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We prove that any complete metric on R
3 minus a ball with non-

negative Ricci curvature and quadratic Ricci-curvature decay, has cubic

volume growth.

1 Introduction.

In the study of non-compact manifolds a simple and at the same time rich in-
variant worth investigating is the rate of volume growth of geodesic spheres.
For instance, under some local conditions on the curvature, the rate of volume
growth, which is an asymptotic invariant, can provide global information. This is
the case for example in Anderson’s Gap Theorem [2]. Other instances where the
rate of volume growth plays a relevant role is in the global behavior of harmonic
and Green functions [14] or in the existence and structure of cones at infinity [8].

Before stating our main theorem let us recall some terminology. Let g be a
complete metric in R

3. We say that g has cubic volume growth if 1

(1) lim
r̄↑∞

V ol(B(o, r̄))

r̄3
= ρ > 0

namely the limit exists and is non-zero, where here o is the origin in R
3 and

B(o, r̄) is the geodesic ball of center o and radius r̄. If g is a complete metric in
R
3 minus (say) the unit ball B3, then one can always “extend” the metric g to all

of R3 in such a way that the points in ∂B3 are equidistant to o (2). In this sense
we say that g (in R

3\B3) has cubic volume growth if the extension to R
3 has cubic

volume growth. This is the same to say that lim V ol(T (∂B3, r̄))/r̄3 exists and
is non-zero, where T (∂B3, r̄) is the geodesic tubular-neighborhood (in R

3 \ B
3)

of ∂B3 and radius r̄. The metric has quadratic curvature decay if |Ric| ≤ Λ0/r
2

where r(p) = dist(p, o). The following is the main result of this article.

Theorem 1 Let g be a complete metric in R
3 minus a ball with non-negative

Ricci curvature and quadratic curvature decay. Then g has cubic volume growth.

A few comments on the hypothesis of the theorem are in order. On R
3 \ B

3

and for α ∈ (1/2, 1)∪ (1, 3/2) consider the Riemannian metric g = dr2+ r2αdΩ2,

1Sometimes the terminology cubic volume growth refers to the condition ω1r̄3 ≤ V ol(B(o, r̄)) ≤ ω2r̄3.
2If r is the usual radial coordinate in B3 then the extension can be written in the form g = dr2+h(r)

where h(r) (r > 0) is a a path of two-metrics on S2 with appropriate values for h(1), h′(1), h′′(1) to
make the extension C2.
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where dΩ2 is the round metric on S
2 and r is the standard radial coordinate in

R
3. Extend g to a spherically symmetric metric in R

3. When α ∈ (1/2, 1) then
|Ric| ≤ Λ0(α)/r

2α and Ric(p) ≥ 0 if r(p) ≥ r0(α). Moreover, no matter the
value of α in (1/2, 1) we have

lim
r̄↑∞

V ol(B(o, r̄))

r̄3
= 0

The example shows that the hypothesis “quadratic curvature decay” in Theorem
1 can be hardly weakened (and not removable). On the other hand suppose that
α ∈ (1, 3/2). Then |Ric| ≤ Λ0(α)/r

2 but the Ricci curvature is not non-negative.
Moreover, no matter the value of α in (1, 3/2) we have

lim
r̄↑∞

V ol(B(o, r̄))

r̄3
= ∞

The example shows that the hypothesis “non-negative Ricci curvature” in The-
orem 1 cannot be completely removed. In this respect an interesting question is
if such hypothesis could be replaced by the much simpler one of “non-negative
scalar curvature”. We point out that examples can be given of complete met-
rics in R

3 with quadratic curvature decay and slow-volume growth, namely with
ρ = 0 ([17]). Finally, replacing R

3 by R
n with n = 2, 4, 5, 6, . . . and “cubic” by

”Euclidean”(3) may also make the statement false. For instance the flat product
metric on S

1×R
+, which has linear volume growth, shows that it would be false

when n = 2 and the well known Tau-NUT Ricci flat instanton in R
4 which has

cubic volume growth, shows that it would be false when n = 4. We do not know
at the moment if n = 3 is the only dimension where the statement holds.

It is worth mentioning that the relation between volume growth and lower
curvature decay has been discussed at least in [7]. Their work however does not
overlap with ours, but instead, it complements. This is because [7] argues under
the hypothesis Ric ≥ Λ1/r

2, Λ1 > 0, which turns out to be, if one is working on
R
3 \ B3, incompatible4 with |Ric| ≤ Λ0/r

2.
The idea of the proof, which proceeds by contradiction, is somehow simple.

In gross terms one proves that if the volume growth is non-cubic then one can
partition R

3 into a set of manifolds with a sufficient understanding of their topol-
ogy to be able to prove that their union is topologically incompatible with R

3.
All the hypothesis in Theorem 1, including the dimension, are strongly used.
Let us elaborate on the argument a bit more technically and, at the same time,
explain the organization of the article. Further explanations have to be found
inside the proof and in the main text. After assuming that the volume growth
is non-cubic, the proof of Theorem 1 which starts in pg. 30 (and ends in pg. 33)
goes by writing first R

3 as the union of an open set containing the origin and

3In the literature the (unhappy) terminology “Euclidean volume growth” refers to the condition
ω1rn ≤ V ol(Bn

g (o, r)) ≤ ω2rn.
4For several reasons, for instance Ric ≥ Λ1/r2 implies non-cubic volume growth (see [7] §4).
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with compact closure, and a set

(2)
i=∞⋃

i=i0

M(T 2o
i+1, T

2o
i )

where every M(T 2o
i+1, T

2o
i ) is a compact three-manifold with the tori T 2o

i+1, T
2o
i as

its boundary components (see Figure 1). In this union the interiorsM(T 2o
i+1, T

2o
i )◦

are pairwise disjoint. The manifolds M(T 2o
i+1, T

2o
i ) and the tori T 2o

i , i ≥ i0 are
carefully defined in Section 2.3 and Proposition 4. The proof continues by show-
ing that everyM(T 2o

i+1, T
2o
i ) is an irreducible manifold with incompressible bound-

ary (shortly IIB-manifold), to conclude finally, due to the topological properties
of IIB-manifolds, that (2) cannot cover R3 up to an open set of compact closure
containing the origin. The properties of IIB-manifolds that are required for such
conclusion are described in Section 2.2. In particular it is recalled that any union
of IIB-manifolds along boundary components is a IIB-manifold. To be concrete,
the conclusion, or, more precisely, the contradiction, arises as follows. Pick a
coordinate sphere S2r̄ = ∂B3(o, r̄) of coordinate radius r̄ in R

3, with r̄ big enough
that S

2
r̄ is inside the union (2) (indeed inside a finite union of M(T 2o

i+1, T
2o
i )’s).

As such union is irreducible, the sphere S
2
r̄ must bound a three-ball in it which

forcefully must be B
3(o, r̄). Thus the origin must belong to the union (2) which

is a contradiction. That the M(T 2o
i+1, T

2o
i ) are IIB-manifolds is deduced during

the proof from various informations. Firstly, the M(T 2o
i+1, T

2o
i ) are constructed

as finite unions of manifolds Uk,l of a special annuli decomposition U , which,
as defined and described in Section 2.3, are particular partitions of R

3. The
properties of the special annuli decomposition that we will use, are described in
detail in Proposition 4 in Section 2.5. Roughly speaking, the decomposition is
constructed by carefully studying the annuli

Ak(10
n1 , 10n2) := B(o, 10k+n2) \B(o, 10k+n1), k = k0, k0 + 2, . . .

(n1 < n2 integers but fixed) provided with the scaled metrics gk := 1
102k g and by

means of the Cheeger-Gromov-Fukaya theory of volume collapse with bounded
diameter and curvature5. Still such theory for manifolds with boundary has not
been appropriately discussed in the literature. To fill in this small gap and to
provide a reasonable background for those not familiar with it we dedicate the
whole Section 2.4 to analyze this matter (see in particular Footnote 7 in pg. 14).
Secondly, from Proposition 4 and crucially Proposition 5 and by using further
topological properties of three-manifolds enclosed by embedded tori in R

3 which
are discussed in Section 2.2, it is deduced that the pieces Uk,l which make up
M(T 2o

i+1, T
2o
i ) can be grouped appropriately to form IIB-manifolds. Thus it is

5This is possible because over every annulus Ak(10
n1 , 10n2 ) the gk-Ricci curvature is bounded uni-

formly by 10−2n1Λ0 and because limk↑∞ V olgk (Ak(10
n1 , 10n2 )) = 0, which follows from the fact that,

if the volume growth is non-cubic then it has to be sub-cubic as a consequence of the Bishop-Gromov
monotonicity V ol(T (∂B3, r̄))/r̄3 ↓, that is ρ = 0 in (1). Moreover, as explained in Example I in Section
2.4.3, a certain (but practical) uniform diameter boundednes is obtained for (Ak(10

n1 , 10n2 ), gk) from
Liu’s Ball covering property.
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obtained that every M(T 2o
i+1, T

2o
i ) is a union of IIB-manifolds and therefore a

IIB-manifold itself.
We explain in the Appendix a couple of technical propositions whose inclusion

inside the text would cause much disruption.
The article has a good amount of background material, examples and illus-

trations.

2 Preliminaries.

2.1 Basic notation.

S
n, n ≥ 1 will be the unit sphere in R

n+1 and T
2 = S

1 × S
1 the two-dimensional

torus. S
1 and T

2 will be thought both as manifolds and as Lie groups. Fur-
thermore B

n(o, r) = {x̄ ∈ R
n, |x̄| < r} will be the open ball of center the ori-

gin o = (0, 0, 0) and radius r (|x̄| is the Euclidean norm of a point x̄ of R
n).

B
n = B

n(o, 1). I = B
1.

Let (M,g) be a compact connected Riemannian manifold with boundary. The
Riemannian metric g induces a metric dg in M (as usual) by

(3) dg(p, q) = distg(p, q) = inf{lengthg(γ(p, q)), γ(p, q) C1-curve from p to q}

However if (Ω, g) ⊂ (M,g), then on Ω one can consider two different distances,
the distance (3) of (Ω, g) or the distance (3) of (M,g) restricted to Ω. This
situation will appear often and for this reason and to avoid confusion we will
denote them by dΩg and dMg respectively.

In this article the Riemannian space (Ω, g) will also denote the metric space
(Ω, dΩg ).

We will always use the following definitions of diameter diamg(Ω) and radius
(to the boundary) radg(Ω), even when (Ω, g) ⊂ (M,g):

diamg(Ω) = sup{dΩg (p, q); p, q ∈ Ω}, radg(Ω) = sup{dΩg (p, ∂Ω); p ∈ Ω}.

Manifold interiors Ω \ ∂Ω are denoted by Ω◦. To us a metric ball of center
p ∈ Ω◦ and radius r is a geodesic ball if r < dΩg (p, ∂Ω).

The ends of Theorems, Lemmas or Propositions are marked with �, while
the end of a claim or the end of an Example, is marked with a ◭.

2.2 Surfaces in R3 and irreducible three-manifolds with incom-

pressible boundary.

From now on we let S be a smoothly embedded compact, orientable and bound-
aryless surface in R

3. Any S divides R
3 into two open connected components.

We will denote by M(S) the closure of the bounded component. For instance if
S ∼ S

2 then S bounds a three-ball [1]. If S ∩ S′ = ∅ then either

(4) M(S) ∩M(S′) = ∅, M(S) ⊂M(S′)◦, or M(S′) ⊂M(S)◦.
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Moreover if S′ ⊂ M(S)◦ then S belongs to R
3 \M(S′) and therefore M(S′) ⊂

M(S)◦. In particular if S′ ∼ S
2 and S′ ⊂ M(S)◦ then S′ bounds a three-ball

insideM(S)◦. Recall that a three-manifold is irreducible if every embedded two-
sphere bounds a three-ball. Thus for any S, M(S) is an irreducible manifold.

If S ∼ T
2 then either M(S) is a solid torus, i.e. ∼ B̄

2 × S
1, or, S = ∂M(S) is

incompressible in M(S), where recall, N is an incompressible boundary compo-
nent of a manifold M if i∗ : π1(N) → π1(M) is injective (here i : N →M is the
inclusion). To see this think S as a surface in S

3 via S ⊂ R
3 ⊂

(
R
3∪{∞}

)
∼ S

3.

If M(S) is a solid torus we are done. If not then S
3 \M(S)◦ is a solid torus

(this is due to Alexander [1]). If S3 \M(S)◦ represents the unknot then M(S)
is a solid torus but we are assuming that it is not. Then S

3 \M(S)◦ is not the
unknot. Theorem 11.2 in [15] shows that in this case S is incompressible inM(S)
as claimed. Summarizing, for any S ∼ T

2, M(S) is either a solid torus or an
irreducible manifold with incompressible boundary.

Other examples of irreducible manifolds with incompressible boundary com-
ponents (in short, “IIB” manifolds) are compact Seifert manifolds with at least
two boundary components ([20] pgs. 431-432 and Corollary 3.3). Recall that a
Seifert manifold is one admitting a foliation C by circles C around any of which
there is a fibered neighborhood isomorphic to a fibered solid torus or Klein bot-
tle (see [20], pg. 428). The class of IIB manifolds is closed under sums along
boundary components. Precisely we have (Lemma 1.1.4 in [21])

Proposition 1

I. Let M1 and M2 be two IIB manifolds and let f : N1 → N2 be a diffeomor-
phism between a boundary component N1 of M1 and a boundary component
N2 of M2. Then the manifold which results from identifying through f the
boundary N1 of M1 to the boundary N2 of M2 is a IIB manifold.

II. Let M1 be a IIB manifold and let f : N1 → N2 be a diffeomorphism between
the boundary components N1 6= N2 of M1. Then, the manifold which re-
sults from identifying through f the boundary N1 to the boundary N2 of the
manifold M1 is a IIB manifold.

Therefore, any sum of IIB manifolds along any number of boundary components
is a IIB manifold.

Yet, there is a simple but important situation when the sum of a IIB manifold
and a non-IIB manifold results in a IIB manifold. The case is whenM1 is a Seifert
manifold with Seifert structure C and at least three-boundary components,M2 is
a solid torus and the gluing function f : N1(⊂ ∂M1) → N2(= ∂M2) send circles
C in C into non-contractible circles f(C ) as a circle in M2. The reason is that
in this situation the S

1-foliation f(C) of N2 = ∂M2 can always be extended to
a Seifert structure in M2 and thus making the sum a Seifert manifold with at
least two boundary components and therefore a IIB manifold. To construct the
extension of f(C) proceed as follows. On M2 ∼ B

2 × S
1 denote points by (x̄, s),

x̄ ∈ B
2 and s ∈ S

1. Then, for any r ∈ [0, 1] define Fr : B2 × S
1 → B

2 × S
1 by

Fr(x̄, s) = (rx̄, s). The desired extension of f(C) is {Fr(C );C ∈ C, r ∈ [0, 1]}.
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2.3 Annuli decompositions.

Let g be a complete metric in R
3. For every b > a > 0 we let Ag(a, b) =

Bg(o, b) \Bg(o, a) be the (open) annulus with radii a and b and center the origin
o.

Definition 1 A set U = {Uk,l; k = k0 + 2j, j = 0, 1, 2, 3, ..., l = 1, 2, . . . , l(k)} of
compact three-submanifolds of R3 with smooth boundary is an annuli decomposi-
tion iff the following conditions are fulfilled:

1. Uk,l ⊂ Ag(10
k−1, 10k+3),

2. Uk,l ∩Ag(10
k−1, 10k) 6= ∅, and Uk,l ∩Ag(10

k+1, 10k+2) 6= ∅,

3. ∂Uk,l ⊂
(
Ag(10

k−1, 10k) ∪Ag(10
k+1, 10k+2)

)
,

4. If (k, l) 6= (k′, l′), then U◦
k,l and U◦

k′,l′ are disjoint and if Uk,l and Uk′,l′

intersect then they do in a set of boundary components (of both, Uk,l and
Uk′,l′),

5. Uk0−2 := R
3 \

( ⋃
Uk,l∈U

Uk,l

)◦
is compact.

Let N be the set of boundary components of the manifolds Uk,l in an annuli
decomposition U . Elements of N are pairwise disjoint compact, orientable and
embedded surfaces. We can order them as follows: S ≪ S′ iff M(S) ⊂ M(S′).
The order is not necessarily a linear order, as there can be two elements not
related. However there is an important subset which is linearly ordered, this is
the set N o = {S ∈ N ; o ∈ M(S)} (use (4)). Thus N o = {So

1 , S
o
2 , S

o
3 , . . .} with

So
1 ≪ So

2 ≪ So
3 ≪ . . .. We will be using this notation (the upper-index o is from

“origin”). We will also use later the notation M(So
i , S

o
i′) := M(So

i ) \M(So
i′)

◦

for the region enclosed by So
i and So

i′ , i > i′. Moreover because of (4) we have
the following property: given two elements S ≪ S′ in N then there is a unique
(and finite) maximal “chain” {S0, . . . , Sn} ⊂ N such that S = S0 ≪ S1 ≪ . . .≪
Sn−1 ≪ Sn = S′. Later, in the proof of Theorem 1, we will use the notation
{S, S′} → {S, S1, . . . , Sn−1, S

′}.
A representation of an annuli decomposition can be seen in Figure 1. The

figure shows also the tree induced by the order ≪.
We note in passing that the notion of annuli decomposition (see also the

notion of (ǫ, ǫ)-connected components in Definition 3) and that of “chopping”
defined in [6] share some similarities.

2.4 Volume collapse with bounded diameter and curvature.

2.4.1 The Gromov-Hausdorff distance and a relevant example.

The Gromov-Hausdorff distance (shortly GH-distance) [13] between two compact
metric spaces (X, dX ) and (Y, dY ) is defined as the infimum of the δ > 0 such

6
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Figure 1: On the left side the figure schematizes a part of an annuli decomposition. We have
indicated only the pieces Uk,1 and Uk,2 but but every region enclosed by thick lines is a piece
Uk,l. We have also explicitly indicated the surfaces So

i , however with a T 2o
i , as this is the

notation to be used in Section 3 where the proof of Theorem 1 is carried out. On the right
side is represented the corresponding part of the tree induced by the order ≪. On both sides
we have enclosed in a dash/point line (− · − · −) the manifold M(T 2o

i+1,M(T 2o
i )). On the left

it can also be seen crossed thick lines. This is for a later exemplification when in Proposition
4 in Section 2.5 we explain how the special annuli decomposition, to be used in the proof of
Theorem 1, is constructed. The cross indicates that such “cuts”, as we refer them there, are to
be discarded.

that there exists, on the disjoint union X ⊔ Y , a metric dX⊔Y extending dX and
dY such that

(5) Y ⊂ TdX⊔Y
(X, δ) and X ⊂ TdX⊔Y

(Y, δ)

where TdX⊔Y
(X, δ) and TdX⊔Y

(Y, δ) are the dX⊔Y -metric neighborhoods of X and
Y and radius δ, respectively.

We introduce now some terminology to be used during the rest of the article.
We will say that a sequence of compact manifolds (Mi, gi) metrically collapses
to a space (X, d) if it converges in the GH-topology to (X, d) and the Hausdorff
dimension of X is less than that of Mi (which we assume is constant). If the
GH-distance between (M,g) and (X, d) is less or equal than ǫ then we say that
(M,g) is ǫ-close to (X, d). If the GH-distance between (M,g) and a point is less

7



or equal than ǫ we say that (M,g) is ǫ-collapsed (for the distance of (M,g) to a
point see [19]).

We present below an example where we estimate the distance between two
metric spaces that will be relevant to us in the proof of the Step C inside the
proof of the Proposition 5.

Example of a Gromov-Hausdorff distance estimation. Let I be a compact
interval in R of length |I| ≥ 1. Let h be a flat metric in T

2 of diameter Γ. Provide
X = T

2 × I with the metric dX induced from the Riemanian flat product-metric
g = dx2+h. Intuitively, if Γ is small then (X, dX ) should be close metrically to the
interval I. More precisely, it should be close to the metric space (Y, dY ) = (I, | |)
where dY (x1, x2) = |x1−x2|. We show now the following upper and lower bounds
for the GH-distance between (X, dX ) and (Y, dY ), (when Γ ≤ 1)

(6)
Γ

5
≤ distGH(X,Y ) ≤ Γ

2

• The upper bound. Points in T
2 are denoted by t, points in I by x, and thus

points in X = T
2×I by (t, x). Let t0 be a point in T

2 such that Bh(t0,Γ/2) = T
2

(such point always exists). For every ǫ > 0 define the distance dǫX⊔Y as equal
to dX and dY when restricted to X and Y respectively and as dǫX⊔Y ((t, x), x

′) =
dX((t, x), (t0, x

′)) + ǫ for the distance between (t, x) ∈ T
2 × I and x′ ∈ I. Now,

(5) holds for δ(ǫ) = Γ/2 + 2ǫ and for any ǫ > 0. Therefore distGH(X,Y ) ≤ Γ
2 .

• The lower bound. Make distGH

(
X,Y )

)
= Γ/µ for a µ that we will estimate

as µ < 5. Let t1 and t2 be two points in T
2 such that disth(t1, t2) = Γ. Let

also p1 = (t1, 0), p2 = (t2, 0), p3 = (t1,Γ), p4 = (t2,Γ), forming an “square” in
X: i.e. dX(p1, p2) = dX(p2, p4) = dX(p4, p3) = dX(p3, p1) = Γ and dX(p1, p4) =
dX(p2, p3) =

√
2Γ. By the definition of the GH-distance, for every ǫ > 0 there is

dǫX⊔Y extending dX and dY , and satisfying (5) with δ(ǫ) = Γ/µ + ǫ. Therefore
there are points x1, x2, x3 and x4 in I such that for every j = 1, 2, 3, 4 we have
dǫX⊔Y (pj, xj) ≤ Γ

µ + ǫ. From this and the triangle inequalities

dY (xj , xk) ≤ dǫX⊔Y (xj , pj) + dX(pj, pk) + dǫX⊔Y (pk, xk),

dX(pj , pk) ≤ dǫX⊔Y (xj , pj) + dY (xj , xk) + dǫX⊔Y (pk, xk)

we get, when (j, k) is not (1, 4) or (2, 3)

(7) |xj − xk| ≤ 2
Γ

µ
+ Γ + 2ǫ, and Γ ≤ 2

Γ

µ
+ |xj − xk|+ 2ǫ,

while when (j, k) is (1, 4) or (2, 3)

(8)
√
2|xj − xk| ≤ 2

Γ

µ
+

√
2Γ + 2ǫ, and

√
2Γ ≤ 2

Γ

µ
+ |xj − xk|+ 2ǫ,

We will use inequalities (7) and (8) in what follows. Suppose that x1 ≤ x3 (the
case x1 ≥ x3 is symmetric). Then:
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- If x4 ≤ x3 we have |x1 − x4| = ||x1 − x3| − |x3 − x4|| which using (7) is
less or equal than 4Γ/µ+4ǫ, i.e. |x1 −x4| ≤ 4Γ/µ+4ǫ. On the other hand from
this and (8) we obtain

√
2Γ ≤ 6Γ/µ + 6ǫ, for every ǫ > 0 and therefore µ < 5.

- If x4 ≥ x3 then we have two possibilities (i) x2 ≥ x1 or (ii) x2 ≤ x1. (i)
is symmetric to the case we have considered before under the change x1 → x3,
x3 → x1 and x4 → x2. We consider then (ii). In this case we have |x2 − x4| =
|x2−x1|+|x1−x3|+|x3−x4| which by (7) is greater or equal than 3Γ−6Γ/µ−6ǫ,
i.e. |x2−x4| ≥ 3Γ−6Γ/µ−6ǫ. From this and (7) again we obtain 4Γ/µ ≥ Γ−4ǫ,
for every ǫ > 0 and therefore µ < 5. ◭

2.4.2 The local models of collapse and examples.

Locally there are only five types of models describing the metric limit of bound-
aryless compact three-manifolds collapsing in volume with curvature and diam-
eter bounds. If (X, d) is a limit metric space and x ∈ X then either x is the
only point of X or there is a neighborhood of x locally isometric to one of the
following four possibilities:

I.a an interval I = (−a, a), with −a < x = 0 < a, provided with the standard
metric d(x1, x2) = |x1 − x2|,

I.b an interval I = [0, a), with x = 0 < a, provided with the standard metric
d(x1, x2) = |x1 − x2|,

II.a a disc D = B
2(o, a), x = o, provided with a metric d induced from a C1,β-

Riemannian metric,

II.b a disc D = B
2(o, a), x = o, provided with a metric d induced from the quo-

tient of a C1,β-Riemannian metric by the action of Zq, q ≥ 1 by isometries
leaving the origin o fixed.

The point x = 0 in case I.a and the point x = o in case II.b. will be here called
singular points and denoted by Sing(X). A manifold locally of the form II.a or
II.b will be called a C1,β orbifold.

x

xxx

Figure 2: The local models of collapse. From left to right, models: I.a, I.b, II.a, II.b.

That I.a, I. b, II.a, and II.b are the only possible models is an important
consequence of the Cheeger-Gromov-Fukaya theory of collapse under curvature
bounds [10]. We comment on this in what follows. First, the limit space is always
of integer dimension and therefore if it not a point it must be of dimension one
or two as stated in Theorem 0.6 in pg. 2 (and the paragraph below it) of [10].
That when the dimension is two the models are of the forms II.a and II.b is the
content of Proposition 11.5 in pg. 186 in [12] (Proposition 11.5 is a Corollary to
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Theorem 11.1 in pg. 184, which is a restatement of Theorem 0.6 in [10]). That
when the dimension is one the models are of the forms I.a and I.b follows from
Theorem 0.5 in pg. 2 of [10] after Definition 0.4. Indeed by Theorem 0.5 and
Definition 0.4 there is a neighborhood of x homeomorphic to the quotient of Bm

(with x = o and for some m) by the action of a Lie subgroup of O(3). Thus, if
the Hausdorff dimension is one then the space must be of the types I.a or I.b, as
these are the only possible quotients of dimension one. Note that it is excluded
for instance the union of three or more segments in a point (if we remove x = o
from the quotient the space must be still connected).

Below we are going to give four examples showing how everyone of the four
cases above can be realized. They are illustrative and do not play any other role
in the article. For this reason the presentation is rather synthetic. The examples
give sequences of Riemannian manifolds (Mn, gn) converging to a (X, d) as in I.a,
I.b, II.a and II.b (in this order). We define first the sequence (Mn, gn) and give
what is going to be the limit space (X, d). After the definitions for every one of
the cases I.a, I.b, II.a and II.b are made, we list the geometric properties of the
convergence process applying to each. The justifications are just computational
and because they play no role in the article are left to the readers. Finally let us
mention that the examples show essentially all what can occur locally in volume
collapse with curvature and diameter bounds besides collapse to a point (see
Lemma 1).

We will use the following notation. The rotational group of R2 ∼ C will be
denoted by R. Obviously U(1) ∼ R under the homomorphism u ∈ U(1) →
R(u) ∈ R, with R(u)z = uz for any z ∈ C. Also for any natural number q let

Rq ∼ Zq be the subgroup of rotations generated by R(e2πi/q). Finally the group
of rotations on the first factor R

2 in R
2 × R

2 with be denoted by R1 and the
group of rotations on the second factor will be denoted by R2. Note that the set
B
2 × S

1 ⊂ R
2 × R

2 and the set T
2 ⊂ R

2 × R
2 are invariant under R1 × R2. In

particular T2 × I ⊂ R
2 × R

2 × R is invariant under R1 ×R2.

Example I.a.

• (Mn, gn) - Let M̃ = T
2 × I and provided with a smooth and R1 ×R2-invariant

Riemannian metric g̃. Let Gn ∼ Zn×Zn be the group generated by the rotations
R1(e

2πi/n), R2(e
2πi/n). LetMn = M̃/Gn be the quotient of M̃ by Gn, πn : M̃ →

Mn the covering map and gn the projected metric on Mn, namely π∗n(gn) = g̃.

• (X, d) - Let X = T
2 × I/(R1 ×R2) with the induced quotient metric d and let

fn :Mn → X be the projection.

Example I.b.

• (Mn, gn) - Let M̃ = B
2 × S

1 and provided with a smooth and R1 × R2-
invariant Riemannian metric g̃. Let Gn ∼ Zn2 be the group generated by the
rotations R1(e

2πi/n) × R2(e
2πi/n2

). Let Mn = M̃/Gn be the quotient of M̃ by

Gn, πn : M̃ →Mn the covering map and gn the projected metric on Mn, namely
π∗n(gn) = g̃.

10



• (X, d) - Let X = B
2/(R1 × R2) with the induced quotient metric d and let

fn :Mn → X be the projection.

Example II.a.

• (Mn, gn) - Let M̃ = B
2 × S

1 and provided with a smooth and R2-invariant
Riemannian metric g̃. Let Gn ∼ Zn be the subgroup of R2 generated by the
rotations R2(e

2πi/n). Let Mn = M̃/Gn be the quotient of M̃ by Gn, πn : M̃ →
Mn the covering map and gn the projected metric on Mn, namely π∗n(gn) = g̃.

• (X, d) - Let X = B
2, with the induced quotient metric d. Let fn :Mn → X be

the projection.

Example II.b.

• (Mn, gn) - Let M̃ = B
2 × S

1 provided with a smooth and R1 × R2-invariant
Riemannian metric g̃. Let 0 < p < q be two relatively prime natural numbers and
let Gn ∼ Zqn be the subgroup of R1×R2 generated by the rotations R1(e

2πpi/q)×
R2(e

2πi/qn). Let Mn = M̃/Gn be the quotient of M̃ by Gn, πn : M̃ → Mn the
covering map and gn the projected metric on Mn, namely π∗n(gn) = g̃.

• (X, d) - Let X = B
2/Rq, with the induced quotient metric d. Let fn :Mn → X

be the projection.

With these definitions for the examples I.a, I.b, II.a and II.b it is straightfor-
ward to check that,

1. Sing(X) = ∅ in cases I.a, II.a and Sing(X) = {o} in cases I.b and II.b.

2. In every example the sequence (Mn, gn) converges in the GH-topology to

(X, d). The group Gn of Deck transformations on M̃ converges to G =
R1 × R2 ∼ T

2 in cases I.a and I.b, to G = R2 ∼ S
1 in case II.a and

to G := Rq
1 × R2 ∼ Zq × S

(1) in case II.b. Moreover X = M̃/G. Let

π : M̃ → X be the projection. Then CentrG(π
−1(Sing(X))) = Rq

1 where
Centr is the centralizer.

3. In every example fn : Mn → X is a fibration and lengthgn(f
−1
n (x)) → 0.

Moreover fn : Mn \ f−1
n (Sing(X)) → X \ Sing(X) is a T

2-fiber bundle in
cases I.a, I.b and a S

1-fiber bundle in cases II.a and II.b. Centr(Sing(X))
acts freely on f−1

n (x) for any x ∈ X \ Sing(X) and f−1
n (Sing(X)) ∼

f−1
n (x)/Centr(π−1(Sing(X))). ◭

2.4.3 Volume collapse of three-manifolds with boundary and with curvature

and diameter bounds - an statement.

We discuss now briefly what we will mean by three-manifolds with non-necessarily
smooth boundary. The reader should keep in mind that the notion is just for
the purpose of working later with some necessary generality, with no intention
whatsoever in developing a new concept, which, as a matter of fact, would be
here purposeless. Let M be a compact set on an open manifold P . Then we say
that M is a compact manifold with non-necessarily smooth boundary (shortly,
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manifold with NNSB) if M is equal to the closure (in P ) of its interior (in P ). In
this sense the boundary ∂M of M is defined as M minus the topological interior
of M (in P ) and the manifold’s interior M◦ := M \ ∂M therefore coincides
with the topological interior (in P ). Note that we do not assume that M◦ is
connected. A subset of M is a submanifold with NNSB if it is a manifold with
NNSB as a subset of P . Of course any compact manifold with smooth boundary
is a manifold with NNSB. If P carries a Riemannian metric g then we say that
(M,g) is a Riemannian manifold with NNSB. In this case the Riemannian metric
g induces a metric d = dMg in every connected component of M◦. For the
discussion below we do not need to extend d to a metric on M◦. The distance
from a point p ∈ M◦ to ∂M can be defined in several equivalent and natural
ways. For instance d(p, ∂M) as the supremum of the radius of the geodesic balls
of center p, lying entirely in M◦. Then d(p, ∂M) is realized by the g-length of a
geodesic starting at p, ending at ∂M and whose interior lies in M◦. Define the
tubular neighborhoods Td(∂M, ǫ) := ∂M ∪ {p ∈M◦, d(p, ∂M) < ǫ}.
Definition 2 Let N0 : R

+×R
+ → R

+ be a non-necessarily continuous function.
Then define M(N0) as the set of compact Riemannian manifolds with NNSB
(M,g), such that for any 1 > ǫ0 > 2ǫ1 > 0, the minimum number of geodesic
balls of radius ǫ1 covering M \ Td(∂M, ǫ0) is bounded above by N0(ǫ0, ǫ1).

Remark 1 The values of N0 outside the set {(ǫ0, ǫ1), 1 > ǫ0 > 2ǫ1 > 0} are of
no relevance.

We would like to comment briefly about the reason of this definition. Recall
that given Λ0 > 0, D0 > 0 there is N0 : R+ → R

+, depending on them, such
that for any compact boundaryless Riemannian three-manifold with |Ric| ≤ Λ0,
diamg(M) ≤ D0 the minimum number of balls of radius ǫ coveringM is bounded
above by N0(ǫ) (this is due to Gromov; see [19], pg. 281). Moreover the existence
of such N0 is equivalent to the precompactness of the family of compact and
boundaryless Riemmanian three-manifolds with |Ric| ≤ Λ0 and diamg(M) ≤ D0,
as a set inside the family of compact metric spaces provided with the GH-topology
([19]; pg. 280). However in the family of compact manifolds with NNSB, and
even those with smooth boundary, and with |Ric| ≤ Λ0 and diamg(M) ≤ D0

one cannot guarantee the existence of N0 : R+ → R
+ nor the precompactness

of such family. Consider for instance the following example. For any n ≥ 2 let
Vn = [1/n, 1]× S

1 be endowed with the flat metric dx2 +n2x2dϕ2 where ϕ is the
coordinate in the S

1 factor (and recall that S
1 has total length 2π). For any n

the diameter of Vn is less or equal than 2π + 2. On Mn = Vn × S
1 consider the

flat product metric gn = dx2+n2x2dϕ2 +(1/n)2dθ2 where θ is the coordinate in
the S1 factor definingMn. Also, for any n, diamgn(Mn, gn) ≤ 2π+2+1/n < 10.
Despite of this and despite that the manifolds (Mn, gn) are flat, they do not
collapse to a compact metric space (as n → ∞). Even more we have that for
any 1/2 > ǫ > 0 no pointed sequence (Ωn, gn, pn) of compact connected regions
of Mn with smooth boundary ∂Ωn, ∂Ωn ⊂ TdMn

gn
(∂Mn, ǫ), collapses to a compact

metric space. This occurs even when dMn

gn (pn, ∂Ωn) ≥ 1/4 (for instance).
But any family M(N0) satisfies the following kind of precompactness.
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Proposition 2 Let (Mi, gi) be a sequence in a family M(N0) and on every con-
nected component of M◦

i let di = dMi
gi . Then for every 1 > ǫ0 > 0 we have,

1. There are at most N0(ǫ0, ǫ0/3) connected components M̆◦
i ofM◦

i intersecting
Mi \ Tdi

(∂Mi, ǫ0).

2. For every sequence M̆◦
i of connected components of M◦

i intersecting Mi \
Tdi

(∂Mi, ǫ0), there is a subsequence (index again by “i”) such that (M̆◦
i \

Tdi
(∂Mi, ǫ0), di) converges in the GH-topology to a compact metric space

(X, d).

Remark 2 Note that distances in M̆◦
i \ Tdi

(∂Mi, ǫ), which can be a connected
set or not, are with respect to di = dMi

gi .

Proof: Item 1. By definition N0(ǫ0, ǫ0/3) bounds from above the minimum
number of balls of radius ǫ0/3 coveringMi\Tdi

(∂Mi, ǫ0). But given one such cover

there must be at least one ball for every connected component M̆◦
i intersecting

Mi \Tdi
(∂Mi, ǫ0). Item 2. From Definition 2 the function N0(ǫ0, ǫ1) as a function

of ǫ1 and with ǫ0 fixed as in the hypothesis, bounds from above the minimum
number of di-balls of radius ǫ1 covering M̆◦

i \ Tdi
(∂Mi, ǫ0). The Proposition

follows from Lemma 1.9 in [19] (pg. 280). �

In the example below we describe a nontrivial family of manifolds with boundary
which are of great interest to us and lie in a class M(N0).

Example I. Let g be a (complete) Riemannian metric in R
3. Suppose that

Ricg ≥ 0 outside Bg(o, r0) and that |Ricg| ≤ Λ0/r
2. Fix 0 < c0 < c1. We claim

that there is N0 such that for any r̄ with r̄ ≥ r1(Λ0, r0, c0, c1), the Riemannian
annuli (with NNSB) (Mr̄, gr̄),

Mr̄ := Ag(c0r̄, c1r̄) = Bgr̄(o, c1) \Bgr̄(o, c0), gr̄ :=
1

r̄2
g

lies in M(N0). We show this in the following. From the Ball-covering property
( [16], concretely Remark 2, pg. 215 (6)) we know that for any 0 < c0 < c1
there is r1 and a number n0 depending only on c0, c1, r0 and Λ0 such that for
any r̄ > r1, n0 bounds from above the minimum number of gr̄-balls (in R

3) of
radius c0/3 covering the annulus Mr̄. Now, for any gr̄-ball with center in Mr̄

and of gr̄-radius c0/3, the minimum number of balls (in R
3) of gr̄-radii ǫ1 < c0/4

covering it (therefore having Ric ≥ 0) is, by a simple application of the Bishop-
Gromov volume comparison, bounded above by (2c03 )3/(ǫ31). It follows that for

any 1 > ǫ0 > 2ǫ1 with ǫ1 < c0/4, the minimum number of gr̄-balls (in R
3) of

gr̄-radii ǫ1 covering Mr̄ \ Tdr̄
(∂Mr̄, ǫ0) (here dr̄ = dMr̄

gr ) is bounded from above by

n0c
3
0/ǫ

3
1. Therefore (recall Remark 1) for any r̄ > r1, (Mr̄, gr̄) belongs to M(N0)

where (when 1 > ǫ0 > 2ǫ1 > 0) N0(ǫ0, ǫ1) is defined as N0(ǫ0, ǫ1) = n0c
3
0/ǫ

3
1 if

ǫ1 < min{1/2, c0/4} and as N0(ǫ0, ǫ1) = 43n0 if ǫ1 ∈ [min{1/2, c0/4}, 1/2). ◭

6In the Remark take S = Ag(c0r̄, c1r̄), C0 = c1/c0 and µ = c0/3.

13



Example II. For any D0, Λ0 and δ0, there is N0(D0,Λ0, δ0) such that for any
(M,g) Riemannian-manifold, with |Ricg| ≤ Λ0, and connected compact region
Ω ⊂M with smooth boundary having

diamg(Ω) ≤ D0, and d
M
g (∂Ω, ∂M) > δ0,

the connected manifold (with NNSB) TdM
g
(Ω, δ0) lies is M(N0,Λ0). The proof is

not difficult and is left to the reader. ◭

It is instructive to go back and recall the discussion before the Proposition 2.
In there we presented a sequence (Mn, gn) which, in the light of Proposition 2, did
not belong to a single M(N0). Now, in the light of Example II, the manifolds
(Mn, gn) (for all n) cannot be extended beyond their boundary to manifolds

(M̄n, gn) with |Ricgn | ≤ Λ1 and dM̄n
gn (Mn, ∂M̄n) ≥ δ0 > 0.

As a consequence of Example II we have,

Example III. Let R0 > 0 and Λ0 > 0 be given. Then, there is N0(R0,Λ0)
such that any (closure of a) geodesic ball of radius r0 ≤ R0 inside a mani-
fold (M,g) with |Ric| ≤ Λ0, lies in M(N0). To see this note that Bg(p, r0) =
TdM

g
(Bg(p, r0/2), r0/2) and then use Example II. ◭

We will denote by M(N0,Λ0) the set of Riemannian three-manifolds (with
NNSB) in the class M(N0) and with |Ric| ≤ Λ0. In the Example I, the manifolds
(Mr̄, gr̄) lie in M(N0, c

−2
0 Λ0) where N0, c0 and Λ0 are as in the example.

Definition 3 Let (M,g) be a compact manifold (with NNSB). Let 0 < ǫ < ǫ < 1.
Then, a compact connected region Ω (with NNSB) is said to be an (ǫ, ǫ)-connected

component of M if ∂Ω ⊂ TdM
g
(∂M, ǫ) \ TdM

g
(∂M, ǫ). The set of (ǫ, ǫ)-components

of three-manifolds in a class M(N0,Λ0) will be denoted by Mǫ
ǫ(N0,Λ0).

Thus when we write (Ω, g) ∈ Mǫ
ǫ(N0,Λ0) we imply that (Ω, g) is the (ǫ, ǫ)-

connected component of a (M,g) ∈ M(N0,Λ0).
A sequence (Mi, gi) is volume collapsing if V olgi(Mi) → 0. The following

important Lemma is essentially Proposition 1.5 in [4] (up to some modifications7)
and with some additional information from [10].

Lemma 1 Let (Mi, gi) be a volume-collapsing sequence in a M(N0,Λ0) and such
that for some pi ∈ Mi we have dMi

gi (pi, ∂Mi) ≥ Γ0 > 0. Then, for every 0 < ǫ <
ǫ < min{1,Γ0/2} there is a sequence (Ωi, gi) of (ǫ, ǫ)-connected components of
Mi, with pi ∈ Ωi, and a subsequence of it (indexed again by “i”) converging in
the GH-topology to a space (X, d) of one of the following two forms:

7Unfortunately Proposition 1.5 in [4] is stated without proof. An argumentative proof can be found
in page 983 in [3] (for the Lemma 1.4 in pg. 982 which is the equivalent to Proposition 1.5 in [4]) but we
were not able to check every claim in there, specially concerning the existence of Ui (in the terminology
of [3]) with ǫ/2 ≤ dist(∂Ui, ∂Ωi) ≤ ǫ. The problems have to do with the fact that a priori the sequence
(Di, gi, xi) (in the terminology of [4]) do not belong to any family M(N0) and this may cause some
inconveniences as indicated in the discussion before the Proposition 2. It is essentially to avoid these
inconveniences that we included the hypothesis that the sequence (Mi, gi) belongs a priori to some fixed
family M(N0). We would like to thank Michael Anderson for conversations on the Propositions 1.4 and
1.5 in [4].
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D1. An interval ([0, x̄], | |), with Sing(X) = ∅ or Sing(X) = {x̄}, or,
D2. A C1,β-two-orbifold, with either Sing(X) = ∅ or Sing(X) = {x̄1, . . . , x̄n} ⊂

X◦.

Moreover (for i ≥ i0) I and II below hold.

I. There are fibrations fi : Ωi → X, with asymptotically collapsing fibers
f−1
i (x), such that,

- For D1: fi : Ωi \ f−1
i (Sing(X)) → X \ Sing(X) is a T

2-fibre-bundle and

if Sing(X) 6= ∅ then f−1
i (x̄) ∼ T

2/(S1 ×Zq), where the quotient is by a free
action.

- For D2: fi : Ωi \f−1
i (Sing(X)) → X \Sing(X) is a S

1-fibre-bundle and if

Sing(X) 6= ∅ then f−1
i (x̄j) ∼ S

1/Zqj , where the quotient is by a free action.

II. There are finite coverings πi : Ω̃i → Ωi, such that

- For D1: (Ω̃i, g̃i) converges in C1,β to a T
2-symmetric Riemannian mani-

fold.

D2: (Ω̃i, g̃i) converges in C1,β to a S
1-symmetric Riemannian manifold.

In either case, for any x ∈ X \ Sing(X), π−1
i (f−1

i (x)) converges in C1 to
the T

2 or S
1 orbits.

The fibrations fi have one more property [9]: for any neighborhoodW of Sing(X)
the map fi : f

−1
i (X \W ) → X \W is an almost Riemannian submersion, more

precisely we have

e−o(i) ≤ |fi∗(V )| ≤ eo(i), where o(i)
i→∞−−−→ 0,

and for any unit-norm V perpendicular to the fibers.

Remark 3 We remark that the space (Ωi, gi) represents (Ωi, d
Ωi

gi ) (see Sec. 2.1)

rather than (Ωi, d
Mi

gi ). Compare this with item 2 in Proposition 2.

Once one assumes that the sequence (Mi, gi) is in M(N0,Λ0) the proof of
Lemma 1 reduces to pointing to the appropriate reference in Fukaya’s work.
Here we overview why this is so. The proof itself is postponed to the Appendix.

We introduce first a terminology. We say that two metric spaces (Y, dY )
and (Z, dZ ) are locally isometric under a homeomorphism φ : Y → Z if for all
y ∈ Y and φ(y) = z there are δ(y) and δ(z) such that φ : (BdY

(y, δ(y)), dY ) →
(BdZ

(z, δ(z)), dZ ) is an isometry. Of course there are non-isometric metric spaces
which are locally isometric 8. As a matter of fact if (Ω, g) ⊂ (M,g) then (Ω◦, dΩg )

is locally isometric under the identity homeomorphism to (Ω◦, dMg ), but they are
not globally isometric in general.

8For instance compare the set {ϕ ∈ S1, 0 < ϕ < 3π/4} with the restriction of the standard metric in
S1 and ((0, 3π/4), | |).
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Suppose now that a sequence of compact boundaryless manifolds (Mi, gi) with
uniformly bounded curvature and diameter collapses to a metric space (X, d) and
suppose that pi → x. Let exp : Tpi

Mi → Mi be the exponential map and let
gi(pi) be the metric gi on Tpi

Mi. Finally let BTgi(pi)(pi, R0) be the gi(pi)-ball of
radius R0 in Tpi

Mi. There is R0(Λ0) small enough, for which the map

exp : BTgi(pi)(pi, R0) → Bgi(pi, R0)

is of maximal rank. Let g∗i be the pull-back metric. Then, Fukaya’s tech-
nique to describe the space around x ( [10] Ch. 3), consists in working with
(BTg∗

i
(pi, R1), g

∗
i ), with R1 ≤ R0 small enough, and making the following obser-

vations9

1. One can find a subsequence of it converging to a Riemannian manifold
(BT, g∗) ([10], pg. 9).

2. For every i, (Bgi(pi, R1/2), gi) is isometric to the quotient of the space
(BTg∗

i
(pi, R1/2), g

∗
i ) by an appropriate local group10 of isometries Gi and

that Gi converges to a local group G ([10], pg. 9) which is locally isomorphic
to a Lie group ([10], Lemma 3.1 in pg. 10).

3. (Bd(x,R1/2), d) is locally isometric to (BT (R1/2), g
∗)/G, where BT (R1/2)

is the g∗-ball of radius R1/2 in BT (i.e the limit of BTg∗

i
(pi, R1/2)) (

11).

Thus by item 3 to study locally the space (X, d) around x it is enough to study the
limit spaces (BT (R1/2), g

∗)/G and this is what is done in [10]. What is important
to us about this conclusion is that one can study the collapse of manifolds with
boundary as long as one works on a finite number of balls at a definite distance
away from the boundary. This is essentially what is done in the proof of Lemma
1 in the Appendix and where the condition (Mi, gi) ∈ M(N0,Λ0) is used.

We describe now a relevant application of Lemma 1 which will be of use to
us in Proposition 5. We describe it first in rough terms and then in a precise
statement. Consider any solid torus with curvature bounded above by Λ0 (fixed)
and which is metrically close to an interval I of length between ∞ ≥ L0 > |I| ≥
1 > 0 (with L0 fixed) and with boundary metrically close to a point. Then, any
curve C in its boundary, which is not a contractible to a point (from now on
simply “contractible”) as a curve in the boundary, but that is contractible as a
curve in the solid torus, must have length greater or equal than some l0(Λ0, L0) >
0. A proof of this phenomenon can be given along the following lines. Suppose
that a curve C in the boundary of the solid torus Ω, that is not a contractible
curve as a curve in ∂Ω but is contractible as a curve in Ω has very small length.
Then one can “unwrap” Ω, namely take a non-collapsed cover Ω̃, which is also
a solid torus. In particular ∂Ω is covered by a non-collapsed two-torus ∂Ω̃. But
then the closed curve C , which is contractible in Ω, lifts to a closed, equal length

9We do not comment here about some technical issues on smoothing.
10See [10] and ref. therein.
11This is easy to check and is left to the reader.
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and non-contractible curve C̃ in ∂Ω̃. But there are no non-contractible curves C̃

in ∂Ω̃ of very small length. This idea is made rigorous in the proof of Proposition
3. This behavior is explicit in Example I.b as we explain in what follows. In there
the Riemannian solid tori (Mn, gn) are collapsing to a segment of length one. No

matter the value of n, consider the C0 = πn(C̃0) where C̃0 = S
1 ×{1} ⊂ B

2 × S
1.

The gn-length of C0 is equal to the length of C̃0 and therefore equal to 2π.
Moreover any curve C in ∂Mn which is non-contractible as a curve in ∂Mn but
that is contractible as a curve in Mn has length greater than that of C0, i.e. 2π.
In other words, no matter the value of n, there are no such curves having a small
length.

We give an statement of what we described above in Proposition 3. The
statement is a bit more general than what was explained before as we do not
make hypothesis on the boundary of the solid tori. For this reason too it is
more general than what we will need in this article but it can be useful in
other investigations. The proof is given in all detail partly to exemplify how
the techniques apply.

Proposition 3 For any Λ0, δ0 < 1/2 and L0 there is ℓ0 > 0 such that for any
sequence (Ωi, gi) of solid tori inside a volume collapsing sequence of Riemannian
manifolds (Mi, gi) with |Ricgi | ≤ Λ0, having

Q0. radgi(Ωi) ≥ 1, dMi

gi (∂Ωi, ∂Mi) ≥ δ0 > 0, and which is

Q1. Metrically collapsing to an interval (I, | |), and,
Q2. Posses a sequence of closed curves Ci ⊂ ∂Ωi non-contractible in ∂Ωi but

contractible in Ωi with lengthgi(Ci) ≤ ℓ0,

we have |I| ≥ L0.

Remark 4 The hypothesis that the sequence (Mi, gi) is volume collapsing can be
seen to be unnecessary.

Proof of Proposition 3: For the proof it is worth to keep reference to the Figure
3. We will argue by contradiction. Suppose that there is Λ0, δ0 < 1/2 and L0

such that for every m = 1, 2, 3, . . . there are sequences (in “i”) (Ωm,i, gm,i) ⊂
(Mm,i, gm,i), where for every m, (Mm,i, gm,i) is a volume collapsing sequence of
Riemannian manifolds with |Ricgm,i

| ≤ Λ0, such that

Q̄0. radgm,i
(Ωm,i) ≥ 1, d

Mm,i

gm,i
(∂Ωm,i, ∂Mm,i) ≥ δ0 > 0, and which is,

Q̄1. Metrically collapsing to an interval (Im, | |), with L0 ≥ |Im|, and which

Q̄2. Posses a sequence of closed curves Cm,i ⊂ ∂Ωm,i non-contractible in ∂Ωm,i

but contractible in Ωm,i and of lengthgm,i
(Cm,i) ≤ 1/m.

Using that every sequence (in “i”) (Mm,i, gm,i) is volume collapsing and using
Q̄1, one can select for every m an i(m) such that

V olgm,i(m)
(Mm,i(m)) ≤ 1/m, and distGH(Ωm,i(m), Im) ≤ 1/m.
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In particular the sequence (in “m”) (Mm,i(m), gm,i(m)) is volume collapsing. Also,

because radgm,i(m)
(Ωm,i(m)) ≥ 1 and because of Q̄1 we have L0 ≥ |Im| ≥ 1 for

every m (12). Therefore there is a subsequence of (Ωm,i(m), gm,i(m)) (indexed
again by “m”) metrically collapsing to an interval I ′ with L0 ≥ |I ′| ≥ 1. We
continue working with this subsequence in what follows. This implies in par-
ticular that diamgm,i(m)

(Ωm,i(m)) ≤ D0 for some D0 and for all m (13). Fi-

nally note, to be used below, that from Q̄2 there is, for every m, a curve
Cm,i(m) ⊂ ∂Ωm,i(m) non-contractible in ∂Ωm,i(m) but contractible in Ωm,i(m) and
of lengthgi(m)

(Cm,i(m)) ≤ 1/m.

By the Example II, if we let M ′
m = Tdm

(Ωm,i(m), δ0) with dm = d
Mm,i(m)

gm,i(i) , then
(M ′

m, gm,i(m)) lies in M(N0,Λ0) for some N0(D0,Λ0, δ0). On the other hand as
M ′

m ⊂ Mm,i(m) then (M ′
m, gm,i(m)) is also a volume collapsing sequence. Hence,

by Lemma 1, one can find a sequence of (δ0/4, δ0/2)-connected components of

M ′
m containing Ωm,i(m), to be denoted by Ω̂m, and having a subsequence (indexed

again by “m”) metrically collapsing to an interval Î containing I ′. We continue
using this subsequence in what follows. For the sake of concreteness assume that
Î is the interval [0, |Î |].

Consider the fibrations fm : Ω̂m → Î as is explained in Lemma 1. As m → ∞,
the fibers f−1

m (x) collapse to a point and so does ∂Ω̂m = f−1
m (0) to the point 0 in

Î. Observe that the right point of I ′ must be the right point of Î, that is |Î |, and
therefore it is a singular point, namely Sing(Î) = {|Î |}. We observe too that from

the very definition of M ′
m we have, for every q ∈ ∂Ωm,i(m), d

Ω̂m

gm,i(m)
(q, ∂Ω̂m) <

δ0 < 1/2 (14). It follows from this that for m ≥ m0 with m0 big enough (i)
∂Ωm,i(m) ⊂ f−1

m ([0, 1/2]), (ii) f−1
m (1/2) lies in the interior of Ωm,i(m) and (iii)

f−1
m (0) lies in the exterior of Ωm,i(m). In this way ∂Ωm,i(m) separates f

−1
m ([0, 1/2]),

which is diffeomorphic to T
2 × [0, 1/2], into two connected components. This

implies15 that ∂Ωm,i(m) is isotopic to f−1
m (x) for any x ∈ [0, 1/2]. In particu-

lar if Cm,i(m) is non-contractible in ∂Ωm,i(m) then it is also non-contractible in

f−1
m ([0, 1/2]). Moreover, by Lemma 1, there is a subsequence (indexed again

by “m”) and coverings πm :
˜̂
Ωm → Ω̂m such that (

˜̂
Ωm, g̃m,i(m)) converges in

C1,β to a T
2-symmetric metric on B

2 × S
1 and (π−1

m (f−1
m ([0, 1/2])), g̃m,i(m)) con-

verges in C1,β to a T
2-symmetric metric on T

2 × I. For this reason there are
m1 and ℓ1, such that for any m ≥ m1 any non contractible closed curve in
(π−1

m (f−1
m ([0, 1/2])), g̃m,i(m)) has length greater or equal than ℓ1. But for every

m, the curve Cm,i(m) is closed and contractible in Ωm,i(m) and thus contractible

12In general, if (Xm, dXm
)

GH
−−−→ (X, dX) and dXm

(xm, x′
m) ≥ Γ for all m, then there are x and x′ in X

with dX(x, x′) ≥ Γ (use the definition of GH-convergence). On the other hand if radgm,i(m)
(Ωm,i(m)) ≥

1 then there are xm and x′
m in Ωm,i(m) such that d

Ωm,i(m)
gm,i(m)

(xm, x′
m) ≥ 1.

13In general if (Xm, dm)
GH
−−−→ (X, d) then there is D0 such that diamdXm

(Xm) ≤ D0 for all m (use

the definition of GH-convergence).
14Note for this that for any q ∈ ∂Ωm,i(m) we must have Bgm,i(m)

(q, δ0) ∩ ∂Ω̂m 6= ∅, because Ω̂m is a

(δ0/4.δ0/2)-c.c.
15This is a simple exercise in topology (use Alexander’s theorem in [1] for two-tori in S3).
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also in
˜̂
Ωm. Therefore its lift C̃m,i(m) to π

−1
m (f−1

m [0, 1/2])) ⊂ ˜̂
Ωm is also closed and

has the same length, which, as was observed above, is less or equal than 1/m. If
m ≥ max{m1, 2/ℓ1} then lengthgi(m)

(Cm,i(m)) ≤ ℓ1/2 which is not possible. �

m,i(m)

M

−1

f

πm

−1
mf [0,1/2]( ))

m

m

πm (

1/20

’

Ωm

Ωm
~

I ’

I

Ω

Figure 3: A representation of the argument given in the proof of Proposition 3. The little curve
in the cover manifold represents the lift C̃m,i(m) of Cm,i(m). If m ≥ max{m1, 2ℓ1} the length of

C̃m,i(m) would be too small to be non-contractible in π−1
m (f−1

m ([0, 1/2])).

2.5 A special annuli decomposition.

The results of the previous section allow us to show the existence of an annuli
decomposition with special properties.

Proposition 4 Let g be a complete metric in R
3 with

|Ricg| ≤
Λ0

r2
, and lim

r̄↑∞

V olg(Bg(o, r̄))

r̄3
= 0.

Then, there is an annuli decomposition U with the following properties: for every
ǫ > 0 there is k(ǫ) such that for any k ≥ k(ǫ) every piece (Uk,l, gk) is ǫ-close in
the GH-metric to a space Xk,l of one of the following two forms,

D̃1. An interval, in which case Uk,l is either diffeomorphic to T
2 × I or a solid

torus B2 × S1, or,

D̃2. A two-orbifold, in which case Uk,l is diffeomorphic to a Seifert manifold
with at least one boundary component.

There are fibrations fk,l : Uk,l → Xk,l, such that for any k ≥ k(ǫ) the fibers

f−1
k,l (x), which are diffeomorphic either to T

2 or S
1, are ǫ-collapsed. Moreover
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Ĩ1. In case D̃1, either Sing(Xk,l) is empty or is one of the extreme points of

the interval. In addition, for any non singular point x, the fiber f−1
k,l (x) is

diffeomorphic to T
2 and if x is a singular point then f−1

k,l (x) is diffeomorphic

to S
1.

Ĩ2. In case D̃2, the fibers f−1
k,l (x), which are all diffeomorphic to S

1, are the
fibers of the Seifert-fibration.

Before going into the proof we introduce some notation. For every k we define
the scaled metric

(9) gk =
1

102k
g

Therefore Ag(10
n1+k, 10n2+k) = Agk(10

n1 , 10n2) which to simplify notation we
will write simply as Ak(10

n1 , 10n2). We say that a set of embedded two manifolds
{Sk,j, j = 1, . . . , j(k)} is “a cut of R3 along the annulus Ak(10

−1, 1)” if

1. Sk,j ⊂ Ak(10
−1, 1) for all j = 1, . . . , j(k), and,

2. Every curve α : [0, 1] → R
3 with α(0) ∈ Bgk(o, 10

−1) and α(1) ∈
(
R
3 \

Bgk(o, 1)
)
intersects at least one of the Sk,j’s, and,

3. The item 2 does not hold if one deletes one of the Sk,j’s from the set.

Observe that if a set of manifolds {S̄k,j} enjoy item 1 and item 2, then one can
remove, if necessary, some elements of the set to satisfy also item 3. Also, any
surface Sk,j of a “cut” is necessarily the boundary of two connected components

of R3 \⋃j=j(k)
j=1 Sk,j, one intersecting Bgk(o, 10

−1) and the other intersecting R
3 \

Bgk(o, 1) (
16).

Proof: For the proof it may be worth to keep in mind the Figure 1. As ex-
plained in the Example I in Section 2.4.3, the spaces (Ak(10−2, 104), gk) lie in

M(N0, 10
2Λ0) for some k-independent N0. Moreover for any p ∈ Ak(1, 10) we

have dR
3

gk (p, ∂Ak(10−2, 104)) > 1/2. Granted these two facts we can use then
Lemma 1 to obtain with no difficulty that:

There is a set {Ūk,j , j = 1, . . . , j(k); k = k0, k0 + 2, . . .} of (for each k)

(10−2/2, 10−2)-connected components of Ak(10−2, 104) with the following proper-
ties.

1. The set {Ūk,j, j = 1, . . . , j(k)} covers Ak(10−1, 103) for every k = k0, k0 +
2, . . ..

2. There are intervals or two-orbifolds, to be denoted by X̄k,l, and for every
m = 1, 2, 3, . . . there is km, such that if k ≥ km then (Ūk,j, gk) is 1/m-close
in the GH-metric to X̄k,l.

16A connected component cannot intersect Bgk (o, 10
−1) and R3 \Bgk (o, 1) simultaneously, otherwise

item 2 is violated. Also, if a connected component does not intersect any of them then one can remove
any boundary component still satisfying item 2 and therefore violating item 3.
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3. There are fibrations f̄k,j : Ūk,j → X̄k,j, with the properties Ĩ1 and Ĩ2, such
that if k ≥ km their fibers are 1/m-collapsed.

The fibrations f̄k,l : Ūk,l → X̄k,l can be chosen in such a way that if Ūk,l and
Ūk′,l′ overlap and have fibers of the same dimension, namely both have fibers of
dimension one or both have fibers of dimension two, then the foliations of fibers
coincide on the overlap, while if one has fibers of dimension one and the other of
dimension two, then fibers of dimension one are included in fibers of dimension
two. For this the reader can consult the geometric construction of the fibrations
in [9] and [10].

The desired sets Uk,l of the annuli decomposition will be defined below simply
as regions of the sets Ūk,j appropriately “cut out along the annuli Ak(10

−1, 1)”
using the fibers of the fibrations f̄k,l. This has to be done in such a way to satisfy
items 1-5 of the definition of annuli decompositions. Once this is performed the
fibrations fk,l : Uk,l → Xk,l are defined by fk,l := f̄k,l|Uk,l

: Uk,l → Xk,l :=

f̄k,l(Uk,l), where Ūk,j is that piece containing Uk,l and f̄k,l : Ūk,l → X̄k,l its
fibration. We explain how the regions Uk,l are constructed in what follows.

Fix a value of k in {k0, k0+2, . . .}. Then, on those X̄k,j which are an interval
select a set of points x̄j and then on those X̄k,j which are a two-orbifold select a
set of (disjoint) closed curves denoted by C̄k,j,i, such that the set of tori {Sk,j} :=

{f̄−1
k,j (x̄k,j), f̄

−1
k,j,i(C̄k,j,i), all i, j, k} is a “cut of R3 along the annulus Ak(10

−1, 1)”
as defined before the start of the proof.

Now, for every k in {k0, k0 + 2, . . .} let Ûk be the set of compact connected
regions of R3 with boundary components in {Sk,j, Sk+2,j′, all j and j′}. As men-
tioned before the start of the proof every Sk,l is the boundary of two of such

regions: one in Ûk and intersecting R
3 \ Bgk(o, 1), denoted from now on by

Û+(Sk,j), and the other in Ûk−2 and intersecting Bgk(o, 10
−1), denoted from

now on by Û−(Sk,j). Moreover we have the following two properties.

1. For every Sk,j, the piece Û−(Sk,j) is equal to a piece Û+(Sk−2,j′) for some

Sk−2,j′, but not necessarily every piece Û+(Sk,j) is a piece Û−(Sk+2,j′) (
17).

2. Every piece Û+(Sk,j) is included in Ak(10
−1, 102) (18).

We define now the pieces Uk0,l:

• Redefine the set Ûk0
by eliminating from it those pieces Û+(Sk0,j) which

are not equal to a piece Û−(Sk0+2,j′).

• Every Û+(Sk0+2,j) which is not a Û−(Sk0+4,j′) is glued to those pieces in Ûk0

sharing a boundary component with it. We define the resulting manifold as

17To see 1 observe that if a piece Û−(Sk,j) is not a Û+(Sk−2,j′ )-piece then it does not have a

boundary component in {Sk−2,j , all j}. Therefore, as Û−(Sk,j) must intersect Bgk (o, 10
−1) there is a

point p ∈ Û−(Sk,j) with dR
3

gk
(p, o) < 1. Now, any length minimizing geodesic segment joining p and o

must intersect ∂Û−(Sk,j), say at q. But ∂Û−(Sk,j) ⊂ Ak(1, 10) and therefore dR
3

gk
(q, o) > 1 which is

impossible as q belongs to the length minimizing geodesic.
18To see this use directly item 2 of the definition of “cut”.
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one of the Uk0,l’s. The other pieces Uk0,l are defined as those in Ûk0
which

were not glued to a Û+(Sk0+2,j) as was explained. In either case every
piece Uk0,l is included in Ak0

(10−1, 103) (use 2) and in one and only one of
the Ūk0,j’s, which as was explained above is used to defined the fibrations
fk0,l : Uk0,l → Xk0,l.

We define next the pieces Uk0+2,l:

• Redefine the set Ûk0+2 by eliminating from it those pieces Û+(Sk0+2,j) which

are not equal to a piece Û−(Sk0+4,j′) and which, as was explained before,

were glued to pieces in Ûk0
to form some of the pieces Uk0,l.

• Every Û+(Sk0+4,j) which is not a Û−(Sk0+6,j′) is glued to those pieces in

Ûk0+2 sharing a boundary component with it. We define the resulting man-
ifold as one of the pieces Uk0+2,l. The other pieces Uk0+2,l are defined as

those in Ûk0+2 which were not glued to a Û+(Sk0+4,j) as was explained. In
either case every piece Uk0+2,l is included in Ak0+2(10

−1, 103) (use 2) and
in one and only one of the Ūk0+2,j’s, which as was explained above is used
to defined the fibrations fk0+2,l : Uk0+2,l → Xk0+2,l.

To define the pieces Uk0+4,l, Uk0+6,l and so on, proceed in the same way as
the pieces Uk0+2,l were defined. It is straightforward to check that the family
U = {Uk,l} thus defined satisfies the Definition 1 of annuli decomposition. �

3 Proof of Theorem 1.

We will work in this section with the annuli decomposition defined in the previous
section. We already defined in Section 2.3 the setN of boundary components of U
which we will denote here generically by T 2 (instead of S because they are tori).
We also defined the subclass N o as those tori T 2 in N for which o ∈ M(T 2)
and observed that they were linearly ordered, i.e. N o = {T 2o

0 , T 2o
1 , . . .}, with

T 2o
i ≪ T 2o

i′ if i < i′. For later convenience we further divide N \ N o into two
subclasses denoted by N� and N♦; N� (resp. N♦) is defined as the set of tori
in N \ N ◦ for which M(T 2) is a solid torus (resp. not a solid torus). Tori in
N� (resp. N♦) will denoted as T 2� (resp. T 2♦). For every T 2 in N there is
a unique piece Uk,l (including the possibility of Uk0−2) such that T 2 ∈ Uk,l and
Uk,l ⊂ M(T 2). In this way the indexes k, l are univocally defined and we can
write k(T 2), l(T 2). We will continue using the notation (9) in particular we will
use gk(T 2 .

The following proposition is crucial for the proof of the Theorem 1. Observe
that the statement is suitable to be used in an iterative argument as will be the
case when we use it in the proof of Theorem 1.

Proposition 5 There exits ǫ∗, ℓ∗, k∗ such that if for a T 2�
1 ∈ N� with k(T 2�

1 ) ≥
k∗ we have

H1. (Uk(T 2�
1 ),l(T 2�

1 ), gk(T 2�
1 )) is ǫ

∗-close in the GH-metric to an interval, and,
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H2. There is a curve C1 ⊂ T 2�
1 non-contractible in T 2�

1 but contractible in

M(T 2�
1 ) such that lengthg

k(T2�
1

)
(C1) ≤ ℓ∗,

then, Uk(T 2�
1 ),l(T 2�

1 ) is not the only Uk,l-piece of M(T 2�
1;m), and, if we denote by

T 2�
2 the second boundary component of Uk(T 2�

1 ),l(T 2�
1 ), we have

C1. (Uk(T 2�
2 ),l(T 2�

2 ), gk(T 2�
2 )) is 2ǫ

∗/3-close in the GH-metric to an interval, and,

C2. There is a curve C2 ⊂ T 2�
2 non-contractible in T 2�

2 but contractible in

M(T 2�
2 ) such that lengthg

k(T2�
2

)
(C2) ≤ 2ℓ∗/3.

Proof: By contradiction assume that for every ǫ∗m = 1/m, ℓ∗m = 1/m and k∗m =
m, m = 1, 2, 3, . . ., there is T 2�

1;m ∈ N� with k(T 2�
1;m) ≥ k∗m such that

H̄1. (Uk(T 2�
1;m),l(T 2�

1;m), gk(T 2�
1;m)) is ǫ

∗
m-close in the GH-metric to an interval, and,

H̄2. There is a curve C1;m ⊂ T 2�
1;m non-contractible in T 2�

1;m but contractible in

M(T 2�
1;m) such that lengthg

k(T2�
1;m

)
(C1;m) ≤ ℓ∗m,

but that, if it is not that Uk(T 2�
1;m),l(T 2�

1;m) = M(T 2�
1;m), then, after denoting by

T 2�
2;m the second boundary component of Uk(T 2�

1;m),l(T 2�
1;m), one of the following two

assertions does not hold

C̄1. (Uk(T 2�
2;m),l(T 2�

2;m), gk(T 2�
2;m)) is 2ǫ

∗
m/3-close in the GH-metric to an interval,

C̄2. There is a curve C2;m ⊂ T 2�
2;m non-contractible in T 2�

2;m but contractible in

M(T 2�
2;m) such that lengthg

k(T2�
2;m

)
(C2;m) ≤ 2ℓ∗m/3.

We will show that this leads to an impossibility. Such impossibility will come
directly as the result of proving the following three steps.

• Step A. Let T 2�
1;m be a sequence satisfying H̄1 and H̄2. Then

radg
k(T2�

1,m
)
(M(T 2�

1;m))
m→∞−−−−→ ∞.

Step A shows that there is m1 such that for every m ≥ m1, Uk(T 2�
1;m),l(T 2�

1;m) is not

the only piece of M(T 2�
1;m) (because if it is so then, by item 1 of Definition 1,

radgk(T 2�
1;m)(M(T 2�

1;m)) ≤ 103). The statement of Step B below assumes m ≥ m1.

• Step B. (m ≥ m1). Let T 2�
2;m be the second component of Uk(T 2�

1;m),l(T 2�
1;m).

Then there is a covering sequence to a subsequence of

(Uk(T 2�
1;m),l(T 2�

1;m) ∪ Uk(T 2�
2;m),l(T 2�

2;m), gk(T 2�
1;m))
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converging in C1,β to a flat T2-symmetric metric product on T
2 × I1,2 for some

interval I1,2. That is, the limit metric on T
2 × I is of the form dx2 + h̃0 with h̃0

an (x-independent) T
2-symmetric metric on T

2.

• Step C. There is m2 ≥ m1 such that for all m ≥ m2 and m in the subse-
quence of Step B, C̄1 and C̄2 hold.

From now until the end of the proof of the Proposition and to simplify notation
we let

U1;m = Uk(T 2�
1;m),l(T 2�

1;m), M1;m =M(T 2�
1;m),

g1;m = gk(T 2�
1;m), k1;m = k(T 2�

1;m)

Proof of Step A. Assume on the contrary radg1;m(M1;m) ≤ R0. Then, it is

simple to see 19 that M1;m must be a subset of an annulus A(10k1;m−1, 10k1;m+k•)
for some k• > 0 independent of m. On the other hand radg1;m(M1;m) ≥ 102 −
10−1 > 90 (because of item 2 of Definition 1 applied to U1;m). Under these
hypothesis we obtain

1. (using H̄1) A subsequence of the sequence of solid tori (M1;m, g1;m) (indexed
still by “m”) metrically collapses to a compact interval20 I of length |I|
greater or equal than 90, and,

2. (using H̄2) For every ℓ0 we have, limm→∞ lengthg1;m(C1;m) ≤ ℓ0.

We can then apply Proposition 3 (21) to conclude that |I| ≥ L0 for any L0 and
therefore that |I| = ∞, contradicting the compactness of the interval I. ◭

We recount a little the setup and terminology before we go into Step B. Let
T 2�
2;m be the second boundary component of U1;m and let U2;m := Uk(T 2�

2;m),l(T 2�
2;m)

be the Uk,l-piece, other than U1;m, having T 2�
2;m as a boundary component. Of

course k2;m := k(T 2�
2;m) = k(T 2�

1;m) + 2 = k1;m + 2. Following the same pattern of
notation as before we let

U1,2;m = U1;m ∪ U2;m, g2;m = gk(T 2�
2;m)

Proof of Step B. To this end first note that (U1,2;m, g1;m) collapses metrically
to an interval22 to be denoted by I1,2; (U1;m, g1;m) collapses to I1 and (U2;m, g2;m)
collapses to I2, and we have I1,2 = I1 ∪ I2 and |I1,2| = |I1| ∪ |I2|. Without loss of

19For any p ∈ M1(m), dR
3

g1;m
(p, o) is less or equal than dR

3

g1;m
(p, T 2�

1;m) + dR
3

g1;m
(T 2�

1;m) + dR
3

g1;m
(T 2�

1;m, o)

which is less or equal than R0 + diamg1;m (T 2�
1;m) + 1. But the g1;m-diameter of T 2�

1;m tends to zero (by

H̄1) and so we can assume that it is less or equal than some D0.
20It must converge to an interval and not a two-orbifold (the only two options) because (M1;m, g1;m)

contains (U1;m, g1;m) which by H̄1 converges to an interval.
21To apply Proposition 3 use as Mm in its statement the manifold Mm := T

dR
3

g1;m

(M1;m, 10−2). It is

direct that (Mm, g1;m) is a volume collapsing sequence.
22Again, this is so because (U1;m, g1;m), with U1(m) ⊂ U1,2;m, collapses metrically to an interval.
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generality we assume that T 2�
1;m collapses to the left boundary point of the interval

I1 (or, the same, of I1,2) as an interval in R. Further, following Proposition 4
and Lemma 1 (see also Proposition 6 in the Appendix for a technical point on
the explicit form of the limit), there is a subsequence (indexed again by m) and

a covering sequence πm : Ũ1,2;m → U1,2;m such that

(10) (Ũ1,2;m, g̃1;m)
C1,β

−−−→ (T2 × I1,2, g̃1 = dx2 + h̃1)

where, for x ∈ I1,2, h̃1(x) := h̃1|T2×{x} is a T
2-symmetric Riemannian metric.

Note that because the convergence (10) is in C1,β, the “path” x → h̃1(x) is C
1.

Therefore the second fundamental forms Θ̃1(x) := Θ̃1

∣∣
T2×{x}

=
(
1
2∂xh̃

)∣∣
T2×{x}

of the slices T
2 × {x} define a continuous “path” of T2-symmetric, symmetric

two-tensors. Denote the mean curvatures by θ̃1(x) := trh̃1(x)
Θ̃1(x). Moreover,

also from Proposition 4 and Lemma 1, there are C1-fibrations fm : U1,2;m → I1,2
such that

(11) π−1
m (f−1

m (x))
C1

−−→ T
2 × {x}.

The C1 convergence here is not optimal for the argumentation below as we want
to have control on the second fundamental forms of the fibers. However in the
technical Proposition 7, which we prove in the Appendix, it is shown that in this
situation fm can indeed be chosen to achieve convergence in C2 in (11). We will
assume that this is the case from now on.

We want to prove that h̃1(x) = h̃0. This will follow directly from the next

two claims and the identity ∂xh̃1(x) = 2Θ̃1(x).

Claim 1: If θ̃1(x) = 0 at every slice of T2 × I1,2 then Θ̃1(x) = 0 at every slice
of T2 × I1,2.

Claim 2: θ̃1(x) = 0 at every slice of T2 × I1,2.

We prove first Claim 1. Let ϕm : T2 × I1,2 → U1,2;m be a sequence of diffeomor-

phisms such that ϕ∗
m(g̃1;m) converges in C1,β to g̃1. Then we can write23

(12) ϕ∗
m(g̃1;m) = α2

mdx
2 + h̃1;m(x)

where the real function αm : T2 × I1,2 → R
+ converges (in C1), and as m→ ∞,

to the constant function one on T
2 × I1,2 and h̃1;m converges (in C1) to h̃1. Let

Θ̃1;m(x) and θ̃1;m(x) be the second fundamental forms and mean curvatures of
the slices T2 × {x}, as slices in (T2 × I1,2, ϕ

∗
m(g̃1;m)). Then

(13) ∂xθ̃1;m = −∆h̃1;m
αm +

(
|Θ̃1;m|2

h̃1;m
+Ricg̃1;m(n, n)

)
αm

where ∆h̃1;m
is the h̃1;m-Laplacian on the slices T2×{x} and n is the unit normal

field to the slices. Let ζ(x) be a C1 non-negative real function of one variable with

23If necessary, ϕm can be slightly modified to avoid cross terms, as in the metric expression (12).
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support in I1,2 and consider the volume measure on T
2 × I1,2, given by dVm =

dAh̃1;m
dx, where dAh̃1;m

is the area element of h̃1;m on every slice. Multiplying

(13) by ζdVm and integrating we obtain: for the integral of the left hand side
and after integration by parts in the variable x

(14) −
∫

T2×I1,2

(
(∂xζ)θ̃1;m + ζ2αm(θ̃1;m)2

)
dVm

where we used ∂xdAh̃1;m
/dAh̃1;m

= αmθ̃m, and, for the integral of the first term of

the right hand side exactly the value zero because ζ is constant over every slice.

As αm
m→∞−−−−→ 1 and θ̃1;m

m→∞−−−−→ θ̃1 (in C1 and C0 resp. and all over T
2 × I1,2)

we conclude that if θ̃1 = 0 then (14) goes to zero, and that this is so for any ζ.
Therefore the integral of the second term in the right hand side of (13), namely

∫

T2×I1,2

ζ
(
|Θ̃1;m|2

h̃1;m
+Ricg̃1;m(n, n)

)
αmdVm

must go to zero independently of ζ. But Ricg̃1;m(n, n) ≥ 0 for every m and thus,

in the limit, we must have
∫
ζ|Θ̃1|h̃0

dAh̃0
dx = 0 for every ζ. Hence Θ̃1 = 0 as

claimed.

We prove now Claim 2. We show first the impossibility of having, for some x̄,
θ̃1(x̄) < 0. After that we prove the impossibility of having θ̃1(x̄) > 0. To do so we
will appeal to the following standard fact. Fact 1: Let S ⊂M be a hypersurface
on a manifold M with a unit-normal field n. Let p ∈M and γ a geodesic segment
starting at S in the direction of n, ending at p and with dist(p, S) = length(γ). If
θ|S ≤ θ0 < 0 and Ric ≥ 0 all over a neighborhood of γ, then length(γ) ≤ 2/|θ0|.

• Suppose that, for some x̄, θ̃1(x̄) < 0. Then by (11) we conclude that there

is m2 ≥ m1 such that for every m ≥ m2 we have θ1;m|f−1
m (x̄) < θ̃1(x̄)/2, where

θm(x) is the mean curvature of f−1
m (x), namely π∗m(θm) = θ̃m. But note that: the

solid torusM(f−1
m (x̄)) lies insideM(T 2�

1;m) which is a region of non-negative Ricci,

that ∂M(f−1
m (x̄)) is f−1

m (x̄) and finally by StepA that radg1;m(M(f−1
m (x̄))) → ∞.

This easily contradicts Fact 1, as then for any m ≥ m2 there is a point pm and
a geodesic segment in M(f−1

m (x̄)) starting at f−1
m (x̄) and ending at pm of g1,m-

length equal to radg1;m(M(f−1
m (x̄))) and therefore realizing the g1;m-distance from

pm to f−1
m (x̄).

• Suppose that, for some x̄, θ̃1(x̄) > 0. Again by (11) we conclude that there

is m′
2 ≥ m1 such that for every m ≥ m′

2 we have θ1;m|f−1
m (x̄) > θ̃1(x̄)/2. We

will prove that there is a sequence of geodesic segments ηm, for m ≥ m3, lying
entirely inside R3 \(M(T 2�

1;m)◦∪Bg(o, r0)), starting at T 2�
1;m and ending at a point

pm and with

dR
3

g1;m(pm, T
2�
1;m) = lengthg1;m(ηm),

lengthg1;m(ηm)
m→∞−−−−→ ∞.
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About this sequence we make two crucial remarks: first, the geodesic ηm will lie
entirely in the open set R3 \Bg(o, r0) where the Ricci curvature is non-negative;

second, the mean curvature at the initial point of ηm in T 2�
1;m, and in the direction

η′m (which is opposite to the one used to define θ̃1(x)) is less or equal than

−θ̃1(x̄)/2 < 0. That θ̃1(x̄) cannot be positive, contrary to what was assumed,
will follow directly from these two remarks and Fact 1. We move then to prove
the existence of such sequence.

Recall that a ray is an infinite-length geodesic diffeomorphic to [0,∞) =
R
+ ∪ {0} minimizing the distance between any two of its points. Let Rr0 be the

set of rays ξ in (R3, g) starting at a base point b(ξ) in ∂Bg(o, r0) and lying entirely
inside the closed set R3 \Bg(o, r0). The family Rr0 is easily seen to be non-empty
and the union of the rays in Rr0 to be a closed set in R

3. Moreover observe the
following simple fact about Rr0 to be used later. Consider a sequence γj of
geodesic segments lying entirely in R

3 \ Bg(o, r0), having one of its end points
in ∂Bg(o, r0) and minimizing the distance between its two extreme points. If
lengthg(γj) → ∞, then there is a subsequence of γj converging (on compact sets
of R3) to a ray in Rr0.

Let PL be the set of points in the rays of Rr0 lying at a g-distance L from
the base point of the ray to which they belong, more precisely

PL = {p ∈ ξ ∈ Rr0/d
R

3

g (p, b(ξ)) = L}

Now, for every m there is Lm > 0 sufficiently big with the following properties24:

0

S m b m

u m

t m
1,2;m

U

0

m

u

o

0

γ

ξ

p m
p

Figure 4: Representation of the construction in the proof of Step B. In terms of length it more

economic to go from p0 to tm using the path: p0
byξ0−−−→ u0

by short curve
−−−−−−−−−→ um

byγm
−−−→ tm, rather

than going from p0 to tm along γm.
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P1. PLm
⊂

(
R
3 \M(T 2�

1;m)
)
, and,

P2. dR
3

g1;m(PLm
, T 2�

1;m) ≥ m (note that the distance is with respect to g1;m).

Let γm be a geodesic segment from a point tm in T 2�
1;m to a point pm in PLm

and

realizing the g1;m-distance between the closed sets T 2�
1;m and PLm

of R3. Because

of P1 such segment must lie entirely in R
3\M(T 2�

1;m)◦ but it is a priori not evident

that it will not intersect Bg(o, r0). We show now that there is m3 ≥ m′
2 such

that for every m ≥ m3 γm∩Bg(o, r0) = ∅. With this information and P2 we can
conclude that ηm := γm is the sequence we claimed for and the claim 2 will be
finished. Suppose on the contrary that there is a subsequence (denoted again by

γm) such that γm ∩Bg(o, r0) 6= ∅. In this case γm ∩Bg(o, r0), as a closed set in
γm, has a point bm nearest to tm and a point sm nearest to pm. Let γ̂m be the
piece of γm enclosed between tm and bm. Obviously γ̂m lies inside R

3 \Bg(o, r0).
Therefore, as commented above, the sequence γ̂m has a subsequence (denoted
again by γ̂m) converging to a ray ξ0 (on compact sets of R3). Let u0 be a point
in ξ0 at a g-distance 4r0 from the base point b(ξ0) at ∂Bg(o, r0). Let um be a
sequence of points in γ̂m converging to u0. Then for every ǫ > 0 there is m(ǫ)
such that for any m ≥ m(ǫ) we have

dR
3

g (u0, um) ≤ ǫ, and 4r0 − ǫ ≤ dR
3

g (um, bm) ≤ 4r0 + ǫ

Let p0 be in ξ0 at a g-distance Lm from b(ξ0), which, by definition, is a point in
PLm

. Then, if m ≥ m(ǫ) we can write

dR
3

g (PLm
, T 2�

1;m) ≤ dR
3

g (p0, tm) ≤ dR
3

g (p0, u0) + dR
3

g (u0, um) + dR
3

g (um, tm)

≤ Lm − 4r0 + ǫ+ dR
3

g (um, tm)

On the other hand

dR
3

g (Pm, T
2�
1;m) = dR

3

g (pm, tm) ≥ dR
3

g (pm, sm) + dR
3

g (bm, tm)

≥ Lm − 2r0 + dR
3

g (bm, tm) ≥ Lm − 2r0 + dR
3

g (um, tm)

where we used that dR
3

g (pm, sm) ≥ Lm−2r0 which is easily deduced from the fact

that, because pm ∈ PLm
, we have dR

3

g (pm, ∂Bg(o, r0)) ≤ Lm. The two equations
before lead readily to the inequality 2r0 ≤ ǫ which is impossible if one choses for
instance ǫ = r0. A representation of the construction can be seen in Figure 4.
This finishes the proof of Claim 2 and therefore of Step B. ◭

Proof of Step C. We work here with the subsequence of Step B, but to simplify
notation still use the subindex m. On U1,2;m define the C1 vector field Wm =

∇fm/|∇fm|2 and on Ũ1,2;m define the lifted function f̃m = fm ◦πm and the lifted

vector field W̃m = ∇f̃m/|∇f̃m|2. Wm and W̃m define flows ψm and ψ̃m on U1,2;m

24If M(T 2�
1;m) ⊂ Bgk1;m

(o, L̄m) then take Lm = mL̄m10k1;m .
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and Ũ1,2;m respectively. Because dfm(Wm) = 1 and df̃m(W̃m) = 1 the flows ψm

and ψ̃m take fibers into fibers, that is if x1, x2 ∈ I then

ψm(x2 − x1,−) : f−1
m (x1) → f−1

m (x2), and ψ̃m(x2 − x1,−) : f̃−1
m (x1) → f̃−1

m (x2)

Fix x0 ∈ I1,2. Let χ̃m : T2 → f̃−1
m (x0) be chosen (to be concrete) such that as

m → ∞ and as f̃−1
m (x0)

C2

−−→ T
2 × {x0}, χm converges in C2 to the “identity”

diffeomorphism: t ∈ T
2 → (t, x0) ∈ T

2 × I1,2. With the help of χ̃m and ψ̃m one
can define C2-diffeomorphisms

ϕ̃m : T2 × I1,2 → Ũ1,2;m, as ϕ̃m(t, x) = ψ̃m(x− x0, χ̃m(t))

for which we have ϕ̃m(T2×{x}) = f̃−1
m (x) and dϕ̃m(∂x) = W̃m. Moreover as W̃m

is perpendicular to the fibers we have the following form of the pull-back metric

ϕ̃∗
mg̃1;m = α2

mdx
2 + h̃1;m(x)

where αm and h̃1;m(x) (may be different from those in Step B but we name them

the same) converge in C1 to the function identically one and h̃0 respectively. We
inspect now the behavior of the length of curves on fibers when we translate
them along ∂x. Let C̃x1

be a curve on T
2 × {x1} and C̃x be the transported of

C̃x1
by ∂x to T

2 × {x}. Then, as ∂xh̃m = 2α1,mΘ̃1;m we obtain the following
direct estimate

(15) |∂xlengthh̃1;m(x)(C̃x)| ≤
(
sup

T2×{x} |Θ̃1;m|
)

2
lengthh̃1;m(x)(C̃x)

But, because of Step B, |Θ̃1;m|h̃1;m

m→∞−−−−→ 0 (uniformly on T
2 × I1,2) we deduce

that: for every 1 > ν > 0 there is m(ν) such that if m ≥ m(ν) and x1, x2 ∈ I1,2,
then
(16)

(1− ν)lengthh̃1;m(x1)
(C̃x1

) ≤ lengthh̃1;m(x2)
(C̃x2

) ≤ (1 + ν)lengthh̃1;m(x1)
(C̃x1

)

Now, from (16) and noting that the result of transporting a curve Cx1
⊂ f−1

m (x1)
(closed or not) by Wm to a curve Cx2

⊂ f−1
m (x2) is the same as the result of

lifting Cx1
to an (equal length) curve C̃x1

⊂ T
2 × {x1} by means of πm ◦ ϕ̃m,

transport it by ∂x to a curve C̃x2
, and then push it down to an (equal length)

curve Cx2
⊂ f−1

m (x2), we deduce that if m ≥ m(ν) and x1, x2 ∈ I1,2 then
(17)
(1− ν)lengthh1;m(x1)(Cx1

) ≤ lengthh1;m(x2)(Cx2
) ≤ (1 + ν)lengthh1;m(x1)(Cx1

)

We are ready to prove that there is m2 such that if m ≥ m2 then C̄1 and C̄2

holds. We prove first C̄1 and then C̄2.

• First, since the h1;m(x)-diameters of the fibers f−1
m (x), here denoted by

Γ1;m(x), are realized by the length of geodesic segments (inside the fiber), then
we obtain from (17)

(18) 1− ν ≤ Γ1;m(x1)

Γ1;m(x2)
≤ 1 + ν
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for any x1, x2 ∈ I1,2 and m ≥ m(ν). Secondly, in exactly the same way that we
proved (6) in the example of Section 2.4.1 one can prove the following statement:
Given Λ1 there are ν0 and Γ0 such that for any Riemannian manifold (V, gV )
with |RicgV | ≤ Λ1 and with a T

2-fibration fV : V → IV (|IV | ≥ 1) for which

1− ν0 ≤
ΓV (x1)

ΓV (x2)
≤ 1 + ν0, x1, x2 ∈ IV , and sup

x∈IV

ΓV (x) ≤ Γ0

where ΓV (x) = diam(f−1
V (x)), we have,

(19)
1

6
inf
x∈IV

ΓV (x) ≤ distGH(V, IV ) ≤
2

3
sup
x∈IV

ΓV (x)

Now, take Λ1 = 100Λ0 where Λ0 is the coefficient that we assumed in the
quadratic curvature decay of g, that is in |Ricg| ≤ Λ0/r

2. Let ν0 = ν0(Λ1) and
Γ0 = Γ0(Λ1). Chose ν ≤ min{1/4, ν0} and m2 ≥ m(ν) (as defined above) and
sufficiently big that for any m ≥ m2 we have supx∈I1,2 Γ1;m(x) ≤ Γ0. If as in H̄1,

(U1;m, g1;m) is ǫ∗-close in the GH-metric to (I1, | |), then by the first inequality
of (19) (applied25 to V = U1;m and gV = g1;m) and by (18) we have

(20) sup
x∈I2

Γ1;m(x) ≤ 6

1− ν
ǫ∗

Hence by (20), and the second inequality of (19) (applied26 to V = U2;m and
gV = g2;m) and recalling that g2;m = 1

102 g1;m (implying Γ2;m(x) = Γ1;m(x)/10)
we obtain

distGH((U2;m, g2;m), (I2, | |)) ≤
2

3

1

10

6

(1− ν)
ǫ∗ ≤ 2

3
ǫ∗

where the last inequality is because ν ≤ 1/4. This shows that C̄1 holds.

• Suppose, as in H̄2, that there is a closed C1;m ∈ T 2�
1;m for which it is

lengthg1;m(C1;m) ≤ ℓ∗m. Let x1 be the left point of the interval I1 and x2 the left

point of the interval I2. Then the curve C1;m belongs to the fiber f−1
m (x1). Let

C2;m be the transport of C1;m by Wm to f−1
m (x2) = T 2�

2;m. By (16) we have

lengthg2;m(C2;m) =
1

10
lengthg1;m(C2;m) ≤ 4

3

1

10
lengthg1;m(C1;m) ≤ 2

3
ℓ∗.

This shows that C̄2 holds. ◭ �

We are ready to prove Theorem 1.

Proof of Theorem 1: We will work with the annuli decomposition of Section
2.5. The key to the proof of Theorem 1 is to show that if i ≥ i0, for some i0 ≥ 0,

25Note that |Ricgk1;m | ≤ 100Λ0 on U1;m.
26Note that |Ricgk2;m | ≤ 100Λ0 on U2;m.
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the manifold M(T 2o
i+1, T

2o
i ) is a IIB-manifold. Once this is shown, the proof of

Theorem 1 is as follows. Let S2r̄ = ∂B3(o, r̄) be the “coordinate sphere” of radius
r̄ in R

3 and let r̄ be large enough that S2r̄ ⊂ R
3 \M(T 2o

i0 ). Then as27

(21) R
3 \M(T 2o

i0 )
◦ =

∞⋃

i=i0

M(T 2o
i+1, T

2o
i )

we have, for some i1 > 0,

(22) S
2
r̄ ⊂

i=i1⋃

i=i0

M(T 2o
i+1, T

2o
i )

By Proposition 1, the right hand side of (22) is a IIB-manifold if every one of its

summands is a IIB-manifold. Therefore S
2
r̄ bounds a ball in ∪i=i1

i=i0
M(T 2o

i+1, T
2o
i )

and so bounds a ball in R
3 \ {o} because R

3 \ {o} contains ∪i=i1
i=i0

M(T 2o
i+1, T

2o
i ).

But S2r̄ does not bound a ball in R
3 \ {o} and we reach a contradiction.

We move then to prove that there is i0 ≥ 0 such that for any i ≥ i0,
M(T 2o

i+1, T
2o
i ) is a IIB-manifold.

Define i0 such that, for every piece Uk,l ⊂ R
3 \M(T 2o

i0 )
◦ we have (ǫ∗, ℓ∗, k∗

below are as in Proposition 5)

1. k ≥ k∗, and,

2. (Uk,l, gk) is either ǫ
∗-close in the GH-metric to either an interval or a two-

orbifold, and,

3. if (Uk,l, gk) is ǫ∗-close to a two orbifold then the gk-length of the fibers C

of the Seifert structure is less or equal than ℓ∗, i.e. lengthgk(C ) ≤ ℓ∗.

We will use such a i0 from now on and show that if i ≥ i0 then M(T 2o
i+1, T

2o
i ) is

a IIB-manifold. Some notation now. If a piece Uk,l on R
3 \M(T 2o

i0 )◦ is ǫ∗-close
to an interval then we say that the piece is of type I(ǫ∗) and if it is not and
therefore is ǫ∗-close to a two-orbifold then we say that the piece is of type II(ǫ∗).

Let i ≥ i0,

• IfM(T 2o
i+1, T

2o
i ) does not contain a piece of type I(ǫ∗) thenM(T 2o

i+1, T
2o
i ) is a

union of Seifert manifolds (with Seifert structures coinciding at any intersection)
and therefore a Seifert manifold with two boundary components, T 2o

i+1 and T 2o
i .

It follows that in this case M(T 2o
i+1, T

2o
i ) is a IIB-manifold.

• If M(T 2o
i+1, T

2o
i ) contains a piece of type I(ǫ∗) then we can distinguish two

cases,

(i) M(T 2o
i+1, T

2o
i ) is itself a piece of type I(ǫ∗) (in this case the only

Uk,l-piece), therefore diffeomorphic to T
2 × I and thus a IIB-manifold, or,

27Note from the properties of annuli decompositions that for any sequence T 2
j of pairwise different

tori in N we have dR
3

g (o, T 2
j ) → ∞. In particular dR

3

g (o, T 2o
i ) → ∞ as i → ∞. This justifies equation

(21).
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(ii) M(T 2o
i+1, T

2o
i ) is not a piece of type I(ǫ∗).

We discuss case (ii) now and show that M(T 2o
i+1, T

2o
i ) is also in this case, a

IIB-manifold. First, denote by Ni+1,i the set of boundary components, other
than T 2o

i+1 and T 2o
i , of the Uk,l-pieces composing M(T 2o

i+1, T
2o
i ). Then any torus

T 2 in Ni+1,i is ≪ than T 2o
i+1 but not related, in the order ≪, to T 2o

i (otherwise

would be one of the T 2o
i ’s). Recall that for any T 2 ∈ Ni+1,i one can associate a

maximal chain {T 2, T 2o
i+1} → {T 2, T 2

1 , . . . , T
2
n , T

2o
i+1} (see notation in Section 2.3).

Define N̂i+1,i as the set of tori T 2 in Ni+1,i such that

1. T 2 is the boundary component of a Uk,l-piece of type I(ǫ∗), and,

2. none of the tori T 2
1 , . . . , T

2
n−1 in the chain {T 2, T 2o

i+1} → {T 2, T 2
1 , . . . , T

2
n−1, T

2o
i+1}

is the boundary component of a Uk,l-piece of type I(ǫ∗).

Then, the set of tori {T 2o
i+1, T

2o
i } ∪ N̂i+1,i enclose the region

M(T 2o
i+1, T

2o
i ) \

( ⋃

T 2∈N̂i+1,i

M(T 2)

)

which is formed by pieces of type II(ǫ∗). Therefore it is a Seifert manifold with
at least three boundary components (two of them are T 2o

i+1 and T 2o
i ) and hence

a IIB-manifold. Now, the tori T 2 in N̂i+1,i are either of type T
2� or of type T 2♦,

namely either M(T 2) is a solid torus or not (see beginning of Sec. 3). Consider

T 2� in N̂i+1,i. Then, T 2� is the boundary of a Uk,l-piece of type II(ǫ∗) and,
because i ≥ i0 and the definition of i0, the fibers {C } of the Seifert structure of
such piece have gk(T 2�)-length less or equal than ℓ∗. In particular the fibers {C }
on T 2� (which, as closed curves, are non-contractible in T 2�) have gk(T 2�)-length

less or equal than ℓ∗. Summarizing, we would have, k(T 2�) ≥ k∗ (because i ≥ i0)
and

H1’. (Uk(T 2�),l(T 2�), gk(T 2�)) is ǫ
∗-close in the GH-metric to an interval, and,

H2’. There is a curve C ⊂ T 2� (indeed anyone of the C ’s) non-contractible in
T 2� but contractible in M(T 2�) such that lengthg

k(T2�)
(C ) ≤ ℓ∗,

Therefore (and crucially), if the fibers {C } on T 2� are contractible insideM(T 2�)
then applying Proposition 5 iteratively, we would obtain a consecutive sequence
of pieces of type I(ǫ∗) extending to infinity, i.e. a T

2 × R
+-end, which is not

possible because then M(T 2�) would not be compact28. We conclude that for

every T 2� in N̂i+1,i, the fibers {C } are non-contractible in M(T 2�). Therefore,
recalling the comment at the end of Section 2.2, the manifold

M(T 2o
i+1, T

2o
i ) \

( ⋃

T 2♦∈N̂i+1,i

M(T 2♦)

)

28Alternatively it would imply the existence of an embedded torus (a section of such end) dividing
R3 into two unbounded connected components, which is not possible.
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is a IIB-manifold (note the union on the right hand side is on T 2♦ ∈ N̂i+1,i).

Finally, for every T 2♦ ∈ N̂i+1,i, M(T 2♦) is a IIB-manifold as was explained in
Section 2.2. Therefore by Proposition 1, M(T 2o

i+1, T
2o
i ) is a IIB-manifold. This

finishes the proof of Theorem 1. �

4 Appendix.

4.1 Remarks on manifolds and convergence.

A three-manifold M is Ck+1,β, k ≥ 1, 0 < β < 1 if it is a topological manifold
provided with an atlas with transition functions in Ck+1,β. A Riemannian three-
manifold (M,g) is Ck,β if M is Ck+1,β and the entries of g in every coordinate
system of the Ck+1,β atlas of M are Ck,β functions.

A sequence of Ck,β Riemannian manifolds (Mi, gi) converges in Ck,β to a
Ck,β Riemannian manifold (M,g) if there are Ck+1,β-diffeomoprhisms ϕi :M →
Mi such that the entries of ϕ∗

i gi in every coordinate system of the atlas of M ,
converge in C1,β to the entries of g in the coordinate system.

There are norms that we will use that do not depend on the coordinates. In
particular on a Ck,β Riemannian manifold (M,g) one can define the Ck′+1

g -norm,
k′ ≤ k, of functions as usual as

‖f‖Ck′+1
g

= sup
x∈M

( j=k′+1∑

j=0

|∇(j)f |(x)
)

where ∇(j) is the operator resulting from applying ∇ j-times. Note that ∇(j)f =
∇(j−1)df and that the Ck′+1

g norm of f involves only derivatives of g up to order

k′. In particular the space C2
g is well defined on a C1,β Riemannian manifold.

Moreover one easily has the following property: If (Mi, gi) converges in C1,β to
(M,g) (via diffeomorphisms ϕi) and fi is a sequence of functions inMi, then there
is i0 such that for any i ≥ i0 we have ‖ϕ∗

i fi‖C2
g
≤ 2‖fi‖C2

gi
(here ϕ∗

i fi = fi ◦ ϕi).

4.2 Some technical propositions.

The following theorem would be standard if we were working in the smooth
category. With low regularity there are some points to check.

Proposition 6 Let (M,g) be a compact C1,β-Riemannian manifold with bound-
ary. Suppose that φ : T2 ×M → M is a continuous and free action by isome-
tries. Then there exists a C2,β-diffeomorphism ϕ : M → T

2 × I such that
ϕ∗g = dx2 + h(x) where h(x) is a C1,β-path of T

2-symmetric, and therefore
flat metrics in T

2.

Proof: By [18] (Thm 6, pg. 411), the set of orbits T
2(p) = {φ(t, p), t ∈ T

2},
p ∈M , is a foliation of M by C1-embedded tori. Let T2

1 6= T
2
2 be two leaves and

let γ12 be a geodesic segment realizing the distance between them and therefore
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perpendicular to them. As the action is by isometries the set {φ(t, γ12), t ∈
T
2} is a foliation of the region enclosed by T

2
1 and T

2
2 by geodesic segments

realizing the distance between T
2
1 and T

2
2 and perpendicular to them. As in this

argumentation the leaves T2
1 and T

2
2 are arbitrary it follows that any inextensible

geodesic perpendicular to one leaf is also perpendicular to any other leaf. Let
γ(x), x the arc-length, be one of such geodesics. Define ϕ : T2 × I → M ,
|I| = length(γ), as ϕ(t, x) = φ(t, γ(x)). By [18] (in particular (D) in pg. 402)
the map ϕ is a C1 diffeomorphism. We have ϕ∗g = dx2+h(x) where h(x) is a C0-
path of T2-symmetric metrics in T

2. Let (y, z) be (local) flat coordinates on T
2

which together with x form (local and C1) coordinates. The standard Laplacian
acting on certain functions f at least can be computed in the coordinates (x, y, z)

as ∆f = [deth]−1/2(∂i(g
ij [det h]

1

2 ∂jf)) (because det h is just C0). Such is the

case29 when f = x, y or
∫ x

[det h]−1/2dx. As deth = deth (x), the coordinates
y and z are harmonic (and C1) and therefore from standard elliptic regularity
also C2,β in M (recall for this that M is C2,β and g is C1,β). It remains to see

the regularity of x. Define a new coordinate by x̄ =
∫ x

[det h]−1/2dx. Then x̄

is harmonic and because is C1, by standard elliptic regularity again, it is C2,β

in M . Therefore (x̄, y, z) is an harmonic and C2,β coordinate system. Hence in

these coordinates the metric coefficients gij are of class C1,β. Thus [det h]1/2 is

of class C1,β and because x(x̄) =
∫ x̄

[deth]1/2dx̄ we deduce that x is also C2,β in
M . �

Proposition 7 Suppose that a sequence (Um, gm) with |Ricgm | ≤ Λ0 collapses

metrically to (I, | |). Then, there is a covering subsequence (Ũmj
, g̃mj

) (with

covering maps πmj
) converging in C1,β to a T

2-symmetric space (T2 × I, dx2 +

h̃(x)), and there is a sequence of functions fmj
: Umj

→ R, such that fmj
◦ πmj

:

T
2 × I → R converges in C2 to the coordinate function x. In particular, fixed a

value of x, π−1
mj

(f−1
mj

(x)) converges in C2 to the slice T
2 × {x}.

Proof: The first part of the claim, i.e. the existence of the covering subsequence
is known to us from Lemma 1. Thus assume that

(Ũmj
, g̃mj

)
C1,β

−−−→ (T2 × I, g̃ = dx2 + h̃(x))

Following [5] (see also [12] pg. 336), for every ǫ > 0 there are30 smoothings gǫmj

of gmj
such that

(23) distLip(gmj
, gǫmj

) ≤ ǫ, |Ricgǫ
mj

| ≤ 2Λ0, |∇(k)
gǫ
mj

Ricgǫ
mj
| ≤ Λk(ǫ), k ≥ 1

where distLip is the Lipschitz distance (see [13], [12])
31. In these smoothed spaces

one has the following two properties for fixed ǫ.

29To justify the ∆f in these cases multiply by a smooth and arbitrary test function of compact support
and integrate by parts.

30We remark that this useful smoothing procedure has been used recurrently in [10] as it greatly
simplifies the arguments. Our use does no differ much from the purposes it was used there.

31Note that what makes these estimates useful is that they are independent from the injectivity radius.
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E1. There is a subsequence of (Ũmj
, g̃ǫmj

) (indexed with mj again but depend-

ing on ǫ) converging in C∞ and via diffeomorphisms χj to (T2 × I, g̃ǫ =

dx2 + h̃ǫ(x)). Hence as discussed in Section 4.1 there is j0(ǫ) such that for

every j ≥ j0(ǫ) and sequence of functions Fj on Ũmj
we have ‖χ∗

jFj‖C2
g̃ǫ

≤
2‖Fj‖C2

g̃ǫmj

.

E2. From Lemma 1.6 (pg. 336) in [11], there are fibrations f ǫmj
: Umj

→ I such

that, for all k ≥ 1, ‖f ǫmj
◦ πmj

‖Ck
g̃ǫmj

≤ C ′
k(ǫ). Moreover f ǫmj

◦ πmj
converges

in C1 to the function x in (T2×I, dx2+ h̃ǫ(x)) and, because of the estimates
before, the convergence is also in C∞. In particular lim ‖χ∗

j (πmj
◦ fmj

) −
x‖C2

g̃ǫ

j→∞−−−→ 0

And if we make ǫ → 0 we have, because of the first two terms of (23), the
following property.

E3. As ǫ → 0, the spaces (T2 × I, dx2 + h̃ǫ(x)) converge in C1,β′

(β′ < β) and

via diffeomorphisms ϕǫ to (T2 × I, dx2 + h̃(x)). Moreover by Prop. 6 the
C2-coordinates x in them converge in C2 to the (by Prop. 6) C2-coordinate
x in the limit space.

From E1 and E3 we immediately obtain that, for every ǫ(i) = 1/i, i = 1, 2, 3, . . .
one can find mj(i) with j(i) ≥ j0(ǫ(i)), in such a way that the subsequence

(Ũmj(i)
, g̃

ǫ(i)
mj(i)) converges in C

1,β′

and via the diffeomorphisms χj(i)◦ϕǫ(i) to (T2×
I, dx2 + h̃(x)). Then we have

‖ϕ∗
ǫ(i)χ

∗
j(i)(πmj(i)

◦ f ǫ(i)mj(i)
)− x‖C2

g̃
≤ ‖ϕ∗

ǫ(i)χ
∗
j(i)(πmj(i)

◦ f ǫ(i)mj(i)
)− ϕ∗

ǫ(i)x+ ϕ∗
ǫ(i)x− x‖C2

g̃

≤ 2‖χ∗
j(i)(πmj(i)

◦ f ǫ(i)mj(i)
)− x‖C2

g̃
ǫ(i)
mj(i)

+ ‖ϕ∗
ǫ(i)x− x‖C2

g̃
.

where the last term tends to zero as i→ ∞. �

Proof of Lemma 1: The result is a straightforward consequence of the assump-
tion that (Mi, gi) ∈ M(N0) for some fixed N0 and the results in [10]. There are
however some technical points which is better to clarify and these have to do
with the fact that several metrics are involved at the same time. Fukaya’s proofs
of course will not repeated here and we refer the reader to his articles for full
information.

For every “i” let M̆◦
i (pi) be the connected component of M◦

i containing pi
and let di = dMi

gi . We letM
ǫ
i (pi) := M̆◦

i (pi)\Tdi
(∂Mi, ǫ) and similarly forM ǫ

i (pi).
From Proposition 2 we can take a subsequence (index again by “i”) such that
(M

ǫ
i (pi), di) converges to a compact metric space (Xǫ, dǫ). The subsequence can

be chosen in such a way that M ǫ
i (pi) converges (as a compact set) to Xǫ ⊂ Xǫ.

We keep using this sequence in the following.
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Following [10] (32), for every x ∈ Xǫ there is δ(x) ≤ (ǫ − ǫ)/2 such that
(Bdǫ(x, δ(x)), dǫ) is locally isometric to a model space I.a, I.b, II.a or II.b.
Consider then in Bdǫ(x, δ(x)) the corresponding Riemannian metric and denote
it by gǫ. In addition to this information, there is a sequence of points qi ∈
M ǫ

i (pi) with qi → x, such that (Bgi(qi, δ(x)), gi) converges in the GH-topology

to (Bdǫ(x, δ(x)), gǫ).
Now, using the compactness of Xǫ one can pick points x1, . . . , xJ in Xǫ

such that the balls Bdǫ(xj , δ(xj)/4), j = 1, . . . , J , cover Xǫ. Assume that pi
converges to a point x0, that points pj,i converge to xj and that the union⋃j=J

j=1 Bdǫ(xj, δ(xj)/4) is connected (otherwise take the connected component of

the union containing x0). Then, it is direct to check that

(

j=J⋃

j=1

Bgi(pj,i, δ(xj)), gi)
GH−−→ (

j=J⋃

j=1

Bdǫ(xj , δ(xj)), g
ǫ).

Then, one can use the local construction in [10] (pg. 19, based on [9]) to find C1

functions

fi :

j=J⋃

j=1

Bgi(pj,i, 3δ(xj)/4) → Xǫ

(but non-surjective) satisfying the properties in Theorem 0.12 of [10] (pg. 3) and

with range covering
⋃j=J

j=1 Bdǫ(xj , δ(xj)/2). The Ωi’s and the space (X, d) are
finally defined as

Ωi := f−1
i (

j=J⋃

j=1

Bdǫ(xj , δ(xj)/2)) and as (X, d) := (

j=J⋃

j=1

Bdǫ(xj , δ(xj)/2), g
ǫ)

with (X, d) satisfying D1 and D2 by construction. We then have (Ωi, gi)
GH−−→

(X, d) and fi : (Ωi, gi) → (X, d) with the properties I which correspond in our
case to properties (0.13.1) and (0.13.2) of Theorem 0.12 of [10].

We discuss now how to show II in case D1. The case D2 is done along
similar lines an as we will not use it in this article the proof is left to the reader.
Take covers (Ω̃i, g̃i) to have the injectivity radius at one point controlled away
from zero. Leave aside for a moment the issue of the existence of such cover. As
|Ricg̃i | ≤ Λ0 we can take a convergent subsequence, say to (Ω̃, g̃). The group of

Deck-covering transformations of Ω̃i converge necessarily to a closed group G of
isometries of the limit space (Ω̃, g̃). On the other hand, for any x ∈ X \Sing(X),
the fiber π−1

i (f−1
i (x)) which covers the torus f−1

i (x) under πi, converges to a

torus, say T̃ 2(x) ⊂ Ω̃. The group G acts effectively33 by isometries on T̃ 2(x) and
its quotient is a point. It follows that G is a torus.

32Recall the discussion after the statement of Lemma 1.
33The action is effective because if an isometry of G leaves every point of T̃ 2(x) invariant then it must

be the identity as an isometry in Ω̃.
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To show that there are covers as mentioned before, observe that, from Lemma
1, any “sufficiently collapsed” manifold (of bounded diameter and curvature)
must possess at least one small and non-contractible loop. Now, in case D1, the
manifolds Ωi are diffeomorphic to either T

2 × I or B
2 × S

1 whose fundamental
groups are Z×Z and Z respectively. In either case one can then take (controlled)
covers having no non-contractible and small loops. In this way the cover is
necessarily non-collapsed. �
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