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H.E.S.S. reveals a lack of TeV emission from the supernova
remnant Puppis A
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K. Kosack23, S. Krakau13, F. Krayzel36, P.P. Krüger18, H. Laffon38, G. Lamanna36, J. Lefaucheur31, V. Lefranc23, A. Lemière31,
M. Lemoine-Goumard38, J.-P. Lenain20, T. Lohse6, A. Lopatin39, C.-C. Lu2, V. Marandon2, A. Marcowith22, R. Marx2, G. Maurin36, N. Maxted22,

M. Mayer35, T.J.L. McComb8, J. Méhault38, 41, P.J. Meintjes42, U. Menzler13, M. Meyer28, A.M.W. Mitchell2, R. Moderski34, M. Mohamed27,
K. Morå28, E. Moulin23, T. Murach6, M. de Naurois16, J. Niemiec25, S.J. Nolan8, L. Oakes6, H. Odaka2, S. Ohm37, B. Opitz1, M. Ostrowski10,

I. Oya37, M. Panter2, R.D. Parsons2, M. Paz Arribas6, N.W. Pekeur18, G. Pelletier32, P.-O. Petrucci32, B. Peyaud23, S. Pita31, H. Poon2,
G. Pühlhofer21, M. Punch31, A. Quirrenbach27, S. Raab39, I. Reichardt31, A. Reimer15, O. Reimer15, M. Renaud22, R. de los Reyes2, F. Rieger2,

C. Romoli3, S. Rosier-Lees36, G. Rowell30, B. Rudak34, C.B. Rulten19, V. Sahakian5, 4, D. Salek43, D.A. Sanchez36, A. Santangelo21,
R. Schlickeiser13, F. Schüssler23, A. Schulz37, U. Schwanke6, S. Schwarzburg21, S. Schwemmer27, H. Sol19, F. Spanier18, G. Spengler28, F. Spies1,

Ł. Stawarz10, R. Steenkamp7, C. Stegmann35, 37, F. Stinzing39, K. Stycz37, I. Sushch6, 18, J.-P. Tavernet20, T. Tavernier31, A.M. Taylor3,
R. Terrier31, M. Tluczykont1, C. Trichard36, K. Valerius39, C. van Eldik39, B. van Soelen42, G. Vasileiadis22, J. Veh39, C. Venter18, A. Viana2,

P. Vincent20, J. Vink9, H.J. Völk2, F. Volpe2, M. Vorster18, T. Vuillaume32, S.J. Wagner27, P. Wagner6, R.M. Wagner28, M. Ward8, M. Weidinger13,
Q. Weitzel2, R. White33, A. Wierzcholska25, P. Willmann39, A. Wörnlein39, D. Wouters23, R. Yang2, V. Zabalza2, 33, D. Zaborov16, M. Zacharias27,

A.A. Zdziarski34, A. Zech19, and H.-S. Zechlin1

(Affiliations can be found after the references)

Received 14 August 2014; accepted 20 December 2014

ABSTRACT

Context: Puppis A is an interesting ∼4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the
forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) γ-rays.
An analysis of the Fermi-LAT data has shown an extended HE γ-ray emission with a 0.2-100 GeV spectrum exhibiting no significant
deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a
promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the γ-ray emission above 100 GeV.
Aims: Very-high-energy (VHE, E ≥ 0.1 TeV) γ-ray emission from Puppis A is for the first time searched for with the High Energy
Stereoscopic System (H.E.S.S.).
Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy
of the incident γ-rays in order to produce sky images and source spectra. The profile likelihood method is applied to constrain the
existence of a potential break or cutoff in the photon spectrum.
Results: The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the
differential photon flux imply that its broadband γ-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT
and H.E.S.S. measurements, the 99% confidence level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a
power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations
(age, size, radiative losses) on the particle acceleration mechanism, assumed to be still on-going at present, can explain the lack of
VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The
HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin, (as observed in several other interacting SNRs,
albeit at somewhat higher energies) owing to the interaction with dense and neutral material in particular towards the northeastern
region.

Key words. Gamma rays: ISM - ISM: individual (Puppis A) - radiation mechanisms: nonthermal - ISM: cosmic rays - acceleration
of particles
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1. Introduction

Supernova remnants (SNRs) have long been considered as the
main sources of Galactic cosmic rays (CRs, Ginzburg & Sy-
rovatskii 1964). Direct measurements of CRs from SNRs are im-
possible due to Galactic magnetic fields, but γ-rays can provide
an indirect signature of their presence (see e.g. Reynolds 2008,
for a review). On one hand, several middle-aged SNRs interact-
ing with molecular clouds (MCs) have been observed with the
Fermi Large Area Telescope (Fermi-LAT) and Astro-Rivelatore
Gamma a Immagini Leggero (AGILE) telescope as luminous
high-energy (HE, 0.1−100 GeV) γ-ray sources. The strong HE
γ-ray emission from these sources is thought to arise from neu-
tral pion decay subsequent to the interactions between acceler-
ated CR particles and the dense gas, and whose unique spec-
tral feature, referred to as the pion bump at ∼ 200 MeV, was re-
cently revealed in two such SNRs with Fermi-LAT (Ackermann
et al. 2013). Some examples are W28 (Abdo et al. 2010a), W51C
(Abdo et al. 2009), W44 (Abdo et al. 2010b), and IC 443 (Abdo
et al. 2010c), which furthermore all exhibit power-law spectral
breaks in the 1−20 GeV range. As a consequence of these breaks,
the associated very-high-energy (VHE, E ≥ 0.1 TeV) emission is
usually soft and faint (e.g. Albert et al. 2007; Aharonian et al.
2008). On the other hand, young, shell-type SNRs, with bright
and hard spectra in the VHE domain (such as RX J1713.7−3946,
Aharonian et al. 2007) and without clear evidence for cloud in-
teraction, exhibit hard and relatively faint spectra in the HE do-
main (Abdo et al. 2011). In these cases, inverse Compton (IC)
emission from accelerated electrons naturally explains the ob-
served γ-ray emission (e.g. Lee et al. 2012).

Puppis A (G260.4−3.4) represents an interesting case in be-
tween the two above-mentioned SNR categories. At a distance of
2.2 ± 0.3 kpc1 (Reynoso et al. 2003), it is a well-studied Galac-
tic SNR in most energy bands, from radio to HE γ-rays. It is
one of the three oxygen-rich SNRs (Winkler & Kirshner 1985)
known today in the Galaxy. This, together with the presence of a
central compact object (CCO; Becker et al. 2012, and references
therein), strongly supports the idea that Puppis A originates from
a core-collapse SN explosion. Based on the motions of both opti-
cal filaments and CCO, its age is estimated to be (4450 ± 750) yr
(Becker et al. 2012), implying that the SNR is currently in the
Sedov-Taylor evolutionary phase (see e.g. Chevalier 1977). The
strong X-ray emission from Puppis A is mostly dominated by
the shock-heated interstellar medium (ISM, e.g. Hwang et al.
2005), except for some isolated O-Ne-Mg-rich features associ-
ated with the SN ejecta (Hwang et al. 2008; Katsuda et al. 2008,
2010) the kinematics of which have been well measured (Kat-
suda et al. 2013, and references therein). The SNR also has an-
other interesting characteristic: together with W49B (Abdo et al.
2010d) and G349.7+0.2 (Lazendic et al. 2010), it is amongst the
youngest Galactic SNRs known to be interacting, at several lo-
cations throughout the shell, with dense gas seen as a complex of
H i and CO clouds surrounding most of the SNR (Dubner & Ar-
nal 1988; Reynoso et al. 1995; Dubner et al. 2013). In particular,
spectro-imaging X-ray studies towards the so-called bright east-
ern knot (BEK) have presented evidence for a shock-cloud inter-

Send offprint requests to: Diane Fernandez
e-mail: diane.fernandez@lupm.univ-montp2.fr
Igor Oya
e-mail: igor.oya.vallejo@desys.de
1 Although a smaller distance of 1.3 kpc, with large uncertainties of
+0.6/-0.8 kpc, has been previously determined by Woermann et al.
(2000) based on OH line observations, a distance of 2.2 kpc is assumed
throughout this paper.

action (Hwang et al. 2005). Recent high-resolution X-ray obser-
vations of the whole SNR (Dubner et al. 2013) have confirmed
the presence of a decreasing gradient in the emission from north-
east to southwest and also revealed a highly structured and fila-
mentary morphology with unprecedented detail, indicating that
Puppis A is evolving in an inhomogeneous, knotty ISM. Ob-
servations with Spitzer have shown a clear correlation between
infrared (IR) and X-rays at all spatial scales, demonstrating that
the thermal IR emission arises from dust collisionally heated by
the hot, shocked plasma (Arendt et al. 2010).

Hewitt et al. (2012) have reported the detection of Puppis
A in the HE γ-ray domain with the Fermi-LAT. Its luminos-
ity of 2.7 × 1034(d/2.2 kpc)2 erg s−1 in the 1−100 GeV band
is slightly higher than those of the low-luminosity, HE-emitting
SNRs such as Cygnus Loop, S147 and HB21 (Reichardt et al.
2012 and references therein), and about a factor ten lower than
those measured from the archetypal SNRs known to be interact-
ing with MCs (Abdo et al. 2009, 2010c,d). The morphology of
the HE γ-ray emission is well described by a uniform disc of ra-
dius 0.38◦ ±0.04◦ and compatible with the radio and X-ray mor-
phologies. The HE γ-ray spectrum is well described by a power
law (PL) with no indication of a break or cutoff, and a spectral
variation at the ∼2σ level between the eastern and the western
hemispheres was found Such a PL HE spectrum, together with a
hint of a radio break at ∼40 GHz in the WMAP data (Hewitt et al.
2012), makes Puppis A quite peculiar with respect to most of the
HE-emitting SNRs. Puppis A can be considered as an interme-
diate case between the young, isolated and bright VHE γ-ray
emitting SNRs and the middle-aged, bright HE γ-ray emitting
ones interacting with MCs. In order to probe its emission in the
VHE domain, observations towards Puppis A obtained with the
High Energy Stereoscopic System (H.E.S.S.) are reported in this
article.

2. Observations and analysis

2.1. H.E.S.S. observations and analysis results

H.E.S.S. is an array of five imaging atmospheric Cherenkov tele-
scopes (IACTs) located in Namibia and designed to detect VHE
γ-rays (Bernlöhr et al. 2003). The fifth telescope (28-m diame-
ter) has been operating since September 2012, but the data ex-
ploited here have been taken from 2005 to 2013 with the four-
telescope array only. In this configuration, the instrument cov-
ers a field-of-view of 5◦. The primary particle direction and
energy are reconstructed above a threshold of ∼100 GeV with
an angular resolution of ∼0.1◦ and energy resolution of ∼15%,
(e.g. Aharonian et al. 2006a). The whole dataset on Puppis A
amounts to 24 h including 17 h of dedicated observations taken
using the wobble mode and 7 h of runs towards nearby sources
in the Vela region (in particular, Vela X, Aharonian et al. 2006b;
Abramowski et al. 2012). These observations were performed at
zenith angles between 18◦ and 45◦ with a median value of 22◦,
and a median offset from the source of 1.0◦.

Data were analysed with the Model Analysis as described
in de Naurois & Rolland (2009) and using Standard cuts2. The
main analysis results were confirmed with an independent data
calibration chain and a multivariate analysis method (Ohm et al.
2009). The resulting energy threshold of the main analysis, con-
servatively defined as the energy above which the acceptance
is larger than 15% of its maximum value, is Eth = 0.26 TeV.

2 The H.E.S.S. ParisAnalysis version 0-8-24 software with Prod26
DSTs was used.
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The analysis ON-region (i.e. signal integration region) was de-
fined as a circular region of radius 0.38◦, centred on αJ2000 =
08h22m40s.8, δJ2000 = −42◦55′48′′.0, to match the best-fit val-
ues of the HE γ-ray emission extent and position measured with
the Fermi-LAT3. The statistical significance of a potential VHE
γ-ray emission from Puppis A is determined by using equation
(17) in Li & Ma (1983) after background subtraction with the
reflected background method (Berge et al. 2007). No significant
signal was found within the ON-region. In total, 8 excess counts
were measured, corresponding to a significance of 0.1σ. Similar
analyses have been performed for two half-disc regions corre-
sponding to the eastern and western hemispheres as defined in
Hewitt et al. (2012). Figure 1 shows an image of the γ-ray excess
counts, where the background level is estimated following the
template background method and cross-checked with the ring
background method (Berge et al. 2007), together with the ON-
region and contours of the radio continuum emission at 1.4 GHz
(Castelletti et al. 2006).

Fig. 1. Image of the H.E.S.S. γ-ray excess centred on the Puppis A
SNR. The excess was smoothed with a Gaussian kernel of width 0.06◦
corresponding to the H.E.S.S. angular resolution (68% containment ra-
dius) for this analysis (shown in the bottom left inset). The colour scale
represents the excess counts per surface area of π(0.06◦)2. The circular
analysis region of radius 0.38◦, matching the Fermi-LAT best-fit mor-
phological model, is shown as a dashed circle. The two hemispheres are
separated by a dashed line along the north/south axis in celestial coor-
dinates. The black contours represent the 1.4 GHz continuum emission
(Castelletti et al. 2006) at the 5, 10, 20 and 50 mJy/beam levels. The
yellow cross indicates the position of the BEK (Hwang et al. 2005).

Following the method of Feldman & Cousins (1998), differ-
ential flux upper limits (ULs) at the 99% confidence level (CL)
and for a spectral index Γ = 2.1 (as measured with Fermi-LAT,
Hewitt et al. 2012) were extracted in the 0.26−10 TeV energy
range within the circular and the two half-disc ON-regions. Note
that these ULs are not very sensitive to the choice of the photon
index; assuming Γ = 3 instead changes the values by less than
5%. To ensure that these ULs account for the full source emis-
sion, they have been corrected for the underestimation caused

3 The HE spectral parameters have been obtained with the ROSAT X-
ray template. However, as shown in Table 3 of Hewitt et al. (2012), those
derived under the assumption of a uniform disc are fully compatible.

by events reconstructed outside the analysis regions due to the
H.E.S.S. point spread function (PSF). By convolving a disc of
0.38◦ radius with the H.E.S.S. PSF, the flux outside of the ON-
region was estimated to be 10% of the total flux. The H.E.S.S.
ULs do not vary by more than 10% by changing the integration
radius between 0.35◦ and 0.48◦. The resulting H.E.S.S. ULs are
shown in Fig. 2 together with the Fermi-LAT spectra.
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Fig. 2. H.E.S.S. 99% CL upper limits on the differential flux (arrows)
together with the Fermi-LAT spectra from Puppis A, as reported in He-
witt et al. (2012). Red, blue and green symbols correspond to Fermi-
LAT and H.E.S.S. measurements for the whole SNR, the eastern and
western hemisphere, respectively. The data points show the LAT fluxes
and 1 σ statistical and systematic errors, whilst the bow-tie areas define
the 68% CL bands. The solid and dashed lines indicate the preferred
γ-ray spectra for the exponential and sub-exponential cutoff models, re-
spectively.

While the H.E.S.S. ULs derived from the western hemi-
sphere are not constraining, owing to a steeper HE spectrum,
those from the eastern hemisphere and from the whole SNR ex-
clude the possibility that their respective PL spectra extend up to
the VHE domain at more than the 99% CL. This indicates the
existence of a spectral feature (break or cutoff) at intermediate
energies, i.e. between the HE and VHE domains.

2.2. Constraints on the CR particle spectrum

Presuming that the accelerated particle spectra are PLs with ex-
ponential cutoffs as predicted by the diffusive shock acceleration
(DSA) mechanism (e.g. Krymskii 1977; Blandford & Ostriker
1978; Bell 1978a,b), the γ-ray spectrum resulting from the dif-
ferent emission processes should also follow a PL with exponen-
tial cutoff: dN/dE = N0E−Γe−(E/Ecut)β , where Ecut is the cutoff
energy and β defines the spectral shape in the cutoff region. To
evaluate the existence of such a cutoff energy in the spectrum
of the whole SNR4, a likelihood estimator L was defined as the
combination of the likelihoods from the Fermi-LAT data points
and H.E.S.S. measurements. The Fermi-LAT likelihood value
was estimated by computing χ2 from the available data points
and 1σ errors. The H.E.S.S. likelihood is calculated by com-
paring the number of detected excess events (following Poisson
statistics) with the expected number in each reconstructed en-
ergy bin. To cover a wide range of physically possible scenarios,

4 Since no Fermi-LAT spectral points are available for the hemi-
spheres, no ULs on a cutoff or break have been derived.
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two values for the β parameter were chosen: β = 1 (defining the
exponential cutoffmodel hereafter) corresponds to the most com-
monly used case and β = 0.5 (defining the sub-exponential cutoff
model hereafter) is more physically motivated in both leptonic
(under the assumption that electrons suffer from SC losses and
that diffusion proceeds in Bohm regime, Zirakashvili & Aharo-
nian 2007) and hadronic (for a proton spectrum exhibiting a sim-
ple exponential cutoff, Kelner et al. 2006) scenarios. The method
used to derive the exclusion domain of Ecut is based on a likeli-
hood ratio test statistic (Rolke et al. 2005):

Λ(Ecut0 ) =

sup
θ
L(Ecut0 , θ)

sup
Ecut ,θ
L(Ecut, θ)

, (1)

where Ecut0 is the tested hypothesis and Ecut all the allowed val-
ues. The unknown spectral index Γ and normalisation N0 are
considered as nuisance parameters under the θ variable. The
profile of the log-likelihood ratio test statistic −2 ln Λ has an
approximate χ2 distribution with 1 degree of freedom (Rolke
et al. 2005). The minimum is reached at around ∼55 GeV and
150 GeV for β = 0.5 and 1, respectively. Below these energies,
−2 ln Λ increases rapidly because of the constraints imposed by
the Fermi-LAT detection. Above that, the H.E.S.S. data become
more constraining and lead to an increase of the −2 ln Λ value.
The 99% CL ULs on the cutoff energy correspond to 280 and
450 GeV for β = 0.5 and 1, respectively5.

Broken PL spectra have been observed in several SNRs inter-
acting with MCs (e.g. Abdo et al. 2010a,b), and this could also be
the case for Puppis A. A spectral index variation ∆Γ ∼ 1 can be
explained by radiative cooling of electrons or escape of protons
in the case of a SNR encountering a dense and neutral medium
(Malkov et al. 2012). The derived UL on the sub-exponential
cutoff energy (280 GeV) can be used as a conservative UL on
the energy of any spectral break as long as ∆Γ .1.

3. Discussion

Throughout the SNR evolution, particles are accelerated at the
forward shock up to a maximal energy Emax, typically deter-
mined by the SNR’s finite age, finite size, or radiative losses.
These effects become relevant when the characteristic timescales
are of the order of the acceleration timescale and lead to cut-
offs in the spectra of accelerated particles residing in the SNR.
Additionally, a radiative spectral break can also be present at
the particle energy Ebreak for which the radiative loss timescales
equal the SNR age. The conservative ULs on the cutoff energy
in the γ-ray spectrum derived from the Fermi-LAT and H.E.S.S.
measurements translate into ULs on Emax of ∼2 TeV, ∼3 TeV or
∼5 TeV depending on whether the γ-ray emission results from
Bremsstrahlung (Br), IC or proton-nucleus interactions (e.g. p-
p) radiation mechanisms. These limits can in turn be compared
with the expectations from DSA theory taken in its simplest
form and applied to the case of Puppis A whose main param-
eters are an age of ∼4500 yr (Becker et al. 2012), a shock ra-
dius Rsh=15 pc (for Rsh=24′ at 2.2 kpc), and a shock veloc-
ity vsh ranging from 700 to 2500 km s−1. The latter velocity
value was estimated by Katsuda et al. (2013) based on the elec-
tron temperatures and ionization timescales in the ejecta knots,
whilst the former was derived from the shock temperature of

5 A toy model was used to study the coverage of this method by using
Monte Carlo simulations. The results of these simulations indicate that
the coverage is indeed fulfilled.

∼0.7 keV (Hwang et al. 2008) by assuming full equipartition
of the shock energy between ions and electrons. These shock
velocity estimates concern the northeastern (NE) region of the
SNR, which is also the region coincident with the bulk of GeV
emission. Based on these SNR parameters, constraints on the
magnetic field and ISM density can be derived and compared to
independent estimates (Hewitt et al. 2012; Dubner et al. 2013).
In these calculations, the acceleration is assumed to proceed in
a steady-state manner from the SN until now, and the derived
contraints are implicitely considered as having been constant.
Assuming Bohm diffusion, the acceleration timescale6 and the
diffusion coefficient are τacc = (3 × 103 yr) ETeV B−1

µG v−2
sh,3 and

D(ETeV) = (3.3 × 1025 cm2 s−1) ETeV B−1
µG (Parizot et al. 2006),

where BµG is the downstream magnetic field in units of µG, ETeV
the particle energy in units of TeV and vsh,3 the shock velocity
in units of 103 km s−1. Synchrotron (syn), p-p and Br radiative
loss timescales are τsyn ' (2.1 × 107 yr) B−2

µG E−1
TeV (Parizot et al.

2006), τp−p ' (5.3 × 107 yr) n−1
0 and τbr ' (3.3 × 107 yr) n−1

0
(Gabici et al. 2009), with n0 the ISM density in units of cm−3,
and BµG is the downstream magnetic field in units of µG. The
derived constraints are shown in Table 1.

Table 1. Constraints on BµG and n0 based on standard DSA predictions
(assuming Bohm diffusion) and the ULs on the maximum particle en-
ergy derived from the Fermi-LAT and H.E.S.S. measurements.

Scenario Constraints
Radiative losses τrad: (τacc > τrad)

τp−p BµG < 1.1 × 10−4 n0 Emax

τbr BµG < 1.8 × 10−4 n0 Emax

τsyn BµG > 3400 E−2
max

Age-limited: τacc(Emax) > age BµG < 1.4 Emax

Size-limited: D(Emax)
vsh

> χRsh BµG < 0.1 χ−1
0.1 Emax

Notes. BµG, n0 and the maximum particle energy Emax are in units of
µG, cm−3 and TeV, respectively. The shock velocity vsh=700 km s−1 is
used as it leads to conservative constraints on BµG. The ratio between the
diffusion length of particles at E = Emax and the shock radius χ defines
the upstream diffusion region size, where χ0.1 =

χ

0.1 (e.g. Zirakashvili
& Ptuskin 2008). τp−p, τbr and τsyn are the radiative loss timescales for
p-p collision, Br and syn processes, τacc and τrad are the acceleration and
radiative timescales, respectively, and D(Emax) the diffusion coefficient
at the maximum energy.

In the age- and size-limited scenarios, the derived ULs on
the magnetic field are lower than both the estimates of Hewitt
et al. (2012), based on a simple one-zone modelling of Pup-
pis A broadband emission (between 8 and 35 µG), and those
of Dubner et al. (2013) and Arbutina et al. (2012), based on
equipartition arguments (∼26–100 µG). In other words, higher
magnetic field values would have led to higher Emax and hence to
VHE γ-ray emission from Puppis A detectable with the H.E.S.S.
array. The ULs in Table 1 depend on the diffusion coefficient
which could depart from the traditional Bohm assumption (see
e.g. Parizot et al. 2006). However, strong deviations from the
Bohm regime would be required to make the non-detection with
H.E.S.S. compatible with the Fermi-LAT detection. In particular,
for the hadronic scenario in the size-limited case, diffusion about
two orders of magnitude slower than the Bohm one would be
6 By setting the coefficient k0 from Eq. (14) of (Parizot et al. 2006)
equal to unity.
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needed. In the loss-limited cases due to p-p and Br interactions,
lower limits on the density are much higher than that estimated
from IR observations towards the NE rim (∼4 cm−3, Arendt et al.
2010), for any acceptable value of the magnetic field. Nonethe-
less, this density estimate, together with a realistic amount of
energy in accelerated particles of ∼(1-4) ×1049 erg, can account
for the GeV emission (Hewitt et al. 2012). The synchrotron lim-
ited case leads to a lower limit on the magnetic field far too high
for a SNR of age ∼4500 yr. Hewitt et al. (2012) have treated Emax
as a free parameter in their broadband modelling, fixing it to 0.5
(resp. 0.8) TeV in their leptonic (resp. hadronic) modelling in
order not to violate the Fermi-LAT measurements, but without
imposing any physical constraint. By applying the same reason-
ing as above with only these Fermi-LAT lower limits on Emax,
non-constraining limits on BµG and n0 are obtained.

The hypothesis of a break in the particle spectrum of Pup-
pis A due to synchrotron losses results in a realistic lower limit
on the magnetic field (BµG > 70 E−1/2

break, Ebreak in TeV). However,
leptonic-dominated scenarios would require an unusually high
electron to proton ratio (larger than 0.1), in excess of the ob-
served CR abundances (Hewitt et al. 2012). Radiative breaks due
to p-p and Br mechanisms imply a constraint on n0 &104 cm−3

much larger than the density estimates reported in Puppis A.
Therefore, it turns out that none of the known limitations in the
simple context of a single population of particles continuously
accelerated at the SNR shock can explain the lack of VHE emis-
sion from the Puppis A SNR, except if the diffusion has been
proceeding far from the Bohm limit.

However, if the SNR shock has encountered a MC some
time ago, the acceleration of particles could have ceased due to
ion-neutral damping. In such a case, a radiative cutoff would
appear at an energy for which τrad = ∆t, with ∆t the time
elapsed since the beginning of the interaction. This would imply
n0 & 103 cm−3 and B & 50 µG for the Br/p-p and syn radiative
losses, respectively. These values seem to be very reasonable for
a MC (Crutcher 1999).

Alternatively, other scenarios that could explain a break in
the HE regime deal with particle escape and diffusion in SNRs
(e.g. Ohira et al. 2010; Malkov et al. 2012). Although these
spectral breaks are generally observed at energies of ∼1−20 GeV
(Abdo et al. 2009, 2010a,b,c,d), lower than the constraints pre-
sented here, it is not clear whether the detection of such breaks
in this energy range is entirely due to a Fermi-LAT statistical
selection effect or not. Some localised regions along the Puppis
A outer rim are known to have interacted with dense surround-
ing material (such as the BEK, Hwang et al. 2005), but due to
their very small sizes and positions along the SNR rim they may
not be representative of the bulk of the GeV emission observed
with Fermi-LAT. The GeV emission is more compatible with the
(hard) X-ray morphology shown in Dubner et al. (2013) pointing
towards the NE region adjacent to a cloud traced in the far-IR do-
main that is either yet to be hit or already being shocked by the
Puppis A SNR. Such a cloud interaction could be responsible
for a break in the HE/VHE γ-ray spectrum through the above-
mentioned mechanisms, but at somewhat higher energies than
observed in the more evolved interacting SNRs.

4. Conclusion

The H.E.S.S. observations of Puppis A in the VHE domain re-
veal an unexpected lack of emission from the SNR. The extrapo-
lation from the Fermi-LAT HE power-law spectrum to the VHE
domain contrasts with the absence of VHE emission. The com-
parison of these two measurements indicates that a spectral fea-

ture (a break or a cutoff) must exist at energies around a few
hundred GeV. By assuming a PL with an exponential (resp. sub-
exponential) cutoff, such a feature should occur below 450 GeV
(resp. 280 GeV) at the 99% CL. The latter value provides a con-
servative UL on any break energy as long as ∆Γ . 1. In the
context of a single population of particles continuously acceler-
ated at the SNR forward shock through an on-going DSA pro-
cess, and under the assumption of Bohm diffusion, it is diffi-
cult to reconcile the constraints on the magnetic field and ISM
density derived from the broadband emission modelling (Hewitt
et al. 2012) with those obtained here based on the predicted max-
imum/break particle energies. However, multi-wavelength data
suggest that Puppis A has already interacted with MCs in some
localised regions along the shell and that the NE region coinci-
dent with the bulk of GeV emission is possibly interacting with
a far-IR MC (Dubner et al. 2013). If this is true, the accelera-
tion of particles could have ceased some time ago, and either
a radiative cutoff or a break of non-radiative origin could be
expected. In the latter case, the break is expected at somewhat
higher energies than those measured in several SNRs known to
be interacting with MCs, which lie in the 1-20 GeV energy range
(Abdo et al. 2009, 2010d,a; Ackermann et al. 2013). Upcoming
observations with the five-telescope H.E.S.S. II will allow the
unexplored ∼100−300 GeV domain, where this spectral feature
is predicted to exist, to be probed for the first time.
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