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Fig. S1. Histones are differentially modified in somatic and germline cells in the germarium. Wildtype (OregonR) germaria are stained with several
histone modification antibodies (green); in addition, germaria are stained with LaminC (LC red) to visualize TFs and CpCs and Adducin (Add red) to mark
spectrosomes and fusomes. Nuclei are marked with DAPI (blue). In particular, H4K20me3, H3K9me3, H3K9me2, H3K27me3 and H4K20me1 are associated
with transcriptional repression, while H3K4me3, H4 hyperacetylation, H2Bub1 are known as active marks and often associated with ongoing transcription. Note
that some histone modifications show differential pattern in certain somatic cells and differentially staged GCs; importantly, H2Bub1 is present in the
differentiating cysts, but not in the GSCs. Scale bars, 5 mm.
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Fig. S2. H2Bub1-deficient germline cysts are delayed in differentiation. (A) In the control (OregonR) germarium, GSCs exhibit pMad staining. The
differentiation marker Bam (detected by the bamGFP transgene) is expressed in cysts. H2Bub1 is found in cysts that are also positive for Bam, but not in GSCs.
(B,C) Bre1 mutant (hsFlp; FRT 2A Bre1P1549/FRT 2A GFP) and control (hsFlp; FRT 2A parental/FRT 2A GFP) germline clones are analyzed 5 days after adult
clone induction. Germaria containing Bre1 germline clones frequently lack Bre1 clonal GSCs; bar graph shows that 79.2% (n524) of control germaria
contain one or more black GSCs, while Bre1 clonal GSCs are partially lost and only 35.0% (n520) of all clonal germaria contained one or more black GSCs
(B; see supplementary material Table S6). (C) Bre1 clonal cysts are delayed in differentiation. 4.16% (n524) of control and 20% (n520) of Bre1 germline clonal
cysts show the differentiation delay. (D) Analysis of H2Bub1 modification upon downregulation of Rtf1 or Bre1 using RNAi shows that Bre1 and Rtf1 are
specifically required for monoubiquitination of H2B in the germline, since their downregulation (nos.Bre1RNAi: NGT40/Bre1RNAi;nanosGAL4/+ and
nos.Rtf1RNAi: NGT40/Rtf1RNAi; nanosGAL4/+) results in the absence of this modification. (E,F) Germline-specific downregulation of Bre1 affects differentiation
(control: NGT40/+;nanosGAL4/+ and nos.Bre1RNAi: NGT40/Bre1RNAi; nanosGAL4/+); (E) reducing Bre1 levels in the germline leads to the appearance of
small germaria (red arrowheads mark beginning of region 2b) and the decrease in the differentiation index (Cysts/SpGCs, supplementary material Table
S1). (F) Expression of Rtf1RNAi in the germline (NGT40/+;nanosGAL4/Rtf1RNAi) leads to severe perturbations of germarial architecture and defects in germline
differentiation; SpGCs are found at arbitrary positions (arrows) far from the stem cell niche. pMad marks GSCs (cyan, A), bamGFP (green, A) differentiating
cysts. Monoubiquitination of H2B is shown (red, A,D), germline cells are Vasa-positive (green, E,F). Germaria are stained with LaminC (LC red, E,F) to visualize
TFs and CpCs and Adducin (Add red, E,F) to mark spectrosomes and fusomes. Nuclei are marked with DAPI (blue, D–F). GSCs are outlined in white,
CpCs in yellow (A). H2Bub1-positive CpCs are marked with white arrows (D), H2Bub1-positive ECs with yellow arrows (D). Region 2b is indicated by red
arrowheads (E) and SpGCs are depicted with white arrows (F). p-values were calculated using the two tailed Student’s t-test and error bars represent S.E.M.,
*p,0.05. Scale bars, 5 mm.
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Fig. S3. EC cellular identity is
affected upon soma-specific
perturbation of ecdysone signaling.
(A) ECs form long cytoplasmic
protrusions with which they envelope
the differentiating germline (control:
tubGal80ts/+; bab1Gal4/+).
(B,C) Somatic alteration of ecdysone
signaling during adulthood dampens the
ability of ECs to form protrusions. The
Gal4/Gal80ts system was used to
express taiRNAi or ab using bab1Gal4

somatic driver in adults (bab1ts.taiRNAi:
tubGal80ts/taiRNAi; bab1Gal4/+, 4 days
at 29˚C and bab1ts.ab: tubGal80ts/+;
bab1Gal4/UASab, 3 days at 29˚C).
MAP Kinase (MAPK) staining shows
cytoplasmic protrusions in ECs
(magenta). Note that MAPK levels are
increased in ecdysone signaling-
deficient ECs (D). Ecdysone signaling
affects the maintenance of cellular
sexual identity in adult D. melanogaster

gonads (Fagegaltier et al., 2014) and
multiple EGFR-MAPK downstream
targets are sexually biased. mRNA
levels of direct and indirect EGFR-
MAPK signaling pathway downstream
targets, escargot (esg), unpaired (upd)

and IGF-II mRNA-binding protein (Imp)

(López-Onieva et al., 2008; Chau et al.,
2009; Toledano et al., 2012) are
deregulated. In ecd1ts germaria, the
expression levels of the male-specific
mRNA esg increase ,5 fold and the
mRNA levels of JAK/STAT ligand upd

,1.5 fold, while the levels of Imp

decrease ,2 fold (supplementary
material Table S3). These data show
that upon defective ecdysone signaling,
EGFR signaling is impaired, resulting in
confused sexual identity in the somatic
cells of the germarium. MAPK staining
marks ECs and EC protrusions
(magenta, A–C), DAPI marks nuclei
(green, A–C). ***p,0.0005. Scale bars,
5 mm.
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Fig. S4. Soma-specific disruption of ecdysone signaling causes altered cell adhesion between ECs and the germline. (A,B) High levels of the cell
adhesion proteins DE-Cad and Arm are detected at the membrane of CpCs (control: OregonR). In ecd1ts adult flies kept at the restrictive temperature (29˚C) for
four days, high levels of Arm and DE-Cad are also found on the EC membrane (marked with brackets). (C,D) Downregulation of ecdysone signaling in the soma
by overexpressing its negative regulator Ab with the soma-specific driver (control: tubGal80ts/+; bab1Gal4/+ and bab1ts.ab: tubGal80ts/+; bab1Gal4/

UASab, 4 days at 29˚C) results in the increased Arm levels in the ECs, atypical ECs form epithelial layers (bracket). (E) Similarly, overexpression of DE-Cad with
the somatic driver (ptc/UAS Cad) leads to formation of EC epithelial layers (bracket). (F,G) Germline-specific overexpression of Cad (control: NGT40/+;

nanosGAL4/+ and nos.Cad: NGT40/UAS Cad;nanosGAL4/+) leads to a higher number of SpGCs (asterisks) and an increased Cysts/SpGCs ratio
(supplementary material Table S1). Cell adhesion complexes are marked by DE-Cad (red, A,B) and Arm (green, A–D). ECs are positive for Tj (red, C,D) and
negative for the germline marker Vasa (red, E). Germaria are stained with LaminC (LC red, F,G, green, E) to visualize TFs and CpCs and Adducin (Add red,
F–G, green, E) to mark spectrosomes and fusomes. Nuclei are marked with DAPI (blue, A–E). p-values were calculated using the two tailed Student’s t-test and
error bars represent S.E.M., **p,0.005. Scale bars, 5 mm.
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Fig. S5. let-7 is not required for GSCmaintenance, but together with Ab cell non-autonomously influences germline differentiation. (A,B) The hsFlp/FRT

system for mitotic recombination was used to induce let-7mutant germline cells (hsFlp/+; FRT 40A let-7 miR-125/FRT 40AGFP; let-7-C Dlet-7/+), clonal cells are
marked by the absence of GFP. Parental FRT 40A was used as control (hsFlp/+; FRT 40A/FRT 40A GFP). let-7 mutation does not affect the maintenance
of GSCs. The percentage of the germaria containing at least one Dlet-7 clonal GSC did not significantly change with the time (34.1462.24%, n584 and
45.6966.10%, n543 at 7 and 14 days after heat shock, respectively) in comparison to controls (46.67613.33%, n581 and 31.7162.57%, n562 at 7 and 14 days
after heat shock, respectively). (C) Wildtype (OregonR) germaria contain on average 4 SpGCs (supplementary material Table S2), (D,E) let-7mutants (let-7-CGK1/
let-7-CKO1; let-7-CDlet-7/+) contain a higher number of SpGCs; introducing a let-7 rescue construct (let-7-C/+; let-7-CGK1/let-7-CKO1) reverts the phenotype
(supplementary material Table S2). (F) Reducing Ab levels by combining hypomorphic and amorphic alleles leads to an increased number of SpGCs (ab1/abk0280,
supplementary material Table S2). (G) The let-7 mutant phenotype can be partially rescued by reducing ab levels [let-7, miR-125, ab1D/let-7KO1; let-7-CDlet-7/+,
compare to panel D, supplementary material Table S2]. (H) Downregulation of Ab using the somatic let-7GK1Gal4 driver causes an increased number of SpGCs (let-
7GK1/+; UASab/+, supplementary material Table S2). Spectrosomes are marked with Adducin (Add, red, A,C–H), CpCs with LaminC (LC, red, A,C–H), nuclei with
DAPI (blue, A,C–H), clones with GFP (green, A). Clonal germline cells are outlined in yellow, GSCs are outlined in white. Scale bars, 5 mm.
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Fig. S6. Scheme of extrinsic and intrinsic signaling controlling early germline differentiation. Control of germline differentiation is highly dependent on
precise levels of multiple proteins involved in different signaling pathways that act in the soma and the germline. Ecdysone signaling, miRNA let-7 and Ab
act in the ECs to regulate the adhesion strength between the soma and germline. This, via amounts of Cad/Arm complexes modulates Wg signaling activity in
the germline. The Wg pathway establishes specific chromatin status permissive for the differentiation factor Bam expression, leading to GSC progeny
differentiation.
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Supplementary Table S1. Histone modification (H2Bub1) and ecdysone and Wg signaling defects influence germline differentiation
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Supplementary Table S1. continued
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Supplementary Table S2. The speed of germline stem cell progeny differentiation depends on the levels of let-7, its target Abrupt,
and the cell adhesion proteins, DE-Cad and Arm
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Supplementary Table S2. continued
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Supplementary Table S3. mRNA levels measured by RT-qPCR in control and adult-induced ecdysoneless mutant
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Supplementary Table S3. continued
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Supplementary Table S4. let-7 levels vary upon different environmental conditions
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Supplementary Table S5. The efficiency of downregulation of Wg signaling components in the germline by used RNAi mutants
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Supplementary Table S6. Germline-specific clones of Bre1 and Wg signaling components result in differentiation defects
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