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ditorial: Complexity in genomes
Two years ago, three of us (AP, YA, WL) organized a satellite
eeting in the framework of the European Conference on Complex

ystems (ECCS12) (Gilbert et al., 2014) focusing on genomic com-
lexity. Although biological life on earth is one of the most complex
ystems, the field of complex system studies seems to mainly deal
ith physical systems where mathematical description, measure-
ent, and modelling are traditionally addressed. The idea came

o us that exploration of genomics in the framework of complex
ystems theory is needed in print, which led to this special issue.

In the literature, the term complexity (C) in genomes is used
ith several meanings. Some people use the number of genes in a

enome to measure its complexity (Hahn and Wray, 2002). The C in
low complexity” (e.g. Wootton and Federhen, 1993) regions and
he C in “more complex” genomes (e.g. Van Oeveren et al., 2011)
re both caused by repetitive sequences, the only difference being
hat the repeat length is shorter in the former whereas the variety
f repeats is larger in the latter case. Biological complexity is also a
uch debated concept (McShea, 1996; McShea and Brandon, 2010).
ere we use the C-word more consistently and more generically:
hen used on an object, a process, a system, it means that it defies

imple or traditional description – full of surprises, lacking single
niversal law, longer (Li and Vitányi, 1997) and/or time-consuming
escription (Bennett, 1988) in reproducing a copy, etc.

In biology and in genomics, just when one believes a universal
aw should cover all organisms at all time, exceptions are always
iscovered. For example, the central dogma (from DNA to mRNA
o protein) was violated with the discovery of reverse transcription
Temin and Mizutani, 1970). The fact that a continuous stretch of
NA is transcribed into mRNA and this last is translated to protein

n prokaryotes turned out to be untrue for eukaryotes (Chow et al.,
977). When it was commonly accepted that all biological functions
re carried out by proteins, and protein-coding genes are the most
eaningful part of the genome, the regulatory role of RNA was

iscovered (Fire et al., 1998; Morris and Mattick, 2014), and non-
rotein-coding regions are the focus of intensive studies in recent
ears (The ENCODE Project Consortium, 2012). The implication that
volutionarily conserved non-coding regions (Bejerano et al., 2004)
ust have a regulatory function faces the reality of high turnover

ate of these regulatory elements (Dermitzakis and Clark, 2002).
he list goes on.

It would be impossible to cover all hard-to-describe topics in

enomics. What we aim in this special issue is to bring researchers
ho are comfortable with the theme of complexity in physical sci-

nces to discuss genomes. A common thread of all papers here is

ttp://dx.doi.org/10.1016/j.compbiolchem.2014.08.003
476-9271/© 2014 Elsevier Ltd. All rights reserved.
the quantitative nature of the analysis, not merely a qualitative
description. As early as 80 years ago, it was proposed that an insti-
tute should be established in which “biologists, chemists, physicists
and mathematicians will cooperate in the future opening, and ben-
eficial use, of the vast territory of quantitative biology” (Harris,
1933). Though we are still far away from outlining “complexity in
genomes” as a field, just as “quantitative biology” not being a clear
field for over 80 years, at least we bring those with a complex sys-
tems background to study genomics. There are 18 papers in this
special issue, which can be roughly grouped into four categories.

DNA sequences as symbolic sequences: A large group of papers
are treating DNA sequence from genomes as symbolic sequences,
and apply techniques from time series analysis to study them
(Cocho et al., 2014; Melnik and Usatenko, 2014; Papapetrou and
Kugiumtzis, 2014; Provata et al., 2014b; Suvorova et al., 2014;
Wu, 2014). This topic has its own historical surprises: the sim-
plest description of a symbolic sequence is a random sequence, and
the next simplest one is short-range-correlated sequences. How-
ever, DNA sequences as symbolic sequences were shown to be
much more complicated, exhibiting long-range correlations (Li and
Kaneko, 1992; Peng et al., 1992; Voss, 1992).

Provata et al. (2014b) is an extension of the work on human
genome in Provata et al. (2014a) to other organisms. It exemplifies
a typical approach in studying symbolic sequences: 4-nucleotide
to 2-symbol conversions, dimer frequency and Markov transi-
tion probability, block entropy, symbol persistence properties, etc.
Quantitative markers are extracted as indicatives of evolution,
since organisms with different evolutionary paths are examined
and compared. This collection of the basic statistics from DNA
sequences is more accessible to readers who are less familiar with
biology.

Cocho et al. (2014) attempts to explain the exponential cor-
relation function observed in bacteria genomes by showing the
roles played by different codon positions, by frame-shift, and by
coding region size distributions. Without mixing statistics from dif-
ferent codon positions, the correlation between positions will be
much weaker. Without a frame-shift between neighboring coding
sequences, the correlation will not decay at all. And without a broad
distribution of coding sequence length, the correlation function
could be linear instead of exponential.

High-order Markov chains are mathematical models that add

more complexity to the simple first-order Markov chain, with
the goal of better fitting complex sequences. Both Melnik and
Usatenko (2014) and Papapetrou and Kugiumtzis (2014) addressed

dx.doi.org/10.1016/j.compbiolchem.2014.08.003
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2014.08.003&domain=pdf
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igh-order Markov models. In Melnik and Usatenko (2014), the
elationship between memory functions and correlation function,
hich reduces the number of parameters in high-order Markov

Usatenko et al., 2009), is applied to DNA sequences.
In Papapetrou and Kugiumtzis (2014), the order of Markov mod-

ls in DNA sequences is estimated by a technique proposed in
apapetrou and Kugiumtzis (2013). This analysis also shows a clear
ifference between those DNA sequences which can be modelled
y a higher-order Markov chain, and those which can not (such
s those with power-law correlation). In the latter case, the esti-
ated Markov chain order does not converge with the increasing

equence length.
Finding hidden or latent periodicity in DNA sequences has a long

istory in bioinformatics, starting from the periodicity-3 signal in
rotein-coding regions (Fickett, 1982). Suvorova et al. (2014) com-
ares the performance of several alternative periodicity-detection
ethods. They found that spectra-based methods tend to shift the

ignal to a shorter periodicity, whereas a direct matching and test
f a fuzzy motif with a fixed length, called “information decompo-
ition” (Korotkov et al., 2003), performs better.

Wu (2014) study concerns exact repeats (unlike the latent peri-
dicity studied in Suvorova et al., 2014) in DNA sequences. In
ioinformatics community, the most common tool in detecting
epeats is the dot-matrix plot (Mount, 2013). In Wu (2014), such
epeats are detected by the recurrence plots borrowed from the
tudy of dynamical systems (Wu, 2004).

Spatial position and size distribution of functional units: The
econd large group of papers concerns the size and/or spacing dis-
ribution of genomic units (Dios et al., 2014; Gao and Miller, 2014;

uiño et al., 2014; Tsiagkas et al., 2014). If the biologically func-
ional units (e.g. genes) are randomly distributed in the genome,
he gap length follows negative binomial and geometric distribu-
ion, with an exponential trend. On the other hand, if the functional
nit is larger than a single point on the chromosome with its own
ize, the simplest description of sizes is still an exponential distri-
ution. In DNA sequences, the observed distributions for both gap
istances and sizes follow mostly power-laws.

Gao and Miller (2014) focuses on the size distribution of
rthologs obtained from sequence alignment. Such distribution for
uman-chimpanzee alignment tends to be exponential, whereas
hat for human-mouse alignment or multi-species ultraconserved
egions (Bejerano et al., 2004) tends to be power-law distribution
ith an exponent of −4 (Salerno et al., 2006). These can also be com-
ared to the distribution of paralogs (by genome self-alignment)
hich is power-law distribution with exponent −3 (Gao and Miller,

011; Massip and Arndt, 2013). It is argued in Gao and Miller (2014)
hat orthologs from closely related species contain both a compo-
ent from self-aligned paralogs and one from orthologs in distant
pecies, so its distribution is a mixture as well.

In order to detect genome clustering, Dios et al. (2014) compares
ap distances of genomic elements to the geometric distribution,
ontinuing their earlier work (Hackenberg et al., 2011, 2012). On
verage, close to 30% of genomic elements in the human genome
re found to be within clusters. Functional and regulatory elements
genes, CpG islands, transcription factor binding sites, enhancers)
how higher clustering levels, as compared to DNase sites, repeats
Alus, LINE1) or SNPs. The clusters for all these elements form in
urn high-level super-clusters, thus revealing a complex genome
andscape dominated by hierarchical clustering.

Muiño et al. (2014) studies a clustering of cancer somatic muta-
ions called “kataegis” (Greek word for “storm”) (Nik-Zainal et al.,
012). The gap distance between mutations is bimodal, but the

ail of the peaks falls off as a power-law function. Spatial cluster-
ng of somatic mutations may imply mutational hot spots, and the
argeted hypermutated genes may provide new insight on cancer
iology.
nd Chemistry 53 (2014) 1–4

Tsiagkas et al. (2014) studies the gap distance between CpG
islands, both those near genes and those away from genes (orphan
CpG islands). Power-law distribution is again obtained similar
to those of other functional units (Sellis et al., 2007; Sellis and
Almirantis, 2009; Klimopoulos et al., 2012; Polychronopoulos et al.,
2014). A simple evolutionary model based on segmental dupli-
cation is used to simulate a possible scenario to explain the
data.

Intricacies in next-generation sequencing: The next group of
papers concern the high-throughput (next-generation) sequenc-
ing (Gallo et al., 2014; Li and Freudenberg, 2014; Zhu and Zheng,
2014). The current sequencing biotechnology involves a mechan-
ical breakage of genome into fragments, sequencing either the
whole or the two ends of the fragment (the sequenced piece is
called a read), and either aligning the reads back to the reference
genome, if such a reference is available, or “de novo” constructing
the genome sequence from overlapping reads. When one region
of the genome is identical to another, that redundancy creates
tremendous difficulties in either reads alignment or in de novo
assembly.

Gallo et al. (2014) addresses a seldom discussed topic of hidden
parameters in a de novo assembly. Using the SOAPdenovo pro-
gram (Luo et al., 2012) as an example, Gallo et al. (2014) shows
that assembly results can be altered if the parameter values are not
chosen optimally, which can be a problem as many users of a de
novo assembly program simply use the default setting. A particular
ignored parameter is the k of k-mer length in the de Bruijn graph.
The optimal choice of k is a function of fragment size, read length,
and the level of redundancy in the genome.

Li and Freudenberg (2014) locates all exact repeats of length
1000 bases (kb) to the human genome, previously identified in Li
et al. (2014). More than 1% of the human genome are covered by
these unmappable 1000-mer reads. The unmappable regions are
compared to those of twenty or so genomic annotations. About
4% of human genes overlap with these unmappable regions. And
more than 90% of the unmappable regions were in the segmental
duplicated regions (Bailey et al., 2002). On the other end, there is
zero overlap between unmappable regions and the ultraconserved
elements (Bejerano et al., 2004).

Zhu and Zheng (2014) does not attempt to align or assem-
ble reads, but to identify a specific bacterium in a mixture of
many bacteria (i.e., meta-genomes). Their approach is based on
the idea that species-specific codon usage leads to characteristic
k-mer frequencies in six reading frames of the coding region and in
non-coding regions. Collecting k-mer frequencies from the reads,
feeding them as inputs to a learning algorithm (Zheng and Wu,
2003), will indicate the presence or absence of specific types of
bacterial genomes.

Specific biological and genomic topics: These papers are
grouped together as they address specific biological applica-
tions: (Junier, 2014; Nikolaou, 2014; Pratanwanich and Lio, 2014;
Zaghloul et al., 2014; Zuo et al., 2014).

Junier (2014) is an overview of different forces and mechanisms
that shape the organization and structure of bacterial genomes at
different levels. At protein level, interactions between amino acids
determine the co-evolution of protein sequences. At genome level,
genes cluster into operons, with complicated co-regulation and
co-expression for various biological processes (transcription, trans-
lation, replication, cell division). Junier (2014) aims at discussing all
relevant mechanisms in a single work.

Nikolaou (2014) explores biological explanation of a linguistic-
motivated regularity in the genome, the Menzerarth’s law at the

gene-exon-base level (Li, 2012). The Menzerath law in this context
states that if a gene contains more exons, the average exon size
tends to be smaller. This Menzerath law was shown to be true for
human genes (Li, 2012). Using mouse genes, Nikolaou (2014) shows
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hat only genes with low conservation tend to follow the Menzerath
aw. These genes also tend to have less alternative splicing, fewer
xons, and larger exon sizes.

Profiling genome-wide gene expressions at different conditions
ecomes easier by the microarray technology. Besides focusing
n individual genes, more and more analyses focus on collection
f genes such as genes involved in a given biochemical pathway.
ratanwanich and Lio (2014) investigates yet another method,
alled latent Dirichlet allocation (Blai et al., 2003), in the context
f drug treatment, following a similar work using the Bayesian
parse factor model (Ma and Zhao, 2012). Although this work is
ithin the scope of machine learning, the topic of multi-scales and
ulti-levels remain a favorite in the complex system study.
The finding of strand asymmetry at the replication origin in bac-

erial genomes (Lobry, 1996) led to search of GC or AT skew in the
uman genome (Brodie Of Brodie et al., 2005). The so-called skew-N
omain is certain pattern in the skew series which is proposed as an

ndication of the replication origin (Touchon et al., 2005). Zaghloul
t al. (2014) follows this long line of research to propose a new
ype of patterns in the skew series, called skew-split-N domains
hich is reminiscent of a letter N but split in half. Skew-N domains

over 1/3, whereas skew-split-N domains cover 12%, of the human
enome. It is proposed that skew-split-N domains contain random
eplication initiations.

Zuo et al. (2014) overviews the authors’ work on alignment-
ree phylogeny using composition vector of k-mers (Hao and Qi,
004), implemented in the computer program CVTree (Xu and Hao,
009). The large number of bacterial genomes being sequenced pro-
ides an opportunity to compare alignment-free phylogeny with
he standard Bergey’s Manual of Systematic Bacteriology (Garrity
t al., 2001). The importance of subtracting the expected k-mer fre-
uencies from (k − 1)-mer data is emphasized. The effect of k on
hylogenetic tree is discussed.

Admittedly, our collection of articles in this special issue is
imited in scopes. We hope to attract more authors from a more
iverse background if we produce a similar special issue in the
uture. However, there is no denying that biology is complicated
nd genomes are complex. François Jacob commented in his arti-
le “Evolution and tinkering” (Jacob, 1977): “natural selection does
ot work as an engineer works. It works like a tinkerer – a tinkerer
ho does not know exactly what he is going to produce but uses
hatever he finds around him...” This ad hoc nature of the evolu-

ion, prolonged tinkering process, and the resulting imperfection,
ight be the root cause of complexity in genomes.
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