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This paper investigates the manner in which classical universes are obtained in the no-boundary quantum
state. In this context, universes can be characterized as classical [in a Wentzel-Kramers-Brillouin (WKB)
sense] when the wavefunction is highly oscillatory, i.e. when the ratio of the change in the amplitude of the
wavefunction becomes small compared to the change in the phase. In the presence of a positive or negative
exponential potential, the WKB condition is satisfied in proportion to a factor e−ðϵ−3ÞN=ðϵ−1Þ, where ϵ is the
(constant) slow-roll/fast-roll parameter and N designates the number of e-folds. Thus classicality is reached
exponentially fast in N, but only when ϵ < 1 (inflation) or ϵ > 3 (ekpyrosis). Furthermore, when the
potential switches off and the ekpyrotic phase goes over into a phase of kinetic domination, the level of
classicality obtained up to that point is preserved. Similar results are obtained in a cyclic potential, where a
dark energy plateau is added. Finally, for a potential of the form −ϕn (with n ¼ 4; 6; 8), where the classical
solution becomes increasingly kinetic dominated, there is an initial burst of classicalization which then
quickly levels off. These results demonstrate that inflation and ekpyrosis, which are the only dynamical
mechanisms known for smoothing the universe, share the perhaps even more fundamental property of
rendering space and time classical in the first place.
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I. INTRODUCTION

In analyzing models of the early universe, the usual
procedure is to consider a classical background spacetime
and to calculate what happens to small quantum fluctua-
tions around this background. One then calculates the
amplitude and correlation functions of the fluctuations in
order to determine whether a given model is in agreement
with current cosmological observations. However, as is
well known yet seldom addressed, this procedure hinges on
a very large number of assumptions. Is the modeling of
matter as a scalar field justified? Is it permissible to
consider a particular classical background solution, given
that the same theory contains many other solutions? Why is
it ok to consider a split into a classical background with
superimposed quantum fluctuations? In other words, why
can the background be treated classically in the first place,
given that the laws of Nature are quantum laws?
String theory provides a framework in which one can see

how an effective scalar field driving the dynamics of the
early universe may arise. In this framework, scalar fields
show up in many guises, and can for instance parametrize
the shape of the internal dimensions, thus providing a
geometric picture for cosmological evolution. However, in
this framework it can be expected that the potential for
the scalar(s) is rather intricate, as there are many moving
parts in the theory. In such a potential “landscape” many
different kinds of solutions arise in different regions of the

potential, adding the question of where on the potential
cosmological evolution may be expected to start.
In order to address many of these questions, a theory of

initial conditions seems to be required. String theory by
itself, in its current understanding, does not provide one.
Nor do the canonical approaches to quantum gravity. In
fact, despite their obvious relevance, not many theories of
initial conditions have been developed in any detail, and all
proposals have important open questions attached to them.
In the present paper, we will consider the Hartle-Hawking
no-boundary proposal [1–3], which is arguably the most
attractive theory to date. The no-boundary proposal may
only make sense in the semiclassical approximation to
quantum gravity, and it seems likely that it will not be the
final word on this topic [4,5]. Nevertheless, the configu-
rations we will be most interested in all involve small
spacetime curvatures, and hence one may certainly hope
that there are valuable insights to be obtained from this
approach.
Within this approach, and more generally in studies of

quantum cosmology, it was assumed until recently that
inflation is necessary in order to obtain a classical space-
time [6,7]. That is, it has been said that an inflationary
phase is not only required to explain the data seen in the
cosmic microwave background, but that one needs inflation
in order to be able to talk about spacetime at all. In the
present paper, we will reinforce this view by showing just
how efficient inflation is in rendering spacetime classical,
for the particular case when the slow-roll parameter is
constant. However, the story has become more involved*jlehners@aei.mpg.de
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with the discovery of ekpyrotic instantons [8], which are
solutions obeying the no-boundary conditions and medi-
ating the emergence of a classical ekpyrotic contracting
universe. These solutions can also explain the classicality
of spacetime, and moreover they have a high relative
probability associated with them. We will show in the
present paper that for a single scalar field and constant
equation of state, inflation and ekpyrosis are in fact the only
two mechanisms that can make spacetime classical.
Moreover, both are similarly efficient at achieving this.
We also analyze what happens to the classicality of

spacetime after the ekpyrotic phase comes to an end. When
the potential turns off, the universe becomes dominated
by the kinetic energy of the scalar field, and as we will
show, the level of classicality achieved up to that moment is
preserved during the kinetic phase. Thus, the universe
remains highly classical as it approaches the bounce. We
should point out that we have not included a description of
the bounce. An important open question is therefore
whether a bounce into an expanding phase of the universe
can be successfully incorporated—this question is left for
follow-up work.
Our framework further allows us to study how classical

spacetime emerges from a cyclic potential, where a dark
energy plateau is added to the ekpyrotic phase. One may
rightfully ask why we need to address the issue of initial
conditions in a cyclic universe, given that each cycle sets up
the “initial” conditions for the next one. The reason is that
in the cyclic universe, in order to avoid the buildup of
entropy, each cycle must grow larger than the previous one.
Thus, any finite region of the universe (or the whole
universe, if it is finite) was sub-Planckian a finite time
into the past, and requires initial conditions. This suggests
the view that a cyclic universe alleviates the issue of initial
conditions, as it may allow them to become progressively
fine-tuned in a dynamical fashion from cycle to cycle, but it
cannot avoid the issue entirely, as the emergence of the first
cycle remains to be explained. For illustration, we will
compare two different histories (leading up to the first
bounce), one inwhich the universe is always contracting and
one where the universe is first expanding (due to the dark
energy plateau in the potential) and then contacting.Wewill
find that the second history is both more likely and achieves
a greater amount of classicality. Finally, wewill look at steep
negative potentials with power-law form V ¼ −ϕn for
n ¼ ð4; 6; 8Þ. These potentials lead to a kind of “transient”
ekpyrotic phase, where the equation of state is very large
initially but quickly drops down to that of a kinetic-
dominated universe. Correspondingly, we find that for such
potentials there is a brief burst of classicalization, which
comes to a halt as the universe becomes kinetic dominated.
As in the case described above, the level of classicality
achieved is then maintained during kinetic domination.
Our results thus may help in answering some of the

questions posed at the beginning of this introductory section.

II. QUANTUM COSMOLOGY AND WKB
CLASSICALITY

To begin, we will review/discuss a number of standard
results in quantum cosmology. We will consider theories
of gravity minimally coupled to a scalar field ϕ with a
potential VðϕÞ, with action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

Moreover, we will restrict our analysis to the simplified
context of minisuperspace, i.e. we will restrict our dis-
cussion to closed Friedmann-Lemaitre-Roberston-Walker
universes with metric

ds2 ¼ − ~N2ðλÞdλ2 þ a2ðλÞdΩ2
3; ð2Þ

where ~N is the lapse function and dΩ2
3 the metric on the unit

three-sphere, with the scalar field also depending solely on
time ϕ ¼ ϕðλÞ. The action then becomes

S ¼ 6π2

κ2

Z
dλ ~N

�
−a

_a2

~N2
þ aþ κ2a3

3

�
1

2

_ϕ2

~N2
− V

��
; ð3Þ

where _≡ d=dλ. Following [7], we will rewrite the action
in the form1

S ¼
Z

dλ ~N

�
1

2
GAB

1

~N

dqA

dλ
1

~N

dqB

dλ
−UðqAÞ

�
; ð4Þ

with qA ¼ ða;ϕÞ and Gaa ¼ −2a;Gϕϕ ¼ κ2a3=3. Then we
have an associated Hamiltonian

H ¼ 1

2
GABpApB þ U; ð5Þ

with the canonical momenta pa ¼ −2a _a; pϕ ¼ κ2a3
3

_ϕ, and
where the effective potential is given by

U ¼ −aþ κ2a3

3
V: ð6Þ

We have set the lapse function ~N to unity and from now on
we will also set the gravitational coupling κ to unity. The
Hamiltonian is classically zero and corresponds to the
Friedmann equation. If one quantizes the theory canoni-
cally, by replacing pA → −iℏ ∂

∂qA, one obtains the quantum
version of the Hamiltonian constraint, namely the Wheeler-
deWitt (WdW) equation

1For simplicity, we rescale the action by 6π2 here. This factor is
reintroduced from Eq. (19) onwards.
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ĤΨ ¼
�
−
ℏ2

2
GAB ∂

∂qA
∂

∂qB þ U

�
Ψ ¼ 0; ð7Þ

where Ψ ¼ Ψða;ϕÞ is the wavefunction of the universe. In
our case the WdW equation reads

�
ℏ2

4a
∂2

∂a2 −
3ℏ2

2a3
∂2

∂ϕ2
− aþ a3

3
V

�
Ψ ¼ 0 ð8Þ

where we have ignored factor ordering ambiguities in the
first term (since these are unimportant for the purposes of
the present discussion). The question now is, under what
conditions can the wavefunction be interpreted as corre-
sponding to a classical universe?
We can make progress on this issue by writing the

wavefunction in the form

Ψ ¼ eð−AþiSÞ=ℏ; ð9Þ
where Aða;ϕÞ; Sða;ϕÞ are real functions. We can then
expand the WdW equation in powers of ℏ. The real and
imaginary parts of the two leading orders yield

1

2
ð∇AÞ2 − 1

2
ð∇SÞ2 þU ¼ 0; ∇A ·∇S ¼ 0; ð10Þ

∇2A ¼ 0; ∇2S ¼ 0; ð11Þ

where we have defined ∇2 ≡GAB∂A∂B. If j∂AAj ≪ j∂ASj,
i.e. if the amplitude of the wavefunction is slowly varying
compared to its phase, then from the first equation above it
follows that S approximately satisfies the Hamilton-Jacobi
equation,

−
1

2
ð∇SÞ2 þ U ≈ 0: ð12Þ

This corresponds to the Wentzel-Kramers-Brillouin (WKB)
semiclassical approximation. In this case, the wavefunction
is strongly peaked along classical solutions of the equations
of motion, which are characterized by the first integral [cf.
Eq. (5)]

pA ¼ ∂S
∂qA : ð13Þ

It is in this sense that oscillating wavefunctions are
associated with an ensemble of classical solutions and
thus to classical spacetime and matter configurations.2

In addition, the second equation in (10) implies that
along such classical trajectories the amplitude A is (approx-
imately) conserved. Together with (11) this further implies
the relation

∇ · ðe−2A∇SÞ ¼ 0; ð14Þ
which can also be obtained as a consequence of the
conservation (via the WdW equation) of the Klein-
Gordon current

J ¼ i
2
ðΨ⋆∇Ψ −Ψ∇Ψ⋆Þ: ð15Þ

This suggests that when the WKB approximation holds, we
may choose surfaces where the normal derivative ∇S > 0

and use e−2A as a measure of the relative probability of a
given classical history (see e.g. [9,10] for more details).
The above arguments are somewhat heuristic, but they

provide a simple and coherent framework for interpreting the
wavefunction in the WKB approximation. For attempts to
make all of this more precise using the decoherent histories
approach, see e.g. [11]. Note also that the notion of
classicality we have discussed so far only applies to a single
component of the wavefunction. In general the semiclassical
approximation will yield a wavefunction composed of a sum
of terms of the form (9). Then onemust also determine under
what conditions the different components do not interfere
with one another—in other words, the different components
must decohere. We will not analyze this issue in detail but
will offer additional comments in the discussion section.
Given the above discussion of WKB classicality, we may

wonder under what conditions oscillatory wavefunctions
may be expected. Inspection of the WdW equation (8)
allows us to single out the following cases:

(i) Inflation: V > 0.
If the field is slowly rolling and the universe is

rapidly expanding, we can assume 1
a2

∂2
∂ϕ2 ≪ ∂2

∂a2. Then
at large scale factor a we are left with the equation

�
ℏ2

4a
∂2

∂a2 þ
a3

3
V

�
Ψ ¼ 0 ð16Þ

and thus we can expect an oscillatory solution forΨ.
(ii) Ekpyrosis: V < 0.

If the field is fast rolling and the universe slowly
contracting, we have the opposite situation, namely
that 1

a2
∂2
∂ϕ2 ≫ ∂2

∂a2. Then we can ignore the first term in

the WdW equation, leading to the equation

�
3ℏ2

2a3
∂2

∂ϕ2
þ a −

a3

3
V

�
Ψ ¼ 0 ð17Þ

and once again to an oscillating solution for Ψ since
the potential is negative.

2A canonical transformation from ðp ¼ ∂G
∂q ; qÞ to the new

variables ðp̄; q̄ ¼ ∂G
∂p̄Þ, using the generating functionGðq; p̄Þ, leads

to a new wavefunction Ψ̄ðp̄Þ ¼ R
dqe−iGΨðqÞ. Using the gen-

erating function G ¼ qp̄þ SðqÞ, the wavefunction Ψ ¼ eiSðqÞ

then gets transformed into Ψ̄ ¼ δðp̄Þ where p̄ ¼ p − ∂S
∂q, demon-

strating that in the WKB approximation the wavefunction is
strongly peaked along configurations characterized by p ¼ ∂S

∂q [9].
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The aim of the present paper is to study in detail how (and
how fast) this oscillatory behavior of the wavefunction is
reached in these two regimes.
So far, we have not said anything yet about boundary

conditions. For this reason, the wavefunctions under dis-
cussion were peaked on an ensemble of classical solutions.
If we want to specify which of these solutions is the
relevant one, we must impose boundary conditions. A
particularly compelling way of doing this is the Hartle-
Hawking “no-boundary” proposal [1–3], which is formu-
lated in the path integral approach to the problem. Indeed,
the wavefunction can also be calculated using a path
integral,

Ψ ¼
Z
C
δgδϕe−SEðgμν;ϕÞ: ð18Þ

Imposing boundary conditions is then equivalent to restrict-
ing the class of paths C one is summing over in the path
integral. Above we have already performed a Wick rotation
to the Euclidean action SE, which in the minisuperspace
approximation is given by

SE¼6π2
Z

dλN

�
−a

_a2

N2
−aþa3

3

�
1

2

_ϕ2

N2
þV

��
; ð19Þ

where now N ¼ i ~N. Allowing complex functions of λ (as
will be necessary), the integral can be interpreted as a
contour integral in the complex plane, with dτ≡ Ndλ,

SE ¼ 6π2
Z

dτ

�
−aa02 − aþ a3

3

�
1

2
ϕ02 þ V

��
; ð20Þ

where 0 ≡ d=dτ. The constraint and equations of motion
following from this action are

a02 − 1 −
a2

3

�
1

2
ϕ02 − V

�
¼ 0; ð21Þ

ϕ00 þ 3
a0

a
ϕ0 − V;ϕ ¼ 0; ð22Þ

a00 þ κ2a
3

ðϕ02 þ VÞ ¼ 0: ð23Þ

Using the constraint, the on–shell action then simplifies to

Son-shellE ¼ 4π2
Z

dτð−3aþ a3VÞ: ð24Þ

We are now in a position to specify the no-boundary
proposal. In the minisuperspace approximation, the path
integral reduces to the form

Ψðb; χÞ ¼
Z
C
δaδϕe−SEða;ϕÞ; ð25Þ

where the arguments b and χ are the values of the scale
factor and scalar field at the time of interest. The integral is
performed only over paths (4-geometries) C which have no
boundary in the past and for which the scale factor and
scalar field take the (real) specified values b respectively χ
on a final hypersurface—see Fig. 1. The central idea is that
in this way the universe is entirely self-contained, in both
space and time. In practice, we will evaluate the path
integral in the saddle point approximation,

Ψðb; χÞ ∼
X

e−SEðb;χÞ; ð26Þ

where SEðb; χÞ denotes the Euclidean action of a complex
instanton solution ½aðτÞ;ϕðτÞ� of the equations of motion.
The no-boundary proposal then translates into the follow-
ing boundary conditions for the instantons:

(i) At að0Þ ¼ 0 the solution must be regular. (Note that
we have arbitrarily put the “bottom” of the instanton
at τ ¼ 0.) Inspection of the equations of motion
shows that this can be achieved if a0ð0Þ ¼ 1 and
ϕ0ð0Þ ¼ 0. Hence, the instantons of interest can be
labeled by the (complex) value ϕSP of the scalar field
at the bottom, or “South Pole,” of the instanton.

(ii) At a certain final time τf the scale factor and scalar
field must take the real values aðτfÞ ¼ b;ϕðτfÞ ¼ χ.

If we now want to study the properties of a given
(classical) history [aðλÞ;ϕðλÞ] of the universe, then we
must evaluate the wavefunction Ψðb; χÞ for successive
values of [ðb ¼ aðλÞ; χ ¼ ϕðλÞ] along this history.
Moreover we need the derivatives of Ψ with respect to b

FIG. 1 (color online). In the no-boundary proposal, the path
integral for the wavefunction Ψðb; χÞ is summed over geometries
that contain no boundary to the past, and that take the specified
values aðτfÞ ¼ b;ϕðτfÞ ¼ χ on a final hypersurface (in orange).
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and χ in order to determine the WKB conditions, since
these are given by

j∂bSREj ≪ j∂bSIEj; ð27Þ

j∂χSREj ≪ j∂χSIEj; ð28Þ

where SRE; S
I
E denote the real and imaginary components of

the Euclidean action SE of the instantons. According to the
discussion above, we can say that the universe becomes
increasingly classical when the inequalities above are
increasingly well satisfied. Under these circumstances,
the real part of the action approaches a constant, and the
particular history under consideration can be assigned a
relative probability proportional to e−2S

R
E . On the other

hand, when the WKB conditions (27) and (28) are not
satisfied, then the wavefunction does not imply any
classical correlations between the fields and their momenta,
and moreover no meaningful notion of probability can be
defined.

III. CLASSICAL SPACETIME FROM INFLATION

We start by considering positive exponential potentials

VðϕÞ ¼ V0ecϕ; ð29Þ
where V0 > 0 and c are constants—see Fig. 2. For such
potentials the slow-roll parameter

ϵ ¼ V2
;ϕ

2V2
¼ c2

2
ð30Þ

is constant, and the theory admits the asymptotic scaling
solution

a¼ a0ðλÞ1=ϵ; ϕ¼−
ffiffiffi
2

ϵ

r
ln

� ffiffiffiffiffiffiffiffiffiffi
ϵ2V0

3− ϵ

r
λ

�
; V¼ 3− ϵ

ϵ2λ2
:

ð31Þ

When ϵ < 1, this solution corresponds to accelerated
expansion, i.e. inflation.
We are now interested in whether the wavefunction

corresponding to a classical solution becomes “classical” in
the WKB sense. As an example, we have chosen the
classical solution specified by the following initial data at
time λi:

c ¼ 1

3
; ϵ ¼ 1

18
ð32Þ

aðλiÞ¼ 2; _aðλiÞ¼
�
−1þaðλiÞ2

3

�
1

2
_ϕðλiÞ2þVðλiÞ

��
1=2

ð33Þ

ϕðλiÞ ¼ −
1

2
; _ϕðλiÞ ¼ −

�
2ϵVðλiÞ
3 − ϵ

�
1=2

: ð34Þ

We evaluated the wavefunction for 200 values of ðb; χÞ
between the initial values above and the final values
ðb ≈ 1578; χ ≈ −3.047Þ. This corresponds to a range of a
little over 6 e-folds N, where dN ¼ d lnðaHÞ with
H ¼ _a=a. The complex scalar field values ϕSP as well
as the real part of the action SRE corresponding to this
classical history are shown in Fig. 3. One can see very
clearly that as the classical history progresses, i.e. as the
universe expands during the inflationary phase, the values
of ϕSP and SRE stabilize, and an unambiguous relative
probability of e−2S

R
E can be defined for this history.

We have illustrated the first and last instanton of the
series in Figs. 4 and 5, respectively. These plots have been
obtained by solving the field equations from τ ¼ 0 (with
the corresponding value of ϕSP) up along the imaginary
axis and then horizontally across, in a dense grid so as to
cover the shown region of the complex τ plane. The plots
are relief plots of ImðaÞ (left panel) and ImðϕÞ (right panel),
with darker colors corresponding to a smaller imaginary
part of the scale factor (left panel) and scalar field (right
panel). Thus the black lines are the locus where the scale
factor, respectively the scalar field, take on real values. For
a classical history, these lines must be vertical and overlap.
Note that for the early instanton, we are still far from
classicality. The lines of real a and ϕ cross each other at the
desired values, i.e. at the green dot where the specified
arguments of the wavefunction ðb ¼ 2; χ ¼ −1=2Þ have
been reached, but elsewhere at best one of a or ϕ is real.
However, the situation changes when we look at a later
instanton, such as the one depicted in Fig. 5. Now we can
(heuristically) see that a classical history has been reached,
as the lines of the real scale factor and scalar field overlap
into the future imaginary τ=real λ direction.
In order to understand the approach to classicality in

more detail, we must take a look at the WKB conditions

V( )

–5 –4 –3 –2 –1 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 2 (color online). The inflationary potential used for the
numerical evaluations is given by VðϕÞ ¼ eϕ=3. This corresponds
to a slow-roll parameter ϵ ¼ 1=18.
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(27), (28), as discussed in Sec. II. For this purpose, i.e. in
order to estimate the b and χ derivatives, we have evaluated
the wavefunction for slightly shifted values of bshifted ¼
b � ð1þ 10−5Þ and χshifted ¼ χ þ 10−5, respectively.3 The
results for the ratios j∂bSRE=∂bSIEj and j∂χSRE=∂χSIEj are
shown in Fig. 6. Here we see something striking: not only
does the wavefunction become increasingly classical as the

inflationary phase proceeds, but it does so in a very precise
manner, namely in proportion to the factor

���� ∂bSRE
∂bSIE

����;
���� ∂χSRE
∂χSIE

���� ∝ exp

�
−
3 − ϵ

1 − ϵ
N

�
: ð35Þ

Thus, as a function of the number of e-folds N, the
wavefunction becomes classical exponentially fast. For
small ϵ and thus approximately constant H, the scaling
is approximately as e−3N , i.e. the WKB conditions are
satisfied in inverse proportion to the volume of space

SP
R

–0.910

–0.905

–0.900

–0.895

N

SP
I

0 1 2 3 4 5 6

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

N

SE
R

0 1 2 3 4 5 6
–143.0

–142.5

–142.0

–141.5

FIG. 3 (color online). Left: the South Pole scalar field value ϕSP ¼ ϕR
SP þ iϕI

SP for the series of instantons corresponding to the
classical history (33)–(34), as a function of the number of e-folds N of inflation. Right: an analogous plot for the real part of the
Euclidean action SRE reached during the course of the same classical history.

SP (b, )=(2,–0.5)

0 1 2 3 4
0

5

10

15

20

SP
(b, )=(2,–0.5)

0 1 2 3 4
0

5

10

15

20

FIG. 4 (color online). A visual representation of the instanton corresponding to the values ðb ¼ 2; χ ¼ −1=2Þ. This instanton is
characterized by the value ϕSP ¼ −0.9108 − 0.1513i. To obtain these figures, the equations of motion are integrated from the South Pole
in a dense grid. The dark lines indicate the locus of real scale factor (left panel) and real scalar field (right panel). The argument ð2;−1=2Þ
of the wavefunction is reached at the green dot. Note that the wavefunction is still far from classical at this stage, as is clear from the fact
that the lines of real scale factor and scalar field only overlap at a single point.

3We have checked that the finite difference estimate of the
derivative is reliable by verifying that the results remain essen-
tially unchanged when the shift is further reduced to 10−6.
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generated by inflation. Keeping in mind that a successful
inflationary phase increases the volume of space by a factor
of at least e180 gives an indication as to the effectiveness of
inflation in rendering spacetime classical.
This scaling of the WKB conditions can in fact be

derived analytically, in analogy with a calculation presented
in the ekpyrotic context in [12]. Important ingredients in
that calculation are the symmetries of the action: starting
from

SE ¼ −
Z

d4x
ffiffiffi
g

p �
R
2
−
1

2
gμν∂μϕ∂νϕ − V0e−cϕ

�
; ð36Þ

one can perform the following scaling and shift:

ϕ≡ ϕ̄þ Δϕ; gμν ≡ ecΔϕ

V0

ḡμν; ð37Þ

which transform the action into

SE ¼ −
ecΔϕ

V0

Z
d4x

ffiffiffī
g

p �
R̄
2
−
1

2
ḡμν∂μϕ̄∂νϕ̄þ e−cϕ̄

�
:

ð38Þ

Hence, if we keep V0 ¼ 1 so that we remain in the same
theory, then the minisuperspace field equations are invari-
ant under the transformations

SP

(b, )=(1578,–3.05)

0 1 2 3 4
0

5

10

15

20

SP

(b, )=(1578,–3.05)

0 1 2 3 4
0

5

10

15

20

FIG. 5 (color online). A visual representation of the instanton corresponding to the values ðb ¼ 1578; χ ¼ −3.05Þ. This instanton is
characterized by the value ϕSP ¼ −0.8966 − 0.5544i. The wavefunction is now already highly classical.
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FIG. 6 (color online). For inflation with a constant slow-roll parameter ϵ, the wavefunction of the universe becomes classical
exponentially fast. This is shown here by evaluating the WKB classicality conditions, which are seen to be satisfied exponentially fast in
the number of e-folds N. One may note how quickly the asymptotic scaling is reached.
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āðλ̄Þ ¼ ecΔϕ=2aðe−cΔϕ=2λ̄Þ; ð39Þ

ϕ̄ðλ̄Þ ¼ ϕðe−cΔϕ=2λ̄Þ þ Δϕ: ð40Þ

The scaling/shift above takes the solution (31) into the
solution

ā ¼ ā0ðλ̄Þ1=ϵ; ā0 ¼ exp

�
ϵ − 1

ϵ

cΔϕ
2

�
a0;

Vðϕ̄Þ ¼ 3 − ϵ

ϵ2
1

λ̄2
: ð41Þ

One can see that a0 is a constant of motion,

a0 ¼ a

�
ϵ2

3 − ϵ
V

�
1=2ϵ

; ð42Þ

which can be used to label the asymptotic attractor
solutions of the theory. Given that the imaginary part of
the Euclidean action along a classical trajectory (with
dτ ¼ idλ) scales as

SIE ∼ i
Z

dλa3V ∼ ia30ðλÞ−1þ3=ϵ ∼ ia30V
1
2
− 3
2ϵ; ð43Þ

one can use the constant of motion (42) to find

SIE ∼ ib3VðχÞ1=2: ð44Þ

The scaling of the real part of the Euclidean action was
found above, and it implies that

S̄RE ¼ ecΔϕSR ¼
�
ā0
a0

�
2ϵ=ðϵ−1Þ

SRE; ð45Þ

so that

SRE ∼ a
2ϵ
ϵ−1
0 ∼ b

2ϵ
ϵ−1VðχÞ1=ðϵ−1Þ: ð46Þ

From these expressions it is now straightforward to work
out the asymptotic behavior of the WKB conditions.
Noting that χ derivatives only add a constant prefactor,
we have that

∂χSRE
∂χSIE

∝
SRE
SIE

∼
b

2ϵ
ϵ−1VðχÞ1=ðϵ−1Þ
b3VðχÞ1=2 ∼ bϵ−3 ∼ e−ðϵ−3ÞN=ðϵ−1Þ:

ð47Þ

Meanwhile

∂bSIE ∼ b2VðχÞ1=2 ∼ λ−
ϵ−2
ϵ ; ð48Þ

∂bSRE ∼ b
ϵþ1
ϵ−1VðχÞ1=ðϵ−1Þ ∼ λ−1=ϵ; ð49Þ

implying that

���� ∂bSRE
∂bSIE

���� ∼ λ
ϵ−3
ϵ ∼ bϵ−3 ∼ e−ðϵ−3ÞN=ðϵ−1Þ: ð50Þ

This completes the analytic derivation of the asymptotic
scaling of the WKB conditions.
We should point out a further consequence of the scaling

and shift symmetry in (37), namely that it can be used to
relate various classical histories and their corresponding
instantons to another. In fact, the entire family of attractor/
scaling solutions can be obtained by applying the trans-
formations

χ ¼ χ̄ þ Δχ; b ¼ ecΔχ=2

V1=2
0

b̄ ð51Þ

to the history analyzed above, where the corresponding
instantons then have the South Pole values ϕ̄SP þ Δχ. For
all such solutions the approach to classicality will be
analogous, while the relative probabilities are given by
the rescaled action (38).

IV. CLASSICAL SPACETIME FROM EKPYROSIS

We will now perform a similar analysis, but for a
potential that is steep and negative, i.e. for an ekpyrotic
phase [13]. Until recently, all studies of the no-boundary
proposal, and in fact of quantum cosmology in general,
have been limited to positive potentials. However, it was
recently discovered that with a steep and negative potential,
ekpyrotic instantons exist which satisfy the no-boundary
conditions and at the same time lead to a classical
(contracting) universe [8,12]. For the remainder of this
paper, we will study this new type of solutions in detail,
especially regarding the approach of classicality. It may at
first sound surprising that no-boundary instantons can be
found leading to a contracting universe. The South Pole
region of no-boundary instantons is typically interpreted as
the region where space and time tunnel out of “nothing,”
suggesting that afterwards the universe should first undergo
a period of expansion during which more space gets
created. Ekpyrotic instantons get around this apparent
paradox due to the fact that the South Pole region is a
(large) region of Euclidean flat space which then smoothly
interpolates (via a region where the fields are fully com-
plex) to an increasingly classical contracting Lorentzian
universe. An interesting feature of these solutions is that
they have a very high relative probability, much higher than
that of realistic inflationary universes. Thus, if the potential
contains both regions that are positive and flat, and regions
that are negative and steep, the wavefunction of the
universe will be dominated by contracting universes.
This by itself is already a good motivation to study their
properties in more detail. Of course, such universes are only
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realistic if they can revert from contraction to expansion
eventually, i.e. they must undergo a bounce. We will leave
this important issue for future work. In the present paper,
we will analyze how such contacting ekpyrotic universes
become classical, and whether or not they preserve their
classicality when the ekpyrotic phase comes to an end.
Moreover, we will look at the implications of adding a dark
energy plateau, as envisaged in cyclic models of the
universe [14].

A. The ekpyrotic and kinetic phases

We will consider a potential of the form

VðϕÞ ¼ −
V0

ec1ϕ þ e−c2ðϕþc3Þ ; ð52Þ

where V0 > 0 and c1;2;3 are constants. For our numerical
example we have chosen V0¼1;c1¼3;c2¼8;c3¼10—see
Fig. 7. For ϕ≳ −7 the potential is well approximated by the
pure ekpyrotic potential V ¼ −e−3ϕ, but we have added an
additional term which effectively switches the potential off
at large negative ϕ values, thus allowing the ekpyrotic
phase to come to an end. This will allow us to analyze what
happens when the universe becomes dominated by the
kinetic energy of the scalar field [15].
For our numerical computations, we have chosen a

classical solution with initial conditions

c ¼ 3; ϵ ¼ 9

2
ð53Þ

aðλiÞ ¼ 100;

_aðλiÞ ¼ −
�
−1þ aðλiÞ2

3

�
1

2
_ϕðλiÞ2 þ VðλiÞ

��
1=2

ð54Þ

ϕðλiÞ ¼ 0; _ϕðλiÞ ¼ −
�
2ϵVðλiÞ
3 − ϵ

�
1=2

: ð55Þ

The evolution starts in the ekpyrotic phase, where the fast-
roll parameter

ϵ ¼ V2
;ϕ

2V2
¼ c2

2
ð56Þ

is constant. The evolution quickly reaches the asymptotic
scaling solution

a ¼ a0ð−λÞ1=ϵ; ϕ ¼
ffiffiffi
2

ϵ

r
ln

�
−

ffiffiffiffiffiffiffiffiffiffi
ϵ2V0

3 − ϵ

r
λ

�
;

V ¼ −
ϵ − 3

ϵ2λ2
: ð57Þ
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FIG. 7 (color online). The ekpyrotic potential. The field
evolution is from right to left, with the field first rolling down
the steep ekpyrotic phase while the universe is slowly contracting.
As the potential turns back up towards zero, the evolution
becomes dominated by the kinetic energy of the scalar field.
Note that because the universe is contracting, the kinetic energy
of the scalar field is blue shifted and thus the field keeps rolling
rapidly towards the left after ekpyrosis has ended.
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FIG. 8 (color online). Left: the South Pole values ϕSP of the scalar field for the instantons corresponding to the classical solution
specified by Eqs. (54)–(55). Right: the corresponding real part of the Euclidean action. One can see that as the ekpyrotic phase proceeds,
the values of ϕSP and SRE stabilize, which is a sign that the wavefunction has become WKB “classical.”
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When ϵ > 3 this solution corresponds to an ekpyrotic
attractor solution. For ϕ≲ −7 the potential becomes
unimportant, and the ekpyrotic phase goes over into the
kinetic phase, during which the solution is given by

a¼ acðλc−λÞ1=3; ϕ¼
ffiffiffi
2

3

r
lnðλc−λÞ; V≈0; ð58Þ

where λc corresponds to the time when the universe
crunches.
Then, in order to evaluate the properties of the no-

boundary wavefunction, we have evaluated the wavefunc-
tion for 250 values of ðb; χÞ ranging between ð100; 0Þ
and ð5.71;−8.35Þ along the classical solution, correspond-
ing to a range of about 10 e-folds of contraction. The

corresponding South Pole values of the scalar field, and
real parts of the Euclidean action, are shown in Fig. 8. As
can be seen, these values stabilize after a few e-folds, thus
indicating that a classical history is reached. Before
analyzing the approach to classicality in more detail, it
is instructive to take a look at the actual instantons, in order
to contrast them with the inflationary case discussed in the
previous section. The first and last instanton in the series
are shown in Figs. 9 and 10, respectively, in analogy with
Figs. 4 and 5. There are a number of features to note: the
first is that the first and last instanton in the series do not
differ substantially in their shape. However, note that the
positions of the lines of real a and ϕ shift by a significant
amount. Second, the lines of real scale factor and scalar

(b, )=(100,0)

210 215 220 225

–104

–102

–100

–98

–96

–104

–102

–100

–98

–96
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FIG. 9 (color online). A visual representation of the instanton corresponding to the values ðb ¼ 100; χ ¼ 0Þ. This instanton is
characterized by the value ϕSP ¼ 3.563 − 1.321i. This figure was evaluated in the same manner as Fig. 4.
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FIG. 10 (color online). A visual representation of the instanton corresponding to the values ðb ¼ 5.71; χ ¼ −8.35Þ. This instanton is
characterized by the value ϕSP ¼ 3.536 − 1.346i. Note that the lines of real scale factor and real scalar field become aligned and vertical
just before the crunch. The range of λ during the ekpyrotic and kinetic phases is very small compared to the range of the scalar field.
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field come to an end. This is the moment where the crunch
occurs (λ ¼ λc), and this is also the moment beyond which
one cannot continue the analysis in the theory considered in
the present paper. Third, the ekpyrotic and kinetic phases
occur over a small time period (i.e. a small range of λ), even
though the scalar field range is quite large—this feature
makes the visualization a little less intuitive, as most of the
evolution is condensed to being very near the crunch in the
figures. Finally, note that the lines of real scale factor and
scalar field become increasingly aligned and vertical as the
ekpyrotic phase proceeds.
Figure 11 presents plots of the WKB classicality con-

ditions along the contracting classical history. These plots
confirm that classicality is reached: during the ekpyrotic
phase, in complete analogy with the inflationary case, the
WKB conditions are satisfied exponentially fast in the
number of e-folds N,

���� ∂bSRE
∂bSIE

����;
���� ∂χSRE
∂χSIE

���� ∝ exp

�
−
3 − ϵ

1 − ϵ
N

�
: ð59Þ

Again, this scaling is attained very quickly. Moreover, the
asymptotic exponential scaling with N can be derived
analytically, as first shown in [12] (we will not repeat the
derivation here, which is analogous to the one presented for
the inflationary case in Sec. III in any case). If the equation
of state during ekpyrosis is ultrastiff, i.e. if ϵ ≫ 3, classi-
cality is reached as ∼e−N . Thus, remembering that for
inflation the scaling was found to be ∼e−3N , one can see
that inflation is even more efficient in rendering spacetime
classical, but the important point is that in both cases the
scaling is exponential with N.
The plot in Fig. 11 shows another important property: as

the ekpyrotic phase goes over into the kinetic phase at
N ≈ 8.5, the WKB conditions reach a constant value. In

other words, the level of classicality reached during the
ekpyrotic phase is preserved during the kinetic phase, in
the approach to the crunch. One can also understand this
scaling analytically: during the kinetic phase the potential
V becomes unimportant, so that the on-shell action is
(asymptotically) given by

Son-shellE ¼−12π2
Z

dτa ≈ −12π
Z

dτa0ðλc−λÞ1=3; ð60Þ

where a0 will contain a small imaginary part. Thus the real
and imaginary parts of the Euclidean action are propor-
tional to one another, and hence the WKB conditions
∂SRE=∂SIE become constant.
In order to obtain a realistic cosmology, two additional

ingredients are required: the first is that a mechanism must
be added which allows for the generation of nearly scale-
invariant and nearly Gaussian curvature perturbations. A
number of such mechanisms exist, all involving the addition
of a second scalar field—see e.g. [16–19]. The second
missing ingredient is a description of the bounce into an
expanding phase. This crucial aspect of bouncing models
remains incompletely understood at present, but several
promising ideas exist for incorporating a bounce. One
possibility is that the bounce is classically singular and
must be described in quantum gravity [13,20,21]. A second
possibility is that the bounce may be classically nonsingular
and describable in an effective classical theory [22–29]. In
that case, it is certainly imperative that spacetime becomes
highly classical in the approach to the bounce. Herewe have
demonstrated that this is exactly what happens.

B. The cyclic potential

The cyclic universe is a framework for a more complete
cosmological model, including alternating contracting and
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FIG. 11 (color online). The WKB classicality conditions for an ekpyrotic phase followed by a kinetic phase. The universe becomes
classical exponentially fast in the number of e-folds of ekpyrotic contraction, while the level of classicality that is reached in this way is
essentially preserved during the subsequent kinetic phase.
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expanding phases, and thus linking the early and the late
universe with each other [14,15]. The central idea in going
from an ekpyrotic model to a cyclic one is that in the future,
the current dark energy period (modeled as quintessence)
will come to an end when the scalar potential decreases and
becomes negative. This will cause the universe to stop
expanding and to enter a new ekpyrotic contraction period.
In this way a cyclic behavior is achieved, with each cycle
setting up the initial conditions for the next one.4 In that
sense, a cyclic universe improves the issue of initial
conditions. However, what is left unexplained is how the
initial conditions for the first cycle were set up, and how
space and time came to behave classically (these questions

are relevant even if there were an infinite number of cycles).
In order to answer these questions, a theory of initial
conditions is needed, and in this paper we will analyze the
issue of classicality from the point of view of the no-
boundary proposal.
The potential for the cyclic universe is shown in the left

panel of Fig. 12. It was established in [12] that on the dark
energy plateau, two types of instantons exist: inflationary
ones, for which the universe becomes classical due to the
low-energy inflationary expansion, and ekpyrotic ones, for
which the universe becomes classical due to the subsequent
rolling down the steep negative part of the potential.
Moreover, it was shown that the latter instantons have a
higher relative probability. For this reason (and also
because inflationary instantons were already discussed
above) we will focus on the latter ones. We will illustrate
the implications of the no-boundary proposal by contrast-
ing two possible classical histories, which however start out
at the same values of the scale factor and scalar field, but
where one solution is contracting, while the other one is
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FIG. 13 (color online). Left: the South Pole values of the instantons associated with the classical histories shown in Fig. 12. Right: the
logarithm of the relative probability (given by minus two times the Euclidean action) for the same instantons. During the contracting part
of these histories, both the values of ϕSP and −2SRE stabilize, indicating that the wavefunction has become WKB classical.
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FIG. 12 (color online). Left: the potential for a cyclic universe contains a dark energy plateau. Right: we will be interested in two
different classical solutions, both starting from the green dot on the potential. One history is always contracting, while the second one is
initially expanding, and then later on reverts to contraction as the potential becomes negative. Note that these two histories are not the
time reverse of each other.

4If the perturbations are generated by having an unstable
potential, as envisaged in [30–33], then the issue of initial
conditions is more involved, as described in [34–36]. Here we
will restrict our discussion to models where the potential is stable,
i.e. we implicitly assume the perturbation generating the mecha-
nism described in [16–19].
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initially expanding and only later starts contracting, as
envisaged in the cyclic scenario—see the right panel in
Fig. 12. Note that the first type of solution would however
also lead to a cyclic evolution later on, so that both are valid
histories, and one may ask which one is preferred, and
whether they have different properties. More specifically,
the initial conditions we are interested in are given by

VðϕÞ ¼ 3ð1 − e−3ϕÞ; ð61Þ

aðλiÞ ¼ 100;

_aðλiÞ ¼ �
�
−1þ aðλiÞ2

3

�
1

2
_ϕðλiÞ2 þ VðλiÞ

��
1=2

; ð62Þ

ϕðλiÞ ¼
4

5
; _ϕðλiÞ ¼ −10−6: ð63Þ

These two solutions are not the time reverse of each other,
as the initial value of H is flipped, but not that of _ϕ. We
have evaluated the no-boundary wavefunction with both
classical histories as arguments—more specifically, we
have calculated the relevant instantons for 1500 values
between ðb ¼ 100; χ ¼ 4=5Þ and ðb ¼ 2.766; χ ¼ −8.110Þ
for the contracting history, and between ðb ¼ 100; χ ¼
4=5Þ and ðb ¼ 41.60; χ ¼ −3.686Þ for the initially expand-
ing history. The corresponding South Pole values of the
scalar field, as well as (the logarithm of) the relative
probabilities are shown in Fig. 13. These figures suggest
that during the contracting part of the evolution, a classical
history is reached. Moreover, the right panel shows that the
initially expanding history (in red) is significantly likelier
(by an astonishing factor of almost e10

11

) than the con-
tracting one, according to the probability measure asso-
ciated with the no-boundary proposal.

The main point of interest here is the approach to
classicality. The evolution of the WKB conditions (27)
and (28) are shown in Fig. 14. While the field is on the dark
energy plateau, the wavefunction does not become
classical: even though condition (28) starts being increas-
ingly satisfied (right panel), the same is not true for
condition (27) (left panel). However, as the field rolls
down the steep ekpyrotic part of the potential, and as the
universe simultaneously contracts, both conditions are
increasingly well satisfied, once more according to the
scaling relation ∼e−ðϵ−3ÞN=ðϵ−1Þ, as expected. Note that the
initially expanding history is not only much more likely, it
is also much more classical than the always contracting
history at a given value b of the scale factor. The curvature
scale of the instantons is given by the height of the dark
energy plateau [12]. Consequently, the involved curvatures
are very small (in Planck units), and the semiclassical
approximation employed here should be trustworthy. Thus
these results show that the no-boundary proposal consti-
tutes a viable theory of initial conditions for the cyclic
universe.

V. TRANSIENT EKPYROSIS: POTENTIALS
OF THE FORM V ¼ −ϕn

We have seen that an ekpyrotic phase is both an efficient
means of rendering the wavefunction classical, and that it
also leads to high (relative) probabilities. For the case
where the potential is an exponential function of the field,
and where the equation of state is constant, the classical-
ization process is efficient and sustained—the final level of
classicality reached depends foremost on the total number
of e-folds of ekpyrotic contraction. In a general (“land-
scape”) potential, one may expect that there will be other
(sufficiently steep) negative regions of the potential, not of
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FIG. 14 (color online). For both histories of interest, the wavefunction becomes classical as the field rolls down the steep negative part
of the potential, according to the expected ekpyrotic scaling. However, the initially expanding history is not only likelier, but it also
reaches a higher degree of classicality compared to the initially contracting history at a given value of the scale factor.
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FIG. 16 (color online). The South Pole values ϕSP and the real part of the Euclidean action SRE for the three classical histories shown in
Fig. 15. The color assignments are the same as in the previous figure.
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FIG. 15 (color online). Left: the potential VðϕÞ ¼ −ϕ4, with the initial value ϕ ¼ −1=5 indicated by the green dot. Right: the three
histories that we are comparing for this potential. They differ by having increasingly large initial velocities j _ϕj, with the color
assignments _ϕinitial ¼ −3=800 (blue), _ϕinitial ¼ −3=80 (red), and _ϕinitial ¼ −3=8 (green).

JEAN-LUC LEHNERS PHYSICAL REVIEW D 91, 083525 (2015)

083525-14



exponential form. For this reason it is interesting to also
look at power-law potentials, and here we will consider the
potentials V ¼ −ϕn for n ¼ 4; 6; 8. A further motivation for
such potentials stems from the fact that they are used in
certain early-universe models, in particular the conformal
rolling scenario [37] and the pseudoconformal universe
[38]. These scenarios effectively use the ekpyrotic mecha-
nism to smoothen the universe, and hence one may ask
whether such potentials also provide an efficient means of
rendering the wavefunction classical in a WKB sense.
We will analyze two situations: different initial condi-

tions within a given potential, and similar initial conditions

but for different potentials. Our treatment is by no means
exhaustive, but it is sufficient to reveal a number of
interesting effects. We will first fix the potential to be
V ¼ −ϕ4, and look at classical histories specified by the
following three sets of initial data:

aðλiÞ ¼ 2000;

_aðλiÞ ¼ �
�
−1þ aðλiÞ2

3

�
1

2
_ϕðλiÞ2 þ VðλiÞ

��
1=2

; ð64Þ

ϕðλiÞ ¼ −
1

20
; _ϕðλiÞ ¼ −

3

800
;−

3

80
;−

3

8
: ð65Þ

The right panel in Fig. 15 shows the three classical histories
following from these initial conditions. The corresponding
instantons are specified by South Pole values of the scalar
field shown in the left panel of Fig. 16, while the right panel
of that figure plots the corresponding values of the real part
of the Euclidean action. We can observe that classicality is
reached surprisingly quickly, especially for the history with
the smallest initial value of the scalar field velocity—for
this latter history, which is also the one with the highest
likelihood, the values of ϕSP and SRE stabilize after only a
tenth of an e-fold of contraction. Based on this observation,
one may expect that the wavefunctions will be highly
classical in a WKB sense. The relevant results are plotted in
Fig. 17. Here we see something interesting: while it is true
that initially the WKB conditions become increasingly
satisfied at a fast rate, they also reach a halt very quickly.
This may be understood heuristically as follows: in a steep
power law potential, the evolution is dominated by the
potential only very early on. During this initial period, the
equation of state is typically very large, ϵ ≫ 1. Rather
quickly though, the kinetic energy of the scalar field takes
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FIG. 18 (color online). A comparison of the relative likelihood
of classical histories with small scalar field velocities in the
potentials V ¼ −ϕ4;6;8. The shallower potential comes out as
preferred.
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FIG. 19 (color online). For potentials of the form −ϕn, there is an initial burst of classicalization as the universe contracts. However,
after a small amount of contraction, the classicalization process already stops, as the universe gradually becomes dominated by the
kinetic energy of the scalar field.
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over, and one effectively reaches a kinetic dominated
phase with ϵ ≈ 3. There, in agreement with the results
found for a kinetic phase following ekpyrosis in Sec. IVA,
one sees once more that the process of classicalization
stops. The history with the smallest initial scalar field
velocity is also the one that becomes the most classical.
Note that the final numerical values for the WKB con-
ditions are pretty small (they are at a level of 10−3.5)—an
interesting question for future work might be to see if
nevertheless there might be any effects caused by the
remaining traces of “quantumness.”
A final situation of interest is to compare different

potentials. For this purpose, we may analyze the power-
law potentials V ¼ −ϕ4;6;8. The initial conditions for the
classical solutions under consideration are fixed such that
the initial values of a, H and ϕ coincide with the ones in
(64)–(65) for the case that _ϕðλiÞ ¼ −3=800, but with the
initial values for _ϕ adjusted in accord with the Friedmann
equation for the potentials V ¼ −ϕ6;8. The instantons in all
three cases have very similar properties, and they lead to the
relative probabilities shown in Fig. 18. As can be seen, all
three histories quickly lead to a well-defined notion of
probability, and the potential that is the least steep (−ϕ4)
comes out as preferred.
We can then also take a look at the corresponding WKB

classicality conditions, shown in Fig. 19. Here one notices a
repetition of the pattern observed for V ¼ −ϕ4: in all three
cases, there is an initial burst of classicalization, which
however comes to a halt after just a fraction of an e-fold of
contraction. The final level of classicality reached is similar
for the three potentials, though the steeper the potential, the
more classical the corresponding wavefunction. We have
not found an analytic explanation of the final level of
classicality attained—this may be an interesting question to
pursue in future research. In conclusion, one may summa-
rize the situation by saying that one has a trade-off between
likelihood and classicality: steeper power-law potentials
lead to universes that are more classical, while shallower
potentials come out as likelier.

VI. DISCUSSION

The currently most advanced dynamical theory, string
theory, suggests that effective potentials may take a very
complicated form, with numerous positive, negative, steep
and flat regions. In such a situation, especially in a
cosmological context, one needs to know how the evolution
starts in order to make pre-/post-dictions. In the present
paper we have investigated the idea, due to Hartle and
Hawking, that one may be able to formulate a theory of
initial conditions in semiclassical quantum gravity. Their
specific proposal is that in the path integral formulation
of quantum gravity, one only sums over (complex)
4-geometries that have no boundary to the past. One
consequence of this proposal is that the relative probability

for various histories of the universe is proportional to a
factor e1=jVðϕR

SPÞj, where ϕSP is the value of the scalar field at
the very bottom of the instanton. This implies that all
histories that start out at a small positive or negative value
of the potential tend to be preferred.5 In this way, if the
potential is such that it allows for both inflationary and
ekpyrotic/cyclic solutions, then ekpyrotic universes (which
can start at small negative potential) and cyclic universes
(which can start at small positive potential) come out as
preferred over cosmologies with large initial expansion or
contraction rates, such as inflation.6 Note however that one
must be able to join the small initial Hubble rates to the
rather high Hubble rates of the early (radiation dominated)
hot big bang phase in order to obtain a successful model.
This can be achieved by having a bounce. A full under-
standing of bounces is still lacking, but see e.g. [22–29] for
recent progress. It will be crucial to incorporate into the
currently known ekpyrotic instantons a (nonsingular)
bounce in order to obtain a full semiclassical history of
the universe. Results regarding this issue will be presented
in a forthcoming publication.
In addition to figuring out what a likely starting point for

cosmology might look like, one would also like to find an
explanation for why spacetime and matter came to behave
so classically, even in the very early universe. In calculating
predictions of cosmological models, one typically
quantizes small quantum fluctuations around a classical
background—but why is it justified to assume a classical
background in the first place? Here we have seen that the
no-boundary proposal provides such an explanation. In
fact, we were able to derive in a rather precise fashion how
fast a classical spacetime description becomes meaningful,
by calculating the WKB classicality conditions for a range
of theories and potentials. For exponential potentials, both
positive and negative, we have found that the classicality
conditions are satisfied in proportion to a factor

WKB ∝ e−
ϵ−3
ϵ−1N; ð66Þ

where N denotes the number of e-folds of evolution. Since
this factor must approach zero, we can see that this scaling
singles out two possible regimes: ϵ < 1, corresponding to
inflation, or ϵ > 3, corresponding to ekpyrosis. Thus, we
can see that the only two dynamical smoothing mecha-
nisms for the universe share the very fundamental property
of also rendering spacetime and matter classical. This
conclusion is also supported by the Wheeler-deWitt equa-
tion, as shown in Sec. II, and it lends strong support to the
idea that (at least one of) these two types of theories must

5This is nicely self-consistent with the assumption that a
semiclassical approach is valid: for small values of the potential,
the Hubble rates and curvature invariants are all small.

6The existence of such potentials has not been demonstrated
conclusively in string theory yet, and thus one must take these
probabilistic statements with a grain of salt.
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have played a crucial role in the early universe. Note also
the implications for cosmological scenarios that do not
incorporate either an inflationary or an ekpyrotic phase:
they must rely on strong (and unjustified) assumptions
about the classicality and configuration of spacetime and
matter at very early times. An additional aspect that we
have probed in the present paper is the issue of what
happens when the ekpyrotic phase comes to an end, and the
universe becomes kinetic dominated. Here we have found
that the level of classicality reached up to that point remains
preserved during the kinetic phase (when ϵ ¼ 3). This is
important, especially for nonsingular bounce models, as it
means that the universe approaches the bounce in a highly
classical state.
We have also analyzed negative potentials of power-law

form. For these potentials, the dynamics is at first domi-
nated by the potential, and the equation of state is very
large. Correspondingly, there is an initial burst of classic-
alization, during which the WKB conditions become
satisfied very rapidly. Then, as the evolution becomes
dominated by the kinetic energy of the scalar field, the
equation of state drops down to ϵ ¼ 3 and the level of
classicality remains constant. It would be interesting to
understand what determines the final level of classicality
achieved.
It may be interesting to finish with a few remarks

regarding the arrow of time. As is well known, time does
not appear explicitly in quantum cosmology, and so, for
instance, one may ask why a given ekpyrotic history is

contracting and becoming classical rather than expanding
and becoming less classical. In minisuperspace there is in
fact no good way to tell. However, one may easily imagine
extensions of the present framework where a second field
and its fluctuations are included. Then, on top of having
an increasingly classical background, small quantum
(entropy) fluctuations also become amplified. These fluc-
tuations evolve into a highly squeezed state, which may be
reinterpreted as a statistical ensemble of classical fluctua-
tions. What is more, when the entropy perturbations get
converted to curvature perturbations, decoherence occurs
very efficiently [39]. These processes thus provide an
unambiguous arrow of time—the fluctuations provide a
time direction. Note that for a single-field ekpyrotic phase,
such an arrow of time does not arise: in that situation the
quantum fluctuations are not amplified, and the universe
remains completely empty. Thus, in the ekpyrotic case, the
first scalar causes spacetime to become classical, and a
second scalar plays the additional role of providing an
arrow of time.
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