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Quasidilaton massive gravity offers a physically well-defined gravitational theory with nonzero graviton
mass. We present the full set of dynamical equations governing the expansion history of the Universe, valid
during radiation domination, matter domination, and a late-time self-accelerating epoch related to the
graviton mass. The existence of self-consistent solutions constrains the amplitude of the quasidilaton field
and the gravitonmass, as well as othermodel parameters.We point out that the effectivemass of gravitational
waves can be significantly larger than the graviton mass, opening the possibility that a single theory can
explain both the late-time acceleration of cosmic expansion and modifications of structure growth leading to
the suppression of large-angle correlations observed in the cosmic microwave background.
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I. INTRODUCTION

In the standard cosmological model, the acceleration
of the Universe is assumed to be due to a cosmological
constant Λ that has time-independent energy density which
becomes dominant at late times. An alternative possibility is
that the true theory of gravity differs from general relativity
on large scales.
One interesting physical modification of general relativity

is a nonzero graviton mass mg. However, constructing a
consistent nonlinear theory of massive gravity has been a
challenging task.At the linearized level, the actionmust have
the Fierz-Pauli form [1] to be ghost-free, but any purely linear
theory suffers from the van Dam–Veltman–Zakharov

(vDVZ) discontinuity [2,3]: the theory does not reduce to
general relativity in the limit of zerogravitonmass.Nonlinear
extensions to the Fierz-Pauli theory can incorporate a strong-
coupling phenomenon known as the Vainshtein mechanism
[4] which evades the vDVZ issue in the vicinity of matter
sources. But these theories were soon found to contain an
unhealthy ghost-like degree of freedom [5,6].
Recently, theories of ghost-free massive gravity (the

dRGT theory) [7,8] and its bigravity generalization [9] have
been discovered. Pioneering work on cosmological aspects
of these theories showed that the original dRGT theory
does not allow isotropic and homogeneous background
solutions [10], but that massive gravity could provide a
cosmological constant-like term in the field equations
leading to accelerated cosmological expansion [11].
Searches for a fully satisfactory theory have led to models
of massive gravity incorporating a quasidilaton field
[12–16]; the extra field is used to stabilize the metric
perturbations. Cosmological perturbations in extended
theories of massive gravity have been studied, for example,
in Refs. [16–18]. For recent reviews see Refs. [19,20].
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Here we present the full dynamical background equa-
tions governing the expansion history of the Universe in
quasidilaton massive gravity, valid at all epochs. Recent
work has assumed the late-time asymptotic form of the
expansion history to evaluate the growth of perturbations
[21], but the full solution is required for comparison with
observations, since our current epoch is in the transition
between matter domination and accelerating expansion. We
give constraints on parameters in the model arising from the
requirement of self-consistent cosmological solutions with
late-time acceleration. Numerical solutions and comparison
to current data on cosmic expansion will be presented in a
companion paper [22]. We also make a general observation
about perturbations in the model (the full set of perturbation
equations will be presented in follow-up papers [23,24],
and their cosmological consequences on the microwave
background and large-scale structure will be studied in
Ref. [24]). We note that the mass scale governing the
evolution of tensor perturbations can be substantially larger
than mg; if a similar scale governs the evolution of scalar
perturbations as well, then the observed lack of correlations
at large angular scales in the microwave background [25]
might also arise in these theories.

II. EXTENDED QUASIDILATON
MASSIVE COSMOLOGIES

Here we analyze the extended quasidilaton theory of
Ref. [14], defined by the action

S ¼ SQ þ SM; ð1Þ

where

SQ ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

ω

M2
Pl

∂μσ∂μσ

þ 2m2
gðL2 þ α3L3 þ α4L4Þ

�
ð2Þ

and SM is the matter action, which wewill assume to be that
for a perfect fluid. Here MPl is the Planck mass, Λ is a
cosmological constant, σ [taken to be ¼ σ̄ðtÞ] is the
quasidilaton field, and L2–L4 are the terms that provide
a mass mg to the graviton. The theory depends on mg
and additionally four dimensionless coupling constants
ω; ασ; α3, and α4. The physical and fiducial metrics are
characterized through the following functions in FLRW
space-time: the Hubble parameter HðtÞ≡ _a=a, with aðtÞ
being the scale factor, and a dot representing the derivative
with respect to physical time t, the quasidilaton field σ̄ðtÞ
and a convenient related variable XðtÞ≡ expðσ̄=MPlÞ=a;
the Stückelberg fields ϕa [we work with ϕ0 ¼ ϕ0ðtÞ and
ϕi ¼ xi]; and qðtÞ≡ nðtÞaðtÞ, with nðtÞ being the lapse
function of the extended fiducial metric, expressed in terms
of _ϕ0 and σ̄ðtÞ by

�
_ϕ0

n

�2

≡ 1 − ασ

�
_σ

qXmg

�
2

; ð3Þ

where we have redefined σ to denote σ̄=MPl.
Equations of motion for the expansion history aðtÞ and

field values can be obtained by varying the action, S.
Introducing the auxiliary function J ≡ 3þ 3α3ð1 − XÞþ
α4ð1 − XÞ2, variation with respect to ϕ0 gives the constraint
equation

d
dt

�
a4Xð1 − XÞJ

_ϕ0

n

�
¼ 0; ð4Þ

while variations with respect to NðtÞ1 and aðtÞ give the
modified first and second Friedmann equations,

3H2 −
ω

2
_σ2 ¼ Λþ ΛX þ 1

M2
Pl

ρM; ð5Þ

_H ¼ 1
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Here ΛX ¼ m2
gðX − 1Þ½J þ ðX − 1Þðα3ðX − 1Þ − 3Þ� is

the effective cosmological constant, _ΛX ¼ 3m2
g
_X½Jþ

Xðα3ðX − 1Þ − 2Þ� and _σ ¼ H þ _X=X. The total energy
density ρM and pressure PM for the matter terms satisfy the
usual continuity equation _ρM þ 3HðρM þ PMÞ ¼ 0. The
functions H and X are connected through the dynamical
relation [22]

_X
X
¼ 4ð1 − XÞJH

3Xðα3ðX − 1Þ − 2Þ þ Jð4X − 1Þ ; ð7Þ

which imposes strong constraints on allowed model
parameters. Combining Eqs. (4) and (7) gives _ϕ0ðtÞ=nðtÞ ¼
constant. Using Eq. (3) we obtain _q=q ¼ σ̈= _σ − _X=X if
H ≠ − _X=X. Finally, the inequality ð _ϕ0=nÞ2 > 0 implies
that 0 < ασðH þ _X=XÞ2 < q2X2m2

g.

A. Self-accelerating regime

A late-time attractor solution for this system exists
[12,14] and is characterized by a constant Hubble
parameter HA ≡Hða → ∞Þ, and constant values of XA ≡
Xða → ∞Þ and qA ≡ qða → ∞Þ. In this limit ρM and PM
vanish. We will consider solutions for which J → 0 as
a → ∞. The parameter ασ does not affect the background
dynamics, but it plays a crucial role in constructing a
healthy theory: linear stability in the asymptotic regime

1Note that we work in the proper time gauge, in which the
lapse function NðtÞ of the physical metric is N ¼ 1. The
variation, of course, has to be done before gauge fixing.
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implies that [14] 1 < ασ½HA=ðXAmgÞ�2 < q2A, which can be
achieved by a proper choice of ασ if qA > 1.
The asymptotic limits of Eqs. (5) and (6) relate HA, XA,

and qA—setting the background cosmological constant Λ
to zero we obtain [14]

�
3 −

ω

2

�
H2

A ¼ ΛA; ð8Þ

qA − 1 ¼ ωH2
A

m2
gX2

A½α3ðXA − 1Þ − 2� ; ð9Þ

where ΛA ≡ ΛXða → ∞Þ ¼ m2
gðXA − 1Þ2½α3ðXA − 1Þ − 3�.

The requirement that the effective Newton’s constant
should be positive gives the constraint ω < 6 [14]. Note
that Eqs. (8) and (9) are valid only in the limit a → ∞ and
cannot be used as dynamical equations or to describe the
coupling with matter, when ΛX ≤ ρM=M2

Pl: the nonzero
functions JðaÞ and _XðaÞ must be included in the dynamics
until the asymptotic limit (a → ∞) is reached.
The condition J ¼ 0 is simply an algebraic equation for

X with the roots 2α4XA� ¼ 3α3 þ 2α4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α3

2 − 12α4
p

.
Requiring that XA is real gives α4 <

3
4
α23, while ΛX > 0

implies that α3ðXA − 1Þ > 3. Values XA < 1 are realized
only for negative values of the parameter α3. Eqsuations (8)
and (9) give the asymptotic relation

qA ¼ 1þ ωH2
A

m2
gX2

Að1þ ð3−ω
2
ÞH2

A
m2

gðXA−1Þ2Þ
: ð10Þ

Enforcing the condition ω < 6 gives m2
gX2

A=H
2
A <

6=ðqA − 1Þ.
We also have an additional constraint coming from

tensor perturbations, which are characterized by the effec-
tive mass of gravitational waves,MGWðaÞ. For stability, we
require that M2

GW > 0. In the asymptotic limit a → ∞,
M2

GW tends towards a constant value [see Eq. (38) of
Ref. [14]], expressed in terms of model parameters ω and
mg, and dynamically generated parameters XA and HA as

M2
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H2
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For 0 < XA < 1 the condition M2
GW > 0 implies that

1 < qA < q̄A, with

q̄A ¼ 2

1þ XA

−
ω

XAð1þ XAÞ
� mg

HA
ðXA − 1Þ2

ð3 − ω
2
Þ þ m2

g

H2
A
ðXA − 1Þ2

�2
: ð12Þ

To summarize, assuming that ασ is chosen to satisfy the
linear stability condition, the first stability island is char-
acterized by 0 < XA < 1, 1 < qA < q̄, 0 < ω < 6. For
XA > 1 the mass function is always positive (assuming
that qA > 1 is satisfied), and we do not get any additional
constraints.
The allowed parameter ranges are presented in Fig. 1. In

particular, we see that there are parameter ranges for which
MGW=HA ≫ 1 even if mg=HA ≃ 1. This can understood
analytically by observing that in the limit of small jXA − 1j,
M2

GW=H
2
A≈ ð3−ω=2Þ=ðXA−1Þ2þO½XA−1�−1. Adjusting

the value of the parameter α3, we can have, at the same

FIG. 1 (color online). Plot of MGW=HA for mg ¼ HA in the
entire region for 0 < XA < 1 (upper panel) and for XA > 1 (lower
panel). The excluded regions (which correspond to negative
M2

GW=H
2
A) are shown in grey color.
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time, a sizeable value of the effective cosmological constant
ΛA. This is an important property of quasidilaton exten-
sions of massive gravity. In massive gravity, the constraint
mg=HA ≃ 1 severely restricts MGW; however, in the pres-
ence of the quasidilaton this restriction is relaxed, and one
can haveMGW=HA ≫ 1, with important phenomenological
implications.

B. Radiation- and matter-dominated regimes

In order to recover the usual background expansion
during matter (or radiation) domination, the effective
cosmological constant ΛM as well as the quasidilaton field
kinetic term ω _σ2M=2 must be negligible compared to the
total energy density of matter: ΛM ≪ ρM=M2

Pl ≃ 3H2
M and

ω _σ2M=2 ≪ 3H2
M ≃ ρM=M2

Pl (the subscript M denotes mat-
ter or radiation domination). Using Eqs. (5) and (6) we
obtain the following (dynamical) equation for qMðtÞ:

qM ¼ 1þ ωH2
M

m2
gXM

×
½JM þ XMðα3ðXM − 1Þ − 2Þ�

ð½JM þ XMðα3ðXM − 1Þ − 2Þ� þ 4
3
JMðXM − 1ÞÞ2 :

ð13Þ

This equation can be used when formulating the initial
conditions to determine the background expansion history.
Note that 3ω _XM _σ2M ¼ ðqM − 1Þ _ΛMXM [see Eq. (6) with
the use of 2 _HM ¼ −ðρM þ PMÞ=M2

Pl]. Equation (4) with
_ϕ0ðtÞ=nðtÞ ¼ constant results in the following scal-
ing: JMXMð1 − XMÞ ∝ 1=a4.

III. IMPRINTS OF MASSIVE GRAVITATIONAL
WAVES ON THE MICROWAVE BACKGROUND

In the linear and Lorentz-invariant massive gravity
theory [1,26], gravitons are spin-2 particles, and there
are five independent polarizations of gravitational waves,
usually referred to as helicity states �2, �1, and 0. The
additional degrees of freedom (helicities �1 and 0) can be
associated with vector and scalar modes (i.e. vector and
scalar particles). The vDVZ discontinuity arises because of
the coupling of the spin-0 mode with matter, and it can be
eliminated, as stated before, through the Vainshtein screen-
ing mechanism. Another difficulty of many massive gravity
models is the presence of ghosts in the models. As noted
earlier, the recently proposed dRGT model [8] is a ghost-
free model of massive gravity. In this framework one can
define the crossover density ρcr ¼ 3M2

Plm
2
g; when the

density of the Universe is lower than ρcr, the effects of a
nonzero graviton mass start to become relevant.
We consider here only tensor modes (gravitational

waves) which acquire a nonzero mass MGW, and the
gravitational wave dispersion relation is modified accord-
ingly, f2 ¼ ðk=aÞ2 þM2

GW, k being the comoving wave

number and f the effective frequency with respect to proper
time. As in GR the tensor mode of perturbations is
generated through quantum-mechanical fluctuations during
inflation [27]. In the standard cosmological scenario the
tensor mode is amplified through the mechanism of para-
metric resonance [28,29], and the amplitude is completely
determined by the value of the Hubble parameter at the end
of inflation. The content of the Universe as well as the
current accelerated cosmological expansion slightly affect
the predicted background of gravitational waves in the
present epoch, even in GR [30]. In massive gravity models
the situation is more complicated. The oscillator equation
for gravitational waves contains an additional mass term
a2M2

GW, which affects the lower frequencies ðk=aÞ ≲MGW,
leaving the higher-frequency tail of gravitational waves
almost unchanged. The largest deviations from GR are
therefore expected for these low-frequency modes [31].
The authors in Ref. [32] in fact found a sharp peak in the
gravitational wave spectrum around f0 ≃MGW;0, the sub-
script 0 denoting the values today.
We would like to conclude this section with some

speculations for the microwave background scalar power
spectrum. For an effective mass scale m associated with
gravity waves, we might expect a Yukawa-like gravitational
potential of the form VðrÞ ∝ e−mr=r. A natural choice for
the mass scale m in a massive gravity theory is probably
between mg andMGW. If we take m to be as large as MGW,
then we expect to see a suppression in power on scales
similar to M−1

GW. In this paper we pointed out that in a
quasidilaton theory of massive gravity, MGW could be
much larger than the Hubble scale. So we can expect two
scales to appear in the data: if we choose, for example,
mg ≃H0 and MGW ≃ 1000H0, then we can relate the first
scale to the accelerated expansion of the Universe and the
second one to the large-scale suppression of power in the
microwave background two-point correlation function [25].
Note that this freedom of having two distinct scales might
not be available in “pure” massive gravity models (with no
additional fields), since there we do not expect MGW to be
very different from mg [10,17].

IV. CONCLUDING REMARKS

Massive gravity and its quasidilaton extension provide a
very interesting theoretical framework and have a rich
phenomenology. In this paper we investigated some cos-
mological consequences of quasidilaton massive gravity.
We presented the general background equations which are
valid in both asymptotic regimes—matter domination and
the current self-accelerated stage. These dynamical equa-
tions are needed in order to compare with the full expansion
history of the Universe. Current supernova data, for
example, would constrain various model parameters and
their combinations [22].
We also showed that the quasidilaton model permits

solutions with mg=HA ≃ 1 and MGW=HA ≫ 1. This
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allowed us to speculate that the quasidilaton model
may provide a way to explain the large-angle suppression
of power in the microwave background, in addition
to the current accelerated expansion of the Universe. In
order to study this further, one needs to calculate the
detailed perturbation equations, which can then be
compared directly with cosmological data on the micro-
wave background. We plan to report on this in the near
future [24].
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