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Abstract
Themodeling of evolutionary game dynamics infinite populations requiresmicroscopic processes
that determine how strategies spread. The exact details of these processes are often chosenwithout
much further consideration. Different types ofmicroscopicmodels, including in particular fitness-
based selection rules and pairwise comparison dynamics, are often used as if theywere interchange-
able.We challenge this view and investigate how robust these choices on themicro-level really are.We
focus on a keymacroscopic quantity, the probability for a singlemutant to take over a population of
wild-type individuals.We show that even in unstructured populations there is only one pair of afit-
ness-based process and a pairwise comparison process leading to identical outcomes for arbitrary
games and for all intensities of selection. This strong restriction is not relaxed evenwhen the class of
pairwise comparison processes is broadened. This highlights the perils ofmaking arbitrary choices at
themicro-level without regard of the consequences at themacro-level.

1. Introduction

Evolutionary game theory is a powerful framework tomodel biological and social evolutionwhen the success of
an individual depends on the presence or absence of other strategies [1–4]. In this context, the payoff from a
game between individuals is translated into reproductive fitness.Methods from statistical physics have been
applied extensively since the fieldmoved frommostly deterministicmodels based on rate equations to stochastic
individual-basedmodels [5–10]. Thesemore sophisticatedmodels use amicroscopic process as a starting point
to determine how successful strategies spread. Tools and ideas from statistical physics are key tomaking the
connection between the assumptions on themicro-scale, and effective descriptions on themacro-scale.

Two classes ofmicroscopic processes have been used extensively: (i)fitness-based processes inwhich an
individual chosen proportional tofitness reproduces and the offspring replaces a randomly chosen individual
[11]; (ii) pairwise comparison processes inwhich a pair of individuals is chosen, andwhere subsequently one of
these individualsmay adopt the strategy of the other. This adoption occurswith a probability that depends on
the payoff of both individuals, such that better players aremore likely to be imitated than thosewho doworse
[12, 13]. The payoff can be taken as the growth rate, often referred to asMalthusianfitness [14], and thefitness
can be taken as the average number of offspring, often calledWrightian fitness [14]. Thus the payoff-to-fitness
mapping used in the context of fitness-based processes can be interpreted as a transformation between
Malthusianfitness andWrightianfitness [14, 15].

Fitness-based processes are typically applied tomodel biological evolution. Also pairwise comparison
processes can describe biological evolution by reinterpreting the process: an individual is randomly selected and
it produces an identical offspring to replace another randomly chosen individual. The probability of the
reproduction and the replacement depends on the payoffs of both individuals. The first individual will bemore
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likely to reproduce and replace the second one if it has a higher payoff. It is noteworthy that the reproduction and
replacement is a single event in pairwise comparison processes. Infitness-based processes, these are two
independent events.

In both types of processes, the relative influence of the game is controlled by an external parameter, the so-
called intensity of selection β. This parameter has strong parallels to the inverse temperature in statistical
mechanics [16]. In populations of sizeN the dynamics is dominated by the evolutionary game for strong
selection, β ≫N 1, with demographic noise only affecting the outcomeweakly. For weak selection, β ≪N 1, the
dynamics is largely stochastic, with only a small influence of the game on the evolution of the system. The
outcome of evolutionary game dynamics thus depends on the interplay between selection andnoise, both
changingwith the relative abundance of the types of individuals in the population.

Inwell-mixed populations and on some special networks (e.g., on a ring), the evolutionary dynamics
between two types of strategies, wild-type andmutant, can be described by simple birth–death processes. In such
processes, the state of the system is characterized by the number ofmutants alone, and themutants change by at
most one in number for each time step. A quantity that is of particular interest in evolutionary biology is the
fixation probability, which is the likelihood that amutant type takes over the entire population [17, 18]. It is the
basis of the definition of evolutionary stable strategies infinite populations [11]. It also features in the leading-
order of the stationary distribution for smallmutation rates, which serves as a powerful analytical description
whenmultiple strategies are present in the population [19, 20].

The choice of afitness-based process versus a pairwise comparison process is typically not further justified in
the literature [21, 22]. Often the type ofmodel employed is chosen arbitrarily. This is usually no cause for
concern, asmany results do not seem to depend on the particular choice of themicroscopic process. In
particular, a wide class ofmicroscopic processes leads to similar results under weak selection [23, 24]. This
equivalence is, however, only partial, and in some cases the outcome on themacro-scale can crucially depend on
the specific choicesmade at themicroscopic level [25].Here, we show the choice of afitness-based versus a
pairwise comparison process is restricted to a unique pair if we require that for an arbitrary game, the two
processes lead to identical fixation probabilities for all intensities of selection β. This indicates that the choice of
themicroscopic process canmake a difference even in unstructured populations.

2. Two evolutionary process classes and their non-equivalence infixation probability

Weconsider well-mixed populationswithfixed sizeN. Each individual can be of one of two types, A andB. The
state of the population is thus characterized by the number i of individuals of typeA. The interaction between the
two types of individuals is described by the functionsπ i

A andπ i
B. These indicate the expected payoff for two types

in a population in state i. The interaction can be generated from a two-playermatrix gamewhich leads to payoffs
linear in i [26], butwe keep the formalism general to include games played between an arbitrary number of
players, which leads to payoffs that depend on i in a polynomial way [27–30]. In fact, our results hold for an
arbitrary dependence of the payoffs on i.

A discrete-time birth–death process on the set of states = …i N0, , is characterized by the transition
probabilities ±T i that the systemmoves to state ±i 1 in the next step, when it is currently in state i.With
probability − −+ −T T1 i i , the system remains in state i.We restrict ourselves to processes for which >±T 0i for
all = … −i N1, , 1, and inwhich the two states i=0 and i=N are absorbing, i.e. = =+ −T T 0N0 . The
population can never escape fromhomogenous states. In biology this corresponds to the absence ofmutation,
where extinct types cannot be re-introduced.

2.1. Fitness-based processes and pairwise comparison processes
Wewill now characterizefitness-based processes and pairwise comparison processes inmore detail. For a given
game, i.e. for payoff functionsπ i

A andπ i
B, afitness-based process assumes that at each time step an individual is

selected for reproductionwith a probability proportional to itsfitness. This individual produces one identical
offspringwhich replaces a randomly chosen individual in the population. Consequently, the transition
probabilities are of the form

= − = −+ −T
i

N

f

f

N i

N
T

N i

N

f

f

i

N
, . (1)F

i
i

i
F
i

i

i

A B

The subscript ‘F’ indicates afitness-based process.We have assumed that the payoffsπA
i andπ i

B translate into

reproductive fitness via amapping βπ=f f ( )i i
A A and βπ=f f ( )i i

B B , where β > 0 is the intensity of selection and
where ′ >f x( ) 0 for all x, indicating that fitness increases with payoff. The quantity〈 〉f i is the average fitness of
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an individual in the population, i.e.,〈 〉 = + −( )f if N i f N( )i
i i
A B

. The transition probabilities in equation (1)

are then fully specified by the underlying game and by the payoff-to-fitnessmapping f.
In a pairwise comparison process, one focal individual and a rolemodel are chosen at randomat each time

step. The payoff difference between the two individuals determines the probability that the focal individual
adopts the strategy of the rolemodel. Specifically, for a focal individual of type A and a rolemodel of type B, this
probability is β π π−g [ ( )]i i

B A , where β > 0 is again the intensity of selection. If the focal individual is of type B

and the rolemodel of typeA this probability is β π π−g [ ( )]i i
A B . The derivative ′g x( )of the imitation function

g(x)must be positive to ensure it ismore likely to adopt successful strategies. For a given game and a given
adaptation function g this leads to a birth–death process with the transition probabilities

β π π= − ± −± ( )T
i N i

N
g i i

( )
( ) ( ) . (2)I

i
2 A B

⎡⎣ ⎤⎦

The subscript ‘I’ indicates a pairwise comparison process.
For both classes of processes, and for any game, the dynamics will eventually reach one of the two absorbing

states: either themutant goes extinct (absorption at i=0), or it reachesfixation (i=N). The so-called fixation
probability,ϕ1, measures how likely it is that a singlemutant takes over the entire population, i.e. it is the
probability for the system to end up in i=N, if initialised at i=1. For general birth–death processes this
probability is given by [11, 17, 18]

∑∏ϕ =
=

−

=

−

+

−
T

T
. (3)

k

N

i

k i

i1
0

1

1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

2.2. Non-equivalence betweenfitness-based processes andpairwise comparison processes infixation
probability
Forweak selection,many fitness-based processes and pairwise comparison processes are similar in the fixation
probability [23, 31, 32]. For strong selection, however, they can be qualitatively different (seefigure 1).

For example, thefixation probability for afitness-based process with linear payoff-to-fitnessmapping
= +f x x( ) 1 can converge to any positive value between zero and one in the limit of strong selection, β → ∞.

To see this, we construct the following example: letπ = 1i
A andπ α=i

B . The ratio of transition probabilities

βπ βπ= + +− +T T (1 ) (1 )i i i i
B A converges to the payoff ratioπ πi i

B A as β → ∞. In our example, this leads to

∏ϕ α= ∑ = ∑=
−

= =
−−

+1 k
N

i

k T

T k
N k

1 0
1

1 0
1i

i
. This is an increasing function inα and it is>1 for positive α. Hence, for

anyϕ1 ( ϕ< ⩽0 11 ), there exists a uniqueα > 0 such that ϕ α= ∑ =
−1 k

N k
1 0

1 .
For the pairwise comparison process with the Fermi function = + −g x x( ) 1 (1 exp [ ]) and β → ∞, the

fixation probability can only take +N 1values: 0, N1 , − …N1 ( 1), ,1 3,1 2, and 1. In this case, the fixation

probability isϕ β π π= ∑ ∑ −=
−

=

−

( )exp ( )k
N

i
k i i

1 0
1

1 B A

1⎡⎣ ⎤⎦ andwe can distinguish two cases: (i) if there exists a

single k* such that π π∑ − >= ( ) 0*
i
k i i

1 B A , the denominator will diverge resulting in afixation probability of zero in

the strong selection limit β → ∞; (ii) if for all k, π π∑ − ⩽= ( ) 0i
k i i

1 B A , denote j as the number of terms in the sum

over k for which π π∑ − == ( ) 0i
k i i

1 B A . The denominator is then a sumof +j 1 termswith value one, with the rest
of the terms vanishing for β → ∞. This leads to thefixation probability in the strong selection to be +j1 ( 1).
Note that the integer j can range from0 to −N 1, such that thefixation probability can only take values ⋯N1 , ,
1 2 and 1 in this case.

Given, that for β → ∞ thefixation probability for thefitness-based process can take any value between 0 and
1, whereas the fixation probability for the pairwise comparison process reaches only discrete values, the behavior
of the two processes has to be qualitatively different in terms of the fixation probability.

3. Equivalence between two evolutionary process classes infixation probability

Realizing that thefixation probability can be sensitive to the evolutionary process and the selection intensity, we
ask the following question: for what choices of the payoff-to-fitnessmapping f, and of the imitation function g,
do the resulting fitness-based and pairwise comparison processes have the same fixation probabilityϕ ϕ=F I ,
for arbitrary games and intensities of selection? In other words, if we require that the two processes are
equivalent infixation probability for any game and any selection intensity, howdowe need to choose the fitness
and imitation functions?
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3.1. Equivalence between payoff-difference based pairwise comparison processes andfitness-based
processes
From equations (1) and (2) , we note that βπ βπ=− +T T f f( ) ( )F

i
F
i i i

B A for thefitness-based process, and

β π π βπ π= − −− +T T g g[ ( ] [( )]I
i

I
i i i i i

B A A B for the pairwise comparison process. If the functions f and g fulfill

=
−
−

f x

f y

g x y

g y x

( )

( )

( )

( )
, (4)

for all x y, , we have =− + − +T T T TF
i

F
i

I
i

I
i for all i. Using equation (3) this leads to equal fixation probabilities for

all games and any selection intensity. Thus, equation (4) is sufficient.
We now show that the condition in equation (4) is also necessary.We are interested in functions f and g such

that the equality offixation probability holds for all games. Therefore, the fixation probabilities need to be equal
for gameswith constant payoffsπ π=i

A A andπ π=i
B B. For such games the ratios γ = − +T TF F

i
F
i and

γ = − +T TI I
i

I
i are independent of i, i.e. the number of strategy A individuals. The equality offixation probabilities

is then equivalent to γ γ=p p( ) ( )F I , where γ γ= ∑ℓ
ℓ

=
−p( ) N
0
1 , see equation (3). The polynomial γp( ) is strictly

increasing for positive arguments. Considering that both γF and γI are positive, γ γ=p p( ) ( )F I implies γ γ=F I . The
constantsπA andπB can be chosen arbitrarily, as the selection intensity β. The fact that we require γ γ=F I leads to
the conclusion that f and gmust fulfil equation (4).Hence, the condition in equation (4) is necessary if we
require identity offixation probabilities for all possible games.We stress three points:

(i) it may well be possible to construct a game and a pair of functions f and g, which are not of the above form,
such that thefixation probabilities of the two resulting processes coincide for this particular game.
However, unless f and g fulfil equation (4), the identity offixation probabilities will not hold for arbitrary
games, as our argument above shows;

(ii) the proof does not assume the two-strategy game to be a pairwise matrix game. In fact, it holds for two-
strategymultiplayer games and even for gameswith an arbitrary payoff dependence on i;

(iii) equation (4) is also the necessary and sufficient condition such that the fixation probability ofm—strategy
Amutantsϕm < ⩽ −m N(1 1) is identical forfitness-based and pairwise comparison processes for any
game and any selection intensity (for a proof see appendix A).

Equation (4) implies that the ratio f x f y( ) ( )has to be a function of the difference −x y alone. Setting
Δ= +y x x in = − −f x f y g x y g y x( ) ( ) ( ) ( ) and taking the limit Δ →x 0 leads to the differential equation

′
=

′f x

f x

g

g

( )

( )
2

(0)

(0)
. (5)

Wenote that this differential equationmust hold for all x. It is a necessary condition for the equality offixation
probabilities for arbitrary games and arbitrary strength of selection, but it is not a sufficient condition by itself. A
necessary and sufficient condition is given by equation (4).

We observe that the condition of equation (5) can be relaxed if we limit the equality of fixation probabilities
to theweak-selection approximation. It corresponds to expanding the fixation probabilities to linear order in the
selection intensity. If we require that f and g lead to identicalfixation probabilities only in the linear-order term
in β (but not necessarily to higher order) for any payoff functionsπ i

A andπ i
B we obtain the condition

′
=

′f

f

g

g

(0)

(0)
2

(0)

(0)
. (6)

This condition is far less restrictive than equation (5), and it is both necessary and sufficient to have identity
offixation probability for all games up to linear order in β. This can be seen from existing results for weak
selection [32]. The only solution of themore restrictive condition, equation (5), is

=
′

f x f
g

g
x( ) (0) exp 2

(0)

(0)
. (7)

⎡
⎣⎢

⎤
⎦⎥

This implies that in order for the fixation probabilities of afitness-based process to be identical to those of a
pairwise comparison process (to any order in the selection intensity), it is necessary that the payoff-to-fitness
mapping f(x) is exponential in x, λ=f x f x( ) (0) exp( ), where λ is an arbitrary positive constant. The imitation

function g is at this point largely unconstrained, although onefinds − = λg x g x( ) ( ) e x by setting y=0 in
equation (4).With the additional assumption + − =g x g x( ) ( ) 1, only a single possible imitation functions

remains, the so-called Fermi function = + λ− −g x( ) [1 e ]x 1.
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Wehave thus shown that the assumption of equalfixation probabilities for all games together with themild
assumption + − =g x g x( ) ( ) 1 fully restricts the payoff-to-fitnessmapping and the imitation function to

= λf x f( ) (0)e x and = + λ−g x( ) 1 (1 e )x . The only remaining free parameters are f (0) and the constant λ.
However, the choice of f (0) is immaterial as f (0)drops out in equation (1). The constant λ on the other hand
can effectively be absorbed in the selection strength, β, so that, to all intents and purposes, our constraints fully
specify the payoff-to-fitnessmapping and the imitation function. Thus, this pair of processes is unique (see
figure 2) and, if chosen otherwise, the precise details of themicroscopicmodel will affect the outcome of the
model on themacroscopic level. For example, the popular linear payoff-to-fitnessmapping βπ= +f 1 has no
corresponding imitation functionwhich depends on payoff differences only andwhich leads to the same
fixation probability for arbitrary games. This is illustrated infigure 3.

The allowed set of imitation functions becomes broader if we relax the constraint and allow functions gwith
+ − ≠g x g x( ) ( ) 1. Any imitation function of the form = + λ−g x h x( ) ( ) (1 e )x is permissible as long as the

resulting g(x) is increasing, takes values between 0 and 1 (such that it is a probability), and as long as h(x) is even

Figure 1. Fixation probability is sensitive to the evolutionary processes and selection intensity. The payoff functions arise from the
pairwisematrix game. Forweak selection, both pairwise comparison process with Fermi function = + −g x x( ) 1 (1 exp[ ]) and the
fitness-based process with linear payoff-to-fitnessmapping = +f x x( ) 1 are increasingwith selection intensity. Here x is
proportional to the selection intensity. Beyondweak selection, however, thefixation probability of the pairwise comparison process
decreases to zerowith increasing selection intensity; whereas that of thefitness-based process increases to a limit. This example shows
that thefitness-based process and pairwise comparison process can differ qualitatively, if selection is non-weak.Here, the payoffs are
given byπ = − + −i N i N(6( 1) 8( ))i

A andπ = + − −i N i N(7 ( 1))i
B , where i is the number of A individuals and the population

sizeN is 10.

Figure 2.There is a unique pair of a fitness-based process and a pairwise comparison process which are identical infixation probability
for all games and all intensities of selection. The fixation probabilities formany fitness-based process and pairwise comparison
processes are similar under weak selection, but in general they are not. If we require that thefixation probability is identical for any
selection intensity and any two-strategy game, we arrive at the unique pair: the payoff-to-fitnessmapping has to be exponential; while
the imitation functionmust be a Fermi function.Here, the imitation functions are under the constraint of + − =g x g x( ) ( ) 1. No
other pair can lead to identical fixation probabilities for any game and any selection intensity. In otherwords, for any other pair of a
fitness based and a pairwise comparison process, there exists a 2× 2 game and a selection intensity leading to differences in the fixation
probability.
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(to ensure = − −f x f y g x y g y x( ) ( ) ( ) ( )). To show that such functions h(x) exist, wemention two arbitrary

examples, = − −h x( ) exp [ e ]x1

2

2
and = ±h x( )

x

2

3

1

3 cosh [ ]
.

3.2. Equivalence between general pairwise comparison processes andfitness-based processes
Wenow considermore general pairwise comparison processes inwhich the imitation probability does not
depend on payoff differences alone. Specifically, we allow imitation probabilities withwhich a focal individual
with payoffπfoc imitates the strategy of a rolemodel with payoffπrm of the form βπ βπQ ( , )foc rm , i.e.Qmay
depend on the payoffs of both individuals explicitly. The previous case is recovered as = −Q x y g y x( , ) ( ). To
guarantee that the resulting imitation functionQ x y( , ) is a probability, it has to take values between 0 and 1. In
addition, we require∂ <Q x y( , ) 0x , such that focal individuals with high payoff are less likely to adopt the
strategies of others, and∂ >Q x y( , ) 0y , such that rolemodels with higher payoff aremore likely to be imitated
than thosewith a lowpayoff. In thismore general case, afitness-based process with payoff-to-fitnessmapping f
has the same fixation probability of a singlemutant as a pairwise comparison process if

=f x f y Q y x Q x y( ) ( ) ( , ) ( , ), (8)

in analogy to equation (4). Setting Δ= +y x x and taking the limit Δ →x 0 in equation (8) leads to the necessary
condition

Γ′ =f x x f x( ) ( ) ( ), (9)

whereΓ = ∂ − ∂−
=

( )x Q x x Q x y( ) ( , ) ( , )y x
y x

1⎡⎣ ⎤⎦ . From this, one obtains

∫ Γ=f x f z z( ) (0) exp ( )d . (10)
x

0

⎡
⎣⎢

⎤
⎦⎥

Condition (10) admits payoff-to-fitnessmappings f (x) that are not exponential. The constraint that f(x)must be
exponential in x derived under themore restrictive assumptions above is a specific consequence of the
requirement that the imitation probability depends on payoff differences only.

For any given payoff-to-fitnessmapping f(x) which is increasing and positive, the function
= +Q x y f y f x f y( , ) ( ) ( ( ) ( ))proposed in [11] is decreasing in x and increasing in y and takes values between 0

and 1. In otherwords, it fulfills the constraints of an imitation function. Thus, for any payoff-to-fitnessmapping,
f(x), there is an imitation kernelQ x y( , ) leading to equal fixation probabilities for all games. Restricting the set of
permissible kernels to those of the form ψ ψ= −Q x y g y x( , ) [ ( ) ( )]with + − =g x g x( ) ( ) 1andwhereψ x( ) is
an increasing function fully specifies the imitation kernel. A short calculation shows that the imitation function

= +Q x y f y f x f y( , ) ( ) [ ( ) ( )] is then the only possible imitation choice leading to identical fixation

Figure 3.Graphical representation of equation (4). The contour plot depicts the ratio βπ βπf f( ) ( )A B . Panel A: for the exponential
payoff-to-fitnessmapping =f x x( ) exp( ), the ratio βπ βπf f( ) ( )A B obviously depends on the differenceπ π−A B only, such that the
contour lines are diagonal in the π π−A B plane. An identical picture is obtained for β π π β π π− −g g[ ( )] [ ( )]A B B A with

= + − −g x x( ) [1 exp( )] 1. Panel B: for the affine linear payoff-to-fitnessmapping = +f x x( ) 1 , the ratio βπ βπf f( ) ( )A B depends on
πA andπB explicitly, not only on their difference. The contour lines are no longer parallel to each other. It is not possible to reconstruct
an imitation function g leading to equivalent fixation times for all games, andwhich depends on payoff difference only. For simplicity
we have used β = 1 in the figure.
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probabilities for all games for a given payoff-to-fitnessmapping (see appendix B). For the exponentialmapping,
= λf x f( ) (0)e x , this is the Fermi function = + = +λ λ λ λ− −Q x y( , ) e (e e ) 1 [1 e ]x x y x y( ) .

4. Summary

In summarywe have challenged some of the key assumptions frequentlymade inmodeling evolutionary
dynamics. Fitness-based and pairwise comparison processes are often used as if these approaches were entirely
exchangeable. This is appropriate—to a certain extent—when fitness is a positive constant as it is the case in
manymodels of classical population genetics. But in the case of evolutionary games, the choice of the
microscopic details of the process doesmake a difference for themacroscopic outcome of frequency-dependent
selection outside the regime ofweak selection. Aswe have shown there are then strong restrictions on the choice
of the imitation function and the payoff-to-fitnessmapping if one requires that the fixation probabilities in the
two classes of processes are identical for any intensity of selection. Furthermore these strong restrictions cannot
be relaxed evenwhen the pairwise comparison process class is broadened. These challenges are largely absent in
population genetics, where selection is typically constant, and only arise in evolutionary game theory, where
selection is frequency dependent.

On the one hand, it is of interest to studywhen these strict restrictions can be relaxed. One of the possibilities
is to further broaden the pairwise comparison process class. There are only two individuals in pairwise
comparison processes, a focal individual and a rolemodel. Consequently, the imitation function has atmost two
arguments. If we allowmultiple comparison rules, i.e., k rolemodels, the imitation function could have up to

+k 1arguments. On the other hand, it is also of interest to study situations where these restrictions could be even
stronger. In evolutionary games on graphs, a dependence on themicroscopic details has been pointed out
repeatedly [2–4, 33]. It is noteworthy that these difficulties are already present in non-spatial well-mixed systems
of the type that we have discussed. The complexity of a network structure is therefore not a necessary
component. Indeed, we expect it to bemuchmore challenging to construct two processes with identical
outcomes on suchmore complicated geometries in our context. An alternative approach to analyze this problem
in island structured populations can be found in [34], but these population structures have so far received little
attention among physicists working in thisfield.
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AppendixA. Fixation probability ofmmutants

Thefixation probability thatm strategy Amutants take over thewhole population,ϕm, is given by [17, 18]

ϕ =
∑ ∏

∑ ∏

=
−

=

=
−

=

−

+

−

+

. (A.1)m
k
m

i
k T

T

k
N

i
k T

T

0
1

1

0
1

1

i

i

i

i

Wenow show that equation (4) is both necessary and sufficient to ensure identity of the fixation probabilitiesϕm

for the two classes of processes.
Sufficiency: if = − −f x f y g x y g y x( ) ( ) ( ) ( )holds, then =− + − +T T T TF

i
F
i

I
i

I
i holds for any selection

intensity and any games. As the fixation probabilityϕm is only dependent on the transition probability ratio
− +T Ti i , the fixation probability is identical for both processes for any game and selection intensity.
Necessity: if afitness-based process and a pairwise comparison process are identical infixation probabilityϕm

for any game and any selection intensity, theymust also be identical for the frequency independent case, where
βπ = yi

A and βπ = xi
B . In this case,ϕm can be rewritten as = − −p l l l( ) (1 ) (1 )m N , where

= − −l g x y g y x( ) ( )I for the pairwise comparison process and =l f x f y( ) ( )F for thefitness-based process.
We have

′ =
−

− + −
−

−
  ( )
( )p l

l

l
m N l Nl m( )

1
( ) . (A.2)

m

N

N N m

q l

1

2

( )

Note ′ = − −− −q l N N m l l( ) ( ) (1 )N m m1 . If <x y we have < <l l0 , 1I F , since g and f are increasing. In this
case ′q l( ) is positive for any < <l0 1. In particular =q (1) 0 for anym. Thus q(l) is always negative for

< <l0 1and ′p l( ) is negative in the unit interval. Considering lI and lF in the unit interval, =p l p l( ) ( )I F implies
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lI= lF. If >x y , we have >l l, 1I F . In this case, p(l) is increasing for >l 1. =p l p l( ) ( )I F thus implies lI= lF. This
yields that for all x and y, = − −f x f y g x y g y x( ) ( ) ( ) ( )holds.

This completes the proof.

Appendix B. Conditions for general pairwise comparison processes

Here, we show that the imitation function = +Q x y f y f x f y( , ) ( ) [ ( ) ( )] is the only possible imitation choice
leading to identical fixation probabilities for all games for a given payoff-to-fitnessmapping f.

First, we have the equivalence condition such that the two processes have the samefixation probability for
any game. It is given by

=
f x

f y

Q y x

Q x y

( )

( )

( , )

( , )
. (B.1)

In particular, ifQ x y( , ) is in the formof ψ ψ−g y x( ( ) ( )), equation (B.1) can be rewritten as

ψ ψ
ψ ψ

=
−
−

f x

f y

g x y

g y x

( )

( )

( ( ) ( ))

( ( ) ( ))
. (B.2)

Letting Δ= +y x x with Δ →x 0 leads to a differential equation, whose solution is

ψ ψ=
′

−f x f
g

g
x( ) (0) exp

2 (0)

(0)
( ( ) (0)) . (B.3)

⎛
⎝⎜

⎞
⎠⎟

Taking equation (B.3) into equation (B.2) leads to

ψ ψ
ψ ψ
ψ ψ

′
− =

−
−

g

g
x y

g x y

g y x
exp

2 (0)

(0)
( ( ) ( ))

( ( ) ( ))

( ( ) ( ))
, (B.4)

⎛
⎝⎜

⎞
⎠⎟

whereψ x( ) is the desired increasing function. Equation (B.4) is the constraint that g, whose argument is
ψ ψ−y x( ) ( ), should fulfil. Denoteψ x( ) andψ y( ) as x̃ and ỹ , equation (B.4) implies that for a positive λ,

λ − = − −x y g x y g y xexp( (˜ ˜)) (˜ ˜) (˜ ˜), for any x̃, ỹ . Note that the choice of g is independent of the choice ofψ.
Taking into account that + − =g x g x( ) ( ) 1, we have that g(x) is

=
+ − ′

g x
x

( )
1

1 exp
, (B.5)

g

g

2 (0)

(0)

⎡⎣ ⎤⎦
solving equation (B.3) forψ x( ), we have

ψ ψ= +
′

x
g

g

f x

f
( ) (0)

(0)

2 (0)
ln

( )

(0)
. (B.6)

⎡
⎣⎢

⎤
⎦⎥

Taking into account equations (B.5) and (B.6) leads to the imitation function

ψ ψ= − =
+

Q x y g y x
f y

f x f y
( , ) ( ( ) ( ))

( )

( ) ( )
. (B.7)
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