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Abstract

Estimating a constrained relation is a fundamental problem in machine learning.
Special cases are classification (the problem of estimating a map from a set of
to-be-classified elements to a set of labels), clustering (the problem of estimating
an equivalence relation on a set) and ranking (the problem of estimating a linear
order on a set). We contribute a family of probability measures on the set of all
relations between two finite, non-empty sets, which offers a joint abstraction of
multi-label classification, correlation clustering and ranking by linear ordering.
Estimating (learning) a maximally probable measure, given (a training set of)
related and unrelated pairs, is a convex optimization problem. Estimating (inferring)
a maximally probable relation, given a measure, is a 01-linear program. It is solved
in linear time for maps. It is NP-hard for equivalence relations and linear orders.
Practical solutions for all three cases are shown in experiments with real data.
Finally, estimating a maximally probable measure and relation jointly is posed
as a mixed-integer nonlinear program. This formulation suggests a mathematical
programming approach to semi-supervised learning.

1 Introduction

Given finite, non-empty sets, A and B, equal or unequal, the problem of estimating a relation between
A and B is to decide, for every a ∈ A and every b ∈ B, whether or not the pair ab is related.
Classification, for instance, is the problem of estimating a map from a set A of to-be-classified
elements to a set B of labels by choosing, for every a ∈ A, precisely one label b ∈ B. Clustering
is the problem of estimating an equivalence relation on a set A by deciding, for every a, a′ ∈ A,
whether or not a and a′ are in the same cluster. Ranking is the problem of estimating a linear order
on a set A by deciding, for every a, a′ ∈ A, whether or not a is less than or equal to a′. In none of
these three examples are the decisions pairwise independent: If the label of a ∈ A is b ∈ B, it cannot
be b′ ∈ B \ {b}. If a and a′ are in the same cluster, and a′ and a′′ are in the same cluster, a and a′′
cannot be in distinct clusters. If a is less than a′, a′ cannot be less than a, etc. Constraining the set of
feasible relations to maps, equivalence relations and linear orders, resp., introduces dependencies.

We define a family of probability measures on the set of all relations between two finite, non-empty
sets such that the relatedness of any pair ab and the relatedness of any pair a′b′ 6= ab are independent,
albeit with the possibility of being conditionally dependent, given a constrained set of feasible
relations. With respect to this family of probability measures, we study the problem of estimating
(learning) a maximally probable measure, given (a training set of) related and unrelated pairs, as well
as the problem of estimating (inferring) a maximally probable relation, given a measure. Solutions
for classification, clustering and ranking are shown in experiments with real data. Finally, we state the
problem of estimating the measure and relation jointly, for any constrained set of feasible relations, as
a mixed-integer nonlinear programming problem (MINLP). This formulation suggests a mathematical
programming approach to semi-supervised learning. Proofs are deferred to Appendix A.
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Figure 1: Bayesian models of probability measures. a) The model of probability measures on binary
relations we consider, in plate notation. b) A more general model of probability measures on subsets.

2 Related Work

Estimating a constrained relation is a special case of structured output prediction [1], the problem of
estimating, for a set S and a set z ⊆ 2S of feasible subsets of S, from observed data x, one feasible
subset y ∈ z of S so as to maximize a margin, as in [2], entropy, as in [3], or a conditional probability
of y, given x and z, as in this work. For relations, S = A×B with A 6= ∅ and B 6= ∅.
The Bayesian model of probability measures on the set of all relations between two sets we consider
(Fig. 1a) is more specific than the general Bayesian model for structured output prediction (Fig. 1b).
Firstly, we assume that the relatedness of a pair ab depends only on one observation, xab, associated
with the pair ab. We consider no observations associated with multiple pairs. Secondly, we assume
that the relatedness of any pair ab and the relatedness of any pair a′b′ 6= ab are independent, albeit
with the possibility of being conditionally dependent, given a constrained set z of feasible relations.

One probabilistically principled way of estimating a constrained subset (such as a relation) from
observed data is by maximizing entropy [3]. The maximum probability estimation we perform is
different. It is invariant under transformations of the probability measure that preserve the optimum
(possibly a disadvantage), and it does not require sampling.

The problem of estimating a maximally probable equivalence relation with respect to the probability
measure we consider is known in discrete mathematics as the Set Partition Problem [4] and in machine
learning as correlation clustering [5, 6]. The state of the art in solving this NP-hard problem is by
branch-and-cut, exploiting properties of the Set Partition Polytope [7]. Correlation clustering differs
from clustering based on (non-negative) distances. In correlation clustering, all partitions are, a
priori, equally probable. In distance-based clustering, the prior probability of partitions is typically
different from the equipartition (otherwise, the trivial solution of one-elementary clusters would be
optimal). Parameter learning for distance-based clustering is discussed comprehensively in [8]. We
discuss parameter learning for equivalence relations and thus, correlation clustering. Closely related
to equivalence relations are multicuts [4]; for a complete graph, the complements of the multicuts are
the equivalence relations on the node set. Multicuts are used, for instance, in image segmentation
[9, 10, 11, 12]. The probability measure on a set of multicuts defined in [10] is a special case of the
probability measure we discuss here.

The problem of estimating a maximally probable linear order with respect to the probability measure
we consider is known as the Linear Ordering Problem. The state of the art in solving this NP-hard
problem is by branch-and-cut, exploiting properties of the Linear Ordering Polytope. The problem
and polytope are discussed comprehensively in [13], along with exact algorithms, approximations
and heuristics. Solutions of the Linear Ordering problem are of interest in machine learning, for
instance, to predict the order of words in sentences [14]. Our experiments in Section 6.3 are inspired
by the experiments in [14]. Unlike in [14], we do not use any linguistic features and assess solutions
of the Linear Ordering Problem explicitly.

We concentrate on feature vectors in {0, 1}K , for a finite index set K. This is w.l.o.g. on a finite state
computer and has the advantage that every probability measure on the feature space has a (unique)
multi-linear polynomial form [15]. We approximate this form by randomized multi-linear polynomial
lifting, building on the approximation of polynomial kernels proposed in [16]. This modeling of
probability measures by linear approximations of multi-linear polynomial forms is in stark contrast
to the families of nonlinear, nonconvex functions modeled by (deep) neural networks.
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3 Probability Measures on a Set of Binary Relations

For any finite, non-empty sets, A and B, equal or unequal, we define the probability of any relation
y′ ∈ 2A×B between these sets with respect to (i) a set z′ ⊆ 2A×B called the set of feasible relations
(ii) a finite index set J and, for every ab ∈ A×B, an xab ∈ {0, 1}J called the feature vector of the
pair ab (iii) a finite index set K and a θ ∈ RK called a parameter vector. The probability measure is
defined with respect to a Bayesian model in four random variables, X , Y , Z, and Θ. The model is
depicted in Fig. 1a. The random variables and conditional probability measures are defined below.

• For any ab ∈ A × B, a realization of the random variable Xab is a (feature) vector
xab ∈ {0, 1}J . Thus, a realization of the random variable X is a map x : A×B → {0, 1}J
from pairs ab to their respective feature vector xab.

• For any ab ∈ A×B, a realization of the random variable Yab is a yab ∈ {0, 1}. Hence, a
realization of the random variable Y is the characteristic vector y ∈ {0, 1}A×B of a relation
between A and B, namely the relation y′ := {ab ∈ A×B | yab = 1}.
• A realization of the random variable Z is a set z ⊆ {0, 1}A×B of characteristic vectors. It

defines a set z′ ⊆ 2A×B of feasible relations, namely those relations y′ whose characteristic
vector y is an element of z.
• A realization of the random variable Θ is a (parameter) vector θ ∈ RK .

From the conditional independence assumptions enforced by the Bayesian model (Fig. 1a) follows
that a probability measure of the conditional probability of a relation y′ and model parameters θ,
given features x of all pairs, and given a set z′ of feasible relations, separates according to

dpY,Θ|X,Z(y, θ, x, z) ∝ pZ|Y (z, y)
∏

ab∈A×B
pYab|Xab,Θ(yab, xab, θ) ·

∏
k∈K

pΘk
(θk) dθk . (1)

We define the likelihood pZ|Y of a relation y′ to be positive and equal for all feasible relations and
zero for all infeasible relations. That is,

pZ|Y (z, y) ∝
{

1 if y ∈ z
0 otherwise

. (2)

By defining the likelihood pYab|Xab,Θ, we choose a family of measures of the probability of a pair
being an element of the unconstrained relation, given its features. By defining the prior pΘk

, we
choose a distribution of the parameters of this family. We consider two alternatives, a logistic model
and a Bernoulli model, each with respect to a single (regularization) parameter σ ∈ R+.

pYab|Xab,Θ(yab, xab, θ) pΘk
(θk)

Logistic
(

1 + 2−(2yab−1)〈θ,xab〉
)−1 1

σ
√

2π
exp

(
− θ2

k

2σ2

)
θ ∈ RK (3)

Bernoulli
∏
k∈K

(
θyab

k (1− θk)1−yab
)xabk Γ(2σ)

Γ2(σ)
θσ−1
k (1− θk)σ−1 θ ∈ (0, 1)K (4)

Our assumption of a linear logistic form is without loss of generality, as we show in Appendix B.
The Bernoulli model is defined for the special case in which each pair ab is an element of one of
finitely many classes, characterized by precisely one non-zero entry of the feature vector xab, and the
probability of the pair being an element of the unconstrained relation depends only on its class.

Constraints as Evidence Any property of finite relations can be enforced by introducing evidence,
more precisely, by fixing the random variable Z to the proper subset z ⊂ {0, 1}A×B of precisely
the characteristic vectors of those relations z′ ⊂ 2A×B that exhibit the property. Two examples are
given below. Firstly, the property that a particular pair ab ∈ A × B be an element of the relation
and that a different pair a′b′ ∈ A× B not be an element of the relation is introduced by z defined
as the set of all x ∈ {0, 1}A×B such that xab = 1 and xa′b′ = 0. Secondly, the property that the
relation be a map from A to B is introduced by z defined as the set of all x ∈ {0, 1}A×B such that
∀a ∈ A :

∑
b∈B xab = 1. More examples are given in Section 5.
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4 Maximum Probability Estimation

4.1 Logistic Model

Lemma 1 (θ̂, ŷ) maximizes pY,Θ|X,Z defined by (1), (2) and (3) if and only if (θ̂, ŷ) is a solution of
the mixed-integer nonlinear program written below. Its continuous relaxation need not be convex.

min
y∈z,θ∈RK

Dx(θ, y) +Rσ(θ) (5)

Dx(θ, y) =
∑

ab∈A×B

(
−〈θ, xab〉yab + log2

(
1 + 2〈θ,xab〉

))
(6)

Rσ(θ) =
log2 e

2σ2
‖θ‖22 (7)

If the relation y′ is fixed to some ŷ′ (defined, for instance, by training data), (5) specializes to the
problem of estimating (learning) maximally probable model parameters. This convex problem, stated
below, is well-known as logistic regression. It can be solved using convex optimization techniques
which have been implemented in mature and numerically stable open source software, notably [17].

min
θ∈RK

Dx(θ, ŷ) +Rσ(θ) (8)

If the model parameters θ are fixed to some θ̂ (learned, for instance, from training data, as described
above), (5) specializes to the problem of estimating (inferring) a maximally probable relation. The
computational complexity of this 01-linear program, stated below, depends on the set z of feasible
relations. Three special cases are discussed in Section 5.

min
y∈z

−
∑

ab∈A×B
〈θ̂, xab〉yab (9)

Lemma 2 0 < inf
θ,y

Dx(θ, y) ≤ |A||B|.

4.2 Bernoulli Model

Lemma 3 (θ̂, ŷ) maximizes pY,Θ|X,Z defined by (1), (2) and (4) if and only if (θ̂, ŷ) is a solution of
the mixed-integer nonlinear program written below. Its continuous relaxation need not be convex.

min
y∈z,θ∈(0,1)J

Dx(θ, y) +Rσ(θ) (10)

Dx(θ, y) =
∑

ab∈A×B

∑
j∈J

(xab)j log2

1− θj
θj

 yab −
∑
j∈J

(xab)j log2(1− θj)

 (11)

Rσ(θ) = (1− σ)
∑
j∈J

log2 θj(1− θj) (12)

The problem of estimating (learning) an optimal θ̂ for a fixed ŷ has the well-known and unique
closed-form solution stated below which can be found in linear time. For every j ∈ J :

θ̂j =
m+
j + (σ − 1)

m+
j +m−j + 2(σ − 1)

m+
j :=

∑
ab∈A×B

(xab)j ŷab m−j :=
∑

ab∈A×B
(xab)j(1− ŷab) (13)

The problem of estimating (inferring) optimal parameters ŷ for a fixed θ̂ is a 01-linear program of the
same form as (9), albeit with different coefficients in the objective function:

min
y∈z

∑
ab∈A×B

∑
j∈J

(xab)j log2

1− θ̂j
θ̂j

 yab (14)
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5 Special Cases

5.1 Maps (Classification)

Classification is the problem of estimating a map from a finite, non-empty set A of to-be-classified
elements to a finite, non-empty set B of labels. A map from A to B is a relation y′ ∈ 2A×B that
exhibits the properties which are stated below, firstly, in terms of first-order logic and, secondly, as
constraints on the characteristic vector y of y′, in terms of integer arithmetic.

First-Order Logic Integer Arithmetic

Existence of images ∀a ∈ A : ∃b ∈ B(ab ∈ y′) 1 ≤
∑
b∈B yab (15)

Uniqueness of images ∀a ∈ A ∀{b, b′} ∈
(
B
2

)
: ab /∈ y′ ∨ ab′ /∈ y′ yab + yab′ ≤ 1 (16)

Obviously, classification is a special case of the problem of estimating a constrained relation. In order
to establish one-versus-rest classification as a special case (in Appendix C), we consider not a feature
vector for every pair ab ∈ A×B but, instead, a feature vector for every element a ∈ A. Moreover,
we constrain the family of probability measures such that the learning problem separates into a set of
independent optimization problems, one for each label.

5.2 Equivalence Relations (Clustering)

Clustering is the problem of estimating a partition of a finite, non-empty set A. A partition is a
set of non-empty, pairwise disjoint subsets of A whose union is A. The set of all partitions of A
is characterized by the set of all equivalence relations on A. For every partition P ⊆ 2A of A, the
corresponding equivalence relation y′ ∈ 2A×A consists of precisely those pairs in A whose elements
belong to the same set in the partition. That is ∀aa′ ∈ A×A : aa′ ∈ y′ ⇔ ∃S ∈ P : a ∈ S ∧a′ ∈ S.
Therefore, clustering can be stated equivalently as the problem of estimating an equivalence relation
y′ ∈ 2A×A on A. Equivalence relations are, by definition, reflexive, symmetric and transitive.

First-Order Logic Integer Arithmetic

Reflexivity ∀a ∈ A : aa ∈ y′ yaa = 1 (17)
Symmetry ∀{a, a′} ∈

(
A
2

)
: aa′ ∈ y′ ⇒ a′a ∈ y′ yaa′ = ya′a (18)

Transitivity ∀{a, a′, a′′} ∈
(
A
3

)
: aa′ ∈ y′ ∧ a′a′′ ∈ y′ yaa′ + ya′a′′ − 1 ≤ yaa′′

⇒ aa′′ ∈ y′ (19)

For equivalence relations, the learning problem is of the general form (8). The inference problems
(9) and (14), with the feasible set z defined as the set of those y ∈ {0, 1}A×A that satisfy (17)–(19),
are instances of the NP-hard Set Partition Problem [4], known in machine learning as correlation
clustering [5, 6].

The state of the art in solving this problem (exactly) is by branch-and-cut, exploiting properties of
the Set Partition Polytope [7]. Feasible solutions of large and hard instances can be found using
heuristics, notably the Kernighan-Lin Algorithm [18] that terminates in time O(|A|2 log |A|).

5.3 Linear Orders (Ranking)

Ranking is the problem of estimating a linear order on a finite, non-empty set A, that is, a relation
y′ ∈ 2A×A that is reflexive (17), transitive (19), antisymmetric and total.

First-Order Logic Integer Arithmetic

Antisymmetry ∀{a, a′} ∈
(
A
2

)
: aa′ /∈ y′ ∨ a′a /∈ y′ yaa′ + ya′a ≤ 1 (20)

Totality ∀{a, a′} ∈
(
A
2

)
: aa′ ∈ y′ ∨ a′a ∈ y′ 1 ≤ yaa′ + ya′a (21)

For linear orders, the learning problem is of the general form (8). The inference problems (9) and
(14), with the feasible set z defined as the set of those y ∈ {0, 1}A×A that satisfy (17), (19), (20) and
(21), are instances of the NP-hard Linear Ordering Problem [13].

The state of the art in solving this problem (exactly) is by branch-and-cut, exploiting properties of the
Linear Ordering Polytope, cf. [13], Chapter 6. Feasible solutions of large and hard instances can be
found using heuristics, cf. [13], Chapter 2.
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Figure 2: Classification of images of handwritten digits (MNIST), using the proposed model.

6 Experiments

The formalism introduced above is used to estimate maps, equivalence relations and linear orders
from real data. All figures reported in this section result from computations on one core of an Intel
Xeon E5-2660 CPU operating at 2.20 GHz. Absolute computation times are shown in Appendix E.

6.1 Maps (Classification)

Firstly, we consider the problem of classifying images of handwritten digits of the raw MNIST
data set [19], based on a 6272-dimensional vector of 01-features (8 bits for each of 28·28 pixels).
Multilinear polynomial liftings of the feature space are described in Appendix B.

Fig. 2 shows fractions of misclassified images. It can be seen from this figure that the minimal error
on the test set is as low as 8.53% (at σ−2 = 27) for a linear function (d = 1), thanks to the 01-features.
For an approximation of a multilinear polynomial form of degree d = 2 by m = 16348 random
features (see Appendix B for details), the error drops to 3.14% (at σ−2 = 212). Reducing the number
of random features by half increases the error by 0.5%. Approximating a multilinear polynomial
form of degree d = 3 by m ≤ 16348 random features yields worse results. The overall best result of
3.14% misclassified images falls short of the impressive state of the art of 0.21% defined by deep
learning [20] and encourages future work on multilinear polynomial lifting.

6.2 Equivalence Relations (Clustering)

Next, we consider the problem of clustering sets of images of handwritten digits, including the entire
MNIST test set of 104 images. A training set {(xaa′ , yaa′)}aa′∈T of |T | = 5 · 105 pairs of images
is drawn randomly and without replacement from the MNIST training set, such that it contains as
many pairs of images showing the same digit as pairs of images showing distinct digits. (Results for
learning from unstratified data are shown in Appendix E.) For every pair aa′ ∈ T of images, xaa′ is a
12544-dimensional 01-vector (defined in Appendix D), and yaa′ = 1 iff the images show (are labeled
with) the same digit. Stratified and unstratified test sets of pairs of images are drawn randomly and
without replacement from the MNIST test set. Results for the independent classification of pairs
(not a solution of the Set Partition Problem) are shown in Fig. 3. The fraction of misclassified pairs
is 18.1% on stratified test data and 15.0% on unstratified test data, both at σ−2 = 222 and for an
approximation of a multilinear polynomial form of degree d = 2 by 16384 random features.

For θ̂ learned with these parameters, we infer equivalence relations on random subsets A of the
MNIST test set by solving the Set Partition Problem, that is, (9) with the feasible set z defined as the
set of those y ∈ {0, 1}A×A that satisfy (17)–(19). For small instances, we use the branch-and-cut loop
of the closed-source commercial software IBM ILOG Cplex. In this loop, we separate the inequalities
(17)–(19). Beyond these, we resort to the general classes of cuts implemented in Cplex. For large
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Figure 3: Classification of pairs of images of handwritten digits (MNIST). Colors and line styles have
the same meaning as in Fig. 2.

Table 1: Comparison of equivalence relations on stratified random subsets A of the MNIST test set

|A|
(|A|

2

)
eRI [%] VI [21] Sets Obj./

(|A|
2

)
· 102 t [s]

θ̂s

ŷ
100 4950 8.81 ± 1.65 1.16 ± 0.20 12.5 ± 1.5 −16.88 ± 2.36 34.99 ± 27.86
170 14365 7.23 ± 0.87 1.08 ± 0.14 16.6 ± 2.5 −16.33 ± 1.18 2777.30 ± 4532.56
220 24090 7.70 ± 0.59 1.23 ± 0.11 19.6 ± 2.5 −16.00 ± 0.91 35424.71 ± 95316.62

ŷKL

100 4950 8.69 ± 1.37 1.15 ± 0.21 12.3 ± 1.9 −16.87 ± 2.36 0.01 ± 0.00
170 14365 7.36 ± 0.80 1.09 ± 0.15 16.5 ± 2.3 −16.33 ± 1.19 0.03 ± 0.01
220 24090 7.71 ± 0.60 1.24 ± 0.11 19.7 ± 2.5 −16.00 ± 0.91 0.05 ± 0.01
260 33670 7.59 ± 0.85 1.25 ± 0.14 20.1 ± 1.8 −15.56 ± 1.25 0.06 ± 0.01
300 44850 7.83 ± 0.79 1.22 ± 0.10 20.9 ± 3.0 −16.49 ± 0.58 0.09 ± 0.01
104 5 · 109 7.11 1.49 129 −16.65 595.19

instances, we initialize our implementation of the Kernighan-Lin Algorithm with the feasible solution
in which a pair aa′ ∈ A×A is related iff there exists a path from a to a′ in the complete graph KA

such that, for all edges a′′a′′′ in the path, θ̂a′′a′′′ > 0. An evaluation of equivalence relations on
random subsets A of the MNIST test set in terms of the fraction eRI of misclassified pairs (one minus
Rand’s index), the variation of information [21] and the objective value of the Set Partition Problem
is shown in Tab. 1. It can be seen form this table that the fixed points ŷKL of the Kernighan-Lin
Algorithm closely approximate certified optimal solutions ŷ. It can also be seen that the runtime t of
the Kernighan-Lin Algorithm, unlike that of our branch-and-cut procedure, is practical for clustering
the entire MNIST test set. Finally, it can be seen that the heuristic feasible solution ŷKL of the
Set Partition Problem reduces the fraction of pairs of images classified incorrectly from 15.0% (for
independent classification) or 10% (for the trivial partition into one-elementary sets) to 7.11%.

6.3 Linear Orders (Ranking)

Finally, we consider the problem of estimating the linear order of words in sentences. Training data is
provided by every well-formed sentence and is therefore abundant. We estimate, for every pair jj′ of
words j and j′ in a dictionary, the probability of the word j to occur before the word j′ in a sentence.
Our dictionary consists of the 1,000 words most often used in the English Wikipedia. Our training
(test) data consists of 129,389 (10,000) sentences, drawn randomly and without replacement from
those sentences in the English Wikipedia that contain only words from the dictionary. We define A
to be the set of all occurrences of words in a sentence, as the same word can occur multiple times.

7
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Figure 4: Distances between the optimal sentences with respect to the model and the correct sentences.

For every pair aa′ of occurrences of words, the feature vector xaa′ ∈ {0, 1}J is indexed by J , the
set of all pairs of words in the dictionary. We define (xaa′)jj′ = 1 iff a is an occurrence of the word
j and a′ is an occurrence of the word j′. With respect to the Bernoulli model, optimal parameters
θ̂ are learned by evaluating the closed form (13), which takes less than 10 seconds for the entire
training set. Every sentence of the test set is taken to be an unordered set of words and is permuted
randomly for this experiment. An optimal linear order of words is estimated by solving the Linear
Ordering Problem, that is, (14), with the feasible set z defined as the set of those y ∈ {0, 1}A×B
that satisfy (17), (19), (20) and (21). For all instances, we use the branch-and-cut loop of Cplex,
separating the inequalities (17), (19), (20) and (21) and otherwise resorting to the general classes of
cuts implemented in Cplex.

Metric distances between the optimal sentences with respect to the model and the correct sentences are
reported for three different metrics [22] in Fig. 4. For the summary statistics in this figure, the metrics
have been normalized appropriately to account for the different lengths of sentences. Horizontal lines
indicate the value the normalized metric would assume for randomly ordered sentences. It can be
seen from this figure that the model is effective in estimating the order of words in sentences and is
not sensitive to the regularization parameter σ for the dictionary and training data we used.

7 Conclusion

We have defined a family of probability measures on the set of all relations between two finite,
non-empty sets which offers a joint abstraction of multi-label classification, correlation clustering
and ranking by linear ordering. The problem of estimating (learning) a maximally probable measure,
given (a training set of) related and unrelated pairs, is a convex optimization problem. The problem
of estimating (inferring) a maximally probable relation, given a measure, is a 01-linear program
which specializes to the NP-hard Set Partition Problem for equivalence relations and to the NP-hard
Linear Ordering Problem for linear orders. Experiments with real data have shown that maximum
probability learning and maximum probability inference are practical for some instances.

In the experiments we conduct, the distinction between learning and inference is motivated by
the distinction between training data and test data. It is well-known, however, that a distinction
between learning and inference is inappropriate if there is just one data set and partial evidence
about a to-be-estimated relation. With respect to this setting which falls into the broader research
area of semi-supervised learning, we have stated the problem of estimating θ and x jointly as the
mixed-integer nonlinear programs (5)–(7) and (10)–(12). Toward a solution of these problems, we
understand that a heuristic algorithm that alternates between the optimization of θ and x, aside form
solving, in each iteration, a problem that is NP-hard for equivalence relations and linear orders, can
have sub-optimal fixed-points. We also understand that the continuous relaxations of the problems are
not necessarily (and not typically) convex. We have stated these problems as mixed-integer nonlinear
programs in order to foster the exchange of ideas between the machine learning community and the
optimization communities.
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A Proofs

A.1 Proof of Lemma 1

From (1) follows

argmax
θ∈RK ,y∈{0,1}A×B

pY,Θ|X,Z(y, θ, x, z)

= argmax
θ∈RK ,y∈z

∏
ab∈A×B

pYab|Xab,Θ︸ ︷︷ ︸
=:p

(yab, θ, xab) ·
∏
k∈K

pΘk︸︷︷︸
=:q

(θk)

= argmax
θ∈RK ,y∈z

∑
ab∈A×B

log2 p(yab, θ, xab) +
∑
k∈K

log2 q(θk)

= argmin
θ∈RK ,y∈z

−
∑

ab∈A×B

(
yab log2 p(1, θ, xab) + (1− yab) log2 p(0, θ, xab)

)
−
∑
k∈K

log2 q(θk)

= argmin
θ∈RK ,y∈z

−
∑

ab∈A×B

(
yab log2

p(1, θ, xab)

p(0, θ, xab)
+ log2 p(0, θ, xab)

)
−
∑
k∈K

log2 q(θk)

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

(
yab log2

p(0, θ, xab)

p(1, θ, xab)
− log2 p(0, θ, xab)

)
−
∑
k∈K

log2 q(θk) . (22)

From (22) and (3) follows

argmax
θ∈RK ,y∈{0,1}A×B

pY,Θ|X,Z(y, θ, x, z)

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

(
−yab〈θ, xab〉+ log2

(
1 + 2〈θ,xab〉

))
+ |K| log2(σ

√
2π) +

log2 e

2σ2
‖θ‖22

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

(
−yab〈θ, xab〉+ log2

(
1 + 2〈θ,xab〉

))
+

log2 e

2σ2
‖θ‖22 . (23)

Partial derivatives of the function Dx defined in (6) with respect to θ ∈ RK and y ∈ (0, 1)A×B are

(∂θjDx)(θ, y) =
∑

ab∈A×B
(xab)j

(
−yab +

1

1 + 2−〈θ,xab〉

)
(24)

(∂yab
Dx)(θ, y) = −〈θ, xab〉 (25)

(∂θj ,θkDx)(θ, y) =
∑

ab∈A×B
(xab)j(xab)k

2〈θ,xab〉 loge 2(
1 + 2〈θ,xab〉

)2︸ ︷︷ ︸
=:ξ2ab

(26)

(∂θj ,yab
Dx)(θ, y) = (∂yab,θjDx)(θ, y) = −(xab)j (27)

(∂yab,ya′b′Dx)(θ, y) = 0 . (28)

Thus, the Hessian of Dx is of the special form

H =

[
Hθθ Hθy

HT
θy 0

]
with Hθθ =

∑
ab∈A×B

(ξabxab)(ξabxab)
T . (29)

It defines the quadratic form[
θT yT

]
H

[
θ
y

]
= loge(2)

∑
ab∈A×B

2〈θ,xab〉(
1 + 2〈θ,xab〉

)2 〈θ, xab〉2 − 2
∑

ab∈A×B
yab〈θ, xab〉 . (30)

This quadratic form need not be positive semi-definite. Thus, Dx need not be a convex function.
However, the Hessian Hθθ of the function Dx(·, ŷ) is positive semi-definite for any fixed ŷ ∈
[0, 1]A×B . Thus, the function Dx(·, ŷ) is convex.
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A.2 Proof of Lemma 3

From (22) and (4) follows
argmax

θ∈RK ,y∈{0,1}A×B

pY,Θ|X,Z(y, θ, x, z)

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

yab log2

∏
j∈J(1− θj)(xab)j∏

j∈J θ
(xab)j
j

− log2

∏
j∈J

(1− θj)(xab)j


−
∑
j∈J

log2

Γ(2σ)

Γ2(σ)
θσ−1
j (1− θj)σ−1

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

yab log2

∏
j∈J

(
1− θj
θj

)(xab)j

−
∑
j∈J

(xab)j log2(1− θj)


− |J | log2

Γ(2σ)

Γ2(σ)
− (σ − 1)

∑
j∈J

log2 θj(1− θj)

= argmin
θ∈RK ,y∈z

∑
ab∈A×B

∑
j∈J

(xab)j log2

1− θj
θj

 yab −
∑
j∈J

(xab)j log2(1− θj)


+ (1− σ)

∑
j∈J

log2 θj(1− θj) . (31)

The form Dx(θ, y) defined in (11) is equivalent to the form below.

Dx(θ, y) = −
∑
j∈J

(
log(1− θj)

∑
ab∈A×B

(xab)j(1− yab) + log(θj)
∑

ab∈A×B
(xab)jyab

)
(32)

= −
∑
j∈J

(
m−j log(1− θj) +m+

j log θj
)
. (33)

Partial derivarives of Dx with respect to θ ∈ (0, 1)K and y ∈ (0, 1)A×B are

(∂θjDx)(θ, y) =
1

loge 2

(
m−j

1− θj
−
m+
j

θj

)
(34)

(∂yab
Dx)(θ, y) =

∑
j∈J

(xab)j log2

1− θj
θj

(35)

(∂θj ,θkDx)(θ, y) =
δjk

loge 2

(
m−j

(1− θj)2
+
m+
j

θ2
j

)
(36)

(∂θj ,yab
Dx)(θ, y) = (∂yab,θjDx)(θ, y) =

−1

loge 2

(xab)j
(1− θj)θj

(37)

(∂yab,ya′b′Dx)(θ, y) = 0 (38)
Thus, the Hessian of Dx is of the special form

H =

[
Hθθ Hθy

HT
θy 0

]
with (Hθθ)jk =

δjk
loge 2

(
m−j

(1− θj)2
+
m+
j

θ2
j

)
. (39)

It defines the quadratic form[
θT yT

]
H

[
θ
y

]
=

1

loge 2

∑
j∈J

(
θ2
j

(1− θj)2
m−j −

1 + θj
1− θj

m+
j

)
. (40)

This quadratic form need not be positive semi-definite. Thus, Dx need not be a convex function.
However, the Hessian Hθθ of the function Dx(·, ŷ) is positive semi-definite for any fixed ŷ ∈
[0, 1]A×B . Thus, the function Dx(·, ŷ) is convex.

10



A.3 Proof of Lemma 2

Proof Let ab ∈ A×B arbitrary and fixed. If ŷab = 0,

0 = log2 1 < log2

(
1 + 2〈θ̂,xab〉

)
= ŷab〈θ̂, xab〉+ log2

(
1 + 2〈θ̂,xab〉

)
.

If ŷab = 1,

0 = −〈xab, θ〉+ 〈xab, θ〉 = −ŷab〈xab, θ〉+ log2 2〈xab,θ〉 < −ŷab〈xab, θ〉+ log2

(
1 + 2〈xab,θ〉

)
.

That is, every summand in the form (6) of Dx is bounded from below by 0. Therefore, 0 < Dx and
thus, the infimum exists. Moreover, for any y ∈ {0, 1}A×B , infθ,ŷDx(θ, ŷ) ≤ D(0, y) = |A||B|,
which establishes the upper bound.

B Multilinear Polynomial Lifting

B.1 Exact

Definition 1 For any finite index set J , the multilinear polynomial lifting of {0, 1}J is the map
l : {0, 1}J → {0, 1}2J

such that ∀v ∈ {0, 1}J ∀J ′ ⊆ J:

l(v)J′ =
∏
j∈J′

vj . (41)

For example, consider J = {1, 2} and l : (v1, v2) 7→ (1, v1, v2, v1v2).

Lemma 4 A one-to-one correspondence between functions f : {0, 1}J → R and vectors θ ∈ R2J

is
established by defining ∀v ∈ {0, 1}J :

f(v) = 〈θ, l(v)〉 . (42)

Proof By Proposition 2 in [15].

For example, consider J = {1, 2} and f(v) = θ0 + θ1v1 + θ2v2 + θ12v1v2.
Lemma 5 A one-to-one correspondence between functions p : {0, 1}J → (0, 1) and functions
f : {0, 1}J → R is established by defining ∀v ∈ {0, 1}J :

p(v) =
(

1 + 2−f(v)
)−1

. (43)

Proof Trivial.

With respect to (42) and (43) and the prior in (3), the problem (22) of estimating a pYab|Xab,Θ :

{0, 1}J → (0, 1) and a y ∈ {0, 1}A×B so as to maximize (1) can be written in the functional form
below and, thus, in the parametric form (5)–(7).

min
f :{0,1}J→R

D(f) +Rσ(f) (44)

D(f) :=
∑

ab∈A×B

(
−〈θ(f), l(xab)〉yab + log2

(
1 + 2〈θ(f),l(xab)〉

))
(45)

Rσ(f) := Rσ(θ(f)) (46)

B.2 Approximate

Solving for the 2|J| parameters θ in (44)–(46) is impractical for sufficiently large |J |. To address this
problem, we approximate the multi-linear polynomial form (42) for fixed d,m ∈ N, by a linear form
〈θ′, l′(x)〉 where l′ : {0, 1}J → Zm is drawn randomly from the distribution defined in [16], such
that the inner product 〈l′(x), l′(x′)〉 approximates the polynomial kernel k(x, x′) = (1 + 〈x, x′〉)d.

This approximation of the multi-variate polynomial lifting approximates the multi-linear polynomial
lifting (41) and thus, the multi-linear polynomial form (42), because every multi-linear polynomial
form is a multi-variate polynomial form, and every multi-variate polynomial form in {0, 1}J is
equivalent to a multi-linear polynomial form in {0, 1}J (because exponents are irrelevant).
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C One-Versus-Rest Classification

Lemma 6 Let v : A→ {0, 1}J arbitrary and fixed. Let x : A×B → {0, 1}J∪B such that, for any
ab ∈ A×B, firstly, (xab)J = vJ and, secondly, for all b′ ∈ B, (xab)b′ = 1 iff b′ = b. Let

F =

{
f : {0, 1}J∪B → R

∣∣∣∣∣ ∃g : B → R{0,1}
J

∀w ∈ {0, 1}J∪B : f(w) =
∑
b∈B

wbgb(wJ)

}
. (47)

Then, f̂ ∈ argmin
f∈F

Dx(f) +Rσ(f) iff, for every b ∈ B,

ĝb ∈ argmin
gb:{0,1}J→R

∑
a∈A

(
−gb(va)yab + log2

(
1 + 2gb(va)

))
+Rσ(gb) . (48)

Proof Let J ′ ⊆ J ∪ B. If |J ′ ∩ B| 6= 1 then θ(f)J′ = 0 by (47). Otherwise, there exists a unique
b ∈ J ′ ∩B and θ(f)J′ = θ(gb)J′ by (47). Thus,Rσ(f) =

∑
b∈BRσ(gb). Moreover,

Dx(f) =
∑

ab∈A×B

(
−f(xab)yab + log2

(
1 + 2f(xab)

))
=

∑
ab∈A×B

(
−

(∑
b′∈B

(xab)b′gb((xab)J)

)
yab + log2

(
1 + 2(

∑
b′∈B(xab)b′gb((xab)J ))

))

=
∑
b∈B

(∑
a∈A

(
−gb(va)yab + log2

(
1 + 2gb(va)

)))
.

Lemma 7 Let θ̂ ∈ RA×B arbitrary and fixed. Call y ∈ {0, 1}A×B a local solution iff, for all
a ∈ A, there exists a ba ∈ B such that, firstly, ba ∈ argminb′∈B − 〈θ̂, xab′〉 and, secondly,
∀b ∈ B : yab = 1⇔ b = ba. Then, y is a solution iff it is a local solution.

Proof Any local solution is obviously feasible. Any local solution is optimal because

min
{y∈{0,1}A×B |y∈z}

−
∑

ab∈A×B
〈θ̂, xab〉yab

=
∑
a∈A

min
{ya·∈{0,1}B |y∈z}

−〈θ̂, xab〉yab

=
∑
a∈A

min
b∈B
−〈θ̂, xab〉yab .

D Features of Pairs

Consider the problem of estimating a relation on a set A, say, an equivalence relation or a linear order.
Instead of a feature vector for every pair aa′ ∈ A×A, that is, instead of x : A×A→ {0, 1}J , we
may be given a feature vector for every element a ∈ A, that is, w : A→ {0, 1}L.

Now, we need to define, for each pair aa′, a feature vector xaa′ ∈ {0, 1}J with respect to wa and
wa′ . Ideally, xaa′ should be invariant under transposition of wa and wa′ and otherwise general. Our
restriction to 01-features affords a simple definition which has this property. For every 01-feature of
elements, indexed by l ∈ L, two 01-features of pairs, indexed by jl1, jl2 ∈ J , are defined as

(xaa′)jl1 := (va)l(va′)l (49)
(xaa′)jl2 := (va)l + (va′)l − 2(va)l(va′)l (50)

These 01-features are invariant under transposition of va and va′ . Moreover, the multilinear polyno-
mial forms in xaa′ comprise the basic transposition invariant multilinear polynomial forms

(va)l(va′)l = (xaa′)jl1 (51)
(va)l + (va′)l = (xaa′)jl2 + 2(xaa′)jl1 . (52)

12
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Figure 5: Absolute computation times for the classification of images of handwritten digits (MNIST).
Colors have the same meaning as in Fig. 2. Symbols indicate 8192 (+,+) and 16384 (•, •) random
features, respectively.

E Complementary Experiments

E.1 Maps (Classification)

For the classification of images of handwritten digits, absolute computation times are depicted in
Fig. 5. It can be seen from this figure that it takes less than 104 seconds to estimate (learn) all
parameters of the probability measure from the entire MNIST training set, using the open-source
software [17] to solve the convex learning problem. It can also be seen from this figure that it takes
less than 103 seconds to estimate (infer) the labels of all images of the MNIST test set, using our
(trivial) C++ code to solve the (trivial) inference problem.

E.2 Equivalence Relations (Clustering)

Toward the clustering of sets of images of handwritten digits, we reconsider the problem of classifying
pairs of images as either showing or not showing the same digit. A pair aa′ of images a and a′
is labeled with yaa′ = 1 if the images show (are labeled with) the same digit. It is labeled with
yaa′ = 0, otherwise. Analogous to the experiment described in Section 6.2, we now collect an
unstratified training set {(xaa′ , yaa′)}aa′∈T by drawing |T | = 5 · 105 pairs of images randomly,
without replacement, from the MNIST training set. As the MNIST training set contains (about)
equally many images for each of 10 digits, the label yaa′ = 0 is (about) 9 times as abundant in T as
the label yaa′ = 1. A test set of the same cardinality is drawn analogously from the MNIST test set.
Results for the independent classification of pairs (not a solution of the Set Partition Problem) are
shown in Fig. 6. It can be seen from this figure that the fraction of misclassified pairs is 7.45% for the
unstratified test data, at σ−2 = 221 and for an approximation of a multilinear polynomial form of
degree d = 2 by 16384 random features.

For θ̂ learned with these parameters, we infer equivalence relations on random subsets A of the
MNIST test set by solving the Set Partition Problem as described in Section 6.2. An evaluation
analogous to Section 6.2 is shown in Tab. 2. In comparison with Tab. 1, it can be seen that the inferred
equivalence relations on previously unseen test sets have a smaller fraction eRI of misclassified pairs
when learning from unstratified (biased) training data. However, they are worse in terms of the
Variation of Information, number of sets and objective value. This shows empirically that training
data in this setting should be stratified.

E.3 Orders (Ranking)

For the linear ordering of words in sentences, absolute computation times are summarized in Fig. 8.
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Figure 6: Classification of pairs of images of handwritten digits (MNIST). Colors and line styles have
the same meaning as in Fig. 2.
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Figure 7: Absolute computation times for the classification of pairs of handwritten digits (learning
and inference).
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Table 2: Comparison of equivalence relations on unstratified random subsets A of the MNIST test set

|A|
(|A|

2

)
eRI [%] VI [21] Sets Obj./

(|A|
2

)
· 102 t [s]

θ̂

ŷ

100 4950 6.36 ± 0.74 1.35 ± 0.19 43.0 ± 5.8 −3.84 ± 1.17 3.23 ± 2.29
170 14365 6.48 ± 0.38 1.56 ± 0.10 64.1 ± 5.7 −3.76 ± 0.66 5.75 ± 4.21
220 24090 6.81 ± 0.41 1.75 ± 0.12 77.8 ± 3.5 −3.51 ± 0.55 12.05 ± 9.25
260 33670 6.85 ± 0.35 1.82 ± 0.12 89.4 ± 5.9 −3.46 ± 0.53 26.97 ± 26.25
300 44850 6.57 ± 0.22 1.79 ± 0.09 94.8 ± 7.2 −3.68 ± 0.30 107.71 ± 129.69

ŷKL

100 4950 6.40 ± 0.76 1.36 ± 0.19 43.0 ± 5.9 −3.84 ± 1.17 0.01 ± 0.00
170 14365 6.46 ± 0.42 1.56 ± 0.12 63.8 ± 5.9 −3.75 ± 0.67 0.03 ± 0.01
220 24090 6.80 ± 0.44 1.75 ± 0.13 77.3 ± 4.1 −3.50 ± 0.56 0.06 ± 0.02
260 33670 6.85 ± 0.37 1.83 ± 0.14 89.4 ± 6.2 −3.46 ± 0.53 0.09 ± 0.03
300 44850 6.55 ± 0.22 1.78 ± 0.09 94.5 ± 7.0 −3.68 ± 0.30 0.15 ± 0.04
104 5 · 109 6.69 2.88 1168 −3.74 1340.70
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Figure 8: Absolute computation time for linear ordering of words in sentences (inference).
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Probabilistic image segmentation with closedness constraints. In ICCV, 2011.
[10] Bjoern Andres, Thorben Kroeger, Kevin L. Briggman, Winfried Denk, Natalya Korogod,

Graham Knott, Ullrich Koethe, and Fred A Hamprecht. Globally optimal closed-surface
segmentation for connectomics. In ECCV, 2012.

[11] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. Higher-order segmen-
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