain; otherwise θ is repeated.
Chains are typically started at a random location in

parameter space, requiring some number of iterations
before dependence on this location is lost. Samples from
this burn-in period are not guaranteed to be draws from the
posterior, and are discarded when estimating the posterior.
Furthermore, adjacent samples in the chain are typically
correlated, which is undesirable as we perform
Kolmogorov-Smirnov tests of the sampled distributions,
which require independent samples. To remove this corre-
lation we thin each chain by its integrated autocorrelation
time (ACT) τ, defined as

τ ¼ 1þ 2
X
t

ĉðtÞ; ð23Þ

where t labels iterations of the chain and ĉðtÞ is the Pearson
correlation coefficient between the chain of samples and
itself shifted by t samples [63]. The chain is thinned by
using only every τth sample, and the samples remaining
after burn-in and ACT thinning are referred to as the
effective samples. This is necessary for some postprocess-
ing checks which assume that the samples are statistically
independent.
The efficiency of the Metropolis-Hastings algorithm is

largely dependent on the choice of proposal density, since
that is what governs the acceptance rates and ACTs. The
standard, generically applicable distribution is a Gaussian
centered on θ, the width of which will affect the acceptance
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rate of the proposal. Large widths relative to the scale of the
target posterior distribution will lead to low acceptance rates
with many repeated samples, whereas small widths will have
high acceptance rates with highly correlated samples, both
resulting in large ACTs. For a simplified setting of a
unimodal Gaussian posterior, the optimal acceptance rate
can be shown to be 0.234 [64]. Though our posterior can be
more complicated, we find that targeting this acceptance rate
gives good performance and consistent ACTs for all
posteriors that we have considered. Therefore, during the
first 100,000 samples of a run, we adjust the one-
dimensional Gaussian proposal widths to achieve this
acceptance rate. This period of adjustment is re-entered
whenever the sampler finds a log likelihood (logL) that is
N=2 larger than has been seen before in a run, under the
assumption that this increase in likelihood may indicate that
a new area of parameter space is being explored.
When the posterior deviates from a unimodal Gaussian-

like distribution, using only the local Gaussian proposal
becomes very inefficient. The posteriors encountered in GW
data analysis typically consist of multiple isolated modes,
separated by regions of lower probability. To properly weigh
these modes, a Markov chain must jump between them
frequently, which is a very unlikely process when using only
a local Gaussian proposal. In Sec. III C we describe the range
of jump proposals more adept at sampling the parameter
space of a compact binary inspiral. We also describe the
technique of parallel tempering, which we employ to ensure
proper mixing of samples between the modes.

1. Parallel tempering

Tempering [65,66] introduces an inverse “temperature”
1=T to the standard likelihood function, resulting in a
modified posterior,

pTðθjdÞ ∝ pðθjHÞLðθÞ1T: ð24Þ
Increasing temperatures above T ¼ 1 reduces the contrast

of the likelihood surface, broadening peaks, with the
posterior approaching the prior in the high-temperature
limit. Parallel tempering exploits this “flattening” of the
posterior with increasing temperature by constructing an
ensemble of tempered chains with temperatures spanning
T ¼ 1 to some finite maximum temperature Tmax. Chains at
higher temperatures sample a distribution closer to the prior,
and are more likely to explore parameter space and move
between isolated modes. Regions of high posterior support
found by the high-temperature chains are then passed down
through the temperature ensemble by periodically proposing
swaps in the locations of adjacent chains. Such swaps are
accepted at a rate rs ¼ minð1;ωijÞ, where

ωij ¼
�
LðθjÞ
LðθiÞ

� 1
Ti
− 1
Tj
; ð25Þ

with Ti < Tj.

For nontrivial posteriors this technique greatly increases
the sampling efficiency of the T ¼ 1 chain, but does so at a
cost. In our implementation, samples with T > 1 are not
used in construction of the final posterior distribution, but
they are kept for calculation of evidence integrals via
thermodynamic integration in postprocessing Sec. IV C.
All samples from chains with T > 1 are ultimately

discarded, as they are not drawn from the target posterior.
From a computational perspective however, each chain can
run in parallel and not affect the total run time of the
analysis. The MCMC implementation of LALInference,
LALInferenceMCMC, uses the Message Passing Interface
[67] to achieve this parallelization. In our calculations, the
temperatures Ti are distributed logarithmically. Chains are
not forced to be in sync, and each chain proposes a swap in
location with the chain above it (if one exists) every 100
samples.

B. Nested sampling

Nested sampling is a Monte Carlo technique introduced
by Skilling [22] for the computation of the Bayesian
evidence that will also provide samples from the posterior
distribution. This is done by transforming the multidimen-
sional integral of Eq. (4) into a one-dimensional integral
over the prior volume. The prior volume is defined as X
such that dX ¼ dθpðθjHÞ. Therefore,

XðλÞ ¼
Z
pðdjθ;HÞ>λ

dθpðθjHÞ: ð26Þ

This integral computes the total probability volume con-
tained within a likelihood contour defined by pðdjθ; HÞ ¼ λ.
With this in hand, Eq. (4) can now be written as

Z ¼
Z

1

0

LðXÞdX; ð27Þ

where LðXÞ is the inverse of Eq. (26) and is a monotonically
decreasing function of X (larger prior volume enclosed
implies lower likelihood value). By evaluating the like-
lihoods Li ¼ LðXiÞ associated with a monotonically
decreasing sequence of prior volumes Xi,

0 < XM < … < X2 < X1 < X0 ¼ 1; ð28Þ

the evidence can be easily approximated with the trapezium
rule,

Z ¼
XM
i¼1

1

2
ðXi−1 − Xiþ1ÞLi: ð29Þ

Examples of the function LðXÞ for CBC sources are shown
in Fig. 2.
Applying this technique follows a fundamental set of

steps. First, a set of initial “live” points are sampled from
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the entire prior distribution. The point with the lowest
likelihood value is then removed and replaced by a new
sample with higher likelihood. This removal and replace-
ment is repeated until a stopping condition has been
reached. By default, the loop continues while LmaxXi=
Zi > e0.1, where Lmax is the maximum likelihood so far
discovered by the sampler, Zi is the current estimate of the
total evidence, and Xi is the fraction of the prior volume
inside the current contour line. In short, this is checking
whether the evidence estimate would change by more than
a factor of ∼0.1 if all the remaining prior support were at
the maximum likelihood. Posterior samples can then be
produced by resampling the chain of removed points and
current live points according to their posterior probabilities:

pðθjd;HÞ ¼
1
2
ðXi−1 − Xiþ1ÞLi

Z
: ð30Þ

The estimation of the prior volume and method for
efficiently generating new samples varies between imple-
mentations. In LALInference we have included two such
implementations, one based on a MCMC sampling of the
constrained prior distribution, and the other on the
MultiNest method, with extensions. These are described
in the following two sections, Secs. III B 1 and III B 2.

1. LALInference nest

The primary challenge in implementing the nested
sampling algorithm is finding an efficient means of drawing
samples from the limited prior distribution

p0ðθjHSÞ ∝
�
pðθjHSÞ LðdjθÞ > Lmin

0 otherwise
: ð31Þ

In LALInference we build on the previous inspnest
implementation described in [23], with several enhance-
ments described here. This uses a short MCMC chain (see
Sec. III A) to generate each new live point, which is started
from a randomly selected existing live point.
We use proposals of the same form as described in

Sec. III C with slight differences: the differential evolution
proposal is able to use the current set of live points as a
basis for drawing a random difference vector, and for
empirically estimating the correlation matrix used in the
eigenvector proposal. This ensures that the scale of these
jumps adapts automatically to the current concentration of
the remaining live points. In contrast to Eq. (22), the target
distribution that we are sampling is the limited prior
distribution p0 of Eq. (31), so the acceptance ratio is

α ¼ Qðθjθ0Þp0ðθ0jHÞ
Qðθ0jθÞp0ðθjHÞ : ð32Þ

Furthermore, we have introduced additional features which
help to reduce the amount of manual tuning required to
produce a reliable result.

Autocorrelation adaptation.—In [23] it was shown that the
numerical error on the evidence integral was dependent not
only on the number of live points Nlive and the information
content of the data (as suggested by Skilling), but also on
the length of the MCMC subchainsNMCMC used to produce
new samples (this is not included in the idealized descrip-
tion of nested sampling, since other methods of drawing
independent new samples are also possible; see Sec. III B
2). In inspnest, the user would specify this number at the
start of the run, depending on their desire for speed or
accuracy. The value then remained constant throughout the
run. This is inefficient, as the difficulty of generating a new
sample varies with the structure of the p0ðθjHSÞ distribution
at different values of Lmin. For example, there may be many
secondary peaks which are present up to a certain value of
Lmin, but disappear above that, making the distribution
easier to sample. To avoid this inefficiency (and to reduce
the number of tuning parameters of the code), we now
internally estimate the required length of the subchains as
the run progresses. To achieve this, we use the estimate of
the autocorrelation time scale τi [defined as in Eq. (23)] for
parameter i of a subchain generated from a randomly
selected live point. The sum is computed up to the lag Mi
which is the first time the correlation drops below 0.01, i.e.
ĉiðMiÞ ≤ 0.01. The time scale is computed for each
parameter being varied in the model, and the longest
autocorrelation time is used as the number of MCMC
iterations M ¼ maxðM1;…;MiÞ for subsequent subchains
until it is further updated after Nlive=4 iterations of the
nested sampler. As the chain needed to compute the
autocorrelation time scale is longer than the time scale
itself, the independent samples produced are cached for

FIG. 2 (color online). The profile of the likelihood function for
each of the injections in Table II, mapped onto the fractional prior
support parameter X [see Eq. (28)]. The algorithm proceeds from
left (sampling entire prior) to right (sampling a tiny restricted part
of the prior). The values of logðLÞ are normalized to the
likelihood of the noise model.
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later use. We note that as the nested sampling algorithm
uses many live points, the correlation between subsequent
points used for evaluating the evidence integral will be
further diluted, so this procedure is a conservative estimate
of the necessary chain thinning. The adaptation of the
subchain length is shown in Fig. 3, where the algorithm
adapts to use < 1000 MCMC steps during the majority of
the analysis, but can adjust its chain length to a limit of
5000 samples for the most difficult parts of the problem.

Sloppy sampling.—For the analysis of CBC data, the
computational cost of a likelihood evaluation completely
dominates that of a prior calculation, since it requires the
generation of a trial waveform and the calculation of an
inner product (with possible FFT into the frequency
domain). The task of sampling the likelihood-limited prior
p0ðθjHÞ is performed by sampling from the prior distri-
bution, rejecting any points that fall beneath the minimum
threshold Lmin. During the early stages of the run, the Lmin
likelihood bound encloses a large volume of the parameter
space, which may take many iterations of the subchain to
cross, and a proposed step originating inside the bound is
unlikely to be rejected by this cut. We are free to make a
shortcut by not checking the likelihood bound at each step
of the subchain, allowing it to continue for ME iterations,
where E is the fraction of iterations where the likelihood
check is skipped. Since the calculation of the prior is
essentially free compared to that of the likelihood, the
computational efficiency is improved by a factor of
ð1 − EÞ−1. The likelihood bound is always checked before
the sample is finally accepted as a new live point.
Since the optimal value of E is unknown, and will vary

throughout the run as the Lmin contour shrinks the support

for the p0ðθjHÞ distribution, we adaptively adjust it based
on a target for the acceptance of proposals at the likelihood-
cut stage. Setting a target acceptance rate of 0.3 at the
likelihood cut stage, and having measured acceptance rate
α, we adjust E in increments of 5% upward when α > 0.3
or downward when α < 0.3, with a maximum of 1. This
procedure allows the code to calculate fewer likelihoods
when the proposal distribution predominantly falls inside
the bounds, which dramatically improves the efficiency at
the start of the run. Figure 4 demonstrates for the BNS
analysis the automatic tuning of the sloppy sampling
fraction E such that the acceptance ratio hovers around
the target value of 0.3.

Parallelization.—Although the nested sampling algorithm
itself is a sequential method, we are able to exploit a crude
parallelization method to increase the number of posterior
samples produced. This involves performing separate
independent runs of the algorithm on different CPU cores,
and then combining the results weighted by their respective
evidence. Consider a set of nested sampling runs indexed
by i, with each iteration indexed by j ¼ 1…ξi, where ξi is
the number of iterations in run i before it terminates, and Zi
denotes the evidence estimate from that run. Our imple-
mentation also outputs the Nlive live points at the time of
algorithm termination, which are indexed ξiþ1…ξiþNlive

.
These last samples are treated separately since they are all
drawn from the same prior volume. The runs must all be
performed with identical data and models, but with differ-
ent random seeds for the sampler.
For each sample θij we calculate the posterior weight

wij ¼ LijVij=Zi, where logVij ¼ −j=Nlive for the points
up to j ≤ ξi and Vij ¼ −ξi=Nlive for the final points j > ξi.
By resampling any individual chain according to the
weights wij we can produce a set of samples from the
posterior. The resulting sets of posteriors for each i are then
resampled according to the evidence Zi calculated for each
chain. This ensures that chains which fail to converge on
the global maximum will contribute proportionally fewer
samples to the final posterior than those which do converge
and produce a higher Zi estimate. The resampling processes
can be performed either with or without replacement, where
the latter is useful in ensuring that no samples are repeated.
In this paper independent samples are used throughout, as
repeated samples will distort the tests of convergence by
artificially lowering the Kolmogorov-Smirnov (KS) test
statistic.
In practice, this procedure reduces the wall time neces-

sary to produce a given number of posterior samples, as the
chains can be spread over many CPU cores.

2. MultiNest and BAMBI

MultiNest [24–26] is a generic algorithm that imple-
ments the nested sampling technique. It uses a model-based
approach to generate samples within the volume X

FIG. 3 (color online). Length of MCMC subchain for nested
sampling analysis of the BNS system (as in Table II) as a function
of prior scale. As the run progresses, the length of the MCMC
subchain used to generate the next live point automatically adapts
to the current conditions, allowing it to use fewer iterations where
possible. The chain is limited to a maximum of 5000 iterations.

PARAMETER ESTIMATION FOR COMPACT BINARIES … PHYSICAL REVIEW D 91, 042003 (2015)

042003-11



enclosed by the likelihood contour LðXÞ > Lmin. The set of
live points is enclosed within a set of (possibly overlapping)
ellipsoids and a new point is then drawn uniformly from the
region enclosed by these ellipsoids. The volume of ellip-
soids is used in choosing which to sample from and points
are tested to ensure that if they lie in multiple (N) ellipsoids
they are accepted as a sample only the corresponding
fraction of the time (1=N). The ellipsoidal decomposition
of the live point set is chosen to minimize the sum of
volumes of the ellipsoids. This method is well suited to
dealing with posteriors that have curving degeneracies, and
allows mode identification in multimodal posteriors. If there
are various subsets of the ellipsoid set that do not overlap in
parameter space, these are identified as distinct modes and
subsequently evolved independently.
MultiNest is able to take advantage of parallel computing

architectures by allowing each CPU to compute a new
proposal point. As the run progresses, the actual sampling
efficiency (fraction of accepted samples from total samples
proposed) will drop as the ellipsoidal approximation is less
exact and the likelihood constraint on the prior is harder to
meet. By computingN samples concurrently, we can obtain
speed increases of up to a factor of N with the largest
increase coming when the efficiency drops below 1=N.
The user only needs to tune a few parameters for any

specific implementation in addition to providing the log-
likelihood and prior functions. These are the number of live
points, the target efficiency, and the tolerance. The number
of live points needs to be enough that all posterior modes
are sampled (ideally with at least one live point in the initial
set) and we use from 1000 to 5000 for our analyses. The
target efficiency affects how conservatively the ellipsoidal
decomposition is made and a value of 0.1 (10%) was found
to be sufficient; smaller values will produce more precise
posteriors but require more samples. Last, a tolerance of 0.5
in the evidence calculation is sufficiently small for the run
to converge to the correct result.
MultiNest is implemented for LALInference within the

BAMBI algorithm [27]. BAMBI incorporates the nested
sampling performed by MultiNest along with the machine
learning of SkyNet [68] to learn the likelihood function on
the fly. Use of the machine learning capability requires
further customization of input settings and so is not used for
the purposes of this study.

C. Jump proposals

For both the MCMC sampler and the MCMC subchains
of the nested sampler, efficiently exploring the parameter
space is essential to optimizing performance of the algo-
rithms. Gaussian jump proposals are typically sufficient for
unimodal posteriors and spaces without strong correlations
between parameters, but there are many situations where
strong parameter correlations exist and/or multiple isolated
modes appear spread across the multidimensional param-
eter space. When parameters are strongly correlated, the

ideal jumps would be along these correlations, which
makes one-dimensional jumps in the model parameters
very inefficient. Furthermore to sample between isolated
modes, a chain must make a large number of improbable
jumps through regions of low probability. To solve this
problem we have used a range of jump proposals, some of
which are specific to the CBC parameter estimation
problem and some of which are more generally applicable
to multimodal or correlated problems.
To ensure that a MCMC equilibrates to the target

distribution, the jump proposal densities in Eq. (22) must
be computed correctly. Our codes achieve this using a
“proposal cycle.” At the beginning of a sampling run, the
proposals below are placed into an array (each proposal may
be put multiple times in the array, according to a prespecified
weight factor). The order of the array is then permuted
randomly before sampling begins. Throughout the run, we
cycle through the array of proposals (maintaining the order),
computing and applying the jump proposal density for the
chosen proposal at each step as in Eq. (22). This procedure
ensures that there is only a single proposal operating for each
MCMC step, simplifying the computation of the jump
proposal density, which otherwise would have to take into
account the forward and reverse jump probabilities for all the
proposals simultaneously.

1. Differential evolution

Differential evolution is a generic technique that attempts
to solve the multimodal sampling problem by leveraging
information gained previously in the run [69,70]. It does so
by drawing two previous samples θ1 and θ2 from the chain
(for MCMC) or from the current set of live points (nested
sampling), and proposing a new sample θ0 according to

θ0 ¼ θþ γðθ2 − θ1Þ; ð33Þ
where γ is a free coefficient. 50% of the time we use this as
a mode-hopping proposal, with γ ¼ 1. In the case where θ1
and θ are in the same mode, this proposes a sample from the
mode containing θ2. The other 50% of the time we choose γ
according to

γ ∼ N
�
0; 2.38=

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ndim

p 

; ð34Þ

where Ndim is the number of parameter space dimensions.
The scaling of the distribution for γ is suggested in [70]
following [71] for a good acceptance rate with general
distributions. The differential evolution proposal in this
latter mode proves useful when linear correlations are
encountered in the distribution, since the jump directions
tend to lie along the principal axes of the posterior
distribution. However, this proposal can perform poorly
when the posterior is more complicated.
Drawing from the past history of the chain for the

MCMC differential evolution proposal makes the chain
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evolution formally non-Markovian. However, as more and
more points are accumulated in the past history, each
additional point accumulated makes a smaller change to the
overall proposal distribution. This property is sufficient to
make the MCMC chain asymptotically Markovian, so the
distribution of samples converges to the target distribution;
in the language of [72], theorem 1,Dn → 0 in probability as
n → ∞ for this adaptive proposal, and therefore the
posterior is the equilibrium distribution of this sampling.

2. Eigenvector jump

The variance-covariance matrix of a collection of rep-
resentative points drawn from the target distribution (the
current set of nested sampling live points) can be used as an
automatically self-adjusting proposal distribution. In our
implementation, we calculate the eigenvalues and eigen-
vectors of the estimated covariance matrix, and use these to
set a scale and direction for a jump proposal. This type of
jump results in a very good acceptance rate when the
underlying distribution is approximately Gaussian, or is
very diffuse (as in the early stages of the nested sampling
run). In the nested sampling algorithm, the covariance
matrix is updated every Nlive=4 iterations to ensure the
jump scales track the shrinking scale of the target distri-
bution. Within each subchain the matrix is held constant to
ensure detailed balance.

3. Adaptive Gaussian

We also use a one-dimensional Gaussian jump proposal,
where the jump for a single parameter θk is θ0k ¼ θkþ
Nð0; σkÞ. The width of the proposal is scaled to achieve a
target acceptance rate of ξ≃ 0.234 by adjusting

σk←σk þ sγ
1 − ξ

100
Δ ð35Þ

when a step is accepted, where sγ is a scaling factor andΔ is
the prior width in the kth parameter, and adjusting

σk←σk − sγ
ξ

100
Δ ð36Þ

when a step is rejected. For the MCMC, the adaptation
phase lasts for 100,000 samples, and sγ ¼ 10ðt − t0Þ−1=5 −
1 during this phase; otherwise sγ ¼ 0. The nested sampling
algorithm has sγ ¼ 1.

4. Gravitational-wave specific proposals

We also use a set of jump proposals specific to the CBC
parameter estimation problem addressed in this work.
These proposals are designed to further improve the
sampling efficiency by exploring known structures in the
CBC posterior distribution, primarily in the sky location
and extrinsic parameter subspaces.

Sky location.—Determining the sky position of the CBC
source is an important issue for follow-up observations of
any detected sources. The position, parametrized by
ðα; δ; dLÞ, is determined along with the other parameters
by the LALInference code, but it can present difficulties
due to the highly structured nature of the posterior
distribution. Although the nonuniform amplitude response
of a single detector allows some constraint of the sky
position of a source, the use of a network of detectors gives
far better resolution of the posterior distribution. This
improvement is heuristically due to the ability to resolve
the difference in time of arrival of the signal at each
detector, which allows triangulation of the source direction.
The measured amplitude of the signal and the nonuniform
prior distribution further constrain the posterior, but the
major structure in the likelihood can be derived by
considering the times of arrival in multiple detectors.
This leads us to include two specific jump proposals
similar to those outlined in [23], which preserve the times
of arrival in two and three detector networks respectively.
Sky reflection: In the case of a three-detector network,

the degeneracy of the ring based on timing is broken by the
presence of a third detector. In this case, there are two
solutions to the triangulation problem which correspond to
the true source location, and its reflection in the plane
containing the three detector sites. If the normal vector to
this plane is n̂, the transition (in Cartesian coordinates with
origin at the geocenter) between the true point x̂ and its
reflection x̂0 is written

x̂0 ¼ x̂ − 2n̂jn̂:ðx̂ − x̂iÞj ð37Þ

where x̂i is the unit vector pointing in the direction of one of
the detector sites. The resulting point is then projected back
onto the unit sphere parametrized by α; δ. To ensure
detailed balance, the resulting point is perturbed by a small
random vector drawn from a three-dimensional Gaussian in
ðt; α; δÞ. The time parameter is updated in the same way as
for the sky rotation proposal above. As in the two-detector
case, the degeneracy between these points can be broken by
consideration of the signal amplitudes observed in the
detector; however this is not always the case as the
secondary mode can have a similar likelihood.

Extrinsic parameter proposals.—Extrinsic parameter pro-
posals: There exists a correlation between the inclination,
distance, polarization and the sky location due to the
sensitivity of the antenna beam patterns of the detectors.
This correlation makes the two solutions for the sky
location from the thee-detector network (described above)
correspond to different values of inclination, distance and
polarization. We solve analytically the values of those
parameters when trying to jump between the two sky
reflections. The equations are detailed in [73].
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Polarization and phase correlation: There exists a degen-
eracy between the ϕ and ψ parameters when the orbital
plane is oriented perpendicular to the line of signal, i.e.
ι ¼ f0; πg. In general these parameters tend to be correlated
along the axes α ¼ ψ þ ϕ and β ¼ ψ − ϕ. We propose
jumps which choose a random value of either the α or β
parameter (keeping the other constant) to improve the
sampling of this correlation.

Miscellaneous proposals.—Draw from prior: A proposal
that generates samples from the prior distribution (see
Sec. II C) by rejection sampling. This is mostly useful for
improving the mixing of high-temperature MCMC chains,
as it does not depend on the previous iteration.
Phase reversal: Proposes a change in the orbital phase

parameter ϕjþ1 ¼ ðϕj þ πÞðmod2πÞ, which will keep
the even harmonics of the signal unchanged, but will flip
the sign of the odd harmonics. Since the even harmonic
l ¼ m ¼ 2 dominates the signal, this is useful for proposing
jumps between multiple modes which differ only by the
relatively small differences in the waveform generated by
the odd harmonics.
Phase and polarization reversal: Proposes a simultaneous

change of the orbital phase and polarization parameters
ϕjþ1 ¼ ðϕj þ πÞðmod2πÞ and ψ jþ1 ¼ ðψ j þ π=2ÞðmodπÞ.
Gibbs sampling of distance: The conditional likelihood

of the distance parameter dL follows a known form, which
allows us to generate proposals from this distribution
independently of the previous iteration, reducing the
correlation in the chains. As the signal amplitude scales
proportionally to dL−1 ¼ u, the logarithm of the likelihood
function [Eq. (10)], constrained to only distance variations,
is quadratic in u,

logLðuÞ ¼ Aþ Buþ Cu2; ð38Þ

which in our case yields a Gaussian distribution with mean
μ ¼ −B=2C and variance σ2 ¼ 1=2C. By calculating the
value of logL at three different distances, the quadratic
coefficients are found and a new proposed distance can be
generated from the resulting Gaussian distribution.

IV. POSTPROCESSING

The main data products of all the above algorithms are a
set of samples assumed to be drawn independently from the
posterior probability distribution pðθjd; IÞ [as defined in
Eq. (1)] and, for the nested sampling algorithms, an
approximation to the evidence Z ¼ PðdjIÞ (for MCMC,
evidence computation is performed in postprocessing; see
Sec. IV C). Each algorithm initially produces outputs which
are different in both their form and relation to these
quantities. A suite of PYTHON scripts has been specifi-
cally developed for the purpose of converting these outputs
to a common results format in order to facilitate compar-
isons between the algorithms and promote consistency in

the interpretation of results. At the time of writing these
scripts (and associated libraries) can be found in the open-
source LALsuite package [47]. The end result of this
process is a set of web-ready HTML pages containing
the key metadata and statistics from the analyses from
which it should be possible to reproduce any results
produced by the codes. In this section we outline in more
detail the steps needed to convert or postprocess the output
of the different algorithms to this common results format
and important issues related to interpreting these results and
drawing scientific conclusions.

A. MCMC

The MCMC algorithm in LALInference produces a
sequence of Oð106Þ–Oð108Þ samples, depending on the
number of source parameters in the model, the number of
interferometers used, and the bandwidth of the signal. Each
sample consists of a set of source parameters fθg and
associated values of the likelihood function LðdjθÞ and
prior pðθÞ. We cannot immediately take this output
sequence to be our posterior samples as we cannot assume
that all the samples were drawn independently from the
actual posterior distribution.
In order to generate a set of independent posterior

samples the postprocessing for the MCMC algorithm first
removes a number of samples at the beginning of the chain
—the so-called burn in—where the MCMC will not yet be
sampling from the posterior probability density function.
For a d-dimensional parameter space, the distribution of the
log likelihood is expected to be close to Lmax − X, where
Lmax is the maximum achievable log likelihood, and X is a
random variable following a gamma(d=2, 1) distribution
[74]. Thus, we consider the burn in to end when a chain
samples log-likelihood values that are within d=2 of the
highest log-likelihood value found by the chain. Once we
have discarded these samples, the set of remaining samples
is then “down-sampled”; the chain is resampled randomly
at intervals inversely proportional to the autocorrelation
length to produce a subset of samples which are assumed to
be drawn independently from the posterior distribution. See
Sec. III A above for more details.

B. Nested sampling

The output of both of the nested sampling algorithms in
LALInference is a list (or lists in the case of parallel runs) of
the live points sampled from the prior distribution for a
particular model and data set and consisting of a set of
parameters and their associated logðLijÞ and Zij. These live
points approximately lie on the contours enclosing the
nested prior volumes and each has associated with it some
fraction of the evidence assumed to be enclosed within said
contour. The postprocessing step takes this information and
uses it to generate posterior samples from the list of retained
live points using Eq. (30) for single runs, along with the
procedure described in Sec. III B 1 c for parallel runs.
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C. Evidence calculation using MCMC outputs

While the nested sampling algorithms in LALInference
directly produce an approximation to the value of the
evidence Z (and produce posterior samples as a by-product),
we can also use the output from the MCMC algorithms to
calculate independent estimates of Z in postprocessing. We
have tested several methods of computing the evidence from
posterior samples, including the harmonic mean [75–77],
direct integration of an estimate of the posterior density [78],
and thermodynamic integration (see e.g. [79,80]). We have
found that only thermodynamic integration permits reliable
estimation of the evidence for the typical number and
distribution of posterior samples we obtain in our analyses.
Thermodynamic integration considers the evidence as a

function of the temperature, ZðβjHÞ, defined as

ZðβjHÞ≡
Z

dθpðdjH; θ; βÞpðθjHÞ

¼
Z

dθpðdjH; θÞβpðθjHÞ ð39Þ

where β ¼ 1=T is the inverse temperature of the chain.
Differentiating with respect to β, we find

d
dβ

lnZðβjHÞ ¼ hlnpðdjH; θÞiβ ð40Þ

where hlnpðdjH; θÞiβ is the expectation value of the log
likelihood for the chain with temperature 1=β. We can now
integrate (40) to find the logarithm of the evidence

lnZ ¼
Z

1

0

dβhlnpðdjH; θÞiβ: ð41Þ

It is straightforward to compute hlnpðdjH; θÞiβ for each
chain in a parallel-tempered analysis; the integral in Eq. (41)
can then be estimated using a quadrature rule. Because our
typical temperature spacings are coarse, the uncertainty in
this estimate of the evidence is typically dominated by
discretization error in the quadrature. We estimate that error
by performing the quadrature twice, once using all the
temperatures in the chain and once using half the temper-
atures. To achieve very accurate estimates of the evidence,
sometimes ∼20 to ∼30 temperatures are needed, out to a
maximum of β−1 ∼ 105, which adds a significant cost over
the computations necessary for parameter estimation; how-
ever, reasonably accurate estimates of the evidence can
nearly always be obtained from a standard run setup with
∼10 chains. Figure 5 plots the integrand of Eq. (41) for the
synthetic GW signals analyzed in Sec. V B, illustrating
both the coarse temperature spacing of the runs and the
convergence of the evidence integral at high temperature.

D. Generation of statistics and marginal
posterior distributions

While the list of posterior samples contains all the
information about the distribution of the source parameters
obtained from the analysis, we need to make this more

FIG. 4 (color online). Acceptance ratio and fraction of sloppy
jumps for nested sampling analysis of a BNS system. The dashed
blue line shows the automatically determined fraction of pro-
posals for which the likelihood calculation is skipped. The solid
green line shows the overall acceptance rate for new live points,
which thanks to the adaptive jumps remains at a healthy level
despite the volume of the sampled distribution changing by 17
orders of magnitude throughout the run.

FIG. 5 (color online). The integrand of the evidence integral
[Eq. (41)] versus β for the analyses of synthetic GW signals in §
V B. The evidence is given by the area under each curve. Table I
gives the results of the integration together with the estimated
error in the quadrature, following the procedure described in § IV
C. The jaggedness of the curves illustrates that the temperature
spacing required for convergent MCMC simulations is larger than
that required for accurate quadrature to compute the evidence; the
flatness at small β illustrates that, for these simulations, the high-
temperature limit is sufficient for convergence of the evidence
integral.
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intelligible by summarizing it in an approximate way.
We have developed a number of different summary
statistics which provide digested information about the
posterior distributions, which are applied in postprocessing
to the output samples.
The simplest of these are simply the mean and standard

deviation of the one-dimensional marginal distributions for
each of the parameters. These are estimated as the sample
mean, standard deviation, etc., over the samples, which
converge on their continuous distribution equivalents (3) in
the limit of large numbers of samples. These are particularly
useful for giving simple measures of the compatibility of the
results with the true values, if analyzing a known injection.
However, estimators are not always representative of the

much larger amount of information contained in the
marginal posterior distributions on each of the parameters
(or combinations of them). For summarizing one- or two-
dimensional results we create plots of the marginal pos-
terior probability density function by binning the samples
in the space of the parameters and normalizing the resulting
histogram by the number of samples.
We are also interested in obtaining estimates of the

precision of the resulting inferences, especially when
comparing results from a large number of simulations to
obtain an expectation of parameter estimation performance
under various circumstances. We quantify the precision in
terms of credible intervals, defined for a desired level of
credibility (e.g. Pcred ¼ 95% probability that the parameter
lies within the interval), with the relation

credible level ¼
Z
credible interval

pðθjdÞdθ: ð42Þ

The support of the integral above is the credible interval;
however this is not defined uniquely by this expression. In
one dimension, we can easily find a region enclosing a
fraction x of the probability by sorting the samples by their
parameter values and choosing the range from ½Nð1 − xÞ=2;
Nð1þ xÞ=2� whereN is the number of independent samples
in the posterior distribution. The statistical error on the
fraction x of the true distribution enclosed, caused by the
approximation with discrete samples, is ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ=Np

. To
achieve a 1% error in the 90% region we therefore require
900 independent samples. Typically we collect a few
thousand samples, giving an error < 1% on the credible
interval.
We are also interested in the minimum credible interval,

which is the smallest such region that encloses the desired
fraction of the posterior. In the case of a unimodal one-
dimensional posterior this leads to the highest posterior
density interval.
To find estimates of the minimum credible intervals we

use a number of techniques that have different regimes of
usefulness, depending primarily on the number of samples
output from the code and the number of parameters we are
interested in analyzing conjointly.

When we are considering the one-dimensional marginal
posterior distributions, we simply compute a histogram for
the parameter of interest using equally sized bins. This
directly tells us the probability associated with that region
of the parameter space: the probability density is approx-
imately equal to the fraction of samples in the bin divided
by the bin width. This simple histogrammethod involves an
appropriate choice of the bin size. We must be careful to
choose a bin size small enough that we have good
resolution and can approximate the density as piecewise
constant within each bin, but large enough so that the
sampling error within each bin does not overwhelm the
actual variations in probability between bins.
To recover the minimum credible interval we apply a

greedy algorithm to the histogram bins. This orders the bins
by probability, and starting from the highest probability
bin, works its way down the list of bins until the required
total probability has been reached. Although this procedure
generally yields satisfactory results, it is subject to bias due
to the discrete number of samples per bin. To see this,
consider a uniform probability distribution that has been
discretely sampled. The statistical variation of the number
of samples within bins will cause those where the number
fluctuates upward to be chosen before those where it
fluctuates downward. The credible interval estimated by
this method will therefore be smaller than the true interval
containing the desired proportion of the probability. In [81]
we investigate several methods of overcoming this problem.

V. VALIDATION OF RESULTS

To confirm the correctness of the sampling algorithms,
we performed cross comparisons of recovered posterior
distributions for a variety of known distributions and
example signals. The simplest check we performed was
recovery of the prior distribution, described in Sec. II C.
The one-dimensional distributions output by the codes
were compared using a Kolmogorov-Smirnov test, where
the comparisons between the three codes on the 15
marginal distributions were all in agreement with p-values
above 0.02. We next analyzed several known likelihood
functions, where we could perform cross-checks between
the samplers. These were a unimodal 15-dimensional
correlated Gaussian, a bimodal correlated Gaussian dis-
tribution, and the Rosenbrock banana function. For the
unimodal and bimodal distributions we can also compare
the results of the samplers to the analytical marginal
distributions to confirm they are being sampled correctly.

A. Analytic likelihoods

The multivariate Gaussian distribution was specified by
the function

logLMV ¼ −
1

2
ðθ̂i − θiÞC−1

ij ðθ̂j − θjÞ; ð43Þ

J. VEITCH et al. PHYSICAL REVIEW D 91, 042003 (2015)

042003-16



where Cij is a covariance matrix of dimension 15, and the
mean values θ̂i are chosen to lie within the usual ranges,
and have the usual scales, as in the GW case. Cij was
chosen so that its eigenvectors do not lie parallel to the axes
defined by the parameters θi, and the ratio of the longest to
shortest axis was ∼200. The evidence integral of this
distribution can be computed to good approximation over
a prior domain bounded at 5σ using the determinant of
the covariance matrix and the prior volume V, ZMV ¼
V−1ð2=πÞ15=2 detCij

−1=2 ≈ e−21.90.
The bimodal distribution was composed of two copies of

the unimodal multivariate Gaussian used above, with two
mean vectors θ̂i and λ̂i separated by 8σ, as defined by Cij.
Using a bounding box at�9σ about the midpoint of the two
modes, the evidence is calculated as Z0

BM ≈ e−30.02.
The Rosenbrock banana function is a commonly used

test function for optimization algorithms [82]. For this
distribution, we do not have analytic one-dimensional
marginal distributions to compare to, or known evidence
values, so we were only able to do cross comparisons
between the samplers.
Each sampler was run targeting these known distribu-

tions, and the recovered posterior distributions and evi-
dences were compared. The posterior distributions agreed
for all parameter as expected, and an example of one
parameter is shown in Fig. 6.
The recovered evidence values are shown in Table I. For

the MCMC sampler the quoted errors come from the
thermodynamic integration quadrature error estimates
described in Sec. IV C; for the nested samplers the quoted
errors are estimated by running the algorithm multiple
times and computing the standard deviation of the results.
For the simplest unimodal and bimodal distributions we see
excellent agreement between the sampling methods, which
agree within the 1σ statistical error estimates. The more
difficult Rosenbrock likelihood results in a statistically

significant disagreement between the nested sampling and
BAMBI algorithms, with BAMBI returning the higher
evidence estimate. To highlight the difficulty, for this
problem the thermodynamic integration methods used with
MCMC required 64 temperature ladder steps to reach
convergence to βhlogLi ¼ 0 at high temperatures, as
opposed to the 16 used in the other problems. This pattern
is repeated in the evidence for the signals, where there is a
difference of several standard deviations between the
methods.

B. Simulated GW signals

As an end-to-end test, we ran all three sampling flavors
of LALInference (MCMC, Sec. III A; nest, Sec. III B 1; and
BAMBI, Sec. III B 2) on three test signals, described in
Table II. These signals were injected into colored Gaussian
noise of known power spectrum and recovered with the
same approximant used in generating the injection, listed in
Table II. Since we used inspiral-only waveform models for
both injection and recovery, there is a sharp cutoff in the
signal above the waveform’s termination frequency. It has
been shown that in some circumstances the presence of this
cutoff provides an artificially sharp feature which can
improve parameter estimation beyond that of a realistic
signal [83]. Nonetheless, since the focus of this study is the
consistency of the algorithms, we can proceed to use the
sharply terminating waveforms for comparison purposes.
Figures 7–9 show two-dimensional 90% credible inter-

vals obtained by all three samplers on various combinations
of parameters. Figure 7 (see Table II) shows the typical
posterior structure for a BNS system. We show only three
two-dimensional slices through the nine-dimensional (non-
spinning) parameter space, highlighting the most relevant
parameters for an astrophysical analysis. Selected one-
dimensional 90% credible intervals are shown in Table III.

FIG. 6 (color online). Example comparing cumulative distributions for the analytic likelihood functions for each sampler for the
(arbitrary) m1 parameter for the three test likelihood functions. The samplers are shown as Nest: purple left hatches; MCMC: green
horizontal hatches; BAMBI: blue right hatches, with the true cumulative distributions shown in red where available. (Left) Unimodal
multivariate Gaussian distribution. (Middle) Bimodal distribution. (Right) Rosenbrock distribution. The different methods show good
agreement with each other, and with the known analytic distributions. Vertical dashed lines indicate the 5–95% credibility interval for
each method.
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This is the least challenging of the three example signals,
since we restrict the model to nonspinning signals only. The
posterior PDFs show excellent agreement between
the sampling methods. In the leftmost panel we show the
recovered distribution of the masses, parametrized by the
chirp mass and symmetric mass ratio. This shows the high

accuracy towhich the chirpmass can be recovered compared
to the mass ratio, which leads to a high degree of correlation
between the estimatedcomponentmasses.Thedomainof the
prior ends at a maximum of η ¼ 0.25, which corresponds to
the equal mass configuration. In the central panel we show
the estimated sky location, which is well determined here

TABLE I. The log evidence estimates for the analytic likelihood distributions (Sec. VA) and the simulated signals
(Sec. V B) calculated with the three methods, with estimated uncertainty. For the thermodynamic integration method
we used 16 steps on the temperature ladder, except for the Rosenbrock likelihood which required 64. For
distributions that permit an analytic computation of evidence, the samplers produce evidence estimates consistent
with the true value. For the others, the estimates produced by the samplers are not consistent, indicating that there
remains some systematic error in the evidence calculation methods for the more difficult problems.

Distribution Analytic Nested Sampling BAMBI MCMC, Thermodynamic integration

Unimodal −21.9 −21.8� 0.1 −21.8� 0.12 −20.3� 1.9
Bimodal −30.0 −30.0� 0.1 −29.9� 0.14 −26.7� 3.0
Rosenbrock � � � −70.9� 0.2 −69.1� 0.2 −63.0� 7.6
BNS � � � 68.7� 0.34 69.98� 0.17 68.2� 1.1
NSBH � � � 62.2� 0.27 63.67� 0.16 63.40� 0.72
BBH � � � 71.4� 0.18 72.87� 0.15 72.44� 0.11

TABLE II. Details of the injected signals used in Sec. V B, showing the waveform approximant used with the masses (mf1;2g), spin
magnitudes and tilt angles (af1;2g; tf1;2g), and the distance and inclination (ι).

Fig. Name Approximant m1 ðM⊙Þ m2 ðM⊙Þ a1 a2 t1 (Rad) t2 (Rad) ι (Rad)
Distance
(Mpc)

Network
SNR

7 BNS TaylorF2 3.5PN 1.3382 1.249 0 0 � � � � � � 2.03 135 13
8 NSBH SpinTaylorT4

3.5PN
15 1.35 0.63 0 0 � � � 1.02 397 14

9 BBH SpinTaylorT4
3.5PN

15 8 0.79 0.8 3.1 1.44 2.307 500 15

FIG. 7 (color online). Comparison of probability density functions for the BNS signal (Table II) as determined by each sampler.
Shown are selected two-dimensional posterior density functions in greyscale, with red cross hairs indicating the true parameter values,
and contours indicating the 90% credible region as estimated by each sampler. On the axes are superimposed the one-dimensional
marginal distributions for each parameter, as estimated by each sampler, and the true value indicated by a vertical red line. The colors
correspond to BAMBI (blue), NEST (magenta), MCMC (green). (Left) The mass posterior distribution parametrized by chirp mass and
symmetric mass ratio. (Center) The location of the source on the sky. (Right) The distance dL and inclination θJN of the source showing
the characteristic V-shaped degeneracy.
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thanks to the use of a three-detector network. In the rightmost
panel, the correlation between the distance and inclination
angle is visible, as bothof theseparameters scale the effective
amplitude of the waveform. The reflection about the θJN ¼
π=2 line shows the degeneracy which is sampled efficiently
using the extrinsic parameter jump proposals, Sec. III C 4.
Similarly to Fig. 7, Fig. 8 (see Table II) shows the

posterior for a neutron star–black hole binary (NSBH)
system. This signal was recovered using a spin-aligned
waveform model, and we show six two-dimensional slices
of this eleven-dimensional parameter space. Selected one-
dimensional 90% credible intervals are shown in Table IV.
The top-left panel shows the M − η distribution; in
comparison to Fig. 7 the mass ratio is poorly determined.
This is caused by the correlation between the η parameter
and the aligned spin magnitudes, which gives the model
greater freedom in fitting η, varying a1 and a2 to compen-
sate. This correlation is visible in the bottom-right panel.
The other panels on the bottom row illustrate other
correlations between the intrinsic parameters. The top-right
panel shows the correlation between distance and

inclination, where in this case the spins help break the
degeneracy about the θJN ¼ π=2 line.
Last, Fig. 9 (see Table II) shows the posterior for a binary

black hole (BBH) system, recovered taking into account
precession effect from two independent spins. We show
nine two-dimensional slices of this 15-dimensional param-
eter space. One-dimensional 90% credible intervals are
shown in Table V. In addition to the features similar to
Fig. 7 in the top row, correlations with spin magnitudes
(middle row) and tilt angles (bottom row) are shown. Note
that the injected spin on the first component is almost
antialigned with the orbital angular momentum, such that
the tilt angle t1 ¼ 3.1, an unlikely random choice. This
angle has a low prior probability, and as a result the injected
value lies in the tails of the posterior distribution. This has
repercussions in the recovered distributions for the spin
magnitude and mass ratio, since they are partially degen-
erate in their effect on the phase evolution of the waveform,
which results in the true value also being located in the tails
of these distributions.

FIG. 8 (color online). Comparison of probability density functions for the NSBH signal (Table II), with the same color scheme as
Fig. 7. (First row left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (First row center) The
location of the source on the sky. (First row right) The distance dL and inclination θJN of the source. In this case the V-shaped degeneracy
is broken, but the large correlation between dL and θJN remains. (Second row left) The spin magnitudes posterior distribution. (Second
row center) The spin and mass of the most massive member of the binary illustrating the degeneracy between mass and spin. (Second
row right) The spin and symmetric mass ratio.
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In all three cases, the three independent sampling algo-
rithms converge on the same posterior distributions, indicat-
ing that the algorithms can reliably determine the source
parameters, even for the full 15-dimensional spinning case.
We also computed the evidence for each signal, relative

to the Gaussian noise hypothesis, using each sampler, with
errors computed as in Sec. VA. The results in Table I show

that the two flavors of nested sampling produce more
precise estimates, according to their own statistical error
estimates, but they disagree in the mean value. The
thermodynamic integration method used with the
MCMC algorithm (with 16 steps on the temperature ladder)
produces a larger statistical error estimate, which generally
encloses both the nested sampling and BAMBI estimates.

FIG. 9 (color online). Comparison of probability density functions for the BBH signal (Table II), with the same color scheme as Fig. 7.
(First row left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (First row center) The location of
the source on the sky. (First row right) The distance dL and inclination θJN of the source showing the degeneracy is broken, as in the
NSBH case. (Second row left) The spins magnitude posterior distribution. (Second row center) The spin and mass of the most massive
member of the binary illustrating the degeneracy between mass and spin. (Second row right) The spin and symmetric mass ratio. (Third
row left) The spins tilt posterior distribution. (Third row center) The spin tilt of the more massive member of the binary and the
symmetric mass ratio. (Third row right) The spin tilt and mass of the most massive member of the binary.
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These results indicate that there remains some systematic
disagreement between the different methods of estimating
evidence values, despite the good agreement between the
posteriors. The BAMBI method generally produces a
higher evidence estimate compared to the nested sampling
approach, by around a factor of e. This indicates that further
improvement is necessary before we can rely on these
methods to distinguish models which are separated by
evidence values lower than this factor.

C. Confidence intervals

Having checked the agreement of the posterior distri-
butions on three selected injections, we performed a further
check to ensure that the probability distributions we recover
are truly representative of the confidence we should hold in
the parameters of the signal. In the ideal case that our noise
and waveform model matches the signal and noise in the
data, and our prior distribution matches the set of signals in
the simulations, the recovered credible regions should
match the probability of finding the true signal parameters
within that region. By setting up a large set of test signals in
simulated noise we can see if this is statistically true by
determining the frequency with which the true parameters

lie within a certain confidence level. This allows us to check
that our credible intervals are well calibrated, in the sense
of [84].
For each run we calculate credible intervals from the

posterior samples, for each parameter. We can then examine
the number of times the injected value falls within a given
credible interval. If the posterior samples are an unbiased
estimate of the true probability, then 10% of the runs should
find the injected values within a 10% credible interval, 50%
of runs within the 50% interval, and so on.
We perform a KS test on whether the results match the

expected 1 to 1 relation between the fraction of signals in
each credible region, and the level associated with that
region.
For one-dimensional tests our credible regions are

defined as the connected region from the lowest parameter
value to the value where the integrated probability reaches
the required value. In practice we order the samples by
parameter value and query what fraction of this list we
count before passing the signal value.
To perform this test, we drew 100 samples from the prior

distribution of Sec. II C, providing a set of injections to
use for the test. This was performed using the TaylorF2

TABLE III. BNS recovered parameters. Median values and 5–95% credible interval for a selection of parameters for each of the
sampling algorithms.

M (M⊙) η m1 (M⊙) m2 (M⊙) d (Mpc) α (rad) δ (rad)

Nest 1.12531.12551.1251 0.24870.250.2447 1.41.51.3 1.21.31.1 197251115 3.193.243.14 −0.997−0.956−1.02

MCMC 1.12531.12551.1251 0.24870.250.2447 1.41.51.3 1.21.31.1 195250113 3.193.243.14 −0.998−0.958−1.02

BAMBI 1.12531.12551.1251 0.24870.250.2449 1.41.51.3 1.21.31.1 196251114 3.193.243.14 −0.998−0.958−1.02

Injected 1.1253 0.2497 1/3382 1.249 134.8 3.17 −0.97

TABLE IV. NSBH recovered parameters, defined as above.

MðM⊙Þ η m1 (M⊙) m2 (M⊙) d (Mpc) a1 a2 α (rad) δ (rad)

Nest 3.423.483.36 0.110.230.076 11155.3 1.72.91.4 612767383 0.360.750.041 0.490.950.046 0.8430.8740.811 0.4590.4950.422

MCMC 3.423.483.36 0.120.230.077 11155.3 1.72.91.4 601763369 0.350.730.038 0.480.940.045 0.8430.8740.812 0.4590.4960.422

BAMBI 3.423.483.37 0.110.220.075 11155.8 1.62.71.3 609767378 0.360.720.042 0.490.950.044 0.8430.8740.811 0.4590.4950.422

Injected 3.477 0.076 15 1.35 397 0.63 0.0 0.82 0.44

TABLE V. BBH recovered parameters, defined as above.

M (M⊙) η m1 (M⊙) m2 (M⊙) d (Mpc) a1 a2 α (rad) δ (rad)

Nest 9.59.89.3 0.150.2170.12 24.329.316.3 5.57.74.7 647866424 0.340.660.082 0.480.950.049 0.210.290.14 −0.612−0.564−0.659

MCMC 9.59.89.3 0.150.230.12 23.829.114.8 5.58.24.7 630847404 0.360.780.092 0.510.950.05 0.210.30.14 −0.612−0.563−0.658

BAMBI 9.59.89.3 0.1490.2160.12 24.529.216.3 5.47.54.7 638859428 0.350.690.087 0.490.940.049 0.210.290.14 −0.612−0.565−0.659

Injected 9.44 0.227 15 8 500 0.79 0.77 0.230 −0.617
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waveform approximant for both injection and recovery,
with simulated Gaussian data using the initial LIGO and
Virgo noise curves and three detector sites.
We calculated the cumulative distribution of the number

of times the true value for each parameter was found within
a given credible interval p, as a function of p, and
compared the result to a perfect 1 to 1 distribution using
a KS test. All three codes passed this test for all parameters,
indicating that our sampling and postprocessing does
indeed produce well-calibrated credible intervals.
Figure 10 shows an example of the cumulative distribution
of p-values produced by this test for the distance parameter.
Similar plots were obtained for the other parameters.

VI. COMPUTATIONAL PERFORMANCE

We have benchmarked the three samplers using the three
GW events described in Sec. V B. Although the specific
performances listed are representative only of these signals,
they do provide a rough idea of the relative computational
performance of the sampling methods and the relative
difficulty in the BNS, NSBH and BBH analyses, when
running in a typical configuration. The computational cost
of a parameter estimation run is strongly dependent on two
main factors: the waveform family used (see Sec. II B) and
the structure of the parameter space. Profiling of the codes

show that computation of waveforms is the dominating
factor, as the calculation of the phase evolution at each
frequency bin is relatively expensive compared to the
computation of the likelihood once the template is known.
The computationally easiest waveform to generate is

TaylorF2, where an analytic expression for the waveform in
the frequency domain is available. For the BNS signal
simulated here, around 50 waveforms can be generated per
second at our chosen configuration (32s of data sampled at
4096 Hz). On the other hand, more sophisticated wave-
forms, like SpinTaylorT4 with precessing spins, require
solving differential equations in the time domain, and a
subsequent FFT (the likelihood is always calculated in the
frequency domain), which raises the CPU time required to
generate a single waveform by an order of magnitude.
The structure of the parameter space affects the length of

a run in several ways. The first, and most obvious, is
through the number of dimensions: when waveforms with
precessing spins are considered a 15-dimensional param-
eter space must be explored, while in the simpler case of
nonspinning signals the number of dimensions is 9. The
duration of a run will also depend on the correlations
present in the parameter space, e.g. between the distance
and inclination parameters [38]. Generally speaking runs
where correlations are stronger will take longer to complete
as the codes will need more template calculations to
effectively sample the parameter space and find the region
of maximum likelihood.
Table VI shows a comparison of the efficiency of each

code running on each of the simulated signals in terms of the

FIG. 10. P versus P plot for the distance parameter. On the x
axis is the probability p contained in a credible interval, and on
the y axis the fraction of true values which lay inside that interval.
The diagonal line indicates the ideal distribution where credible
intervals perfectly reflect the frequency of recovered injections.
For all three sampling algorithms the results are statistically
consistent with the diagonal line, with the lowest KS statistic
being 0.25.

TABLE VI. Performance of all three sampling methods on the
three signals from Table II. The time quoted in the “CPU time”
line is the cumulative CPU time across multiple cores, while the
time quoted in the “wall time” line is the actual time taken to
complete the sampling. The difference is an indication of the
varying degrees of parallelism in the methods.

BNS BAMBI Nest MCMC

Posterior samples 6890 19879 8363
CPU time (s.) 3317486 1532692 725367
Wall time (s.) 219549 338175 23927
CPU seconds/sample 481.5 77.1 86.7
Wall seconds/sample 31.9 17.0 2.9
NSBH BAMBI Nest MCMC
Posterior samples 7847 20344 10049
CPU time (s.) 2823097 9463805 4854653
Wall time (s.) 178432 2018936 171992
CPU seconds/sample 359.8 465.2 483.1
Wall seconds/sample 22.7 99.2 17.1
BBH BAMBI Nest MCMC
Posterior samples 10920 34397 10115
CPU time (s.) 2518763 7216335 5436715
Wall time (s.) 158681 1740435 200452
CPU seconds/sample 230.7 209.8 537.5
Wall seconds/sample 14.5 50.6 19.8
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cost in CPU time, wall time, and the CPU/wall time taken to
generate each sample which ended up in the posterior
distribution. These numbers were computed using the same
hardware, Intel Xeon E5-2670 2.6 GHz processors.
We note that at the time of writing the three samplers

have different levels of parallelization, which explains the
differences between codes of the ratio of CPU time to
wall time.

VII. CONCLUSIONS AND FUTURE GOALS

In this paper we have described the application of three
stochastic sampling algorithms to the problem of compact
binary parameter estimation and model selection. Their
implementation in the LALInference package provides a
flexible and open-source toolkit which builds upon much
previous work to give reliable results [13–17,17–21,23,25–
27,29,30]. The independent sampling methods have
allowed us to perform detailed cross validation of the
results of inference on a range of GW signals from compact
binary coalescences, such as will be observed by future
gravitational-wave detectors. We have also performed
internal consistency checks of the recovered posterior
distributions to ensure that the quoted credible intervals
truly represent unbiased estimates of the parameters under
valid prior assumptions.
The release of the LALInference toolkit as part of the

open-source LAL package, available from [47], has already
provided a base for developing methods for testing general
relativity [35–37] and performing parameter estimation on
a variety of other GW sources [40,41]. In the future we
intend to further develop the implementation to accom-
modate more sophisticated noise models for data analysis
in the advanced detector era. This will enable us to provide
parameter estimation results which are robust against the
presence of glitches in the data, against time-dependent
fluctuations in the noise spectrum [42,43,45], and will
allow us to incorporate uncertainty in the calibration of the
instruments.
Work is also ongoing in improving inference to incor-

porate systematic uncertainties in the waveform models
which affect estimates of intrinsic parameters [55].
Meanwhile, recent advances in reduced order modeling

of the waveforms and developments of surrogate models
for the most expensive waveforms should result in a
dramatic improvement in the speed of parameter estimation
[85–88]. More intelligent proposal distributions also have
the potential to reduce the autocorrelation time scales in the
MCMC and nested sampling algorithms, further improving
the efficiency of these methods.

The work described here should serve as a foundation for
these further developments, which will be necessary to
fully exploit the science capabilities of the advanced
generation of gravitational-wave detectors, and produce
parameter estimates in a timely manner.
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