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Abstract

The modeling of evolutionary game dynamics in finite populations requires microscopic processes
that determine how strategies spread. The exact details of these processes are often chosen without
much further consideration. Different types of microscopic models, including in particular fitness-
based selection rules and pairwise comparison dynamics, are often used as if they were interchange-
able. We challenge this view and investigate how robust these choices on the micro-level really are. We
focus on a key macroscopic quantity, the probability for a single mutant to take over a population of
wild-type individuals. We show that even in unstructured populations there is only one pair of a fit-
ness-based process and a pairwise comparison process leading to identical outcomes for arbitrary
games and for all intensities of selection. This strong restriction is not relaxed even when the class of
pairwise comparison processes is broadened. This highlights the perils of making arbitrary choices at
the micro-level without regard of the consequences at the macro-level.

1. Introduction

Evolutionary game theory is a powerful framework to model biological and social evolution when the success of
an individual depends on the presence or absence of other strategies [ 1—4]. In this context, the payoff from a
game between individuals is translated into reproductive fitness. Methods from statistical physics have been
applied extensively since the field moved from mostly deterministic models based on rate equations to stochastic
individual-based models [5-10]. These more sophisticated models use a microscopic process as a starting point
to determine how successful strategies spread. Tools and ideas from statistical physics are key to making the
connection between the assumptions on the micro-scale, and effective descriptions on the macro-scale.

Two classes of microscopic processes have been used extensively: (i) fitness-based processes in which an
individual chosen proportional to fitness reproduces and the offspring replaces a randomly chosen individual
[11]; (ii) pairwise comparison processes in which a pair of individuals is chosen, and where subsequently one of
these individuals may adopt the strategy of the other. This adoption occurs with a probability that depends on
the payoff of both individuals, such that better players are more likely to be imitated than those who do worse
[12, 13]. The payoff can be taken as the growth rate, often referred to as Malthusian fitness [14], and the fitness
can be taken as the average number of offspring, often called Wrightian fitness [ 14]. Thus the payoft-to-fitness
mapping used in the context of fitness-based processes can be interpreted as a transformation between
Malthusian fitness and Wrightian fitness [14, 15].

Fitness-based processes are typically applied to model biological evolution. Also pairwise comparison
processes can describe biological evolution by reinterpreting the process: an individual is randomly selected and
it produces an identical offspring to replace another randomly chosen individual. The probability of the
reproduction and the replacement depends on the payoffs of both individuals. The first individual will be more
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likely to reproduce and replace the second one if it has a higher payoff. It is noteworthy that the reproduction and
replacement is a single event in pairwise comparison processes. In fitness-based processes, these are two
independent events.

In both types of processes, the relative influence of the game is controlled by an external parameter, the so-
called intensity of selection /5. This parameter has strong parallels to the inverse temperature in statistical
mechanics [16]. In populations of size N the dynamics is dominated by the evolutionary game for strong
selection, SN > 1, with demographic noise only affecting the outcome weakly. For weak selection, N < 1, the
dynamics is largely stochastic, with only a small influence of the game on the evolution of the system. The
outcome of evolutionary game dynamics thus depends on the interplay between selection and noise, both
changing with the relative abundance of the types of individuals in the population.

In well-mixed populations and on some special networks (e.g., on a ring), the evolutionary dynamics
between two types of strategies, wild-type and mutant, can be described by simple birth—death processes. In such
processes, the state of the system is characterized by the number of mutants alone, and the mutants change by at
most one in number for each time step. A quantity that is of particular interest in evolutionary biology is the
fixation probability, which is the likelihood that a mutant type takes over the entire population [17, 18]. Itis the
basis of the definition of evolutionary stable strategies in finite populations [11]. It also features in the leading-
order of the stationary distribution for small mutation rates, which serves as a powerful analytical description
when multiple strategies are present in the population [19, 20].

The choice of a fitness-based process versus a pairwise comparison process is typically not further justified in
the literature [21, 22]. Often the type of model employed is chosen arbitrarily. This is usually no cause for
concern, as many results do not seem to depend on the particular choice of the microscopic process. In
particular, a wide class of microscopic processes leads to similar results under weak selection [23, 24]. This
equivalence is, however, only partial, and in some cases the outcome on the macro-scale can crucially depend on
the specific choices made at the microscopic level [25]. Here, we show the choice of a fitness-based versus a
pairwise comparison process is restricted to a unique pair if we require that for an arbitrary game, the two
processes lead to identical fixation probabilities for all intensities of selection . This indicates that the choice of
the microscopic process can make a difference even in unstructured populations.

2. Two evolutionary process classes and their non-equivalence in fixation probability

We consider well-mixed populations with fixed size N. Each individual can be of one of two types, A and B. The
state of the population is thus characterized by the number i of individuals of type A. The interaction between the
two types of individuals is described by the functions z and z3. These indicate the expected payoff for two types
in a population in state i. The interaction can be generated from a two-player matrix game which leads to payoffs
linear in i [26], but we keep the formalism general to include games played between an arbitrary number of
players, which leads to payoffs that depend on i in a polynomial way [27-30]. In fact, our results hold for an
arbitrary dependence of the payoffs on i.

A discrete-time birth—death process on the set of statesi = 0, ..., N is characterized by the transition
probabilities T'* that the system moves to state i + 1 in the next step, when it is currently in state i. With
probabilityl — T+ — T~ the system remains in state i. We restrict ourselves to processes for which T* > 0 for
alli = 1, ..., N — 1,and in which the two states i = 0 and i = N are absorbing, i.e. T*" = TN= = 0. The
population can never escape from homogenous states. In biology this corresponds to the absence of mutation,
where extinct types cannot be re-introduced.

2.1. Fitness-based processes and pairwise comparison processes
We will now characterize fitness-based processes and pairwise comparison processes in more detail. For a given
game, i.e. for payoff functions z | and 7}, a fitness-based process assumes that at each time step an individual is
selected for reproduction with a probability proportional to its fitness. This individual produces one identical
offspring which replaces a randomly chosen individual in the population. Consequently, the transition
probabilities are of the form

. 1 .
T S L A 1)

i fi N—i
N (f)N’

PUNG), N

The subscript ‘F indicates a fitness-based process. We have assumed that the payoffs 7} and 7} translate into
reproductive fitness via a mapping f; = f(pr})and fé = f(fn}), where § > 0is the intensity of selection and
where f'(x) > 0 for all x, indicating that fitness increases with payoff. The quantity( f); is the average fitness of
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an individual in the population, i.e.,{ f); = (ifli + (N —-1) fé ) / N. The transition probabilities in equation (1)
are then fully specified by the underlying game and by the payoft-to-fitness mapping f.

In a pairwise comparison process, one focal individual and a role model are chosen at random at each time
step. The payoff difference between the two individuals determines the probability that the focal individual
adopts the strategy of the role model. Specifically, for a focal individual of type A and a role model of type B, this
probabilityis g [ (z, — z.)], where # > 0is again the intensity of selection. If the focal individual is of type B
and the role model of type A this probabilityis g [# (7 — ;) ]. The derivative g’ (x) of the imitation function
g(x) must be positive to ensure it is more likely to adopt successful strategies. For a given game and a given
adaptation function g this leads to a birth—death process with the transition probabilities

TH = L\;\]Z l)g[i/)’(nA(i) - ﬂB(i))]- (2)
The subscript ‘T indicates a pairwise comparison process.

For both classes of processes, and for any game, the dynamics will eventually reach one of the two absorbing
states: either the mutant goes extinct (absorption ati = 0), or it reaches fixation (i = N). The so-called fixation
probability, ¢, measures how likely it is that a single mutant takes over the entire population, i.e. it is the
probability for the system to end up in i = N, if initialised at i = 1. For general birth—death processes this
probabilityis given by [11, 17, 18]

N-1 k i\t
¢1=[ I ;] . ()

2.2. Non-equivalence between fitness-based processes and pairwise comparison processes in fixation
probability

For weak selection, many fitness-based processes and pairwise comparison processes are similar in the fixation
probability [23, 31, 32]. For strong selection, however, they can be qualitatively different (see figure 1).

For example, the fixation probability for a fitness-based process with linear payoff-to-fitness mapping
f(x) = 1 4+ x can converge to any positive value between zero and one in the limit of strong selection, f — oo.
To see this, we construct the following example: let 7 = 1and z = a. The ratio of transition probabilities
Ti=/T™* = (1 + pri)/(1 + Pr) converges to the payoffratio 7/ as f — co.In our example, this leads to

- ko ri- - . . . . ..

1/¢, = ]Ij_ 01 I I | % = Z;:’_ 01 a*. This is an increasing function in @ and it is > 1 for positive a. Hence, for
= - =

any ¢, (0 < ¢, < 1), there exists auniquea > 0 such thatl / ¢ = Ilc\]:_()l ak.

For the pairwise comparison process with the Fermi function g(x) = 1/(1 + exp [—x])and f — oo, the
fixation probability can only take N + 1 values: 0,1/N,1/(N —1), ...,1/3,1/2,and 1. In this case, the fixation

4 7yl
probabilityis ¢, = < sz:_Ol exp [ p Zle (mg — mp) ] ) and we can distinguish two cases: (i) if there exists a

single k* such that Zil (mh — 7)) > 0,the denominator will diverge resulting in a fixation probability of zero in
the strong selection limit # — oo; (ii) if for all k, Ele (mi — 7)) < 0, denotejas the number of terms in the sum

over k for which Zle (n4 — z}) = 0. The denominator is then a sum of j 4+ 1terms with value one, with the rest
of the terms vanishing for § — oo. This leads to the fixation probability in the strong selection tobe1/(j + 1).
Note that the integer j can range from 0 to N — 1, such that the fixation probability can only take values1/N, ---,
1/2 and 1 in this case.

Given, thatfor f — oo the fixation probability for the fitness-based process can take any value between 0 and
1, whereas the fixation probability for the pairwise comparison process reaches only discrete values, the behavior
of the two processes has to be qualitatively different in terms of the fixation probability.

3. Equivalence between two evolutionary process classes in fixation probability

Realizing that the fixation probability can be sensitive to the evolutionary process and the selection intensity, we
ask the following question: for what choices of the payoff-to-fitness mapping f, and of the imitation function g,
do the resulting fitness-based and pairwise comparison processes have the same fixation probability ¢, = ¢,,
for arbitrary games and intensities of selection? In other words, if we require that the two processes are
equivalent in fixation probability for any game and any selection intensity, how do we need to choose the fitness
and imitation functions?




10P Publishing

NewJ. Phys. 17 (2015) 023043 BWuetal

3.1. Equivalence between payoff-difference based pairwise comparison processes and fitness-based
processes

From equations (1) and (2) , we note that Tp /T = f(Brj)/f (Bx ) for the fitness-based process, and

T /T = g [B(ng — n)1/g [(Bn) — n})]for the pairwise comparison process. If the functions fand g fulfill

fx) _ glx—y)
o) gy-x’

forallx, y,wehave T}/ T = Ti~/Ti* forall i. Using equation (3) this leads to equal fixation probabilities for
all games and any selection intensity. Thus, equation (4) is sufficient.

We now show that the condition in equation (4) is also necessary. We are interested in functions fand g such
that the equality of fixation probability holds for all games. Therefore, the fixation probabilities need to be equal
for games with constant payoffs 7} = 7, and 7, = 7. For such games the ratios y; = T} /Ti and

(4)

7= T}~ /T}* areindependent of , i.e. the number of strategy A individuals. The equality of fixation probabilities

is then equivalent to p(yz) = p(y; ), where p(y) = Z;I:_ol y?, see equation (3). The polynomial p(y) is strictly
increasing for positive arguments. Considering that both y. and y; are positive, p(y:) = p(y;) implies y; = ;. The
constants 4 and rp can be chosen arbitrarily, as the selection intensity #. The fact that we require y; = y; leads to
the conclusion that fand g must fulfil equation (4). Hence, the condition in equation (4) is necessary if we
require identity of fixation probabilities for all possible games. We stress three points:

(i) it may well be possible to construct a game and a pair of functions fand g, which are not of the above form,
such that the fixation probabilities of the two resulting processes coincide for this particular game.
However, unless fand g fulfil equation (4), the identity of fixation probabilities will not hold for arbitrary
games, as our argument above shows;

(ii) the proof does not assume the two-strategy game to be a pairwise matrix game. In fact, it holds for two-
strategy multiplayer games and even for games with an arbitrary payoff dependence on i;

(iii) equation (4) is also the necessary and sufficient condition such that the fixation probability of m—strategy
Amutants¢h, (1 < m < N — 1)isidentical for fitness-based and pairwise comparison processes for any
game and any selection intensity (for a proof see appendix A).

Equation (4) implies that the ratio f(x)/f (y) has to be a function of the difference x — y alone. Setting
y = x+Axin f(x)/f(y) = g(x — y)/g(y — x) and taking the limit Ax — 0 leads to the differential equation

f® _,80
fx)  g0)

We note that this differential equation must hold for all x. It is a necessary condition for the equality of fixation
probabilities for arbitrary games and arbitrary strength of selection, but it is not a sufficient condition by itself. A
necessary and sufficient condition is given by equation (4).

We observe that the condition of equation (5) can be relaxed if we limit the equality of fixation probabilities
to the weak-selection approximation. It corresponds to expanding the fixation probabilities to linear order in the
selection intensity. If we require that fand glead to identical fixation probabilities only in the linear-order term
in 8 (but not necessarily to higher order) for any payoff functions z; and z7;; we obtain the condition

) _ g0
f(0) £(0)
This condition is far less restrictive than equation (5), and it is both necessary and sufficient to have identity

of fixation probability for all games up to linear order in . This can be seen from existing results for weak
selection [32]. The only solution of the more restrictive condition, equation (5), is

(5)

(6)

£ = £(0) exp[z%x]. 7)

This implies that in order for the fixation probabilities of a fitness-based process to be identical to those of a
pairwise comparison process (to any order in the selection intensity), it is necessary that the payoff-to-fitness
mapping f(x) is exponential in x, f(x) = f(0) exp (4x), where 1 is an arbitrary positive constant. The imitation
function gis at this point largely unconstrained, although one finds g(x)/g(—x) = e** bysettingy=0in
equation (4). With the additional assumption g (x) + g(—x) = 1, only asingle possible imitation functions
remains, the so-called Fermi function g(x) = [1+e ],

4
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Figure 1. Fixation probability is sensitive to the evolutionary processes and selection intensity. The payoff functions arise from the
pairwise matrix game. For weak selection, both pairwise comparison process with Fermi function g(x) = 1/(1 + exp[—x]) and the
fitness-based process with linear payoff-to-fitness mapping f (x) = 1 + x are increasing with selection intensity. Here x is
proportional to the selection intensity. Beyond weak selection, however, the fixation probability of the pairwise comparison process
decreases to zero with increasing selection intensity; whereas that of the fitness-based process increases to a limit. This example shows
that the fitness-based process and pairwise comparison process can differ qualitatively, if selection is non-weak. Here, the payoffs are
givenbyzy = (6(i — 1) + 8(N — i))/N andzg = (7i + (N — i — 1))/N, where iis the number of A individuals and the population
size Nis 10.

Fitness-based process Imitation process

Figure 2. There is a unique pair of a fitness-based process and a pairwise comparison process which are identical in fixation probability
for all games and all intensities of selection. The fixation probabilities for many fitness-based process and pairwise comparison
processes are similar under weak selection, but in general they are not. If we require that the fixation probability is identical for any
selection intensity and any two-strategy game, we arrive at the unique pair: the payoff-to-fitness mapping has to be exponential; while
the imitation function must be a Fermi function. Here, the imitation functions are under the constraint of g(x) + g(—x) = 1.No
other pair can lead to identical fixation probabilities for any game and any selection intensity. In other words, for any other pair ofa
fitness based and a pairwise comparison process, there exists a 2 X 2 game and a selection intensity leading to differences in the fixation
probability.

We have thus shown that the assumption of equal fixation probabilities for all games together with the mild
assumption g(x) + g (—x) = 1fully restricts the payoff-to-fitness mapping and the imitation function to
f(x) = f(0)e**and g(x) = 1/(1 + e *). The only remaining free parameters are f(0) and the constant A.
However, the choice of f(0) is immaterial as f (0) drops out in equation (1). The constant A on the other hand
can effectively be absorbed in the selection strength, f, so that, to all intents and purposes, our constraints fully
specify the payoft-to-fitness mapping and the imitation function. Thus, this pair of processes is unique (see
figure 2) and, if chosen otherwise, the precise details of the microscopic model will affect the outcome of the
model on the macroscopic level. For example, the popular linear payoff-to-fitness mapping f = 1 + fr hasno
corresponding imitation function which depends on payoff differences only and which leads to the same
fixation probability for arbitrary games. This is illustrated in figure 3.

The allowed set of imitation functions becomes broader if we relax the constraint and allow functions g with
g(x) + g(—x) # 1. Anyimitation function of the form g(x) = h(x)/(1 + e¢*)is permissible as long as the
resulting ¢(x) is increasing, takes values between 0 and 1 (such that it is a probability), and as long as h(x) is even
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Figure 3. Graphical representation of equation (4). The contour plot depicts the ratio f (f74 )/f (f7g). Panel A: for the exponential
payoff-to-fitness mapping f (x) = exp (x), theratio f (S )/f () obviously depends on the difference 7, — 7 only, such that the
contour lines are diagonal in the 74, — 7 plane. An identical picture is obtained for g [f(ns — 75)]/g [f(mp — 7a) ] with

g(x) = [1 + exp(—x)]~". Panel B: for the affine linear payoff-to-fitness mapping f (x) = 1 + x, theratio f(Br )/f (Brs) depends on
75 and g explicitly, not only on their difference. The contour lines are no longer parallel to each other. It is not possible to reconstruct
an imitation function gleading to equivalent fixation times for all games, and which depends on payoff difference only. For simplicity
we have used # = 1in the figure.

(toensure f(x)/f(y) = glx — y)/g(y — x)). To show that such functions h(x) exist, we mention two arbitrary
examples, i (x) = exp [—%e_"z] andh (x) = % + m

3.2. Equivalence between general pairwise comparison processes and fitness-based processes

We now consider more general pairwise comparison processes in which the imitation probability does not
depend on payoff differences alone. Specifically, we allow imitation probabilities with which a focal individual
with payoft zg,. imitates the strategy of a role model with payoff z,,, of the form Q (f7¢c, S ), 1.€. Q may
depend on the payoffs of both individuals explicitly. The previous case is recovered as Q (x, y) = g(y — x). To
guarantee that the resulting imitation function Q (x, y) is a probability, it has to take values between 0 and 1. In
addition, we require 0,Q (x, y) < 0, such that focal individuals with high payoff are less likely to adopt the
strategies of others, and d,Q (x, y) > 0, such that role models with higher payoffare more likely to be imitated
than those with a low payoff. In this more general case, a fitness-based process with payoff-to-fitness mapping f
has the same fixation probability of a single mutant as a pairwise comparison process if

f(x)/f(}’) =Q(J/, x)/Q (x, )’)) (8)

in analogy to equation (4). Setting y = x + Ax and taking the limit Ax — 0 in equation (8) leads to the necessary

condition
f(x) =T'x)f(x), 9)
where I'(x) = Q(x, x)‘l[ (0y - 0x)Q(x, y)] . From this, one obtains
y=x
£ = £0) exp[ [ re dz]. (10)
0

Condition (10) admits payoff-to-fitness mappings f (x) that are not exponential. The constraint that f(x) must be
exponential in x derived under the more restrictive assumptions above is a specific consequence of the
requirement that the imitation probability depends on payoff differences only.

For any given payoff-to-fitness mapping f(x) which is increasing and positive, the function
Q(x, y) = f(y)/(f(x) + f(y)) proposedin [11] is decreasing in x and increasing in y and takes values between 0
and 1. In other words, it fulfills the constraints of an imitation function. Thus, for any payoff-to-fitness mapping,
f(x), there is an imitation kernel Q (x, y) leading to equal fixation probabilities for all games. Restricting the set of
permissible kernels to those of the form Q (x, ) = g [w (y) — y (x) Jwith g(x) + g(—x) = 1and wherey (x) is
an increasing function fully specifies the imitation kernel. A short calculation shows that the imitation function
Q(x, y) = f(y)/[f(x) + f(y)]is then the only possible imitation choice leading to identical fixation

6
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probabilities for all games for a given payoff-to-fitness mapping (see appendix B). For the exponential mapping,
f(x) = f(0)e*, thisis the Fermi function Q (x, y) = e’l"/(e“ +e¥) = 1/[ 14 e 4x=0),

4. Summary

In summary we have challenged some of the key assumptions frequently made in modeling evolutionary
dynamics. Fitness-based and pairwise comparison processes are often used as if these approaches were entirely
exchangeable. This is appropriate—to a certain extent—when fitness is a positive constant as it is the case in
many models of classical population genetics. But in the case of evolutionary games, the choice of the
microscopic details of the process does make a difference for the macroscopic outcome of frequency-dependent
selection outside the regime of weak selection. As we have shown there are then strong restrictions on the choice
of the imitation function and the payoff-to-fitness mapping if one requires that the fixation probabilities in the
two classes of processes are identical for any intensity of selection. Furthermore these strong restrictions cannot
be relaxed even when the pairwise comparison process class is broadened. These challenges are largely absent in
population genetics, where selection is typically constant, and only arise in evolutionary game theory, where
selection is frequency dependent.

On the one hand, it is of interest to study when these strict restrictions can be relaxed. One of the possibilities
is to further broaden the pairwise comparison process class. There are only two individuals in pairwise
comparison processes, a focal individual and a role model. Consequently, the imitation function has at most two
arguments. If we allow multiple comparison rules, i.e., k role models, the imitation function could have up to
k+ 1arguments. On the other hand, it is also of interest to study situations where these restrictions could be even
stronger. In evolutionary games on graphs, a dependence on the microscopic details has been pointed out
repeatedly [2—4, 33]. It is noteworthy that these difficulties are already present in non-spatial well-mixed systems
of the type that we have discussed. The complexity of a network structure is therefore not a necessary
component. Indeed, we expect it to be much more challenging to construct two processes with identical
outcomes on such more complicated geometries in our context. An alternative approach to analyze this problem
inisland structured populations can be found in [34], but these population structures have so far received little
attention among physicists working in this field.
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Appendix A. Fixation probability of m mutants

The fixation probability that m strategy A mutants take over the whole population, ¢, is given by [17, 18]
m—1yyk T
_ 2k=0 i=1 it
I e
k=0 Hi:l Tit
We now show that equation (4) is both necessary and sufficient to ensure identity of the fixation probabilities ¢,
for the two classes of processes.

Sufficiency: if f (x)/f (y) = g(x — y)/g(y — x)holds, then Ti~/Ti* = T}~/ T;* holds for any selection
intensity and any games. As the fixation probability ¢, is only dependent on the transition probability ratio

(A1)

m

T~/ T, the fixation probability is identical for both processes for any game and selection intensity.

Necessity: if a fitness-based process and a pairwise comparison process are identical in fixation probability ¢,
for any game and any selection intensity, they must also be identical for the frequency independent case, where
pri = y and frf = x. In this case, ¢, can be rewrittenas p(I) = (1 — I")/(1 — IN), where
I = g(x — y)/g(y — x) for the pairwise comparison process and/r = f(x)/f(y) for the fitness-based process.
We have

Jm= 1

P =———((m=N)IN 4 NIN-" = m). (A2)
N — 1) ”

g

q(D)

Noteq'(I) = N(N — m)IN="=1(1 — [").Ifx < y wehaveO < I}, [z < 1,since gand fare increasing. In this
caseq’ (I)is positive forany 0 < I < 1.In particularg (1) = 0 for any m. Thus q(!) is always negative for
0 < I < land p’(]) is negative in the unit interval. Considering /;and Irin the unit interval, p(I;) = p(lr) implies
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Ir=Ir1fx > y,wehavel}, Ir > 1.Inthis case, p(I) isincreasing for > 1. p(I;) = p(lr) thus implies ;= I. This
yields that for all xand y, f(x)/f(y) = g(x — y)/g(y — x) holds.
This completes the proof.

Appendix B. Conditions for general pairwise comparison processes

Here, we show that the imitation function Q (x, y) = f(y)/[f(x) + f(y)lis the only possible imitation choice
leading to identical fixation probabilities for all games for a given payoff-to-fitness mapping f.

First, we have the equivalence condition such that the two processes have the same fixation probability for
any game. Itis given by

) Q%)

= ) (B.1)
f)  Qxy)
In particular, if Q (x, y) isin the form of g(y (y) — w (x)), equation (B.1) can be rewritten as
) sy —yx)
Letting y = x 4+ Ax with Ax — 0leads to a differential equation, whose solution is
fx) =£(0) eX]P(zg—(o)(l// (x) — W(O))). (B.3)
8(0)

Taking equation (B.3) into equation (B.2) leads to

exp( 20) o W))) _ 8@ —v ) (B.4)

¢(0) () —yx)

where y (x) is the desired increasing function. Equation (B.4) is the constraint that g, whose argument is

v () — w (x), should fulfil. Denote y (x) and y (y) as X and 7, equation (B.4) implies that for a positive 4,
exp(A (X — 7)) = g(& — 7)/g(y — %), for any X, y. Note that the choice of gis independent of the choice of .
Taking into account that g(x) + g(—x) = 1, we have that g(x) is

1
gx) = ; , (B.5)
1+ exp[ - Z‘E(é()))x]
solving equation (B.3) fory (x), we have
(0) f(x)
=y (0 In| —=|. B.6
v = O o n[f(o)] B0
Taking into account equations (B.5) and (B.6) leads to the imitation function
Q,y)=gw(y) —wkx)) = % (B.7)
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