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Summary 

 

Parasites are a major evolutionary driving force. They impose a selection factor not only on 

individual hosts, but also on whole populations altering natural and sexual selection. The 

coevolution between hosts and parasites leads to an evolutionary arms race, where hosts 

evolve towards higher resistance and parasites towards increased exploitation. Parasites have 

evolved many different adaptations to increase their potential to successfully infect and 

exploit their hosts. A parasite with a multi-host life cycle may use the different hosts for 

different purposes and must adapt to different conditions at each stage. All adaptations should 

ultimately increase the parasite’s fitness: through higher growth and higher rates of 

transmission and reproduction. 

The work of my thesis examines the adaptations of parasites, specifically tapeworms of the 

genus Schistocephalus (S. solidus and S. pungitii), to their host organisms: three-spined 

sticklebacks (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius). 

Schistocephalus has long been known to be very specific regarding the second intermediate 

(stickleback) host, which indicates close coevolution of these species. In chapter I of this 

thesis I examined this high degree of host specificity by experimentally exposing sticklebacks 

to either their specific or the incompatible parasite species and monitoring the infection 

process histologically. This could show that the incompatible parasite species can still 

establish in the stickleback, but is eliminated within the first two weeks after infection. I also 

tested, whether the known immune manipulation by S. solidus in three-spined sticklebacks 

allows a superinfection with the incompatible parasite in sequential exposures, but the results 

indicate that this is not possible. 

In the second experiment I hybridized two different Schistocephalus species (S. solidus and S. 

pungitii) in an in vitro breeding system and measured fitness relevant traits throughout the 

whole life cycle. I could show that the two species are capable of producing viable hybrid 

offspring, even though the outcrossing and hatching rates are lower in these pairings than in 

the parental species. Nevertheless, the hybrids exhibit no decreased infection rate in the first 

and second intermediate hosts and surprisingly show an extended host range, as they are able 

to infect both stickleback species, while the parental lines can only infect their specific host. 

This is surprising, as natural hybrids between S. solidus and S. pungitii have not yet been 

observed and molecular data indicates a deep lineage divergence and no gene flow. In the 
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next part of this thesis I therefore tested, if prezygotic barriers prevent hybridization in 

natural populations. The results suggest that the species can hybridize in natural hosts, there 

are no barriers to hybridization in sympatric populations and the parasites even prefer 

parasites of the different species over conspecifics in a mate choice experiment. 

In summary, these results indicate that host specificity in Schistocephalus is presumably 

maintained in this system due to the specific reaction of the stickleback’s immune system, 

even though the advantages and the mechanisms are still unclear. It is possible that the high 

degree of host specificity is important for successful long term interactions with the 

stickleback immune system, even though our results indicate no trade-off at this level. 

The ability of a parasite to successfully establish and exploit a host is also determined by 

parasite virulence, which depends on many factors that also include intraspecific interactions 

among co-infecting parasites. In the last part of this thesis, I investigated the plasticity of 

individual parasite virulence using experimental co-infections with two different strains of S. 

solidus that differ in virulence within three-spined sticklebacks. This showed that 

intraspecific interactions alter individual virulence in S. solidus, where the less virulent 

parasite benefits from the presence of a high-virulent conspecific and the high-virulent 

parasite exhibits reduced virulence in heterologous co-infections. 

This thesis demonstrates that these parasites use numerous and elaborate approaches to adapt 

to their host. Furthermore, the outcome of a parasitic infection is dependent on the close 

coevolution between parasitic exploitation strategies and host defenses, and finally, these 

interactions become even more complex with multiple infections. 
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Zusammenfassung 

 

Parasiten sind eine bedeutende Triebkraft in der Evolution. Sie üben nicht nur einen großer 

Selektionsdruck auf einzelne Wirte aus, sondern auch auf ganze Wirtspopulationen, indem 

sie die natürliche und sexuelle Selektion beeinflussen. Die Koevolution zwischen Wirten und 

ihren Parasiten führt zu einem evolutionären Wettrüsten, bei dem sich Wirte mit höheren 

Resistenzen und Parasiten mit besseren Ausbeutungsstrategien anpassen. Parasiten haben 

viele verschiedene Anpassungen entwickelt, um ihr Potenzial zur erfolgreichen Infektion und 

Ausbeutung ihrer Wirte zu erhöhen. Parasiten, deren Lebenszyklus mehrere verschiedene 

Wirte beinhaltet, welche verschiedenen Zwecken dienen, müssen sich an die 

unterschiedlichen Bedingungen in den Wirten auf jeder Stufe anpassen. Alle Anpassungen 

sollten letztendlich die Fitness der Parasiten erhöhen: durch höhere Wachstums-, 

Transmissions- und Reproduktionsraten. 

Meine Dissertation untersucht die Anpassungen von Parasiten, insbesondere von 

Bandwürmern der Gattung Schistocephalus (S. solidus und S. pungitii), an ihre 

Wirtsorganismen: Dreistachlige Stichlinge (Gasterosteus aculeatus) und Neunstachlige 

Stichlinge (Pungitius pungitius). Es ist seit langem bekannt, dass Schistocephalus sehr 

spezifisch bei der Wahl seines zweiten Zwischenwirts (in diesem Fall Stichlinge) ist, was 

eine enge Koevolution dieser Arten anzeigt. Im ersten Kapitel dieser Arbeit habe ich diese 

hohe Wirtsspezifität durch experimentelle Infektionen von Stichlingen mit ihren spezifischen 

oder inkompatiblen Parasiten und eine histologische Verfolgung des Infektionsprozesses 

untersucht. Die Ergebnisse zeigen, dass die inkompatiblen Parasiten zwar die Körperhöhle 

des Stichlings erreichen, dort allerdings innerhalb der ersten zwei Wochen nach Infektion 

durch das Immunsystem des Stichlings beseitigt werden können. Weiterhin habe ich getestet, 

ob die bekannte Immunmanipulation von S. solidus in Dreistachligen Stichlingen eine 

Superinfektion mit einem inkompatiblen Parasiten in simultanen oder sequentiellen 

Infektionen mit beiden Parasiten ermöglicht. Die Ergebnisse zeigen, dass dies nicht der Fall 

ist. 

Im zweiten Kapitel dieser Dissertation habe ich die beiden  Schistocephalus Arten S. solidus 

und S. pungtii in einem in vitro System hybridisiert und fitnessrelevante Merkmale im 

gesamten Lebenszyklus der Parasiten gemessen. Ich konnte damit zeigen, dass die beiden 

Arten lebensfähige Hybrid-Nachkommen erzeugen können, auch wenn die Auskrezungs- und 

Schlupfraten in diesen Kombinationen niedriger sind als bei den reinen Elternlinien. Dennoch 
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zeigen die Hybride keine verminderten Infektionsraten bei beiden Zwischenwirten 

(Copepoden und Fischen) und zeigen erstaunlicherweise ein erweitertes Wirtsspektrum auf 

der Ebene des zweiten Zwischenwirts. Sie sind in der Lage, beide Stichlingsarten zu 

infizieren, während die Elternlinien nur ihren spezifischen Fischwirt infizieren können. 

Dieses Ergebnis überrascht, da natürliche Hybride zwischen S. solidus und S. pungitii bisher 

nicht beobachtet wurden und molekulare Untersuchungen eine relativ große genetische 

Divergenz zwischen den beiden Arten und keinen Genfluss andeuten. Im nächsten Kapitel 

dieser Dissertation habe ich daher untersucht, ob präzygotische Barrieren die Hybridisierung 

in natürlichen Populationen der Parasiten verhindern. Die Ergebnisse zeigen, dass die beiden 

Arten in einem natürlichen Endwirt hybridisieren können, es keine Barrieren für 

Hybridisierung in sympatrischen Populationen der Parasiten gibt, und dass die Parasiten in 

einem Partnerwahlversuch Parasiten der anderen Art gegenüber Artgenossen bevorzugen. 

Zusammenfassend zeigen diese Ergebnisse, dass die Wirtsspezifität im Schistocephalus-

Stichlings-System womöglich durch die spezifische Reaktion des Fischimmunsystems 

aufrecht erhalten wird, obwohl die Vorteile und Mechanismen dafür noch unklar sind. Es ist 

möglich, dass der hohe Grad der Spezifität wichtig für eine erfolgreiche Interaktion mit dem 

Stichlingsimmunsystem auf lange Zeit ist, auch wenn unsere Ergebnisse keinen 

Beeinträchtigungen auf dieser Ebene zeigen. 

Die Fähigkeit eines Parasiten sich erfolgreich in einem Wirt zu etablieren und diesen 

auszunutzen hängt auch von dessen Virulenz ab, die von vielen verschiedenen Faktoren 

beeinflusst wird, unter anderem auch von den Interaktionen zwischen koinfizierenden 

Parasiten. Im letzten Teil meiner Dissertation habe ich daher die Plastizität der Virulenz eines 

einzelnen Parasiten in experimentellen Koninfektionen von Dreistachligen Stichlingen 

untersucht. Dazu habe ich verschiedenen Stämme von S. solidus verwendet, die sich in ihrer 

Virulenz unterscheiden. Diese Ergebnisse zeigen, dass die intraspezifischen Interaktionen 

zwischen den Parasiten die Virulenz eines einzelnen Parasiten stark beeinflussen: Der 

weniger virulente Parasit zieht Vorteile aus der Anwesenheit eines hoch virulenten Parasiten, 

während der hoch virulente Parasit in heterologen Koinfektionen eine verminderte Virulenz 

zeigt. 

Die Dissertation zeigt, dass Parasiten zahlreiche und sehr aufwendige Strategien nutzen, um 

sich an ihre Wirte anzupassen. Außerdem ist das Ergebnis einer parasitären Infektion auch 

von der engen Koevolution von parasitischen Ausbeutungsstrategien und spezifischen 

Abwehrmechanismen der Wirte abhängig, und schlussendlich werden diese Interaktionen 

noch komplexer in Infektionen mit mehreren Parasiten. 
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Introduction 

 

Host-parasite coevolution 

Although the definition of parasitism varies, Price resorted to a definition from Webster's 

Third International Dictionary (Gove, 1964) in his book Evolutionary Biology of Parasites 

(1980): 

 

"A parasite is an organism living in or on another living organism, obtaining from it part or 

all of its organic nutrient, commonly exhibiting some degree of adaptive structural 

modification, and causing some degree of real damage to its host." 

 

Because of the great biological diversity and different ways to exploit hosts, this definition 

includes many plants and animals. Even though there is some debate regarding the most 

appropriate definition for parasitism, it is likely that all organisms encounter parasites at some 

point in their life (Poulin, 1996). As a testament to their enormous biological diversity, it has 

been claimed that parasitism is the most common way of life on earth and that there are more 

parasitic than non-parasitic species (Kuris et al., 2008; Windsor, 1998).  

Coevolution can arise where two or more organisms, such as hosts and parasites or plants and 

pollinators, exert selection pressure on and evolve in response to the other species. While 

plants and pollinators experience mutualistic coevolution, hosts and parasites undergo 

antagonistic coevolution. Both hosts and parasites aim to maximize their reproductive fitness. 

Parasites evolve to maximize their fitness through host exploitation, whereas hosts evolve 

defense mechanisms to reduce damage caused by parasites. This arms race has been 

described in the Red Queen hypothesis (Van Valen, 1973), where the analogy is taking “all 

the running you can do, to keep in the same place” (Lewis Carroll, Alice Through the 

Looking Glass, 1872). When one species evolves e.g. new alleles that give an advantage in 

infection, the other species is adversely affected by this and has to evolve e.g. more elaborate 

defense mechanisms to keep up, which is explained in this metaphor. This arms race is often 

not unidirectional (Lively, 1996), but can lead to a fluctuation of parasite and host genotypes. 

A parasite genotype that is successful in host infection may rise in frequency, therefore 

imposing a considerable selection factor on the host population. Host genotypes that are 

resistant against this parasite genotype have a selective advantage and become more frequent, 

which leads to a decrease in the parasite genotype, allowing a new parasite genotype to take 

over and restart the cycle. Alternatively, population size fluctuations and stochasticity may 
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request different dynamics to explain host-parasite coevolution, as suggested by Gokhale and 

colleagues (2013), where recurrent selective sweeps replace the red queen dynamics 

mentioned above.  

 

Whichever theory applies, both hosts and parasites are constantly co-adapting to each other, a 

process driven by selection factors that increase both host and parasite fitness. For parasites, 

this often means a higher rate of transmission and an increased chance of persistence in the 

host. Parasite fitness tends to be improved by, in a broad sense, two strategies. The first being 

manipulation of the host immune system whereby the immune system either doesn’t 

recognize the parasite or doesn’t mount a response to the parasite; whereas, the second is the 

manipulation of the host’s behavior. Through a wide variety of behavioral manipulations, 

parasites can force the host to otherwise “unnatural” behaviors that increase the parasite’s 

fitness through a higher transmission rate or increased reproduction (Moore, 2002). It is also 

worth noting that most parasites have much shorter generation times than their hosts, which is 

advantageous to parasites in the co-evolutionary arms race (Hamilton, 1980; Lively, 1999). 

To improve their fitness hosts have strategies that can also be grouped into two broad groups. 

These are resistance, reduction of infection probability, and tolerance, limitation of harm 

caused by parasitic infection (Råberg et al., 2009). Mechanisms involved in host defense can 

include behavioral avoidance, structural defense and immune defense (innate or adaptive). 

The host defense can be increased through physical and chemical barriers, behavioral 

avoidance, changes in the innate and adaptive immune response, and through trans-

generational immune priming. 

This tightly linked coevolution can also influence traits outside the “attack” and “defend” 

cycle. For example, is has been known that parasites can alter sexual selection in a species, 

where parasitic infections influence sexually selected traits, such as breeding colorations 

leading females to choose males with a low parasite load over highly infected individuals 

(Andersson, 1994;  Hamilton & Zuk, 1982). 

Parasites can therefore impose a big selection factor on a population. It is now widely 

accepted that parasites play a role in the evolution of sex (Hamilton et al., 1990; Hamilton, 

1980; Maynard-Smith, 1978) and the origin of species diversity (Haldane, 1949; Hutchinson, 

1959; Summers & McKeon, 2003) by imposing natural and sexual selection factors on a 

population. 
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Parasite adaptations to the host 

 

Parasites have evolved many different adaptations that allow them to successfully exploit a 

host and maximize their transmission rate and offspring. In many parasite taxa these 

adaptations span complex life cycles that include several hosts at different life stages. The 

evolution of complex life cycles, by the addition of a new host to the life cycle, is  adaptive if 

this leads to an increase in transmission or reproductive output of the parasite (Combes, 1995; 

Ewald, 1995; Morand, 1996). Ewald (1995) argues that the benefits associated with 

specialization on different hosts for different resources (food, transport) led to the increase in 

complexity in parasite life cycles. However, the ability of the parasite to efficiently exploit 

different resources throughout its ontogeny (Ebenman, 1992) seems to be a prerequisite for 

this hypothesis. Consequently, parasites that use different hosts throughout their life cycle 

have to adapt to changing conditions in each host. 

A parasite’s level of host specificity, at any particular stage of the life cycle, can vary. This 

specificity is defined as the number of hosts a parasite at a given stage can successfully infect 

and exploit. It ranges from high in generalist parasites to very low in highly specialist 

parasites. This highly important parasite characteristic is determined by an “encounter filter 

model” (Combes, 1991). This filter consists of an actual encounter filter that is determined by 

which hosts the parasites encounter and a compatibility filter that is determined by 

physiological factors that allow a parasite to infect a given host. Only if both filters overlap, 

can a parasite successfully become established in the host. In complex life cycles, specificity 

may also depend on the function of the host at a specific stage. If hosts mainly serve as 

transportation vehicles, a lower specificity may be advantageous, whereas host stages that are 

severely exploited for nutrients require a closer adaptation, which can favor higher 

specialization by the parasite. The degree of specialization may also be associated with the 

virulence of a parasite, as it has been suggested that more generalist parasites tend to be less 

virulent (Garamszegi, 2006). 

Virulence is defined as damage caused by the parasite, leading to a reduction of fitness in the 

host (Ebert & Herre, 1996; Ewald, 1995b). Virulence can either be a by-product of host 

exploitation or adaptive, if fitness reduction directly increase parasite transmission (e.g. if the 

host is more susceptible to predation, which would allow the parasite to get transmitted to the 

next host). Natural selection will not necessarily favor evolution towards higher virulence, 

but rather that level of virulence that is associated with the highest parasite fitness (Ewald, 

1993), i.e. optimal virulence.  In sympatric populations of hosts and parasites, a parasite can 
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reach a level of optimal virulence through close coevolution with their corresponding hosts 

(Galvani, 2003). A parasite exploits its host to a level that maximizes parasite fitness, 

whereas mismatches between hosts and parasites could lead to over- or underexploitation of 

the host, both with negative fitness consequences for the parasite. 

Traits that increase parasite fitness on one host but decrease fitness on other hosts can favor 

evolution towards a higher degree of host specificity. Assuming these hosts are sufficiently 

abundant, the benefits of specialization might outweigh the cost of a decreased number of 

potential hosts a parasite can infect (Jaenike, 1990). It is now widely accepted that host 

specificity plays a key role in parasite speciation (Brooks & McLennan, 1993; Shaw, 1994; 

Thompson, 1994). 

All adaptations of parasites to their host also depend on other co-infecting parasite species. 

As naturally infected hosts harbor usually numerous individuals of several different  parasite 

species, the effects of intraspecific and interspecific parasite-parasite interactions may be 

underestimated in experimental studies of host-parasite coevolution (Milinski, 2014). 

In this thesis I investigated the host specificity and adaptations of Schistocephalus spp. to 

their stickleback hosts. This system allows investigating a wide range of traits throughout the 

parasite life cycle and their consequences for the fish host, which determine both parasite and 

host fitness. 
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Model system 

 

Sticklebacks 

Three-spined sticklebacks (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius 

pungitius) both are members of the family Gasterosteidae, which inhabit marine or freshwater 

environments in the temperate and subarctic regions of the Northern Hemisphere (Nelson, 

1994). After the last glaciation event, sticklebacks have repeatedly colonized lakes and 

streams which led to rapid adaptive radiation (Bell & Foster, 1994; Wootton, 1976) that 

include a number of morphological traits.  

Both fish species (Figure 1) share similar habitats, although nine-spined sticklebacks may 

prefer niches with more dense vegetation, whereas three-spined sticklebacks may dominate in 

more open parts of the water body, also supplying different food sources (Coad & Power, 

1973a, 1973b). Nevertheless, both niches and diet of the two stickleback species overlap in 

many regions (Hynes, 1950; Zander et al., 1984). 

 

 

 

Figure 1: Two members of the Gasterosteidae, three-spined stickleback (Gasterosteus aculeatus, picture above) 

and nine-spined stickleback (Pungitius pungitius, picture below). Pictures kindly provided by Sophie 

Bodenstein (three-spined stickleback) and Kenyon Mobley (nine-spined stickleback). 
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The three-spined stickleback has become an important model organism in evolutionary 

biology, evolutionary ecology, parasitology and behavioral studies (Barber & Nettleship, 

2010; Barber, 2013; Gibson, 2005; Huntingford & Ruiz‐Gomez, 2009).  In contrast to many 

other model organisms, much is known about its natural history, ecology and evolutionary 

biology (Bell & Foster, 1994; Wootton, 1976). More recently, since its genome has been 

published, the development of genetic and genomic tools increased and opened up new 

possibilities in stickleback research (Gibson, 2005; Kingsley et al., 2004). These include the 

genetics underlying morphological variation (Chan et al., 2010; Colosimo & Hosemann, 

2005; Kingsley & Peichel, 2007; Miller et al., 2007; Shapiro et al., 2004) and the genomic 

basis of adaptive evolution (Jones et al., 2012). Similar prerequisites in nine-spined 

sticklebacks led to their emergence as a model system (Merilä, 2013), allowing comparative 

studies between two closely related species in evolutionary biology and parasitology. 

Another recent field in which sticklebacks have proven to be important model organisms is 

the study of local adaptation in host-parasite interactions (Kalbe & Kurtz, 2006; Matthews et 

al., 2010; Scharsack et al., 2007) and patterns of parasite-driven local genetic adaptation 

(Eizaguirre et al., 2012; Konijnendijk et al., 2013; Nuismer & Gandon, 2008). This is 

facilitated by a large number of parasites from various taxa and the possibility to handle 

sticklebacks and several naturally occurring parasites in the laboratory, allowing 

experimental infection studies. Furthermore, several tools allow accessing the innate and 

adaptive immunity of sticklebacks with which the consequences of parasitic infections can be 

measured.  

Part of the adaptive immune system in jawed vertebrates is the major histocompatibility 

complex (MHC) which plays a crucial role in the presentation of antigens and has also been 

known to be important for resistance against parasites (Kurtz et al., 2004; Wegner et al., 

2003). Polymorphism in MHC genes is maintained through mate choice (Eizaguirre et al., 

2009), where females choose males particularly according their number of MHC alleles in 

order to create an optimal number of different MHC alleles in their offspring (Milinski, 2003; 

Reusch et al., 2001; Smith & Spence, 2013). The MHC based mate choice and MHC 

optimum has also proven important for lifetime reproductive success (Kalbe et al., 2009) and 

survival (Wegner et al., 2008).  

The availability of molecular and immunological tools, the possibility to breed and manage 

the fish as well as several of their parasites in the lab and the wide knowledge of its ecology 

make sticklebacks an ideal model system to study the host parasite coevolution.  
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Schistocephalus spp. 

Schistocephalus is a genus within the pseudophyllidean cestodes, where currently at least 

four species have been described: S. solidus (Müller 1776), S. pungitii (Dubinina, 1959), S. 

nemachili (Dubinina, 1959), and S. cotti (Chubb et al., 2006). A few other members of this 

genus have been described, but their status is highly doubted: S. fahmi (Gagarin, Chertkova & 

Vshchivstev 1966), S. rhynchichthydis (Diesing, 1863) and S. thomasi (Garoian, 1960). 

While S. solidus has been used as model system in parasitology and evolutionary ecology 

(Barber & Scharsack, 2010; Hammerschmidt & Kurtz, 2009), much less is known about the 

other Schistocephalus species. 

 

 

Figure 2: Life cycle of Schistocephalus solidus (© Jelka Lerche/ZEIT Grafik) 

Schistocephalus solidus reproduces sexually in the gut of piscivorous birds. Eggs are released with the bird’s 

feces into the water, where they hatch into free-swimming larvae. If these larvae are ingested by cyclopoid 

copepods, they develop into procercoids. Infected copepods have to be eaten by a three-spined stickleback, 

where the parasite migrates through the intestinal wall of the fish into the body cavity and develops into a 

plerocercoid. The life cycle is completed, when a bird preys on an infected stickleback. S. pungitii has a similar 

life cycle, but can only infect nine-spined sticklebacks as second intermediate hosts. 
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S. solidus has a complex life cycle involving three different hosts (Figure 2). It reproduces 

sexually in the intestine of piscivorous birds – their final hosts. Eggs are then released into 

the water with the bird’s feces, where they develop and hatch into free swimming coracidia 

(Smyth, 1946). These coracidia infect a copepod – the first intermediate host – by trophical 

transmission and develop into procercoids. When a three-spined stickleback feeds on infected 

copepods, the tapeworm is transmitted to its second intermediate host where it develops into 

a plerocercoid and undergoes an enormous growth. The life cycle is completed, when a 

piscivorous bird feeds on an infected stickleback (Smyth, 1946).  

Schistocephalus pungitii uses the same first intermediate and final hosts as S. solidus, but is 

highly specific to nine-spined sticklebacks as a second intermediate host. Analysis of 

mitochondrial markers showed that the two Schistocephalus species exhibit a deep degree of 

divergence (Nishimura et al., 2011).  

Both species are simultaneous hermaphrodites that can either outcross or self-fertilize their 

eggs. The plerocercoids are segmented, with each segment including both male and female 

reproductive organs (Clarke, 1954; Schjørring, 2009). Self-fertilization has negative fitness 

consequences (Christen & Milinski, 2003; Christen et al., 2002), i.e. lower hatching rate and 

infection success. This is also the reason why Schistocephalus has been used to study the 

evolutionary ecology of mixed mating systems (Benesh et al., 2014; Lüscher & Milinski, 

2003; Milinski, 2006) and the hermaphrodite’s dilemma theory (Lüscher & Wedekind, 2002; 

Schärer & Wedekind, 1999; Schjørring, 2004; Wedekind et al., 1998). 

The maintenance of the parasite in the lab is possible for all stages of its life cycle. An in 

vitro system is used to mimic the bird’s gut (Smyth, 1946; Wedekind, 1997) and therefore 

replace the final host. Plerocercoids are removed from the fish and worms are placed into net 

bags in bottles containing a cell culture medium (Smyth, 1946) at 40°C in the dark for 

approx. one week. The eggs are collected on the bottom of the container and after several 

washing steps can be stored in tap water at 4°C for several months. The development of 

larvae inside the eggs can be induced by raising the temperature.  After three weeks of 

incubation at 20°C in the dark, coracidia can be hatched synchronously, which is triggered by 

a change in the light regime (Dubinina, 1980). The coracidia can then be used to infect 

copepods (e.g. Macrocyclops albidus), which after approx. two weeks are infective to 

sticklebacks.  

This breeding system allows producing offspring of desired crosses and is quite flexible, 

regarding the number of plerocercoids: single plerocercoids for self-fertilized offspring 

(Benesh et al., 2014; Christen & Milinski, 2003; Christen et al., 2002), multiple mating 
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partners, sequential mating (Andreou & Benesh, 2014) or even cutting the plerocercoids and 

mating both halves with different partners is possible (Weinreich et al., 2014). This allows 

breeding the same genotype of the parasite multiple times with different partners therefore 

controlling for genotype-specific effects. Furthermore an in vitro system to replace the 

copepod stage has been developed, which facilitates manipulations on this stage of the life 

cycle (Jakobsen et al., 2012). 

 

Stickleback – Schistocephalus as a model system 

The three-spined stickleback – S. solidus system has become an important model system in 

the study of host-parasite coevolution (Barber & Scharsack, 2010).  Important for this is the 

circumpolar distribution of both species, the possibility to study the effects of a macroparasite 

on a vertebrate host and of course the facilitation of in vitro breeding of S. solidus. Such 

studies include field-observational and experimental approaches, which combined led to a 

deep knowledge about the effects of infections with S. solidus on many host traits. These 

include the effects of infection on shoaling and feeding behavior (Barber & Huntingford, 

1995; Milinski, 1984; Tierney, 1994), anti-predator behavior (Barber et al., 2004; Giles, 

1983, 1987a, 1987b; Milinski, 1985; Tierney et al., 1993) and host reproduction (Arme & 

Owen, 1967; Bagamian et al., 2004; Heins & Baker, 2008; Heins et al., 2010; Heins et al., 

1999; Heins, 2012; Macnab et al., 2011). 

The availability of many tools to assess the stickleback immune system also facilitated 

studies that investigated the effects of S. solidus infections on the stickleback immune system 

and possible immune mechanisms of the parasite to manipulate this (Franke et al., 2014; 

Scharsack et al., 2004; Scharsack et al., 2013; Scharsack et al., 2007). 

In summary, the close adaptation and high specificity of Schistocephalus to its stickleback 

hosts provides a unique opportunity to investigate interactions between parasites and hosts. 

This thesis addresses adaptations of Schistocephalus that aid in host exploitation and the 

maximization of parasite fitness and how these are possible drivers in parasite speciation. 

Using a macroparasite and its obligate second intermediate host allows us to investigate host 

specificity and virulence in a system, where we are able to assess individual parasite fitness 

as well as the consequences of infection in the fish host. 
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Thesis outline 

 

 

In my thesis I investigated the host specificity of the parasites Schistocephalus spp. and the 

adaptation to their second intermediate hosts, sticklebacks. This work is structured into four 

chapters, which are written in the form of manuscripts and include separate introductions, 

methods, results and discussions. Chapter II has been published; chapter I, III and IV will be 

submitted shortly. Chapter IV was prepared in collaboration with Noémie Erin and will also 

be included in her PhD thesis. My contribution to each chapter can be found in detail in the 

section of author contributions of this thesis. 

 

Chapter I 

This chapter examines the question on where the establishment of Schistocephalus spp. fails 

in incompatible host-parasite combinations. Three different fish species (one of them being 

the specific host) were exposed to S. solidus and the infection was monitored histologically at 

five different time points from 14 hours to two weeks post-exposure.  

In an additional experiment, three-spined sticklebacks were exposed to the incompatible 

parasite S. pungitii at four different time points after exposure to their specific parasite S. 

solidus to test, whether the manipulation of the immune response by the specific parasite 

allowed a superinfection with the incompatible parasite. Fish were dissected four weeks after 

exposure and checked for presence of parasites. 

 

Chapter II 

Schistocephalus solidus and S. pungitii exhibit a similar life cycle sharing the same range of 

final hosts (piscivorous birds) and first intermediate hosts (cyclopoid copepods). Each species 

is highly specific on the level of the second intermediate host (either three- or nine-spined 

sticklebacks respectively). As it is very likely that the two species encounter each other in the 

final host, where they reproduce sexually, hybridization would be possible. We thus 

investigated the consequences of hybridization on host specificity and fitness of the hybrids.  

The two Schistocephalus species were hybridized using an in vitro breeding system and 

fitness relevant traits of the hybrid offspring (outcrossing rate, hatching rate, infection rate in 

copepods and both stickleback species) and the parental lines were measured throughout their 

life cycle.  
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Chapter III 

As the results from our previous study (Chapter II) demonstrate, hybrids of Schistocephalus 

solidus and S. pungitii show an expanded host range and no obvious fitness disadvantages. 

Therefore, we investigated possible mechanisms of prezygotic isolation that would lead to the 

observed deep degree of divergence between these two Schistocephalus species and keep 

them separated. 

In a series of experiments we tested if spatial constrains would prevent the parasites from 

meeting in a natural host, if barriers to hybridization evolved in sympatric populations or if 

assortative mating was a possible prezygotic barrier in this system. We infected two different 

bird species simultaneously with the two Schistocephalus species and localized the parasites 

in the digestive tract, collected feces and typed them using microsatellite markers to estimate 

hybridization rate. In another experiment we used an in vitro system to conduct a mate choice 

experiment, where a focal worm could choose between a con-specific and worm from a 

different species as a mating partner. 

 

Chapter IV 

In natural communities, hosts are rarely infected with only one parasite. Parasites in multiple 

infections can encounter intraspecific competition over host resources and host manipulation. 

This can influence the dynamics of host-parasite interactions with consequences for not only 

host fitness but also parasite virulence and fitness.  

In an experimental approach we tested how intraspecific interactions between two different 

parasite strains (one high-virulent and one low-virulent strain) alter the parasite performance. 

Three-spined sticklebacks were infected with one low-virulent and one high-virulent S. 

solidus simultaneously and individual parasite performance and host nutritional and immune 

status were measured 8 weeks post exposure. As a control we exposed fish to either two 

parasites with the same level of virulence, one parasite of each strain and used an unexposed 

control group.  
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Abstract 

 

The helminth parasites Schistocephalus solidus and S. pungitii both show an extraordinary 

degree of host specificity at the level of the second intermediate host. Both species are only 

able to successfully infect one particular host species, three- or nine-spined sticklebacks 

respectively. 

We exposed three different fish species (three-spined sticklebacks (Gasterosteus aculeatus), 

nine-spined sticklebacks (Pungitius pungitius), as well as zebrafish (Danio rerio)) to S. 

solidus and monitored the infection process histologically. Our results show that S. solidus 

can establish in both three-spined sticklebacks (their specific host) and in nine-spined 

sticklebacks (the incompatible, but closely related host). However, in nine-spined 

sticklebacks they become encapsulated by a layer of fish immune cells after approximately 

one week and are cleared two weeks after exposure. In zebrafish it seemed that the parasite 

was not able to reach the body cavity of the fish at all. 

In an additional experiment, we tested if the known immune manipulation by S. solidus in 

three-spined stickleback would facilitate the infection with the incompatible parasite S. 

pungitii. We therefore performed simultaneous and sequential experimental infections with 

both parasite species in three-spined sticklebacks at different time points. These would 

resemble different stages of immune manipulation by the specific parasite. In no case could 

we detect a superinfection with the incompatible parasite. 

Our results indicate that the degree of host specificity in Schistocephalus is extremely high 

and most likely due to the inability of the parasites to avoid attacks by the immune system of 

the incompatible hosts. 
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Introduction 

 

Parasites vary in the number of hosts they can infect successfully. This continuum can range 

from highly host-specific parasites that are only able to infect one host species, or even only a 

certain host strain, to broad generalist parasites that can infect a wide range of hosts. In 

studies of host specificity, often a number of host species are screened for parasites which can 

create a bias in both directions. A parasite can be described as highly host-specific because it 

is only found within certain hosts, even though other hosts exist that were just not yet 

detected.  On the contrary, insufficient knowledge of the parasite may lead to several species 

being described as one, even though they may be entirely independent. The emergence of a 

variety of molecular tools now allows for differentiation of cryptic parasite species, making 

studies on parasite host range  even more complex (Miura et al., 2006; Poulin & Morand, 

2004; Poulin & Keeney, 2008). 

Host specificity is an important characteristic of a parasite and is affected by several factors. 

First, ecological factors determine which host species are actually encountered by the 

parasite. Then, physiological factors (e.g. the parasite’s ability  to evade the host’s immune 

defence (van Baarlen et al., 2007)) determine if the parasite can infect this given host. This 

has also been described in an “encounter and compatibility filter” by Combes (1991). 

Parasites might be able to infect this host, but then fail to develop (Combes, 2001; Randhawa 

et al., 2007) or fail to be successfully transmitted to the next host (e.g. in dead-end hosts).  

Parasites can experience a trade-off between host specificity and their ability to successfully 

exploit hosts, leading to a negative correlation between generalism and infection intensity and 

prevalence (Poulin, 1998; Garamszegi, 2006). Furthermore, highly specialized parasites may 

have a lower likelihood of jumping to a new host species than more generalist ones 

(Cleaveland et al., 2001). This adaptation to a specific host may change quite rapidly as 

experimental studies have shown that artificial transfer to a new host species can result in 

losing the ability to infect original host species (Agrawal, 2000; Ebert, 1998). 

Garamszegi (2006) has shown a negative correlation between host range and peak 

parasitaemia (a proxy for virulence) where virulent parasites are more host-specific than more 

benign ones. It should be noted that this is not a general pattern that occurs in all systems but 

nevertheless has been shown multiple times (Gandon, 2004; Regoes et al., 2000; Woolhouse, 

2001). This argument can also be reversed: more generalist parasites have more opportunities 

to infect hosts and can become more virulent since they do not pay a cost for virulence 

(Kirchner & Roy, 2002). 
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So what is the advantage of being host-specific? It has been suggested that highly specialized 

parasites can adapt faster to their host and so could replace more generalist species over time 

(Whitlock, 1996). This more tightly linked coevolution can ultimately lead to speciation in 

parasites (Duffy et al., 2007; Henry et al., 2008). However, specialization is not necessarily a 

one-way road; parasites are capable of evolving in either direction regardless of their 

ancestral state (Johnson et al., 2009). 

One example of parasites with a very high degree of host specificity is found in helminths. 

Schistocephalus solidus and S. pungitii are cestodes with a complex life cycle and show an 

extraordinary degree of host specificity at the level of the second intermediate host – the 

three-spined stickleback (Gasterosteus aculeatus) or the nine-spined stickleback (Pungitius 

pungitius). The two species are closely related and a recent study suggest that they separated 

approximately 20-25mybp (Nishimura et al., 2011). 

Most helminths including Schistocephalus spp. infect their hosts via the oral route (Mulcahy 

et al., 2004). Schistocephalus solidus and S. pungitii need between 2h and 2d to reach the 

body cavity of the stickleback host (Clarke, 1954; Dubinina, 1980). The migration within the 

intestinal lumen and through the intestinal wall happens relatively rapidly. In general, it 

seems that the parasites have to be fast, especially in the stomach; otherwise they will be 

harmed and degraded by the acidic stomach environment (Hammerschmidt & Kurtz, 2007). 

The successful crossing of the mucosal barrier seems to be a crucial step in the infection 

process in various parasites of medical or veterinary importance (Mulcahy et al., 2004). 

During the infection process in the stickleback host, Schistocephalus loses its cercomer (a 

caudal appendage of the larval cestode) and outer membrane before the penetration of the 

intestinal wall. Therefore the underlying tegument, containing mostly WGA-binding sugars 

(GlcNAc, sialic acids) with its microtriches is already exposed at this stage (Hammerschmidt 

& Kurtz, 2005b, 2007; Schmidt & Peters, 1987). These WGA-binding sugars have been 

suggested to help the parasite in evasion of the stickleback immune system (Hammerschmidt 

& Kurtz, 2005b; Schmidt & Peters, 1987). Other functions of these microtriches include 

uptake of nutrients, parasite movement and, in hookless tapeworms, anchoring to host tissue 

(Mehlhorn & Armstrong, 2001). Microtriches are also possibly important for the penetration 

of the intestinal wall as it was shown in related species such as Taenia sp. and Echinococcus 

sp. (Barker, 1970; Heath, 1971). 

During the development from procercoid to plerocercoid in Schistocephalus, a change in 

surface carbohydrates occurs, induced by bile fluid of the fish host (Marwaha et al., 2013), 
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which could protect against enzymatic digestion in the intestines as well as immune defence 

in the body cavity of sticklebacks (Hammerschmidt & Kurtz, 2005b). 

Even though sticklebacks seem to be unable to avoid infected prey behaviourally (Wedekind 

& Milinski, 1996), the fish immune system appears to be able to clear the infection within the 

first two weeks (Scharsack et al., 2007), or reduce parasite growth, which also incurs costs 

for the stickleback (Hammerschmidt & Kurtz, 2005a; Kurtz et al., 2004, 2006). 

Most parasites use some form of immune evasion to persist in their hosts. In trematodes (i.e. 

schistosomes) attachment of host cell surface antigens is believed to defend parasite against 

immune attack (molecular mimicry), a phenomenon less thoroughly studied in cestodes 

(Smyth & McManus, 1989).  At least in Ligula intestinalis it was observed that the parasite 

attaches protective host proteins onto its the surface (Hoole & Arme, 1983; Williams & 

Hoole, 1995), indicating a similar mechanism for molecular mimicry in cestodes. Some 

cestodes (e.g. Taenia pisiformis) can also release substances which inhibit proteolytic 

enzymes such as trypsin and chymotrypsin (Németh & Juhász, 1980) or induce 

immunosuppression (Rickard, 1986). Also, modifications by parasites to cell differentiation, 

macrophage activation, responsiveness to mitogens, cytotoxicity and complement activation 

have been reported (Rickard, 1986). Schistocephalus solidus itself has been shown to 

modulate the stickleback’s immune response, probably through excretory products 

(Scharsack et al., 2004; Scharsack et al., 2013).  

In a study by Orr and colleagues (1969) it was shown that S. solidus, which is specific to 

three-spined sticklebacks, can establish in the body cavity of nine-spined sticklebacks but 

fails to reach an infective size. In nine-spined sticklebacks the pleroceroids grew slower than 

in three-spined sticklebacks and were cleared by the host after 10 days. Another study 

(Bråten, 1966) showed plerocercoids transplanted from three- to nine-spined sticklebacks 

stopped developing and later on showed destruction of the tegument. 

Taken together, these results show a high degree of host specificity in S. solidus and 

furthermore a high immunological specificity for the second intermediate host. The failure to 

establish an infective stage of the parasite in the fish host is likely due to the interaction 

between the tapeworm and the fish immune system. This finding is supported by a study that 

indicated that S. solidus actively manipulates the immune response in the three-spined 

stickleback (Scharsack et al., 2004). 

If a stickleback is first infected with its specific tapeworm species, a superinfection with an 

incompatible tapeworm may establish easier, since the host immune system is already altered 

by the first parasite. In sequential infections with two S. solidus, it has been shown that the 
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second parasite had a better chance of survival and better growth than the first parasite (Jäger 

& Schjørring, 2006), indicating some kind of facilitation by immune manipulation of the first 

parasite. 

For this purpose we infected three-spined sticklebacks with their specific tapeworm S. solidus 

and exposed them at different time points to S. pungitii. The time points should reflect the 

following stages: i) initial infection (d0), ii) establishment of the parasite in the body cavity 

(d7 and d14) and iii) the first parasite reached an infective stage and is ready to be transmitted 

to the final host (d60). 

Additionally, we infected three- and nine-spined sticklebacks as well as the nonrelated 

zebrafish (Danio rerio) with S. solidus to monitor the infection process in specific and non-

specific host species at five different time points histologically. 

 

 

Methods  

 

Model system 

Schistocephalus solidus and S. pungitii are two closely related cestodes with a similar 

complex life cycle involving three different hosts. Both species reproduce sexually in their 

final hosts, piscivorous birds. Afterwards, eggs are released with the bird’s feces into the 

water, where free-swimming larvae can hatch and trophically infect the first intermediate 

host, cyclopoid copepods. There, the parasites develop into procercoids. If an infected 

copepod is eaten by a stickleback (G. aculeatus for S. solidus and P. pungitius for S. 

pungitii), they can migrate into the fish’s body cavity and develop into plerocercoids. When 

birds feed on parasitized sticklebacks, the parasites reach their final host and the life cycle is 

completed. 

It is possible to complete the parasites’ life cycle in the lab, replacing the final host with an in 

vitro breeding system (Smyth, 1946). This allows for breeding distinct combinations of 

parasites that can be used for individual and controlled experimental exposure of copepods 

and sticklebacks. 
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Histological analysis of establishment in the fish host 

For the histological analysis of the establishment of S. solidus in its specific and two non-

specific fish hosts, we used lab-bred offspring of three different fish species: G. aculeatus 

(originating from the Große Plöner See, Germany, 54° 09' 21'' N, 10° 25' 50'' E), P. pungitius 

(originating from the Neustädter Binnenwasser, Germany, 54° 06' 41'' N, 10° 48' 33'' E) and 

D. rerio (which we purchased in a  pet shop). 

The fish were starved for one week, isolated into individual 2l tanks and then fed with S. 

solidus infected copepods in order to achieve a total number of ~50 procercoids for exposure 

per fish. At each time point (14h, 18h, 24h, 1 week, 2 weeks) we killed one fish of each 

species with an overdose of MS222 and immediately fixed them in 4% formalin. Subsequent 

processing of the fish for histological screening was carried out according to Hammerschmidt 

and Kurtz (2007). 

 

Simultaneous or sequential infection experiment 

Lab-cultured copepods (Macrocyclops albidus) were individually exposed to S. solidus or S. 

pungitii. The S. solidus parasites were laboratory-bred offspring from one sibship that 

originated from a population in Skogseidvatnet (Norway, 60° 14' 38" N, 05° 54' 51" E). S. 

pungitii parasites were laboratory bred offspring from one sibship that originated from a 

population in Obbola (Sweden, 63° 39' 22'' N, 20° 17' 27'' E). The three-spined sticklebacks 

were laboratory-bred offspring that originated from two sibships from the Große Plöner See 

(Germany, 54° 09' 21'' N, 10° 25' 50'' E). 

Three-spined sticklebacks were initially exposed to their specific parasite S. solidus and then 

at different time points to S. pungitii. Each of the four different treatment groups consisted of 

30 individual fish. Exposure of fish was carried out by feeding one singly infected copepod to 

each fish. In the first group (d0), fish were simultaneously exposed to S. solidus and S. 

pungitii. In the other treatments (d7, d14 and d60) fish were kept in groups of 15 individuals 

between the exposures. 

Four weeks after exposure to S. pungitii, the fish were killed with an overdose of MS222 

(tricaine methanesulfonate, 1mg/ml) followed by a subsequent cervical incision, and 

dissected to check for the presence of parasites. 

From each parasite, including the parental parasite generation, a tissue sample was taken and 

DNA extracted using the DNeasy Kit from Qiagen. Using microsatellites (Binz et al., 2000) 

we confirmed the parentage and species for each parasite. 
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Results 

 

Histological analysis of establishment in the fish host 

We screened fish from the three different species which have been exposed to S. solidus 

histologically for parasite presence in stomach and intestinal lumen, intestinal wall and body 

cavity (Table I-1). No statistical analysis was possible, since the exact number of procercoids 

(~50 exposed per fish) was unknown and only one fish per species and time point was used. 

The main goal of this experiment was a qualitative estimate:  to find out where and when the 

establishment of S. solidus in the “wrong” host species fails. 

Our results showed that in its specific host (G. aculeatus), the parasite reached the body 

cavity already within 14h post exposure (pe). The only time point where parasites could be 

detected within the intestinal lumen and intestinal wall of three-spined sticklebacks was after 

24h pe. During all five time points parasites could be found in the body cavity of G. 

aculeatus.  

In the closely related P. pungitius no parasites could be detected in the stomach lumen, but 

were detected in the intestinal lumen and intestinal wall between 14h and 24h pe. In this fish, 

S. solidus also managed to reach the body cavity within 14h pe. After 1 week pe S. solidus in 

the non-host P. pungitius were surrounded by several layers of host cells, most likely 

granulocytes, and the parasite’s surface showed clear signs of disintegration (Figure I-1). 

After 2 weeks pe no intact S. solidus larvae were detected anymore in P. pungitius, but some 

structures in the body cavity remained which may be residual encapsulated and degraded 

parasites. Disintegration of the parasite’s surface was only seen in parasites that were already 

in the body cavity of P. pungitius and did not appear before 1 week pe (Table I-1). 

In D. rerio, not a single parasite could be detected in any of the screened organs. 
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Table I-1: Summary of the number of S. solidus found in the three different fish hosts at five different 

time points 

Each individual fish was exposed to ~50 procercoids. We divided the total number of parasites found in each 

fish into parasites found in the gastrointestinal tract (stomach or gut) or within the body cavity. We also counted 

how many parasites within the body cavity of the fish appeared encapsulated.  

In P. pungitius 2 weeks pe 8 structures within the body cavity were found that could possibly be remainders of 

encapsulated and disintegrated parasites (marked with *). 

 

 n 

gastrointestinal 

tract 

n 

body cavity 

n 

encapsulated 

G. aculeatus    

14h 7 5 0 

18h 0 8 0 

24h 1 7 0 

1 week 0 12 0 

2 weeks 0 15 0 

    

P. pungitius    

14h 0 14 0 

18h 0 8 0 

24h 0 20 0 

1 week 0 17 11 

2 weeks 0 8* 8* 

    

D. rerio    

14h 0 0 0 

18h 0 0 0 

24h 0 0 0 

1 week 0 0 0 

2 weeks 0 0 0 
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Figure I-1: Schistocephalus solidus plerocercoids 7d post exposure in the body cavity of G. aculeatus (A) 

and P. pungitius (B)  

In its specific host (A), the parasite lies next to the liver in the body cavity. Its tegument appears smooth and 

fully intact. In the non-specific fish host (B), S. solidus seems to be surrounded by a layer of fish immune cells 

and its tegument appears disintegrated and in the process of being dissolved. 

 

 

Simultaneous or sequential infection 

Dissection of the fish infected with both parasites at the four different time points revealed 

only one fish that harbored two parasites in the d60 treatment. All other fish were only singly 

infected or uninfected (Table I-2). From each plerocercoid recovered, a tissue sample was 

taken for DNA extraction and analysis to confirm the species. In all cases – including the 

double infected fish in the d60 treatment – the plerocercoids were S. solidus. In no case could 

A

B
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we find a S. pungitii. The double infection is most likely the result of an overlooked double 

infection in the copepod. 

 

Table I-2: Summary of the number of fish exposed and infected in simultaneous or sequential exposure of 

Gasterosteus aculeatus to Schistocephalus solidus and S. pungitii 

Three-spined sticklebacks were exposed to the specific parasite S. solidus and at different time points to the 

incompatible parasite S. pungitii. A simultaneous exposure to each parasite was carried out on d0. In the other 

treatments the fish were first exposed to one S. solidus, and after 7 (d7), 14 (d14) or 60 (d60) days additionally 

to one S. pungitii.  

 

time 

point 

n 

exposed 

n 

dissected 

n infected with 1 

plerocercoid 

n infected with 2 

plerocercoids 

d0 30 29 5 0 

d7 30 30 9 0 

d14 30 30 8 0 

d60 30 30 11 1 

 

 

Discussion 

 

How is this high host specificity in Schistocephalus maintained? Where and when does the 

parasite fail to establish in non-specific combinations? Following the establishment of the 

parasite in different fish hosts histologically, we could show that S. solidus manages to reach 

the body cavity of G. aculeatus and the closely related P. pungitius, but not D. rerio. This 

was in accordance with earlier studies (Orr et al., 1969) which have also shown that the 

parasite can reach the body cavity of P. pungitius, but does not manage to reach an infective 

size and is cleared by the host within a few days after infection.  

Why can’t S. solidus reach the body cavity of D. rerio? It seems that in D. rerio, S. solidus 

can’t reach the intestine or body cavity of the fish. Possibly the parasite is already digested in 

the stomach of the fish, if the protection from the acidic stomach environment fails in this 

non-specific host. It is possible that the parasite’s surface carbohydrate composition plays a 

crucial role during the establishment phase. The composition of the surface of S. solidus has 

been shown to variable between sibships and to be correlated with infectivity and growth 

(Hammerschmidt & Kurtz, 2005b). This can indicate, that the surface carbohydrates still 
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allow S. solidus to migrate through the intestinal wall and reach the body cavity of the 

incompatible even though closely related host, but not the non-related D. rerio. Orr and 

colleagues (1969) also exposed an unrelated fish species (Barbus sp.) to S. solidus and found 

similar results, as the parasite also did not enter the body cavity in this fish species. They also 

concluded that the procercoids were not able or stimulated to penetrate the intestinal wall. 

However, once it has reached the body cavity, nine-spined sticklebacks seem to target S. 

solidus which appears encapsulated and disintegrated in our histological analyses. Only the 

close coevolution between two specific species seems to allow the parasite to evade the 

stickleback immune response. If the acquisition of host molecules on the parasite surface is 

the crucial step in masking itself from the host immune system, one could imagine that the 

incompatible parasite fails at this step, being left unguarded from the immune response. Since 

hybrids between the two species are infective to both stickleback hosts (Henrich et al., 2013), 

it is possible that this trait is inherited additively, allowing molecular mimicry for both fish 

species. One cannot exclude that other parts of the parasites’ surface structure, such as 

carbohydrates (Hammerschmidt & Kurtz, 2005b, Schmidt & Peters 1987) are also 

intermediate in hybrids, allowing the parasites to develop successfully in both hosts. 

The second experiment with simultaneous or sequential infections with both parasite species 

in three-spined sticklebacks showed no obvious facilitation of an infection with an 

incompatible parasite.  

If one specific parasite manipulates the stickleback’s immune response in order to escape 

clearance in the body cavity, this does not appear to affect the successful establishment of a 

non-specific parasite species, neither during the infection and establishment phase, nor when 

the first and specific parasite has reached an infective size. Therefore, it seems likely that the 

incompatible parasite is unable to escape the immune response of the fish host, potentially as 

a result of its inability for molecular mimicry in the incompatible host. 

A study on the in vitro response of head kidney leucocytes from three-spined stickleback to S. 

solidus and S. pungitii antigens have shown no strong differences between the two parasite 

species (Franke et al., 2014). The only difference was shown in cell viability, which was 

elevated in cultures with S. pungitii antigens, while remaining at control levels in cultures 

with S. solidus antigens (Franke et al., 2014). This might also indicate a closer adaptation of 

the immune system of three-spined stickleback to the specific parasite species.  

What are the consequences of this high specificity? It seems that Schistocephalus is a parasite 

that requires a very tight interaction with its second intermediate host. Even though both 

parasites and fish hosts do occur in sympatry, infections with the incompatible parasite 
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species have not yet been detected. This may be partially due to an observation bias because 

the parasite species is rarely confirmed with molecular tools. Rather, the species of fish it is 

found in serves as the decisive criterion for species distinction, as both parasite species are 

very similar morphologically (Dubinina, 1959).  Nevertheless, being able to escape the 

immune system of the fish host only seems to work in the specific host-parasite combination. 

This close coevolution could be necessary for being able to exploit the host in such a manner 

as Schistocephalus does, paying the cost of not being infective to any other fish species. 
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Abstract 

 

 

Background: Many parasites show an extraordinary degree of host specificity, even though a 

narrow range of host species reduces the likelihood of successful transmission. In this study, 

we evaluate the genetic basis of host specificity and transmission success of experimental F1 

hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), 

both highly specific to their respective vertebrate second intermediate hosts (three- and nine-

spined sticklebacks, respectively). 

Methods: We used an in vitro breeding system to hybridize Schistocephalus solidus and S. 

pungitii; hybridization rate was quantified using microsatellite markers. We measured several 

fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: 

hatching rates, infection rates in the copepod first host, and infection rates and growth in the 

two species of stickleback second hosts. 

Results: We show that the parasites can hybridize in the in vitro system, although the 

proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in 

the control pure parental species. Hybrids have a lower hatching rate, but do not show any 

disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback 

species with equal frequency, whereas the pure lines were only able to infect their normal 

host species. 

Conclusions: Although not yet documented in nature, our study shows that hybridization in 

Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, 

the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the 

species boundaries in wild populations. 
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Background 

 

In interaction with their host organisms, many parasite taxa show an extraordinary degree of 

specificity, which is often regarded as indication of a long co-evolutionary history. In fact, 

parasites with a rather narrow range of suitable host species have been shown to be better 

adapted to sympatric host populations than generalist parasites (Lajeunesse & Forbes, 2002; 

Poulin, 1998). However, the actual advantage of being restricted to only one or very few host 

species is still elusive. Particularly for parasites with complex life cycles, a narrow host range 

can be very disadvantageous since it decreases the probability for transmission when suitable 

host species are rare. Therefore, a good strategy for a parasite would be to become optimally 

adapted to one host species, but capable of a host-switch to avoid extinction when under 

changing ecological conditions the specific host disappears. 

One possibility for a rather fast expansion of the host range could be the introgression of host 

compatibility genes by hybridization between closely related parasites species (Detwiler & 

Criscione, 2010). Furthermore, this might also be a way to escape extinction, since 

specialization has been suggested as a one-way street (Leroux, 1954; Nosil, 2002). Such a 

scenario is particularly conceivable in macroparasites with complex life cycles, where two 

parental species are highly specific to different intermediate hosts, but share a common final 

host where sexual reproduction takes place.  

In all major taxa of helminth parasites, hybridization has been found in nature or been 

demonstrated between sympatric species in laboratory experiments. Most examples have 

been described in digeneans (Agatsuma et al., 2000; Huyse et al., 2009; Leroux, 1954; 

Morgan et al., 2003; Southgate et al., 1976; Steinauer et al., 2008; Taylor, 1970; Tchuem 

Tchuente et al., 1997; Wright et al., 1974), but there is also evidence from cestodes 

(Okamoto et al., 2010), monogeneans (Kuusela et al., 2007; Schelkle et al. 2012) and 

nematodes (Grabner et al., 2012; Martín-Sánchez et al., 2005). Testing whether or not 

hybridization may increase fitness by extending the range of suitable (intermediate) host 

species requires experimental studies to determine transmission success in the different stages 

of a parasite life cycle. Particularly in schistosomes, several studies have shown that hybrids 

between two species or strains inherited the ability to develop in both specific host snails of 

the respective parental lines and retain this increased host range over several generations 

(Huyse et al., 2009; Mutani et al., 1985; Pagès et al., 2002). Also for behavioral traits related 

to transmission, like diurnal cercarial shedding patterns (Théron & Combes, 1988) and 

specificity in host-finding behavior (Kalbe et al., 2004), hybrids of different Schistosoma 
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mansoni strains have been shown to have trait values intermediate between the parental 

strains. 

Schistocephalus solidus, a cestode with a complex life cycle, is extremely specific for its 

second intermediate host, infecting only the three-spined stickleback Gasterosteus aculeatus. 

This system has become a model system for experimental studies on the evolutionary ecology 

of host-parasite interactions (reviewed by e.g. Barber & Scharsack, 2010; Hammerschmidt & 

Kurtz, 2005). Schistocephalus pungitii is closely related to S. solidus, but uses the nine-

spined stickleback Pungitius pungitius as second intermediate host, and shows the same host 

specificity at this level (Dubinina, 1980). Both parasites potentially share the same final hosts 

(Dubinina, 1980) and often occur in sympatry (Morozińska-Gogol, 2006; Zander et al., 

1999). Hence, natural encounters between adults of the sister species are plausible, making 

hybridization a possibility. However, a recent study by Nishimura and colleagues (2011)  

shows a deep lineage divergence in the Schistocephalus genus, suggesting that separation of 

both species occurred shortly after the speciation of their respective stickleback lineages circa 

20–25 million years ago. Hybrids have not been observed in nature yet and earlier 

experiments have shown that both Schistocephalus species are not able to infect the 

reciprocal intermediate hosts. Additionally, plerocercoids transplanted between three- and 

nine-spined sticklebacks stopped developing and later on showed destruction of the tegument 

(Bråten, 1966; Orr et al., 1969). Thus, these two species exhibit a high immunological 

specificity for their second intermediate host.  

Many parasites undergo extensive growth in their final host, relative to that in their 

intermediate hosts (Benesh et al., 2013). However, Schistocephalus undergoes enormous 

growth in its second intermediate host. The worm is extensively challenged by the host’s 

immune system (Scharsack et al., 2004; Scharsack et al., 2007), so it is possible that this 

rapid growth is facilitated by highly specific adaptations to the host’s immune system. At 

least in vitro, the size of the worm is proportional to egg output (Schärer et al., 2001; 

Wedekind et al., 1998), suggesting that specificity, growth, and fitness may be tightly linked 

in this system.  

This system offers a unique possibility to investigate host specificity in two closely related 

parasite species with complex life cycles. It is likely that both parasite species meet in a 

bird’s gut for reproduction, which could facilitate interspecies mating. Both parasites are 

simultaneous hermaphrodites and capable of self-fertilization (selfing). Since selfing is costly 

for the parasite in all stages of its life cycle (Christen & Milinski, 2003; Christen et al., 2002; 
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Milinski, 2006; Schjørring, 2004), hybridization would seem to be a good way to avoid the 

negative effects of inbreeding when outcrossing is not possible.  

The aim of this study was to investigate the possibility of hybridization between the two 

cestode species of sticklebacks and the consequences of hybridization for host specificity and 

fitness at all stages of the parasite’s life cycle.  

 

Methods 

 

Study system 

Schistocephalus solidus reproduces sexually in the intestines of piscivorous birds – their final 

host. Eggs are then released into the water with the bird’s feces, where they hatch into free 

swimming coracidia (Smyth & McManus, 1989). Copepods ingest coracidia and the worm 

develops into a procercoid in the copepod body cavity. When a three-spined stickleback feeds 

on infected copepods, the tapeworm is transmitted to its second intermediate host where it 

develops into a plerocercoid and undergoes enormous growth. The life cycle is completed 

when a piscivorous bird feeds on an infected stickleback (Smyth & McManus, 1989). S. 

pungitii shares the main characteristics of this life cycle, but uses P. pungitius as a second 

intermediate host.  

The two species of parasite can be maintained in the lab for all stages of their life cycle. 

Plerocercoids are removed from the fish and can be bred in an in vitro system that mimics the 

bird’s gut (Smyth, 1946; Wedekind, 1997). Worms are usually size-matched for breeding, as 

this limits selfing (Lüscher & Milinski, 2003). After three weeks of incubation at 20°C in the 

dark, the coracidia start to hatch from eggs (Dubinina, 1980). The coracidia can then be used 

to infect copepods (e.g. Macrocyclops albidus). After approximately two weeks of 

development in copepods, worms are infective to sticklebacks (Benesh & Hafer, 2012; 

Clarke, 1954; Hammerschmidt et al., 2009). Figure II-1 shows the life cycle of 

Schistocephalus, the most relevant traits measured in this experiment, as well as the breeding 

design for hybridizing the two parasite species.  

http://www.parasitesandvectors.com/content/6/1/33/figure/F1
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Figure II- 1: Experimental design and measured parameters. A: Life cycle of S. solidus and S. pungitii and 

parameters measured in this study. B: Experimental breeding design for hybrid worms. 

 

 

Breeding design and worm origin 

Lab-infected sticklebacks originated from two allopatric populations: Skogseidvatnet, 

Norway (60°31
′
N, 05°13

′
E) for three-spined sticklebacks with S. solidus and Lebrader 

Teiche, Germany (54°22
′
N, 10°42

′
E) for nine-spined sticklebacks with S. pungitii. Fish were 

dissected and worms were paired for breeding. We used two different sibling families for 

each worm species (sibships, which refers to offspring from one pair of worms that were 

obtained from our lab cycle). For each sibship, at least one of the worms was paired with a 
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conspecific from a different sibship, while at least one was paired with a worm from the other 

species. This was done so that the genetic composition of hybrid pairs and pure species pairs 

was similar, so that any observed differences between hybrid and pure groups are likely due 

to hybridization per se rather than random genetic differences between groups. 

Unfortunately, we were limited in the number of S. solidus plerocercoids, so we bred seven 

pairs in total: one outcrossed S. solidus pair, two outcrossed S. pungitii, and four potential 

hybrid pairs.  

 

Breeding conditions 

The standardized laboratory breeding system (Smyth, 1946; Wedekind, 1997) was slightly 

modified in that we diluted the medium with sterile filtered water, which we found was more 

suitable for S. pungitii. In vitro cultured, adult worms were transferred into netbags with their 

respective partner and these netbags put into a bottle containing pre-warmed medium (60% 

Eagle’s Minimal Essential Medium [Sigma] and 40% sterile filtered tap water). The bottles 

were incubated in a 40°C shaking water bath in the dark for two days. After two days we 

assumed that reciprocal fertilization had happened (see e.g. Schärer et al., 2001) and we 

isolated single worms in 50 ml tubes containing fresh pre-warmed medium. Eggs were 

collected from each worm for another three days in the breeding system. All collected eggs 

were washed with cold tap water (4°C) to prevent any larval development.  

 

Estimation of hatching rate & hybridization rate 

The eggs were incubated at 20°C for 21 days in the dark. On day 21, the eggs were exposed 

to 4 h of light, followed by an 8 h period of darkness and another light period afterwards to 

stimulate hatching of coracidia. From each worm we aimed to collect 96 coracidia for 

determining hybridization rates via microsatellite analysis, while the remaining larvae were 

used to infect copepods. Low hatching rates limited the number of coracidia available in 

some groups (see Results). From the collected coracidia, DNA was extracted with chelex 

(after Lüscher & Milinski, 2003) and each individual was typed with microsatellites using six 

different loci (primers and PCR conditions in (Andris et al., 2012; Binz et al., 2000) to 

estimate outcrossing/hybridization rates (see below).  

The remaining eggs were left in a 16 hours light/8 hour dark room for another three weeks to 

ensure that every viable larva hatched. Afterwards, 100 eggs per worm were inspected 

visually to estimate the number of hatched coracidia.  
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Exposure of copepods 

Cultured copepods (Marcrocyclops albidus) (see van der Veen & Kurtz, 2002 for details on 

cultures) were each exposed to a single coracidium. We aimed to expose 96 copepods per 

single worm, which could not be achieved in every case because of the low number of 

hatched coracidia in some worm sibships. The copepods were starved 1 day before exposure 

and afterwards fed every second day alternatingly with two Artemia salina nauplii or ~100 

Paramecium caudatum. Copepods were checked visually for the presence of procercoids on 

day 8 and 9 post exposure. Infected copepods were then fed to fish on day 16. By this time, at 

least in S. solidus, worms are essentially fully developed and infective to fish (Benesh, 2010), 

so infection success in fish is unlikely to be attributable to developmental variation (Benesh 

& Hafer, 2012).  

 

Infection of sticklebacks 

Two German populations of naive lab bred sticklebacks (G. aculeatus from Großer Plöner 

See (54°07
′
N, 10°24

′
E) and P. pungitius from Lebrader Teiche (54°22

′
N, 10°42

′
E)) were used 

to test the infection success of hybrids and pure parental parasite lines in the second 

intermediate host. We used an allopatric combination for S. solidus/G. aculeatus, since we 

did not have access to enough fish from the sympatric population. Fish were put singly in 

plastic tanks containing approx. 1 L of water and starved for one day before exposure. Each 

fish was exposed to a single infected copepod. One day after the exposure the fish were 

moved in groups to 16 L tanks. The remaining water in the single tanks was filtered to ensure 

that all copepods were eaten by the fish. Fish were kept at 18°C and 16/8 h light/dark period 

and were fed three times per week ad libitum with frozen daphnids and chironomid larvae.  

Nine weeks after exposure the fish were killed with an overdose of MS222, measured, 

weighed, and the body cavity was opened to remove and weigh worms if present. A tissue 

sample was collected from each worm for microsatellite typing to check whether it was an 

outcrossed, selfed or hybrid individual.  

 

Data analyses 

We analysed the fitness relevant traits of the parasite separately. Two of the measured traits, 

hatching rates and outcrossing/hybridization rates, are characteristics of sibships and we 

analyzed them at this level. A generalized linear model (GLM) with quasi-binomial errors 

and a logit link function was used to compare hatching rates in the three groups (pure S. 
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solidus, pure S. pungitii and hybrids). A similar GLM was used to compare the hybridization 

rate of hybrid pairs to the outcrossing rate of S. solidus. Only S. solidus and the hybrids could 

be compared, because, unfortunately, the microsatellite markers developed for S. solidus 

were not suitable to estimate outcrossing rate in S. pungitii, since all our individuals were 

homozygous across all loci.  

Infection rates in copepods and fish were analyzed at the level of individual hosts. To 

evaluate whether infection rates differ between hybrids and the pure species groups, we fitted 

GLMs with binomial errors and a logit link function (Wilson & Grenfell, 1997). For infection 

rates in fish, in addition to the parasite group, we also included fish species (G. aculeatus and 

P. pungitius) as a factor. In some combinations of parasite group and fish species, no fish 

became infected (see Results). This kind of data structure (i.e. complete separation) causes 

inflated standard error and confidence interval estimates. Thus, we used the logistf R function 

(R package “logistf” (Ploner et al., 2006) to fit the GLM with penalized likelihood (Heinze & 

Puhr, 2010).  

Finally, an analysis of covariance (ANCOVA) was used to test whether worm weight differs 

between fish species-worm species combinations while controlling for fish weight at 

dissection.  

All statistical analyses were carried out using R 2.12.2 (R Development Core Team, Vienna). 

P-values lower than 0.05 were considered significant.  

 

Ethical statement 

All animal experiments described were approved by the ‘Ministry of Energy, Agriculture, the 

Environment and Rural Areas’ of the state of Schleswig-Holstein, Germany (reference 

number: V 313–72241.123-34).  

 

 

Results & Discussion 

 

Hybridization rate / outcrossing rate 

Analysis of six different microsatellite loci revealed a hybridization rate of 24 to 49% in three 

hybrid pairs (a total of 141 typed coracidia). The remaining 76 to 51% were selfed 

individuals. The outcrossing rate in the S. solidus pair was 95% (91 coracidia typed). Both a 

Fisher’s exact test (P < 0.0001) and a GLM at the level of sibships (n=4, F1,2= 24.04, P = 



Chapter II 

42 

 

0.039) indicated that there were significantly more selfed individuals in hybrid pairs than in 

conspecific S. solidus pairs.  

Our results show clearly that hybridization between S. solidus and S. pungitii from two 

allopatric populations is possible under laboratory conditions. The estimation of the selfing 

rate is biased by the fact that only hatched coracidia can be genotyped with microsatellites. 

The real rate of hybridization or outcrossing remains unclear since the genetic markers cannot 

be used on unhatched eggs (Lüscher & Milinski, 2003).  

 

Hatching rate 

A Fisher’s exact test indicated that overall hatching success differed significantly between 

groups (P = 0.0005). The hybrid pairs had the lowest hatching rate (mean 7.375%, n=4 worm 

pairs), followed by the S. pungitii (15%, n=2) and S. solidus (24.5%, n=1). However, the 

GLM with sibships as units did not indicate significant differences between the three groups 

(F-test comparing null model with model including treatment effect: F2,4 = 1.72, P = 0.29). 

Thus, we conclude that hybrids tend to have lower hatching rates than pure species sibships, 

but a larger number of sibships must be observed to confirm this difference.  

The lower hatching rate in hybrids may be a consequence of the strong inbreeding depression 

of selfed individuals, as it was also previously shown by Christen et al. (2002) and Schjørring 

(2004) that the hatching rate of selfed worms was about 4 to 8 times lower than in outcrossed 

individuals.  

 

Infection rate in copepods 

A GLM indicated significant differences between groups (likelihood ratio test with an 

intercept-only model, χ
2

2 =109.43, P < 0.001). Worms bred in hybrid pairings showed an 

infection rate that was between the infection rates of S. solidus and S. pungitii (Figure II-2). 

Below we address the possibility that the relatively high proportion of selfed offspring in the 

hybrid pairs biases the infection rate estimate for hybrids.  

 

 

http://www.parasitesandvectors.com/content/6/1/33/figure/F2
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Figure II-2: Mean infection rate in copepods.  

Error bars show 95% CI. 

 

 

Infection rate in fish 

When we compare the infection rates in fish (Figure II-3), we see that worm species or fish 

host alone doesn’t have an effect on the infection rate. This was supported by a likelihood 

ratio test that showed the GLM with an interaction term (fish species x worm group) was 

significantly better than the simpler model with just the two main effects (χ
2

2 = 25.41, P < 

0.001). Microsatellite analysis after removal of the worms from fish showed that most worms 

from hybrid pairs were hybrids and not selfed individuals. In total, we found five selfed 

worms among 32 individuals. Again, the infection rate estimates for hybrids might be biased 

by the unknown proportion of copepods harboring selfed worms that were fed to the fish. We 

address this issue in the section below.  

 

http://www.parasitesandvectors.com/content/6/1/33/figure/F3
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Figure II-3: Mean infection rate in fish.  

Error bars show 95% CI. Groups with different letters (A, B) differ significantly from each other.  

 

 

In our study, each species of worm was only able to infect its specific host while their non-

host stickleback was never infected. Strikingly, the hybrids were able to infect both fish hosts 

with equal probability, while the pure lines only infected their specific fish host.  

Since the hybrids are able to infect both fish hosts at similar rates, they have expanded their 

host range. If the genes responsible for this trait were purely additive, we would have seen 

~20% infection rate of hybrids in fish (i.e. intermediate between the pure lines). Instead, we 

see a kind of co-dominance where hybrids can infect both fish hosts just as well as the 

parental lines. This ability may be due to specific traits that facilitate invasion and infection 

of both host species. 

 

Are hybrid infection rate estimates biased by selfing? 

Eggs collected from hybrid worm pairs represent a mix of self-fertilized and hybrid offspring. 

Up to 76% of the coracidia typed from hybrid sibships were selfed, yet, of the plerocercoids 

recovered from fish exposed to hybrids, 27 were hybrids and 5 were selfed. Even though 

more selfed coracidia were presumably taken for copepod infections, hybrid worms were 
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more likely to be recovered from fish at the end of the experiment. This suggests the 

estimated infection rates of hybrids in copepods and fish may be downwardly-biased; but 

how much? The observed infection rate in copepods, Rc, equals:  

𝑅𝑐 = (𝑅𝑐ℎ ∗ 𝑃𝑐ℎ ) + 𝑅𝑐𝑠 ∗ (1 − 𝑃𝑐ℎ)) 

 

where Rch is the infection rate of hybrids in copepods, Rcs is the infection rate of selfers in 

copepods, and Pch is the proportion of coracidia that are hybrids. The hybrid infection rate, 

our primary interest, thus equals:  

𝑅𝑐ℎ =  
𝑅𝑐 − (𝑅𝑐𝑠 ∗ (1 − 𝑃𝑐ℎ))

𝑃𝑐ℎ

 

As Rc is known (=0.375), the infection rate for hybrids can be calculated for different 

combinations of Rcs and Pch. This is shown in Figure II-4A. Inbreeding depression has been 

observed in S. solidus (Christen et al., 2002; Schjørring, 2004), so we may expect the 

infection rate of selfers to be lower than Rc (e.g. for the S. solidus population used here, other 

experiments determined the infection rate of selfed coracidia to be ~10%; D. Benesh, 

unpublished data). Moreover, the proportion of typed coracidia that were hybrids ranged from 

24 to 49%. If we take these values to define a plausible range (Rcs < 0.375 and 0.24 < Pch < 

0.49), then Figure II-4A indicates that the infection rate of hybrids in copepods may be 

substantially higher than estimated by the experiment.  

http://www.parasitesandvectors.com/content/6/1/33/figure/F4
http://www.parasitesandvectors.com/content/6/1/33/figure/F4
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Figure II-4: Contour plots of the infection rate of hybrids in copepods (A) and sticklebacks (B) that 

reproduce the observed data. Contours are plotted as a function of the infection rates of self-fertilized worms 

in copepods and the proportion of hybrid coracidia. See the main text for the equations used to calculate the 

hybrid infection rates. Black areas represent parameter space in which the observed results cannot be 

reproduced; intuitive explanations for this are given in each case. The gray areas in (B) are the black areas from 

(A). Dashed white lines delineate the parameter space that we consider most plausible. The boundaries of this 

area on the y-axis were based on observed hybridization rates, which ranged from 0.24 to 0.49. The width on the 

x-axis was based on the assumption that, due to inbreeding depression, the infection rate of selfers is probably 

lower than the overall mean (0.375). 

 

This approach can be extended to calculate the infection rates in fish necessary to produce the 

observed number of hybrid plerocercoids. Assuming the proportion of selfed and hybrid 

worms infecting copepods are the same proportions used for the fish exposure (i.e. there is no 

differential mortality in copepods between the two groups), then the proportion of fish 

exposed to hybrid worms, Pfh, equals:  

𝑃𝑓ℎ =
𝑅𝑐ℎ ∗ 𝑃𝑐ℎ

𝑅𝑐

 

The number of worms recovered from fish that are hybrids, nih, is then, nih = Pfh * ne * Rfh,  

where ne is the number of fish exposed and Rfh is the infection rate of the hybrids in fish. 

Rearranging for Rfh, our parameter of interest, gives Rfh=nih/(Pfh*ne). nih and ne are known (29 

and 78, respectively) and Pfh is a function of the infection rate of selfers in copepods and the 

proportion of coracidia that are hybrids. Consequently, we can calculate the hybrid infection 

rate in fish necessary to produce the observed results, given different initial conditions (Rcs 

and Pch), and this is shown in Figure II-4B. In the parameter space with the highest 

plausibility, hybrid infection rates were upwardly biased, but only slightly. Only with quite 

high selfer infection rates (>0.25) does this bias become large enough to suggest that hybrids 

have significantly higher infection rates in fish than the pure lines (>0.6).  

In summary, our calculations indicate that the infection rate for hybrid worms in copepods 

may be much higher than estimated by the experiment, perhaps even higher than the pure S. 

solidus group (Figure II-2). On the other hand, infection rate estimates in fish do not appear 

to be so biased that the rate for hybrids should be considered larger than that of the pure lines 

in their normal host (Figure II-3). Thus, this analysis underscores our main conclusion; the 

hybrids do not experience any obvious fitness disadvantages compared to pure lines.  

 

http://www.parasitesandvectors.com/content/6/1/33/figure/F4
http://www.parasitesandvectors.com/content/6/1/33/figure/F2
http://www.parasitesandvectors.com/content/6/1/33/figure/F3
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Relationship between worm and fish body size 

There was a significant relationship between fish weight and worm weight (F1,39 = 104.4, P < 

0.001). Moreover, this relationship seemed to depend on the worm group (interaction 

between fish weight and worm group, F3,33 = 8.68, P < 0.001) (Figure II-5). Differences 

between groups were biggest in large fish, with pure S. solidus growing particularly large in 

G. aculeatus (Figure II-5). Unfortunately, there were few data points in the largest fish, 

making these results tenuous. When we eliminated the data points from the largest fish (>0.7 

g), there was no longer a significant interaction (F3,29 = 0.09, P = 0.96) nor were there 

significant differences in the mean weight of hybrids and pure species worms (F3,29 = 0.27, P 

= 0.84). Thus, these results suggest that hybrids and pure lines grow to quite comparable sizes 

in sticklebacks, although it remains possible that in larger fish worm sizes may diverge 

between groups.  

 

 

Figure II-5: Relationship between fish weight and worm weight.  

The figure shows the relationship of fish and worm weight in mg for the different treatment groups. (G. ac with 

S. solidus: n=12, G. ac with hybrids: n=11, P. pu with S. pungitii: n=4, P. pu with hybrids: n=14). 

 
 

http://www.parasitesandvectors.com/content/6/1/33/figure/F5
http://www.parasitesandvectors.com/content/6/1/33/figure/F5
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Both the size of the host body cavity as well as its immune defenses are likely to limit worm 

growth. The host’s immune system is likely to interact with the parasite and interfere with its 

growth, as well as the space of the body cavity limits worm growth at a certain point. 

 

 

Conclusion 

 

What is the evolutionary advantage of being highly host specific and why have no hybrid 

Schistocephalus been found in nature so far? There are several possibilities and none are 

mutually exclusive.  

Ecological factors could cause prezygotic isolation between species. Both parasites species 

could have completely independent life cycles by inhabiting different microhabitats in the 

bird’s gut or even by infecting different bird species. Although S. solidus is known to be 

infective to a wide range of warm-blooded vertebrates (Dubinina, 1980; Smyth, 1946), much 

less is known about S. pungitii. We also don’t know if the relatively high selfing rate 

observed in hybrid sibships is a consequence of the worms preferring to self instead of 

hybridizing or a consequence of a high proportion of unviable hybrids that did not hatch.  

If the species are separated by postzygotic isolation, it may be that they hybridize frequently, 

but are either outcompeted by the pure lines or show a F2 hybrid breakdown (Burton et al., 

2006; Dobzhansky, 1936; Endler, 1977). We could show that at least the F1 generation of 

hybrids does not show obvious fitness disadvantages, which argues against the fact that they 

are rapidly outcompeted. Finally, barriers to hybridization may exist only in sympatric 

populations (reinforcement, for example see Liou & Price, 1994). The S. solidus used in this 

study originate from a population in western Norway, where no nine-spined sticklebacks 

occur in the whole area (Per J. Jakobsen & Tom Klepaker, personal communication); 

therefore, in this specific situation there was no selection pressure to evolve a barrier to 

mating, which might be the case in populations where both stickleback species together with 

their specific parasites co-occur.  

As other studies have shown, hybridization occurs in natural populations of different parasite 

taxa and has also been shown as a mechanism to broaden the host range by introgression of 

new genes (Huyse et al., 2009; Mutani et al., 1985; Pagès et al., 2002).  

It is worth noting that most studies on S. solidus and S. pungitii are based on morphological 

traits, which are not easily distinguishable between the species. To date, only a few studies 

have employed genetic markers (Andris et al., 2012; Nishimura et al., 2011) on a limited 
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number of individuals, and therefore more extensive studies targeting the detection of hybrids 

are warranted.  

Although we could observe hybridization in the laboratory, it still remains unclear if 

hybridization also occurs in nature. Further experiments are needed to test whether the worms 

are located in the same compartment of the bird’s gut, if hybridization can occur in natural 

hosts and if given the choice, worms choose mates of the same species over hybridization. 

Furthermore, it would be interesting to know how the possibility of hybridization and fitness 

parameters, such as infection rates in intermediate hosts, vary between sympatric and 

allopatric pairs of S. solidus and S. pungitii or if there even is a barrier to hybridization in 

nature. We are currently collecting more species pairs from different populations to test these 

ideas.  
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Abstract 

 

The cestodes Schistocephalus solidus and S. pungitii are closely related parasites that each 

exhibit a strong specificity for their second intermediate host, three- or nine-spined 

sticklebacks. However, they can share the same final avian host where they reproduce 

sexually. The two species produce viable hybrid offspring in an in vitro culture system, even 

though molecular data suggests a deep degree of divergence between the two species. In this 

study, we examined possible prezygotic mechanisms that could prevent hybridization in 

natural populations. Our results show that the two species share the same microhabitat within 

their final hosts and do hybridize under natural conditions. We furthermore could find no 

indications of barriers to hybridization in sympatric populations. Strikingly, a mate choice 

experiment showed that parasites of the different species were preferred over conspecifics. 

In conclusion we could find no mechanism that would effectively prevent natural 

hybridization in this species. This suggests that postzygotic mechanisms, such as genetic 

incompatibilities in the F2 generation, may play a major role in the evolution of these two 

parasite species. 

  



Chapter III 

55 

 

Background 

 

Natural hybridization may play a major role in the evolution of species complexes, but is a 

controversial topic among evolutionary biologists for some time (Barton, 2008). The major 

controversy revolves around whether natural hybridization is a beneficial or a disruptive 

process for speciation. While many botanists argue that hybridization can lead to the 

formation of new species (e.g. Anderson, 1949; Grant, 1981; Stebbins, 1959), many 

zoologists see it as a rather disruptive process that reinforces reproductive isolation between 

species (e.g. Turelli et al., 2001). 

The outcome and impact of natural hybridization can vary greatly among species or species 

complexes and depends largely on the fitness of the hybrids. If hybrids are relatively unfit, 

hybrid zones are defined as clines maintained by a balance between dispersal and selection 

against hybrids (Barton & Hewitt, 1985). Hybrids are usually regarded as less fit than their 

parental species, but can also have a fitness advantage in certain habitats when novel 

genotypes have the potential for adaptation (Nolte & Tautz, 2010). Cross-species matings can 

have several outcomes: 1) no viable offspring, 2) F1 offspring that is viable but infertile, 3) 

F1 offspring which are viable and fertile but outcompeted by parent species (Rundle & Nosil, 

2005), or 4) F1 offspring that are viable, fertile and fit enough to spread to unoccupied 

ecological niches (Arnold & Hodges, 1995; Dobzhansky, 1970; Grant, 1963). 

Barriers to hybridization can be divided into pre- and postzygotic barriers. Prezygotic barriers 

include behavioural and ecological factors that may prevent matings between different 

species as well as genetic incompatibilities between the gametes. Postzygotic barriers include 

the potentially lower fitness of hybrid offspring as well as F1 infertility or F2 hybrid 

breakdown (Dobzhansky, 1970). 

Hybridization has been shown in all major parasite taxa, including digeneans (Leroux, 1954,  

Taylor, 1970, Agatsuma et al., 2000; Morgan et al., 2003), monogeneans (Kuusela et al., 

2007; Schelkle et al., 2012), nematodes (Grabner et al., 2012; Martín-Sánchez et al., 2005) 

and cestodes (Okamoto et al., 2010). Functional analyses of hybrids exhibited varying 

phenotypes. Hybridization in schistosomes (either between two different species or two 

different strains) has been shown to affect host range (Huyse et al., 2009; Mutani et al., 1985; 

Pagès et al., 2002), behavioural traits like cercarial shedding patterns (Théron & Combes, 

1988) and host-finding behaviour (Kalbe et al., 2004). As these traits are of crucial 

importance for the interaction between parasites and their hosts, hybridization can impact the 

evolution and epidemics of parasites. 
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We recently found that hybridization between two Schistocephalus species resulted in viable 

hybrids that were able to expand their host range on the level of the second intermediate hosts 

and showed only a low level of reduction in overall fitness (Henrich et al., 2013). Both 

parasites occur in sympatry and it is likely that they frequently meet in the final host and 

could hybridize in natural populations. 

Since the two species show a high degree of genetic divergence (Nishimura et al., 2011), it 

can be assumed that selective forces keep the two species separated and prevent gene flow. 

Therefore, we test different possibilities for barriers that could prevent hybridization in 

natural populations of these species. We experimentally test if there are i) spatial constraints 

to hybridization (i.e. are the two species localized in the same area of the gut of a final host or 

do they use different compartments?), if ii) there are barriers to hybridization in sympatric 

populations or if iii) there is assortative mate choice by species. 

To test these questions, we conducted experimental infections of chickens (Gallus gallus), 

herring gulls (Larus argentatus) and a mate choice experiment using an artificial breeding 

system. 

 

 

Methods 

 

Study organisms 

Schistocephalus solidus and S. pungitii are closely related cestodes with a complex life cycle 

involving three different hosts (Clarke, 1954; Dubinina, 1980). Both species use piscivorous 

birds as final hosts, where the adult worms reproduce sexually. These parasites are 

simultaneous hermaphrodites, mature rapidly and usually complete the reproduction within 

one week in the final host (Dubinina, 1980; Schärer & Wedekind, 1999). The eggs are then 

released with the bird’s feces into the water, where they hatch into free-swimming larvae. 

These larvae have to be eaten by cyclopoid copepods, the first intermediate hosts, to develop 

into procercoids. If infected copepods are eaten by sticklebacks, the second intermediate 

hosts, the parasite migrates through the gut wall into the fish’s body cavity and develops into 

a plerocercoid. Both parasites are highly specific on this level of the life cycle: S. solidus can 

only infect three-spined sticklebacks (Gasterosteus acueleatus), while S. pungitii is only 

infective to nine-spined sticklebacks (Pungitius pungitius). Several experiments have already 

investigated this phenomenon of high host specificity (Bråten, 1966; Orr et al., 1969, Henrich 

& Kalbe in prep.) and hybrids of the two parasites species show an expanded host range and 
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could infect both stickleback species (Henrich et al., 2013). The life cycle is completed when 

piscivorous birds prey upon infected sticklebacks. 

The life cycle for both cestodes can be completed in the lab by replacing the final host with 

an artificial breeding system (Smyth, 1946; Wedekind, 1997). For this purpose, worms are 

placed into sealed net bags and incubated in a 40°C warm culture medium (for details see 

Wedekind, 1997) in the dark for a time period of up to 8 days, where most of the egg 

production is accomplished (Dubinina, 1980; Schärer & Wedekind, 1999). The eggs are then 

washed and stored in tap water at 4°C before development is induced. Hatching can be 

triggered and mostly synchronized (by exposure to light), which facilitates experimental 

exposure of both copepods and later on fish. 

 

Spatial constraints 

To test whether spatial constraints inhibit either parasite from hybridization, we investigated 

where the parasites are located in the gut of the final host. For this purpose we used 

plerocercoids from wild caught sticklebacks to expose chickens (Gallus gallus). G. gallus 

was previously used as an experimental final host by Tierney & Crompton (1992). Nine-

spined sticklebacks were caught in Lebrader Teiche, Germany (54° 22
’ 
N, 10° 42’ E) and 

three-spined sticklebacks in lake Skogseidvatnet, Norway (60° 14’ N, 05° 55’ E). These are 

the same parasite populations as used in Henrich et al. (2013), from which we knew they 

hybridized in the artificial breeding system. The fish were killed with an overdose of MS222 

(tricaine methanesulfonate, 1mg/ml) followed by a cervical incision, and the plerocercoids 

removed and weighed. To avoid selfing, we size-matched the plerocercoids by body weight 

(Lüscher & Milinski, 2003) before placing them into the empty body cavity of uninfected 

sticklebacks. 

Each of the three chickens was fed 16 plerocercoids (8 S. solidus and 8 S. pungitii). In order 

to decrease the chance of damage to the parasite by the chicken through gizzard stones we fed 

the chickens with soft cat food for two days prior to parasite exposure. After 48 hours the 

chickens were killed and the gut was removed. The dissection of the gut was performed to 

collect the parasites and identify their location.  

 

Sympatric vs. allopatric hybridization 

Two herring gulls (Larus argentatus) were infected with 8 plerocercoids each (4 S. solidus 

and 4 S. pungitii). One gull was exposed to 8 cestodes of the two species that both originated 

from a sympatric population in Obbola, Sweden (63° 39’ N, 20° 17’ E). The second gull was 
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exposed to 4 lab-bred cestodes of S. solidus from a population in Skogseidvatnet, Norway 

and 4 cestodes of S. pungitii from wild caught nine-spined sticklebacks from Lebrader 

Teiche, Germany. The aim of this experiment was to test, if different allopatric or sympatric 

species hybridize under natural conditions. There is no population of nine-spined sticklebacks 

that could harbor S. pungitii in the vicinity to the population of three-spined sticklebacks 

from Skogseidvatnet, Norway. Consequently this S. solidus population is very unlikely to 

encounter S. pungitii frequently and need not develop a barrier to hybridization, whereas 

mating barriers are more likely to arise in places where both parasite species occur in 

sympatry.  

Feces of the herring gulls were collected 24, 48 and 72 hours after infection. Eggs were 

washed and incubated at 20°C in the dark for three weeks before coracidia were hatched. For 

each time point, 32 coracidia were collected and analyzed. In summary 96 coracidia per gull 

were typed using microsatellite markers (Binz et al., 2000). 

 

Mate choice experiment 

S. pungitii plerocercoids originated from field-collected P. pungitius caught at Lebrader 

Teiche, Germany. S. solidus plerocercoids were obtained from lab-infected G. aculeatus (12 

weeks post exposure) and those originated either from a population from lake 

Skogseidvatner, Norway or Xinzo de Limia, Spain (42° 07’ N, 07° 39’ W). We chose S. 

solidus cestodes from two different populations to ensure that those plerocercoids were 

derived from different families. As it has been shown earlier that S. solidus prefers closely 

related over distantly related mates (Schjørring & Jäger, 2007), we wanted to ensure that this 

does not affect our experiment. We assumed that the likelihood of two S. pungitii from a wild 

caught population being closely related was rather low. 

The sticklebacks were killed with an overdose of MS222 (tricaine methanesulfonate, 1mg/ml) 

followed by a cervical incision. Afterwards the plerocercoids were removed from the fish, 

and weighed to the nearest 0.01mg. We size-matched the plerocercoids in all experimental 

triplets to avoid parasite size as a factor in mate choice, as S. solidus has been shown to prefer 

bigger mates (Lüscher & Wedekind, 2002). The parasites were then placed in fork-shaped 

nylon mesh bags in a randomized order. This experimental setup was previously used and is 

described in further detail in Lüscher & Wedekind (2002). Briefly, the mesh bags consisted 

of three compartments separated by seams (Figure III-1). The focal worm was placed in the 

middle prong while the stimulus worms were placed in the two side prongs. All three 

openings of the bags were closed by melting the nylon ends with a flame. Each bag was then 
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placed in a glass container filled with culture medium (Smyth, 1946; Wedekind, 1997) pre-

warmed to 40°C and covered with a lid to avoid evaporation. At the start of the experiment, 

the containers were placed in an incubator equipped with weak red light and a camera set and 

recording was started 15mins after the container was placed in the experimental chamber.  

Mate choice trials ran for 2800min, and a picture was taken once every minute. In summary 

we recorded and evaluated 14 mate choice trials (7 for S. pungitii and 7 with S. solidus as the 

focal worm) and 5 control trials with just two worms (one as a stimulus worm and the other 

as a focal worm, always of the same species).  

 

 

Figure III-1: Setup for mate choice experiment (modified after Lüscher & Wedekind, 2002) 

A focal worm was placed together with two stimulus worms into a fork-shaped mesh bag in a culture medium 

mimicking the situation in the bird’s gut. The focal worm (middle compartment) can move freely between all 

compartments, while the stimulus worms are restricted to side compartments that overlap the middle 

compartment. Scores were assigned according to the focal worm’s position. “0” was considered neutral, 1 & 2 

(or -1 & -2 respectively) for a tendency to the side of one of the stimulus worms, and if there was a minimum of 

25% overlap between the focal worm and one of the stimulus worms, we assigned the score “3” or “-3”, as this 

was a position where mating was possible. 

 

 

While the stimulus worms could not leave their compartment, the focal worm could position 

itself anywhere. As the decisive criteria, the largest part of the focal worm`s body (>50%) 

was assigned to one of the 5 positions at each minute (-2, -1, 0, 1 or 2, Figure III-1), or, if 

more than 25% of two worms overlapped, this was counted as a possible mating attempt and 

classified with “-3” or “3”. The scoring of all positions was carried out by one blind observer 

regarding the experimental setup. Only after all scores were assigned and all failed trials (in 
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some cases the plerocercoids managed to escape from the mesh bags) were excluded, did we 

assign the position to the parasite identity. We then classified all positive scores (1, 2 or 3) to 

the side with the conspecific and all negative scores to the side with the parasite from the 

different species (-1, -2 and -3). 

 

 

Results 

 

Temporal constraints 

Infection of chicken showed that the worms of both species settled in the appendices of the 

chicken gut. From a total of 24 worms used in this experiment, only three could be recovered 

48hours after exposure from two chickens. We have no data on how many worms 

successfully established in the herring gulls because the birds were not dissected due to 

animal welfare regulations. However, we could collect eggs from the feces of the infected 

herring gulls and hatch coracidia. Microsatellite typing indicated that there was hybridization 

in the herring gulls. 

 

Barriers to hybridization in sympatric populations? 

We tested for hybridization in herring gulls and both sympatric and allopatric combinations 

of worms showed hybridization in the natural host (Figure III-2). The distribution of 

offspring (the proportion of S. solidus, S. pungitii or hybrids) differed between the two gulls 

(χ² = 13.59, df = 2, p < 0.005). The hybridization rate was lower in the sea gull that was 

infected with a sympatric combination. Despite the small sample size we can say that it seems 

unlikely, that sympatric populations evolved a strong barrier to hybridization. 

 

Figure III-2: Hybridization of S. solidus and S. pungitii in their natural host. (a) Infection of lab-reared 

herring gulls and distribution of species in (b) allopatric and (c) sympatric combinations, determined by 

microsatellite typing of tapeworm larvae hatched from eggs isolated from the gull droppings. 
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Mate choice 

When we analyzed our controls to see if worms actually did chose a worm over an empty 

compartment, we saw significant differences between the three assigned sides (worm, neutral, 

nothing) (ANOVA, F2,15 = 8.009, p < 0.05). Worms spent significantly more time on the side 

with another worm (in this case always a conspecific), than in the neutral or empty 

compartment (post hoc Tukey HSD, p < 0.05). 

When the data for both focal worm species was combined, there was a significant difference 

in time spent in each compartment (ANOVA, F2,41 = 6.125, p < 0.05). A post hoc Tukey HSD 

test showed that the focal worms spent more time in the compartment with a different worm 

species than with the conspecific (p < 0.05), but also more time in the neutral zone than with 

a conspecific (p < 0.05, Figure III-3). 

However, analyzing the data for each species separately, only one of the species displayed a 

significant preference: S. pungitii focal worms showed a significant difference in time spend 

on each side (ANOVA, F2,20 = 4.923, p  < 0.05). A post hoc Tukey HSD test showed that S. 

pungitii spent significantly more time with a worm from a different species than with a 

conspecific (p < 0.05). There was no significant difference between time spent in the neutral 

zone and any side with a stimulus worm in S. pungitii. Even though S. solidus worms also 

spent more time on the side with a worm of a different species than on the side with a 

conspecific, the difference was not significant (ANOVA, F2,20 = 2.063, p = 0.156). 

Taken together, our results suggest that focal worms spent significantly more time in a 

possible mating position (-3 or 3 respectively) with a worm from a different species, than 

with a conspecific (T-Test, t = -2.069, df = 26, p < 0.05). However, if the two species were 

analyzed separately, the effects were not as strong. Both S. pungitii (T-Test, t=-0.888, df = 

12, p = 0.392) and S. solidus (T-Test, t = -1.874, df = 12, p = 0.086) do not show a significant 

difference in time spent in a possible mating position with either partner. Nevertheless, S. 

pungitii spent 7.79% (±2.60%) of the total time in a possible mating position with a 

conspecific and 10.92% (±2.37%) with the worm from a different species. S. solidus spent 

5.88% (±2.90%) of the total time in a possible mating position with a conspecific and 18.21% 

(±5.90%) with the worm from a different species.  

The detailed profiles of each focal worm’s location over time can be found in the 

supplementary material (SI Figure S1). 
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Figure III-3: Mean percentage of time spent in the different compartments 

For each focal worm species (S. pungitii or S. solidus) the mean percentage of time on each side (conspecific: 1, 

2 or 3, neutral: 0, different species: -1,-2 or -3) was calculated for each trial and the summarized means (±SE) 

are shown. On average, both focal worm species spent more time on the side that contained a worm from a 

different species than with a conspecific or in the neutral compartment. 

 

 

Discussion 

 

The results from our experiments indicate that neither temporal nor spatial constraints hamper 

the two Schistocephalus species from mating in the final host. Both worm species establish in 

the same part of bird’s intestines. Even though the majority of plerocercoids did not establish 

in the chicken host, we nevertheless found plerocercoids from both species in the chicken 

appendices. This indicates that either the adult chicken is not a suitable final host or other 

factors prevented successful establishment of the plerocercoids. It has been shown earlier that 

S. solidus is infective to day-old chicken (Tierney & Crompton, 1992), but the digestive tract, 

especially the structure of the gizzard, may have lowered the infectivity in our experiment. 

Birds that belong to the order Galliformes have relatively long appendices, similar to birds 

that belong to the Anseriformes (which also include a number of piscivorous birds), but can 
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be totally absent in some birds like cranes (Storch & Welsch, 2009). Since Schistocephalus 

can probably infect any fish-eating bird, the exact location may vary across host species and 

depend on the anatomy of the final host species. 

Nevertheless, the experiment with seagulls showed that both species do mate with each other 

in a natural final host. How likely is it then, that a bird feeds on both infected stickleback 

species? Birds feeding on infected sticklebacks are unlikely to discriminate between G. 

aculeatus and P. pungitius. Even though both stickleback species inhabit slightly different 

ecological niches (with P. pungitius preferring more vegetated areas and G. aculeatus 

roaming also more in the open water (Coad & Power, 1973a, 1973b)), there is still an overlap 

in both species’ habitat and they are often caught together within the same shoal (Hynes, 

1950; Zander et al., 1984).  

For example, in one population we used in this study from Obbola (Sweden), both 

stickleback species were caught with the same method (seine fishing) in the same net. 

Therefore it is very likely that piscivorous birds prey on both stickleback species at the same 

time. Since the infection rate for S. solidus and S. pungitii in this population is very high for 

both species (70-90%, unpublished data), we consider the likelihood of the two species 

ending up in the same final host relatively high. 

Our results also indicate no obvious barriers to hybridization in sympatric populations of 

Schistocephalus. Even though the hybridization rate in the herring gull infected with a 

sympatric combination of plerocercoids was slightly lower, we could detect hybrid offspring.  

It has been shown, that in some cases prezygotic barriers can arise in sympatric populations 

that prevent the formation of viable hybrids (e.g. reviewed in Rundle & Nosil, 2005).  The 

mechanism by which prezygotic barriers arise can be a by-product of divergence (Coyne & 

Orr, 2004; Rice & Hostert, 1993; Schluter, 2001) or hybridization can occur frequently, but 

hybrids are relatively unfit compared to their parental lines, and therefore outcompeted, 

which leads to reinforcement (Servedio & Noor, 2003). Whether the hybrids from sympatric 

combinations have a lower fitness than hybrids from allopatric combinations was not tested 

in this experiment. Such an experiment should be conducted under controlled laboratory 

conditions and should, if possible, include different sympatric population pairs. 

As we have shown in earlier experiments (Henrich et al., 2013), hybrids of both species 

(from allopatric populations) do not suffer from obvious fitness disadvantages, but rather 

have the advantage of increasing their host range without the cost of reduced performance in 

the intermediate host. At least in these hybrids formed in allopatric combinations, fitness 
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disadvantages occur only after hatching (which seemed to be the only trait where hybrids 

were less fit than the parental species). 

It is rather surprising that our results indicate a preference of both parasite species to mate 

with a parasite of a different species over conspecifics. It has been shown that S. solidus 

prefers to mate with siblings over a more distantly related conspecific (Schjørring & Jäger, 

2007). Our results point in a completely different direction, indicating that the parasites might 

prefer maximal genetic distance in their mating partners, not taking species boundaries into 

account. 

From our controls we can also conclude that the time spent on the side with a mating partner 

is representative, as parasites spent significantly more time on the side with a mating partner 

than in “empty” compartments. Schistocephalus is a simultaneous hermaphrodite that can 

engage in multiple matings during its reproduction period. Our system allowed multiple 

mating attempts and most parasites visited both stimulus worms during our trial (see Figure 

S1). However, we conclude that the total percentage of the time spend on one side is a good 

indicator for mate choice. This has also been previously shown by Lüscher & Wedekind 

(2002) who demonstrated that S. solidus discriminates between sizes in their mating partners, 

preferring bigger mates. 

In summary, we did not find any prezygotic mechanisms that could prevent hybridization 

between S. solidus and S. pungitii. It is possible that hybridization occurs frequently in some 

populations but has not been detected yet. Nevertheless, it seems obvious that the high degree 

of host specificity in this system was a major factor driving the separation and speciation of 

these two parasite species. 

In general, there are two different possibilities for speciation through host specificity in 

parasites (Brooks & McLennan, 1993; Shaw, 1994; Thompson, 1994): either through host-

switching or through congruent co-speciation. Host-switching requires an initial decrease in 

host specificity for the parasite in order to be able to establish in the new host, followed by a 

compulsory subsequent increase in host specificity, that is necessary to discriminate between 

host range expansion and host switching. Another mechanism for hybrid speciation is 

following the speciation of the host lineages, where parasites and hosts exhibit congruent 

phylogenies, a process which is described as Fahrenholz’s rule (Eichler, 1948).  We don’t 

know how speciation occurred in Schistocephalus. Nishimura et al. 2011 suggested that 

speciation occurred shortly after the divergence of the two stickleback lineages as a single 

event, which would argue for a co-speciation following the divergence of the stickleback 

lineages. 
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Studies on gene flow between different species or populations of Schistocephalus are still 

rare (Nishimura et al., 2011) and should also consider the possible gene flow between these 

two species in the future. Even though the research conducted to date indicates that 

separation of the two lineages occurred 20-25mybp, the situation in other populations may 

differ from this assumption. If speciation in Schistocephalus is not a recent event and the two 

species now differ by a relatively large extend, postzygotic isolation seems plausible. The 

more loci differ between two species, the more it is likely that negative interactions between 

them evoke or strengthen postzygotic isolation (Coyne & Orr, 1998). 

It is possible that gene flow in natural populations of Schistocephalus is limited by 

postzygotic barriers. So far we do not know if Schistocephalus hybrids are sterile or if other 

genetic incompatibilities would lead to an F2 hybrid breakdown. This point warrants further 

investigation. 
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Abstract 

 

Parasites often share the same host with conspecifics. Conflicts can arise when parasites 

compete for nutrients or use different strategies for manipulation of behavior or immune 

functions of their hosts. These interactions can directly alter growth, survival and 

transmission of the parasites, but also indirectly influence the host’s fitness.  

The tapeworm Schistocephalus solidus is a parasite with a complex, three-host life cycle. It 

spends the majority of its life and completes its entire somatic growth in the second 

intermediate host, the three-spined stickleback (Gasterosteus aculeatus). Since it spends most 

of its life cycle in this host, it is likely that interactions between the parasite and its host have 

been fine-tuned through evolutionary time. 

The close co-adaptation of S. solidus to its stickleback host offers an ideal system to study 

intraspecific parasite-parasite interactions and their outcome for both parasite virulence and 

host fitness. In an experimental approach we compared the competitive situation in double 

infections with S. solidus from two different strains that differ in their virulence. 

For this purpose we exposed lab-bred sticklebacks simultaneously to either two high virulent 

(Hv) or two low virulent (Lv) S. solidus tapeworms, or to a combination of both, along with 

single exposed and unexposed control fish.  

Our results indicate complex parasite-parasite(-host)-interactions: slow growing Lv parasites 

benefit from co-infections with fast growing Hv parasites by an increased virulence while the 

Hv parasite stays smaller than in the presence of another highly virulent conspecific. 
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Introduction 

 

In ecology and evolutionary biology the term virulence is used to describe various aspects of 

host-parasite/pathogen interactions, ranging from parasite induced host mortality (Ebert & 

Herre, 1996; Frank, 1996) or parasite induced reductions in the reproductive success over the 

host’s lifetime (Herre, 1993) to the general level of harmfulness caused by a parasite (Ewald, 

1995). 

While natural selection will select for a higher resistance in the host, depending on the mode 

of transmission it will not always favor the most virulent parasites (Ewald, 1993). Parasites 

experience a trade-off between high virulence and host overexploitation – therefore parasite 

fitness will probably be maximized at an intermediate virulence level (Anderson & May, 

1982; Fenner & Ratcliffe, 1965). The “virulence-transmission” trade-off may especially 

affect parasites with complex life cycles as excessive damage to their intermediate host can 

cause a decrease in transmission success to the next host. 

Parasites that significantly damage their hosts evoke selection against that particular parasite 

or genotype in the host population. A higher virulence that causes greater damage results in a 

stronger selection against that parasite in the host and favors more resistant host strains. This 

inevitably leads to a co-evolutionary arms race known as Red Queen dynamics (Van Valen, 

1973). 

In natural ecosystems, an organism is rarely infected by only one parasite (Petney & 

Andrews, 1998). In fact, a host usually harbors multiple parasites that often belong to 

different species or even genera. Conflicts can arise when parasites compete for host 

resources, manipulation of the immune system or manipulation of the host’s behavior and 

studies on such topics should consider multiple infections more often (Milinski, 2014). These 

conflicts can be grouped into two categories: interspecific and intraspecific parasite 

competition. In the case of intraspecific competition, the degree of relatedness between the 

parasites can alter the outcome (Bashey et al., 2007; Frank, 1992; Jäger & Schjørring, 2006). 

It is also possible that the infection with one parasite prevents or hampers the infection with 

another individual from the same species (concomitant immunity, (Smithers & Terry, 1969)). 

Furthermore, it has been shown, that infection with multiple parasite genotypes can be costly 

for the host’s immune response and so be more detrimental to the host (Taylor et al., 1998). 

Competition can be a selection factor in the evolution of parasites and promote competitive 

strategies or phenotypic plasticity (Leggett et al., 2014; Mideo, 2009).  It can directly lower 

the individual parasite’s fitness or decrease the transmission success to the next host. 
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Conversely it can result in a fitness advantage for the parasite, where within-host competition 

favors virulence, with more virulent strains having a competitive advantage in genetically 

diverse infections (de Roode et al., 2005), leading to an increase in virulence in the next 

generation of parasites. In fact, it has been shown in an experiment with rodent malaria (de 

Roode et al., 2005) that there is a strong relationship between the virulence of a parasite and 

its competitive ability: the more virulent strains had a competitive advantage in mixed-strain 

infections which led to a higher relative transmission success. Therefore, within-host 

competition can drive the evolution of virulence and could be one explanation as to why 

many parasites harm their hosts. 

Other empirical studies have shown that less virulent strains can be favored in competitive 

situations, which can drive evolution towards lower virulence (Gower & Webster, 2005). 

Therefore the consequences of competition will depend on the type of interaction among the 

parasites, the life cycle of the parasite and the degree of interaction with their host and each 

other. Most microparasites multiply within their host, allowing for within-host selection and 

adaptation to other co-infecting parasite genotypes. Parasites that do not multiply within the 

host may face a different situation. They might compete for host resources, space or host 

manipulation, and interfere with their coinfecting competitors (Cézilly et al., 2014). 

Most studies about within host competition are observational and analyze macro- and 

microparasite communities in naturally infected hosts (Fenner & Ratcliffe, 1965; Herre, 

1993; Mideo, 2009). In an experimental approach, we investigated the competitive situation 

between two individual macroparasites of the same age and species infecting a naive host. 

We were especially interested in how parasites with different intrinsic levels of virulence 

performed when competing against each other. Does it alter their ability to successfully infect 

a host and the plasticity of their individual virulence? 

If virulence is solely determined by intrinsic factors of the parasite, one would expect 

virulence to be independent of the virulence of the co-infecting parasites. In the case of 

multiple infections each parasite may produce resources that would be collectively available 

(public goods) among conspecifics (Leggett et al., 2014). These public goods could be 

anything that can be used by both parasites, e.g. something that increases the availability of 

nutrients or protection from the host’s immune system. One could also assume that an 

individual’s production share of public goods is proportional to the virulence of the parasite.  

We can categorize the public goods into unspecific or specific public goods. Unspecific 

public goods can be available to all conspecifics, while specific public goods are only 

available to parasites of a certain genotype, strain or population. 
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In the case of the production of public goods, the observed virulence would then be 

dependent on the virulence of co-infecting parasite (SI Figure S2). 

 

Figure IV-1: Experimental Design 

Fish were exposed to one copepod infected with a Hv or Lv parasite, two copepods of either virulence (Hv+Hv 

and Lv+Lv) or two copepods with parasites of different virulence (Hv +Lv). One group was unexposed control 

fish. Fish were dissected eight weeks post exposure (PE). 

 

 

To explore the consequences of multiple infections on individual parasite virulence, we 

compared the performance and phenotype of single macroparasites under intraspecific 

competition in an experimental setup with double infections with high virulent (Hv) and low 

virulent (Lv) parasites. Our model system to explore this question was Schistocephalus 

solidus, a trophically transmitted cestode with a complex life cycle (see methods) and its 

second intermediate host, the three-spined stickleback (Gasterosteus aculeatus). This system 

is an emerging model in host-parasite coevolution and speciation genetics (Barber & 

Scharsack, 2010; Barber, 2013; Gibson, 2005; Hammerschmidt & Kurtz, 2005a). This 

particular stage is important because the parasite establishes in the body cavity, completes the 

majority of its growth and thus requires a long term interaction with the host immune system. 

We generated six different treatment groups: double infections with a heterologous 

combination of parasites (Hv+Lv), double infections with a homologous parasite combination 

(Hv+Hv and Lv+Lv), single infections with either parasite (Hv and Lv), as well as one 

unexposed control group (Figure IV-1). Parasite performance was measured as parasite 

growth, which is an indicator not only for virulence but also for parasite fitness in this 

Single infection

High virulence (Hv)

Low virulence (Lv)

Unexposed control Double homologous infection

Control Hv Lv Hv  +  Hv

+

8 weeks PE

+

Lv  +  Lv

Double heterologous infection

+

Hv  +  Lv



Chapter IV 

72 

 

system. Several fitness relevant organ measurements of the fish host served as an indicator 

for host’s response to parasitic infection. 

 

 

Results 

 

Infection rates 

Neither in singly exposed fish (Lv or Hv, F1,548 = 0.313, p = 0.31) nor in fish exposed to two 

parasites (Lv+Lv, Hv+Hv or Hv+Lv, F1,929 = 0.538, p = 0.58) could we detect an effect of the 

treatment on the infection rate. There was also no significant difference in the number of 

successfully established parasites (0, 1 or 2) in the fish exposed to two parasites (F2,929 = 

0.049, p = 0.95). The probability of successful parasite establishment in the fish therefore did 

not differ between Lv and Hv parasites, neither in single nor in double exposure treatments 

indicating no direct link between parasite infectivity and virulence in this system. 

 

Total parasite index 

As a measurement for the total parasite burden, the total parasite index (tPI) describes the 

relationship of total parasite weight and the fish weight (Figure IV-2). 

The tPI differs significantly between treatment groups (F4,321 = 354.502, p < 0.0001). All 

treatment groups differ significantly from each other (Tukey HSD, p < 0.01), except for the 

comparison of single and double infections of low virulence parasites (Lv vs. Lv+Lv, Tukey 

HSD, p = 0.88). Parasites from a Hv+Hv double infection had the highest tPI, followed by 

Hv single infections. The heterologous Hv+Lv double-infection had an intermediate tPI. Lv 

parasites had the lowest tPI, with the double infection having a higher total parasite weight 

than the single infections. 
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Figure IV-2: Total parasite index (tPI) in the different treatment groups 

The homologous double infection of two high virulent parasites (Hv+Hv, N = 33) had the highest tPI, followed 

by the heterologous double infection (Hv+Lv, N = 47) and single infections by high virulent parasites (Hv, N = 

80). Single and double homologous infections with low virulent parasites (Lv, N = 113 and Lv+Lv, N = 53) had 

the lowest tPI and were not significantly different from each other. Error bars represent standard errors of the 

mean. 

 

 

Virulence/discrete parasite index 

For this analysis the relative weight of the individual parasite (dPI), was compared between 

the different treatment groups (Figure IV-3). There was a significant effect of a term which 

combined the treatment group and parasite virulence type and therefore discriminated 

between Lv and Hv parasites in the “Hv+Lv” treatment in double infected fish (F5,453 = 

325.807, p < 0.0001). A post hoc Tukey HSD test showed that all groups differ significantly 

from each other (p < 0.01). 

The dPI of single infections (Hv and Lv) was significantly higher than the dPI in the 

respective homologous double infections (Hv+Hv and Lv+Lv). Hv parasites that were in 

single infections had the highest dPi, followed by Hv parasites in Hv+Hv double infections. 
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Interestingly, the Hv parasite in the heterologous double infection had a significantly higher 

dPI than its Lv co-infecting competitor, but significantly lower than in a Hv single infection, 

or even in a Hv homologous double infection. On the other hand, the Lv parasite in 

heterologous infection had a significantly higher dPI than in a Lv homologous double 

infection, or even a Lv single infection.  

 

 

 

Figure IV-3: Virulence of individual parasites as mean discrete parasite index (dPI) in the different 

treatments. 

The relative worm weight of each individual parasite was altered by intraspecific interactions with co-infecting 

parasites. Both, high virulent (Hv) and low virulent (Lv) parasites’ relative worm weight decreased in double 

infections with a parasite of the same virulence level (Hv+Hv and Lv+Lv respectively) compared to single 

infections (Hv and Lv). In mixed infections (Hv+Lv), the more virulent parasite could not reach the same size as 

in the homologous double infection, while the low virulence parasite grew to an even bigger size than in a single 

infection. Error bars represent standard errors of the mean (Hv: N = 80, Hv+Hv: N = 66, Lv: N = 113, Lv+Lv: N 

= 106, Hv+Lv: N = 47). 

 

 

In summary, when a Hv parasite was in competition with a Lv, the Hv parasite was growing 

to a significantly smaller size than if it had been in competition with a homologue, whereas 
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the Lv parasite was clearly gaining from sharing its host with a more virulent parasite, 

growing significantly bigger than if it has had no competitor. 

 

Fish condition and immunological traits 

As an indication for the fish condition, the CF is the ratio between fish length and fish 

weight, the higher the CF, the better the fish condition. 

There was a significant effect of the experimental treatment on the fish condition factor (CF) 

(F5,392 = 15.178, p < 0.0001). Only fish exclusively infected with Hv parasite(s) differed 

significantly from the control fish in their CF (Figure IV-4A). A post hoc Tukey HSD test for 

the different treatment groups showed significant lower CF for fish infected with 1 or 2 Hv 

parasites compared to the uninfected control fish (p < 0.0001). Fish infected with 2 Hv 

parasites had the lowest CF compared to all other treatments (p < 0.001). Fish infected with 1 

Hv parasite had a significantly lower CF compared to fish infected with 2 Lv parasites (p < 

0.01). 

 

The hepatosomatic index (HSI) describes the ratio of fish liver weight to body weight and 

gives an indication about the energy reserves of the fish (Chellappa & Huntingford, 1995). 

The higher the HSI is, the more energy reserves the fish has.  

There was a significant effect of the experimental treatment on the HSI (F5,392 = 17.961, p < 

0.0001) and a post hoc Tukey HSD test showed significant differences between certain 

treatment groups (p < 0.001): Fish from all the infection treatments (Lv, Hv,Lv+Lv, Hv+Hv, 

Hv+Lv) had a significantly lower HSI than the unexposed control fish (Figure IV-4B). Even 

in fish singly infected with one Lv parasite, the HSI was significantly decreased, even though 

the parasite burden is the lowest of all infection treatments. The HSI of homologous single or 

double infections (respectively, Hv and Hv+Hv, or Lv and Lv+Lv) were not significantly 

different from each other or from the heterologous double infection (Hv+Lv).   

The HSI of Hv single infections was significantly lower than the HSI of Lv single or Lv+Lv 

double infections (p<0.05). 

The splenosomatic index (SSI) describes the relationship between the fish’s spleen and body 

weight and elevations in the SSI can be attributed to an immune response to parasite 

infections (Lefebvre & Mounaix, 2004). 
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Figure IV-4: Variation in fish condition and immune parameters  

The means for different indices for fish nutrional condition and immune system parameters are shown as means 

±SEM (Control: N = 72, Hv: N = 80, Hv+Hv: N = 34, Hv+Lv: N = 47, Lv: N = 113, Lv+Lv: N = 53). 

A: Mean condition factor (CF) 

The CF was only lower in fish that were exclusively infected with Hv parasites (Hv and Hv+Hv) compared to 

unexposed control fish. 

B: Mean hepatosomatic index (HSI) 

The HSI was lower in all infected treatment groups compared to unexposed control fish. 

C: Mean splenosomatic index (SSI) 

The HKI was higher in all infected treatment groups compared to unexposed control fish, expect for fish 

infected with two Hv parasites (Hv+Hv) 

D: Mean head kidney index (HKI) 

The HKI was higher in all infected treatment groups compared to unexposed control fish. 
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There was a significant effect of the treatment on the SSI (F5,392 = 6.369, p < 0.0001) and a 

post hoc Tukey HSD test showed significant differences between treatment groups: the SSI 

was significantly higher (p < 0.05) in all treatment groups compared to the unexposed control 

fish apart from the Hv+Hv double infections (Figure IV-4C). Interestingly, although this 

treatment had the highest parasite burden it was the only treatment that was not significantly 

different from the unexposed control fish (p > 0.05).   

The head kidney index (HKI) was calculated to describe the ratio between head kidney 

weight and fish body weight. An increase in head kidney size is assumed to be a consequence 

of an elevated immune response (Press & Evensen, 1999), possibly also due to a parasite 

infection. 

There was a significant effect of the treatment on the HKI (F5,392 = 11.355, p < 0.0001) and a 

post hoc Tukey HSD test showed that it was significantly higher in all infection treatments 

compared to unexposed control fish (p < 0.01) (Figure IV-4D). Even though there were 

striking differences in parasite burden between the treatments, all infections stimulated the 

immune system to a similar, non-significantly differentiated level, except for the comparison 

between fish singly infected with one Hv or on Lv parasite. Fish infected with one Hv 

parasite had a significant higher HKI than fish infected with one Lv parasite (p < 0.05). 

 

 

Discussion 

 

Most of our understanding about the effect of competition between co-infecting parasites on 

virulence is derived from observational studies of natural populations or based on theoretical 

approaches (Alizon et al., 2013; Baalen & Sabelis, 1995; Brown et al., 2002; Frank, 1992). 

By using the Schistocephalus-stickleback model system in an experimental approach we have 

revealed that intraspecific interaction can have significant but varying effects on individual 

parasite virulence. This was made possible by our macroparasite system, which contrary to 

many studies on microparasites, allowed us to study both individual parasite virulence 

(discrete Parasite Index dPI) and overall virulence of co-infecting parasites (total Parasite 

Index tPI).  
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Virulence Model 

There are several lines of evidence that indicate that the virulence of an individual parasite is 

determined by a combination of intrinsic factors and the production of both specific and 

unspecific public goods (SI Figure S2). 

The heterologous infection had an intermediate total parasite burden. Strikingly, this is the 

result of an increased virulence in the Lv parasite combined with a decrease in virulence for 

the Hv parasite compared to their performance in homologous infections. This is contrary to a 

scenario where solely intrinsic factors (SI Figure S2a) or only specific public goods (SI 

Figure S2c) determine the virulence of a parasite in co-infections, where we would have 

expected the Hv and Lv parasite to reach the same size as in their respective homologous 

infections. The most likely explanation for the intermediate total parasite burden is the 

sharing of public goods. However, the fact that the Hv parasite remained significantly larger 

than the Lv parasite points to the fact that these public goods must be both specific and 

unspecific (SI Figure S2d). If virulence was determined by unspecific public goods alone, 

either parasite should benefit equally from the common pool and therefore both individuals 

should have reached the same size (SI Figure S2b).  

The interactions between parasites of the same virulence type also have significant effects on 

individual virulence. In both homologous double infections, individual parasite virulence was 

significantly reduced. In the Hv+Hv double infection the total parasite burden was still higher 

than in Hv single infections, which indicates that all other treatment groups were not limited 

by host resources in general. However, this effect was not seen with Lv parasites. It is not 

clear whether this is due to a self-limitation to avoid overexploitation or the inability to 

successfully exploit more host resources. These results still fit our model of specific and 

unspecific public goods that, together with an intrinsic ability, determine the virulence of the 

parasites (SI Figure S2). 

In the case of homologous double infections, the parasites probably reached their specific 

growth ceiling. The significantly lower condition factor (CF) in the Hv+Hv double infections 

confirms that the Hv parasites were able to access more resources than in other treatments. 

This is evidence that all other treatments were not limited by host resources. Considering the 

CF was not significantly different between Lv single and Lv+Lv double infections this is 

indicative of an intrinsic host exploitation ceiling for the Lv parasite. However this does not 

mean there is no intrinsic host exploitation ceiling for the more virulent parasite, it may just 

be higher.   
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Virulence model mechanisms 

In S. solidus virulence seems to be a plastic trait that is not only shaped by the interaction of 

the parasite with the host’s immune system, but also by intraspecific interactions among co-

infecting parasites. Those intraspecific interactions are mediated by the production of specific 

and unspecific public goods that are most likely excretory/secretory products that modify the 

immediate environment of the parasite, i.e. the fish body cavity (Hewitson et al., 2009). In 

cestodes like S. solidus both exchanges with the host and food intake require transport 

through the outer tegument. Thus public goods that could increase host nutrients availability, 

as well as induce immune manipulation would affect the body cavity environment of co-

infecting parasites and be an important factor in this interaction (Pedersen & Fenton, 2007). 

This is consistent with Jäger and Schjørring (2006) who have shown that in sequential 

infection the younger S. solidus plerocercoids had a fitness advantage over the older 

‘pioneering’ parasites. In fact, second infecting plerocercoids had a higher survival rate and 

discrete parasite index than the first infecting plerocercoid. Moreover, the fitness advantage 

was even larger if the two worms were genetically related. This suggests a cost to inducing 

host immune manipulation and growth, that this investment can beneficiate another 

conspecific (public goods) and is also more profitable if the two parasites are closely related 

(specific public goods). 

There is evidence for immune manipulation by S. solidus (Scharsack et al., 2004) and 

recently it has been found that this immune manipulation may be mediated by S. solidus 

excretory/secretory products (Scharsack et al., 2013). In vitro immune modulations differ 

between several S. solidus populations, highlighting the specificity of the immune 

manipulation and virulence of different S. solidus strains, which could be part of a specific 

public goods system (Franke et al., 2014). 

 

Host manipulation  

Two types of immune manipulation could be beneficial for S. solidus. The most obvious one 

would be immune suppression/evasion, which is a well-known effect of chronic helminth 

infections (Maizels & Balic, 2004). A less intuitive form of immune manipulation would be 

to evoke an immune stimulation. The immunopathology phenomenon induced by an acute 

immune response could weaken the host and cause tissue damages that could be 

advantageous for the parasite (Long & Boots, 2011). An elevated immune response could 

increase the amount of nutrients available in the body cavity by mobilizing cells to migrate to 

the parasites. 



Chapter IV 

80 

 

To understand if immune manipulation is present in our case and if it is expressed as immune 

suppression or immune stimulation, we can use the splenosomatic index (SSI) and head 

kidney index (HKI). Infected fish showed significant elevations in these indices compared to 

unexposed control fish, which indicates immune stimulation in response to the infection. 

Interestingly, the variation between the different infection types was rather low. From this we 

can conclude that the infection itself triggers an immune response that leads to an elevation of 

relative spleen and head kidney weight, but that the intensity of the immune stimulation does 

not increase with parasite virulence. One major exception occurred in this pattern: the SSI of 

Hv+Hv infected fish was not different from the control and lower than the SSI of fish from 

the other infections treatments. This could either be because two Hv parasites limit their 

immune manipulation to avoid over-exploitation or, the fish is already over-exploited and 

incapable of mounting a costly immune response. 

 

Host resources availability 

To determine the accessibility of the second type of public goods, the nutrients, we can use 

the CF and hepatosomatic index (HSI), which show the nutritional status of the fish host. 

Both showed a reduction when the fish were infected, although this was less prominent in the 

CF. Only Hv parasites (in single or homologous double infections) significantly reduced the 

CF of fish. It is therefore possible, that the condition factor is directly linked to parasite size 

here. For the HSI we see a similar pattern as for our immune-relevant indices: all infection 

treatments showed a significantly lower HSI than unexposed control fish, while the variation 

between the different infection treatments was rather low. 

All these measurements indicate that an infection per se has a large impact on the host’s 

immune system and its nutritional status, but they do not explain the variation in parasite 

virulence. 

 

Parasite communication  

Parasites must find a balance between manipulation of the immune system and avoiding 

being targeted by it or overexploiting the host. This can be either mediated through a 

feedback loop between each parasite and the host (Pedersen & Fenton, 2007) or by direct 

parasite-parasite interactions. 

Parasites could monitor the impact of host manipulation and exploitation by the level of 

immune suppression and/or resource availability they benefit from. Such a feedback loop 

would lead to a reduction in host exploitation when an intrinsic ceiling is reached. Another 
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solution for virulence regulation would be directed by some kind of communication between 

co-infecting parasites as is often the case in bacterial infections (Diggle et al., 2007). 

Evolution could have favored such communication mechanisms, as in multiple infections 

overexploitation can rapidly and dramatically reduce their chances of transmission and 

therefore their fitness (Parker et al., 2003). 

 

 

Conclusion 

 

Our results show that intraspecific competition can directly alter the virulence of a parasite. 

In the case of co-infecting parasites of contrasting virulence, the more virulent parasite 

suffers from a decrease in virulence, while the less virulent parasite can achieve a higher 

virulence than without the presence of a competitor. This suggests, that the virulence of an 

individual parasite, that does not replicate in this intermediate host, is a plastic trait and is not 

only determined by the interaction of the parasite with the host’s immune system, but also by 

the interaction among co-infecting conspecifics. These results have important implications on 

an evolutionary level, where low virulent parasites can be favored in the presence of high 

virulent parasites, which pay a cost for the “free-loading” conspecific. As this can also 

influence the epidemics of parasitic diseases in animals and humans (Petney & Andrews, 

1998), more experimental work should be conducted on multiple infections involving 

different strains. Additionally, our results cannot fully distinguish between a direct interaction 

of two parasites and an indirect interaction via feedback loops with the host. Future studies on 

the transcriptome of both parasite and host will hopefully help to answer this question. 

 

 

Methods 

 

Model parasite 

Schistocephalus solidus is a trophically transmitted pseudophyllidean cestode with a complex 

life cycle involving three different hosts. S. solidus reproduces sexually in the intestine of its 

final host, a piscivorous bird. The parasite’s eggs are released with the bird’s feces into the 

water, where free-swimming larvae can hatch and infect the first intermediate host, cyclopoid 

copepods. When the second intermediate host, a three-spined stickleback (Gasterosteus 

aculeatus), ingests an infected copepod, the procercoid stage can establish in the fish body 
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cavity and develop into a plerocercoid stage. S. solidus can infect various bird and copepod 

species but it is specific for its second intermediate host and can only infect three-spined 

stickleback. It undergoes most of its growth in the three-spined stickleback, and the size of 

the parasite is directly correlated to the damages caused to its fish host (Bagamian et al., 

2004), as well as to its reproductive success in its final bird host via fecundity and mate-

choice decisions  (Lüscher & Wedekind, 2002; Schärer et al., 2001; Wedekind et al., 1998). 

Therefore the size reached by the parasite in the three-spined stickleback can serve as a proxy 

for parasite virulence and parasite fitness. 

S. solidus from a German (Neustädter Binnenwasser, 54° 06' 41'' N, 10° 48' 33'' E) and a 

Norwegian population (Skogseitvatnet, 60° 14' 38" N, 05° 54' 51" E) were used. Parasites 

were specifically chosen from these populations, as earlier experiments have shown dramatic 

differences in their virulence (Kalbe & Jakobsen, in prep). Yearly field surveys of the 

Norwegian and the German populations have shown contrasting epidemiology of the S. 

solidus infection in the two systems. The Norwegian system has a relatively high prevalence 

(usually >40% on average), where multiple S. solidus infections are fairly common, whereas 

the German system present a relatively low prevalence (usually <1%) and low/no occurrence 

of multiple infections (unpublished data). Moreover, experimental data had repeatedly shown 

that S. solidus strains exhibit consistent virulence type, with some strains being always more 

virulent then others when infecting different fish populations. In this context the Norwegian 

parasite strain has a consistently relatively higher virulence compared to the German strain, 

and the Norwegian fish exhibit a higher resistance than the German host (Kalbe & Jakobsen, 

in prep). Additionally, helminths like S. solidus that reproduce in the intestine and disperse 

through the feces of migratory birds, are likely to experience gene flow between large 

geographically spread meta-populations. Thus, the probability of a high-virulent and low-

virulent strain to interact within the same fish host is conceivable. 

The German and Norwegian tapeworms were respectively classified as low virulent strain 

(Lv) and high virulent strain (Hv). 

 

Experimental exposure 

The experiment was conducted in two independent rounds in two separate years. In each 

year, three different fish families and three different parasite families from each parasite 

population were used in a full factorial design to minimize genotype specific effects that 

would mask the treatment effects. Only in the Hv+Lv heterologous double infection we 

created three Lv and Hv families independent combinations out of all the possible ones. We 
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ended up having three different family combinations for each treatment groups in both 

rounds. 

In total six lab-bred families of S. solidus from each, the Hv population and the Lv population 

were used to experimentally expose six lab-bred families of three-spined sticklebacks 

originating from the lake Großer Plöner See (Germany, 54°09'21"N, 10°25'50"E). 

Following the in vitro system developed by Smyth (Smyth, 1946) and modified by Wedekind 

(1997), the eggs of the S. solidus families were incubated for 21 days at 20°C in the dark, 

before being placed to light to trigger coracidia hatching. Lab-cultured copepods 

(Macrocyclops albidus) were then singly exposed to S. solidus. The copepods were starved 

for one day before exposure and afterwards fed every second day ad libitum with 

Paramecium caudatum. Starting 6 days post-exposure, copepods were microscopically 

checked for the presence of procercoids. At 16 days post-exposure, to limit developmental 

variability between procercoids and increase the chance of infection (Benesh & Hafer, 2012), 

each fish was individually exposed to two, one or none infected copepod to create six 

treatment groups (Figure IV-1). After 24 hours the fish were grouped into 16L rearing tanks 

with an average number of 12 fish per tank. 

The treatment groups aimed at producing co-infections by performing simultaneous double 

exposure to two high virulent parasites (Hv+Hv), two low virulent parasites (Lv+Lv) or to a 

heterologous combination of the two (Hv+Lv). As control groups, single exposure to one 

high virulent parasite (Hv), one low virulent parasite (Lv) or to none (control) were 

performed (Figure IV-1). 

To exclude confounding effects through genetic relatedness of the parasites, two different S. 

solidus families were always used for homologous double infections; in heterologous double 

infections the two parasites were unrelated by nature. In total this resulted in six different 

combinations for each double exposure treatment. 

 

Dissection 

Eight weeks post exposure fish were killed with an overdose of MS222 (tricaine 

methanesulfonate, 1mg/ml), given a cervical incision and subsequently dissected to record 

standard length, weight, sex and weights of key internal organs (head kidneys, spleen, liver, 

gonads and the body kidney). If the fish was infected, the number of plerocercoids and the 

individual parasites weight were noted.  

The gonad weight was subtracted from the total fish weight to reduce the effect of differences 

in the level of sexual maturation and the following indices were calculated: total parasite 
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index (tPI, with tPI = (total parasite weight [g] / fish weight [g])*100), condition factor (CF, 

calculated after Frischknecht, 1993), hepatosomatic index (HSI, with HIS = (liver weight [g] / 

fish weight [g])*100), splenosomatic index (SSI, with SSI = (spleen weight [g] / fish 

weight[g])*100) and head kidney index (HKI, with HKI = (head kidney weight [g] / fish 

weight [g])*100). The relative parasite weight or discrete parasite index (dPI) describes the 

relationship between the weight of one individual parasite and the fish weight, discriminating 

between two parasites in the same fish and was calculated as dPI = (individual parasite 

weight [g] / fish weight [g])*100.  

To genotype the parasites and thereby determine the identity of the successfully infecting 

parasite(s), a tissue sample of each parasite was collected. 

 

Microsatellite typing 

For all parasites we collected from fish in this experiment the DNA was extracted using the 

DNeasy Kit from Qiagen. Five different microsatellite loci (Binz et al., 2000) were used to 

determine origin and parasite family for each individual. 

 

Statistical Analyses  

As the experiment was run over two different years, the factor year was included as a random 

factor in all analyses. 

For infection rate analysis the dataset analysed with a linear mixed model using both year and 

sex as random factors, due to known differences in infection rates between male and female 

sticklebacks (Reimchen & Nosil, 2001). 

The dataset used for the analysis of the total parasite index (tPI) included all infected fish. For 

the condition factor (CF), hepatosomatic index (HSI), splenosomatic index (SSI) and head 

kidney index (HKI), the dataset included all infected fish and the control fish (not exposed to 

a parasite). For the discrete parasite index (dPI) the dataset included all infected fish and each 

individual parasite’s data (family, origin, treatment, parasite weight). 

The response variables were transformed to achieve normal distribution, if necessary (log 

transformation for HSI and SSI, square root transformation for HKI).  

All statistics were carried out using R (R 2.12.2 (R Development Core Team; www.r-

project.org)). 
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Conclusion & Perspectives 

 

Adaptations of parasites to their hosts are complex and diverse. One mechanism that allows 

close coevolution between one host and one parasite is a high degree of host specificity in the 

parasite. Infecting only a very low number or, as in the case of Schistocephalus, only one 

specific host species can be beneficial for the parasite, if it leads to an efficient mechanism to 

manipulate the host’s immune system and behaviour. 

In my thesis I have shown that the high host specificity of Schistocephalus is likely due to the 

stickleback immune system being able to target the incompatible Schistocephalus species in 

the body cavity, and subsequently, eliminate them within the first two weeks of the infection 

process (Chapter I). The mechanism by which this high specificity is maintained is still 

unclear. One possibility are specific carbohydrate structures on the parasite surface which 

have been shown to be correlated to infectivity and growth of S. solidus (Hammerschmidt & 

Kurtz, 2005b) in three-spined sticklebacks. These structures also vary between different 

sibships and may play a crucial role in the successful crossing of the mucosal barrier in the 

fish gut. This may also explain why S. solidus seemed to be unable to reach the body cavity 

of Danio rerio. This result demonstrates the parasite’s ability to still reach the body cavity of 

a non-specific host, but not a non-related fish species, indicating that the migration through 

the fish’s gastrointestinal tract may also underlie specific constraints, possibly mediated 

through the surface carbohydrate composition. 

A possibility on how fish might discriminate between different Schistocephalus species may 

be through the ability of parasites to cloak themselves with host molecules and prevent 

recognition by the fish immune system (molecular mimicry). If the parasites are able to mask 

themselves only in specific host-parasite combinations, this may also explain why S. solidus 

plerocercoids in the body cavity of the incompatible host Pungitius pungitius seem to be 

encapsulated and disintegrated. 

Future studies could target the presence of host-specific molecules on the surface of the 

parasite or the parasite-specific surface carbohydrates in both species and their hybrids to 

shed light on the mechanism behind this specificity. 

Even though it is known that Schistocephalus manipulates the stickleback’s immune response 

(Franke et al., 2014; Scharsack et al., 2004; Scharsack et al., 2013), this does not allow a 

second, incompatible parasite to take advantage of the situation and successfully infect the 



Conclusion & Perspectives 

88 

 

stickleback. This may be further indication that molecular mimicry is more important than the 

ability to directly manipulate the host immune system for successful establishment. 

 

We could also show that the two different parasite species – even though they have a deep 

lineage divergence – can still produce viable hybrid offspring (Chapter II). Surprisingly, 

hybrids are able to infect both stickleback species just as well as the parental species infect 

their specific host. These results indicate that host specificity in Schistocephalus is a co-

dominant trait, most likely something that provides the parasite with the possibility to escape 

the stickleback immune response. This could be through the ability of molecular mimicry 

which is effective for both stickleback species, allowing the parasites to evade an immune 

response. Since the hybrids did not suffer from obvious fitness disadvantages (except for a 

higher rate of selfing and a lower hatching rate), it is unclear, why this high degree of host 

specificity evolved and is maintained in this system. Therefore Schistocephalus spp. and their 

stickleback hosts are an ideal system to study host specificity in more detail. 

Such studies could include the genetic basis of host specificity, how many and which genes 

are involved in this trait and how these evolved in the different Schistocephalus species. A 

genome-wide scan for genes responsible for host specificity could be performed to identify 

the genomic regions responsible and these data could be compared among the different 

species to investigate the origin and evolution of host specificity in this taxon. For this 

purpose, it would also be interesting to cross other Schistocephalus species and see if 

hybridization is possible among more distantly related species and whether this also results in 

host range expansion. Much less is known about S. cotti and S. nemachili, including their 

relatedness and host range. At least in S. cotti it was suggested that this species may use 

several different intermediate hosts (Dechtiar et al., 1966; Hoffman, 1999; Margolis & 

Arthur, 1979; Nagasawa et al., 1989; Sterud, 1999), even though it has not been confirmed, 

whether these individuals all belong to the same species (Chubb et al., 2006). 

 

We furthermore investigated possible prezygotic mechanisms that could reinforce speciation 

in the two parasite lineages (Chapter III). These results show that i) the two parasites 

hybridize not only in the in vitro breeding system, but also in a natural host, ii) there are no 

barriers that prevent hybridization in sympatric parasite populations and iii) Schistocephalus 

prefers parasites of the different species as mates over conspecifics.  

All these results point in the direction that hybridization would be beneficial for the parasite – 

or – that there would have been a selection pressure on the parasite to not diverge into 
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separate species each with this high degree of host specificity. Postzygotic mechanisms that 

could prevent gene flow between the two species can still exist; these mechanisms have not 

yet been investigated. Therefore, the question why we see such a high degree of host 

specificity remains. 

One possibility could be the close adaptation between parasite and stickleback immune 

system. As we could show, the incompatible parasite can still establish within the “wrong” 

host, but is eliminated early in the infection which supports this hypothesis. This raises the 

question whether host specificity is costly. If so, hybrids that expand their host range may not 

grow as large as their parental species in their specific host. Nonetheless, the hybrids do not 

suffer in terms of reduced growth in both stickleback hosts, which would have been an 

indicator that host specificity is indeed costly in the second intermediate host. 

More work needs to be done to understand, why the deep lineage divergence between S. 

solidus and S. pungitii exists and how it is maintained. This should especially focus on 

postzygotic mechanisms, such as hybrid infertility or F2 hybrid breakdown. As our results 

also indicate a lower hybridization rate between the two species that originate from a 

sympatric population, more work should be conducted that could reveal costs for host 

specificity. Furthermore, molecular tools would allow scanning natural populations of 

Schistocephalus spp. for interspecific gene flow and possible natural hybridization events. 

It is now widely accepted that host specificity can play an important role in the speciation 

process of parasites (Duffy et al. 2007; Henry et al., 2008). Speciation in parasites can either 

occur through host-switching (Barker, 1991; Clayton, et al. 1996) or co-speciation of hosts 

and parasites (Hafner & Nadler, 1988). The latter possibility often leads to congruent 

phylogenies of hosts and parasites, a phenomenon known as Fahrenholz’s rule (Eichler, 

1948). Not enough is known about the speciation events in Schistocephalus spp. and if host 

specificity was the driving force in the process. Nevertheless, co-speciation seems to be a 

possibility for S. solidus and S. pungitii (Nishimura et al., 2011). Other members of the genus 

Schistocephalus infect stone loach (Barbatula barbatula, infected by S. nemachili (Dubinina, 

1959)) and bullheads (Cottus spp., infected by S. cotti (Chubb et al., 2006)). As these fish 

species are only distantly related to sticklebacks, host-switching events may have also been 

important in the speciation process of Schistocephalus spp. More work on the phylogenies of 

Schistocephalus spp. and their corresponding hosts is needed to answer these questions.  

 

Even within the species of S. solidus differences regarding virulence in the second 

intermediate host are known from different parasite strains. In the last part of this thesis 
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(Chapter IV), we investigated how intraspecific interactions influence the virulence of S. 

solidus in the three-spined stickleback. We could show that in heterologous co-infections 

involving one high and one low virulent parasite, the low virulent parasite benefits from the 

presence of a high virulent conspecific by growing larger than in single infections. This had 

negative consequences for the high-virulent parasite that exhibited reduced growth in the 

presence of a low virulent parasite when compared to homologous double infections with two 

high virulent parasites.  These results indicate that the intrinsic ability of a parasite to exploit 

and manipulate a host can differ between strains, but also that there are certain public goods 

that can be shared either between conspecifics of the same strain or among parasites of 

different strains resulting in some form of communication between the parasites. These 

parasite-parasite interactions do not only alter individual parasite virulence but also have the 

potential to impact host-parasite coevolution dynamics on the long run. 

The evolution and determinants of virulence are extensively studied, but there is still more 

that needs to be done. Schistocephalus could be an ideal model system to study the genetics 

of virulence. As this is a trait that can be accurately and quantitatively measured (i.e. parasite 

size) in this system, this would offer many possibilities for future research. Crossing a high 

virulent and a low virulent strain could reveal a first insight into the genetics underlying 

virulence in this system and inbred F2 offspring could then be used to analyse the 

quantitative genetics of virulence in S. solidus. The recent development of molecular tools to 

access and analyse gene expression in S. solidus also provides the opportunity to investigate 

the interactions between S. solidus and its host and among co-infecting individuals on a 

transcriptomic level. 

 

Summarized, in my thesis I show that the adaptation of a parasite to a host can be complex, 

and differ between and within a certain species. The ability to exploit a certain host 

successfully is not only specific to a species, but also specific to a certain strain which can 

lead to co-speciation of hosts and parasites. In natural communities, the situation is even 

more complex, as hosts are usually infected with multiple parasites, not only of different 

strains but also with different parasites species that interact with each other. 
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Figure S1: Individual profiles of the position of each focal worm in the mate choice 

experiment 

S. pungitii was the focal worm in trials a-g (purple), S. solidus in trials h-n (blue) and the 

controls are trials m-s (green). Positive scores for the position indicate the location of the 

conspecific, negative scores indicate the position of the worm from a different species or 

empty compartments (for controls only). 
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Appendix Chapter IV 
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Figure S2: Virulence models for co-infecting parasite 

The effect of different virulence models combining intrinsic factor and the production of 

public goods (proportional to the intrinsic virulence level) on the discrete parasite index of 

High virulent (Hv) and Low virulent (Lv) parasites in double homologous infection (Hv+Hv 

and Lv+Lv) or heterologous infection (Hv+Lv). 

a) Intrinsic virulence 

If virulence is an intrinsic factor, the parasite index is solely determined by the virulence type 

(Hv or Lv) and is independent of the virulence level of a co-infecting parasite. 

b) Intrinsic virulence + unspecific public goods 

If virulence is a combination of intrinsic factor and the production of unspecific public goods 

(black dots), all the resources produced by the co-infecting parasites are available and equally 

shared by both. In this case, the parasite index of heterologous co-infecting parasites is the 

same and is intermediate to the one reach in homologous infection. 

c) Intrinsic virulence + specific public goods 

If virulence is a combination of intrinsic factor and the production of specific goods (colored 

dots), the public goods produced by a virulence type are only available for this specific 

virulence type and cannot be use by a heterologous co-infecting parasite. This mimics the 

effect of a solely intrinsic virulence so the parasite index is independent of the virulence level 

of the co-infecting parasite.  

d) Intrinsic virulence + unspecific public goods + specific public goods 

If virulence is a combination of intrinsic factor and the production of both unspecific (black 

dots) and specific public goods (colored dots), only a part of the public goods produced by a 

virulence type are available to a heterologous co-infecting parasite. In this case, a Lv parasite 

will beneficiate sharing a host with a Hv parasite which is producing more unspecific public 

goods. The two parasites will reach an intermediate total parasite index but the Hv parasite 

will still reach a higher discrete parasite index than its co-infecting Lv parasite, thanks to the 

production of specific public goods. These predictions correspond to the results of our 

experiment. 

 


