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Frequent mutations in chromatin-remodelling
genes in pulmonary carcinoids
Lynnette Fernandez-Cuesta1,*, Martin Peifer1,2,*, Xin Lu1, Ruping Sun3, Luka Ozretić4, Danila Seidel1,5,

Thomas Zander1,6,7, Frauke Leenders1,5, Julie George1, Christian Müller1, Ilona Dahmen1, Berit Pinther1,

Graziella Bosco1, Kathryn Konrad8, Janine Altmüller8,9,10, Peter Nürnberg2,8,9, Viktor Achter11, Ulrich Lang11,12,

Peter M. Schneider13, Magdalena Bogus13, Alex Soltermann14, Odd Terje Brustugun15,16, Åslaug Helland15,16,

Steinar Solberg17, Marius Lund-Iversen18, Sascha Ansén6, Erich Stoelben19, Gavin M. Wright20, Prudence Russell21,

Zoe Wainer20, Benjamin Solomon22, John K. Field23, Russell Hyde23, Michael P.A. Davies23, Lukas C. Heukamp4,7,

Iver Petersen24, Sven Perner25, Christine M. Lovly26, Federico Cappuzzo27, William D. Travis28, Jürgen Wolf5,6,7,

Martin Vingron3, Elisabeth Brambilla29, Stefan A. Haas3, Reinhard Buettner4,5,7 & Roman K. Thomas1,4,5

Pulmonary carcinoids are rare neuroendocrine tumours of the lung. The molecular alterations underlying

the pathogenesis of these tumours have not been systematically studied so far. Here we perform gene

copy number analysis (n¼ 54), genome/exome (n¼44) and transcriptome (n¼69) sequencing of

pulmonary carcinoids and observe frequent mutations in chromatin-remodelling genes. Covalent histone

modifiers and subunits of the SWI/SNF complex are mutated in 40 and 22.2% of the cases, respec-

tively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and

large-cell neuroendocrine lung tumours, TP53 and RB1 mutations are rare events, suggesting that

pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine

tumours but arise through independent cellular mechanisms. These data also suggest that inactivation

of chromatin-remodelling genes is sufficient to drive transformation in pulmonary carcinoids.
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P
ulmonary carcinoids are neuroendocrine tumours that
account for about 2% of pulmonary neoplasms. On the
basis of the WHO classification of 2004, carcinoids can be

subdivided into typical or atypical, the latter ones being very rare
(about 0.2%)1. Most carcinoids can be cured by surgery; however,
inoperable tumours are mostly insensitive to chemo- and
radiation therapies1. Apart from few low-frequency alterations,
such as mutations in MEN1 (ref. 1), comprehensive genome
analyses of this tumour type have so far been lacking.

Here we conduct integrated genome analyses2 on data from
chromosomal gene copy number of 54 tumours, genome and
exome sequencing of 29 and 15 tumour-normal pairs,
respectively, as well as transcriptome sequencing of 69 tumours.
Chromatin-remodelling is the most frequently mutated pathway
in pulmonary carcinoids; the genes MEN1, PSIP1 and ARID1A
were recurrently affected by mutations. Specifically, covalent
histone modifiers and subunits of the SWI/SNF (SWich/Sucrose

NonFermentable) complex are mutated in 40 and 22.2% of the
cases, respectively. By contrast, mutations of TP53 and RB1 are
only found in 2 out of 45 cases, suggesting that these genes are
not main drivers in pulmonary carcinoids.

Results
In total, we generated genome/exome sequencing data for 44
independent tumour-normal pairs, and for most of them, also
RNAseq (n¼ 39, 69 in total) and SNP 6.0 (n¼ 29, 54 in total)
data (Supplementary Table 1). Although no significant focal
copy number alterations were observed across the tumours
analysed, we detected a copy number pattern compatible with
chromothripsis3 in a stage-III atypical carcinoid of a former
smoker (Fig. 1a; Supplementary Fig. 1). The intensely clustered
genomic structural alterations found in this sample were
restricted to chromosomes 3, 12 and 13, and led to the
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Figure 1 | Genomic characterization of pulmonary carcinoids. (a) CIRCOS plot of the chromothripsis case. The outer ring shows chromosomes arranged

end to end. Somatic copy number alterations (gains in red and losses in blue) detected by 6.0 SNP arrays are depicted in the inside ring. (b) Copy

numbers and chimeric transcripts of affected chromosomes. Segmented copy number states (blue points) are shown together with raw copy number data

averaged over 50 adjacent probes (grey points). To show the different levels of strength for the identified chimeric transcripts, all curves are scaled

according to the sequencing coverage at the fusion point. (c) Mutation frequency detected by genome and exome sequencing in pulmonary carcinoids

(PCA). Each blue dot represents the number of mutations (muts) per Mb in one pulmonary carcinoid sample. Average frequencies are also shown for

adenocarcinomas (AD), squamous (SQ) and small-cell lung cancer (SCLC) based on previous studies2,4,5. (d) Comparison of context-independent

transversion and transition rates (an overall strand symmetry is assumed) between rates derived from molecular evolution (evol)36, from a previous SCLC

sequencing study2 and from the PCA genome and exome sequencing. All rates are scaled such that their overall sum is 1.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4518

2 NATURE COMMUNICATIONS | 5:3518 | DOI: 10.1038/ncomms4518 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


expression of several chimeric transcripts (Fig. 1b; Supplementary
Table 2). Some of these chimeric transcripts affected genes
involved in chromatin-remodelling processes, including out-of-
frame fusion transcripts disrupting the genes ARID2, SETD1B
and STAG1. Through the analyses of genome and exome
sequencing data, we detected 529 non-synonymous mutations
in 494 genes, which translates to a mean somatic mutation rate of
0.4 mutations per megabase (Mb) (Fig. 1c; Supplementary
Data 1), which is much lower than the rate observed in other
lung tumours (Fig. 1c)2,4,5. As expected, and in contrast to small-
cell lung cancer (SCLC), no smoking-related mutation signature
was observed in the mutation pattern of pulmonary carcinoids
(Fig. 1d).

We identified MEN1, ARID1A and EIF1AX as significantly
mutated genes2 (q-value o0.2, see Methods section) (Fig. 2a;
Supplementary Tables 1 and 3; Supplementary Data 1). MEN1
and ARID1A play important roles in chromatin-remodelling
processes. The tumour suppressor MEN1 physically interacts
with MLL and MLL2 to induce gene transcription6. Specifically,

MEN1 is a molecular adaptor that physically links MLL with the
chromatin-associated protein PSIP1, an interaction that is
required for MLL/MEN1-dependent functions7. MEN1 also acts
as a transcriptional repressor through the interaction with
SUV39H18. We observed mutually exclusive frame-shift and
truncating mutations in MEN1 and PSIP1 in six cases (13.3%),
which were almost all accompanied by loss of heterozygosity
(Supplementary Fig. 2). We also detected mutations in histone
methyltransferases (SETD1B, SETDB1 and NSD1) and
demethylases (KDM4A, PHF8 and JMJD1C), as well as in the
following members of the Polycomb complex9 (Supplementary
Tables 1 and 2; Supplementary Data 1): CBX6, which belongs to
the Polycomb repressive complex 1 (PRC1); EZH1, which is part
of the PCR2; and YY1, a member of the PHO repressive complex
1 that recruits PRC1 and PRC2. CBX6 and EZH1 mutations
were also accompanied by loss of heterozygosity (Supplementary
Fig. 2). In addition, we also detected mutations in the histone
modifiers BRWD3 and HDAC5 in one sample each. In total, 40%
of the cases carried mutually exclusive mutations in genes that are
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Figure 2 | Significant affected genes and pathways in pulmonary carcinoids. (a) Significantly mutated genes and pathways identified by genome

(n¼ 29), exome (n¼ 15) and transcriptome (n¼69) sequencing. The percentage of pulmonary carcinoids with a specific gene or pathway mutated is

noted at the right side. The q-values of the significantly mutated genes and pathways are shown in brackets (see Methods section). Samples are displayed

as columns and arranged to emphasize mutually exclusive mutations. (b) Methylation levels of H3K9me3 and H3K27me3 in pulmonary carcinoids.

Representative pictures of different degrees of methylation (high, intermediate and low) for some of the samples summarized in Table 1. The mutated gene

is shown in italics at the bottom right part of the correspondent picture. Wild-type samples are denoted by WT.
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involved in covalent histone modifications (q-value¼ 8� 10� 7,
see Methods section) (Fig. 2a; Supplementary Table 4). To
evaluate the impact of these mutations on histone methylation,
we compared the levels of the H3K9me3 and H3K27me3 on
seven mutated and six wild-type samples, and observed a trend
towards lower methylation in the mutated cases (Fig. 2b; Table 1).

Truncating and frame-shift mutations in ARID1A were
detected in three cases (6.7%). ARID1A is one of the two
mutually exclusive ARID1 subunits, believed to provide specifi-
city to the ATP-dependent SWI/SNF chromatin-remodelling
complex10,11. Truncating mutations of this gene have been
reported at high frequency in several primary human cancers12.
In total, members of this complex were mutated in mutually
exclusive fashion in 22.2% of the specimens (q-value¼ 8� 10� 8,
see Methods section) (Fig. 2a; Supplementary Table 4). Among
them were the core subunits SMARCA1, SMARCA2 and
SMARCA4, which carry the ATPase activity of the complex, as
well as the subunits ARID2, SMARCC2, SMARCB1 and BCL11A
(Fig. 2a; Supplementary Tables 1 and 2; Supplementary
Data 1)13,14. Another recurrently affected pathway was sister-
chromatid cohesion during cell cycle progression with the
following genes mutated (Fig. 2a; Supplementary Tables 1 and 2;
Supplementary Data 1; Supplementary Fig. 3): the cohesin
subunit STAG1 (ref. 15), the cohesin loader NIPBL16; the
ribonuclease and microRNA processor DICER, necessary for
centromere establishment17; and ERCC6L, involved in sister-
chromatid separation18. In addition, although only few chimeric
transcripts were detected in the 69 transcriptomes analysed
(Supplementary Table 5), we found one sample harbouring an
inactivating chimeric transcript, leading to the loss of the
mediator complex gene MED24 (Supplementary Fig. 4) that
interacts both physically and functionally with cohesin and
NIPBL to regulate gene expression19. In summary, we detected
mutations in chromatin-remodelling genes in 23 (51.1%) of the
samples analysed. The specific role of histone modifiers in the
development of pulmonary carcinoids was confirmed by the lack
of significance of these pathways in SCLC2 (Supplementary
Table 4). This was further supported by a gene expression
analysis including 49 lung adenocarcinomas (unpublished data),
43 SCLC2,20 and the 69 pulmonary carcinoids included in this
study (Supplementary Data 2). Consensus k-means clustering
revealed that although both SCLC and pulmonary carcinoids are
lung neuroendocrine tumours, both tumour types as well as

adenocarcinomas formed statistically significant separate clusters
(Fig. 3a). In support of this notion, we recently reported that the
early alterations in SCLC universally affect TP53 and RB12,
whereas in this study these genes were only mutated in two
samples (Fig. 2a; Supplementary Table 1; Supplementary
Data 1). Moreover, when examining up- and downregulated
pathways in SCLC versus pulmonary carcinoids by gene set
enrichment analysis21, we found that in line with the pattern of
mutations, the RB1 pathway was statistically significantly altered
in SCLC (q-value¼ 5� 10� 4, see Methods section) but not in
pulmonary carcinoids (Fig. 3b; Supplementary Table 6).

Another statistically significant mutated gene was the eukar-
yotic translation initiation factor 1A (EIF1AX) mutated in four
cases (8.9%). In addition, SEC31A, WDR26 and the E3 ubiquitin
ligase HERC2 were mutated in two samples each. Further
supporting a role of E3 ubiquitin ligases in the development of
pulmonary carcinoids, we found mutations or rearrangements
affecting these genes in 17.8% of the samples analysed (Fig. 2a;
Supplementary Tables 1 and 7; Supplementary Data 1). All
together, we have identified candidate driver genes in 73.3% of the
cases. Of note, we did not observe any genetic segregation
between typical or atypical carcinoids, neither between the
expression clusters generated from the two subtypes, nor between
these clusters and the mutated pathways (Supplementary Fig. 5).
However, it is worth mentioning that only nine atypical cases
were included in this study. The spectrum of mutations found in
the discovery cohort was further validated by transcriptome
sequencing of an independent set of pulmonary carcinoid
specimens (Supplementary Tables 1 and 8). Owing to the fact
that many nonsense and frame-shift mutations may result in
nonsense-mediated decay22,23, the mutations detected by
transcriptome sequencing were only missense. Owing to this
bias, accurate mutation frequencies could not be inferred from
these data.

Discussion
This study defines recurrently mutated sets of genes in pulmonary
carcinoids. The fact that almost all of the reported genes were
mutated in a mutually exclusive manner and affected a small set
of cellular pathways defines these as the key pathways in this
tumour type. Given the frequent mutations affecting the few
signalling pathways described above and the almost universal
absence of other cancer mutations, our findings support a model
where pulmonary carcinoids are not early progenitor lesions of
other neuroendocrine tumours, such as SCLC or large-cell
neuroendocrine carcinoma, but arise through independent
cellular mechanisms. More broadly, our data suggest that
mutations in chromatin-remodelling genes, which in recent
studies were found frequently mutated across multiple malignant
tumours24, are sufficient to drive early steps in tumorigenesis in a
precisely defined spectrum of required cellular pathways.

Methods
Tumour specimens. The study as well as written informed consent documents
had been approved by the Institutional Review Board of the University of Cologne.
Additional biospecimens for this study were obtained from the Victorian Cancer
Biobank, Melbourne, Australia; the Vanderbilt-Ingram Cancer Center, Nashville,
Tennessee, USA; and Roy Castle Lung Cancer Research Programme, The Uni-
versity of Liverpool Cancer Research Center, Liverpool, UK. The Institutional
Review Board of each participating institution approved collection and use of all
patient specimens in this study.

Nucleic acid extraction and sample sequencing. All samples in this study were
reviewed by expert pathologists. Total RNA and DNA were obtained from fresh-
frozen tumour and matched fresh-frozen normal tissue or blood. Tissue was frozen
within 30 min after surgery and was stored at � 80 �C. Blood was collected in tubes
containing the anticoagulant EDTA and was stored at � 80 �C. Total DNA and
RNA were extracted from fresh-frozen lung tumour tissue containing more than

Table 1 | Overview of samples annotated for mutations in
genes involved in histone methylation and correspondent
levels of H3K9me3 and H3K27me3 detected by
immunohistochemistry.

Sample Mutation H3K9me3 H3K27me3

S02333 JMJD1C_H954N Intermediate Low
S01502 KDM4A_I168T Intermediate NA
S02323 MEN1_e3þ 1 and LOH Low Low
S02339 NSD1_A1047G Intermediate Low
S02327 CBX6_P302S and LOH Low Low
S01746 EZH1_R728G and LOH Low Intermediate
S02325 YY1_E253K Low Intermediate
S01501 Wild type NA High
S01731 Wild type Low Low
S01742 Wild type High High
S02334 Wild type Intermediate High
S02337 Wild type High High
S02338 Wild type High Intermediate

LOH, loss of heterozygosity; NA, not applicable.
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70% tumour cells. Depending on the size of the tissue, 15–30 sections, each 20 mm
thick, were cut using a cryostat (Leica) at � 20 �C. The matched normal sample
obtained from frozen tissue was treated accordingly. DNA from sections and blood
was extracted using the Puregene Extraction kit (Qiagen) according to the man-
ufacturer’s instructions. DNA was eluted in 1� TE buffer (Qiagen), diluted to a
working concentration of 150 ng ml� 1 and stored at � 80 �C. For whole exome
sequencing, we fragmented 1 mg of DNA with sonification technology (Bioruptor,
diagenode, Liége, Belgium). The fragments were end repaired and adaptor ligated,
including incorporation of sample index barcodes. After size selection, we subjected
the library to an enrichment process with the SeqCap EZ Human Exome Library

version 2.0 kit (Roche NimbleGen, Madison, WI, USA). The final libraries were
sequenced with a paired-end 2� 100 bp protocol. On average, 7 Gb of sequence
were produced per normal, resulting in 30� coverage of more than 80% of target
sequences (44 Mb). For better sensitivity, tumours were sequenced with 12 Gb and
30� coverage of more than 90% of target sequences. We filtered primary data
according to signal purity with the Illumina Realtime Analysis software. Whole-
genome sequencing was also performed using a read length of 2� 100 bp for all
samples. On average, 110 Gb of sequence were produced per sample, aiming a
mean coverage of 30� for both tumour and matched normal. RNAseq was per-
formed on complementary DNA libraries prepared from PolyAþ RNA extracted

H
F

_2
97

12
H

F
_3

12
49

H
F

_2
97

25
S

01
79

2
S

01
57

8
S

01
49

4
S

00
83

2
S

00
82

7A
B

S
00

47
2

H
F

_3
20

78
H

F
_2

97
98

H
F

_2
97

39
H

F
_2

97
16

H
F

_2
97

14
H

F
_2

96
62

H
F

_2
43

74
H

F
_2

95
33

S
00

05
0A

B
S

01
45

3
H

F
_2

97
29

H
F

_3
20

76
H

F
_2

97
31

H
F

_1
86

94
H

F
_2

96
81

H
F

_2
97

33
H

F
_2

43
76

H
F

_2
97

09

S
01

24
8

S
00

83
8

S
00

50
1

H
F

_3
20

96
H

F
_2

97
37

H
F

_2
96

76
H

F
_1

86
66

H
F

_2
95

31
S

01
24

2
S

00
83

6A
B

S
00

83
0A

B
H

F
_2

97
23

H
F

_2
95

23
H

F
_2

96
73

H
F

_1
87

04

S
00

83
7A

B

S
01

72
8

S
01

40
9

S
00

21
4

S
00

18
3

S
00

05
4

S
00

16
7

S
01

07
6

S
00

75
2

S
00

68
8

S
00

66
4

S
00

55
1

S
00

35
2c

or
e2

S
00

02
1c

or
e2

S
01

90
6

S
01

76
9

S
01

76
0

S
01

47
0c

or
e2

S
01

46
5

S
01

46
3c

or
e2

S
01

46
3c

or
e1

S
01

33
7_

2n
d

S
01

32
0

S
01

27
6

S
01

27
2

S
01

19
4

S
01

15
6

S
01

12
4_

T
2

S
01

12
2

S
01

05
2

S
00

75
5

S
00

75
4

S
00

75
1

S
00

74
7

S
00

73
8

S
00

73
7

S
00

72
6

S
00

68
7

S
00

68
6

S
00

68
4

S
00

61
1

S
00

58
5

S
00

55
7

S
00

54
5

S
00

09
6

S
00

07
4c

or
e1

S
00

05
9

S
00

02
5c

or
e1

S
00

00
6

S
00

02
1c

or
e1

S
00

07
6

S
02

34
0

S
02

33
9

S
02

33
8

S
02

33
4

S
02

32
6

S
01

73
1

S
01

60
5

S
01

59
3

S
01

58
5

S
01

58
4

S
01

58
3

S
01

58
2

S
01

54
6

S
01

54
1

S
01

53
9

S
01

53
8

S
01

53
7

S
01

53
2

S
01

53
1

S
01

52
9

S
01

52
6

S
01

52
1

S
01

10
3

S
00

85
8

S
00

51
6

S
00

09
4

S
00

51
5

S
01

56
7

S
01

20
2

S
02

32
5

S
02

32
3

S
01

66
6

S
01

51
0

S
01

49
3

S
00

52
0

S
00

71
6

S
00

08
9

S
00

11
8

S
00

12
8

S
02

12
6

S
02

33
7

S
02

33
5

S
02

33
1

S
02

33
0

S
02

32
7

S
02

16
2

S
02

15
4

S
01

74
6

S
01

74
2

S
01

59
0

S
01

57
3

S
01

57
2

S
01

54
5

S
01

54
3

S
01

54
0

S
01

53
6

S
01

52
8

S
01

52
0

S
01

51
9

S
01

51
5

S
01

50
4

S
01

50
2

S
01

50
1

S
00

01
6

S
01

06
0

S
01

73
3

S
02

33
3

S
01

51
3

S00837AB

HF_18704
HF_29673
HF_29523
HF_29723
S00830AB
S00836AB
S01242
HF_29531
HF_18666
HF_29676
HF_29737
HF_32096
S00501
S00838
S01248

HF_29709
HF_24376
HF_29733
HF_29681
HF_18694
HF_29731
HF_32076
HF_29729
S01453
S00050AB
HF_29533
HF_24374
HF_29662
HF_29714
HF_29716
HF_29739
HF_29798
HF_32078
S00472
S00827AB
S00832
S01494
S01578
S01792
HF_29725
HF_31249
HF_29712

S00021core1
S00006
S00025core1
S00059
S00074core1
S00096
S00545
S00557
S00585
S00611
S00684
S00686
S00687
S00726
S00737
S00738
S00747
S00751
S00754
S00755
S01052
S01122
S01124_T2
S01156
S01194
S01272
S01276
S01320
S01337_2nd
S01463core1
S01463core2
S01465
S01470core2
S01760
S01769
S01906
S00021core2

S00352core2
S00551
S00664
S00688
S00752
S01076
S00167
S00054
S00183
S00214
S01409

S01728

S01513

S02333
S01733
S01060
S00016
S01501
S01502
S01504
S01515
S01519
S01520
S01528
S01536
S01540
S01543
S01545
S01572
S01573
S01590
S01742
S01746
S02154
S02162
S02327
S02330
S02331
S02335
S02337
S02126
S00128
S00118
S00089
S00716
S00520
S01493
S01510
S01666
S02323
S02325
S01202
S01567
S00515
S00094
S00516
S00858
S01103
S01521
S01526
S01529
S01531
S01532
S01537
S01538
S01539
S01541
S01546
S01582
S01583
S01584
S01585
S01593
S01605
S01731
S02326
S02334
S02338
S02339
S02340
S00076

AD

CA

SCLC

G1 G2 G3

Positive association (q < 0.05)

Negative association (q < 0.05)

q > 0.05

PRC2_EZH2_UP.V1_UP

CSR_LATE_UP.V1_UP

RB_P107_DN.V1_UP

E2F1_UP.V1_UP

HOXA9_DN.V1_DN

RPS14_DN.V1_DN

GCNP_SHH_UP_LATE.V1_UP

RB_DN.V1_UP

VEGF_A_UP.V1_DN

GCNP_SHH_UP_EARLY.V1_UP

RB_P130_DN.V1_UP

E2F3_UP.V1_UP

MTOR_UP.V1_UP

SNF5_DN.V1_UP

CORDENONSI_YAP_CONSERVED_SIGNATURE

PRC2_EDD_UP.V1_UP

CSR_EARLY_UP.V1_UP

NFE2L2.V2

ERB2_UP.V1_DN

EGFR_UP.V1_DN

KRAS.KIDNEY_UP.V1_UP

CAHOY_NEURONAL

BMI1_DN_MEL18_DN.V1_DN

ERB2_UP.V1_UP

PCA

SCLC

0

1

–1

a

b

Figure 3 | Expression data analysis of pulmonary carcinois based on RNAseq data. (a) Consensus k-means clustering32,33 using RNAseq expression

data of 49 adenocarcinomas (AD, in blue), 43 small-cell lung cancer (SCLC, in red) and 69 pulmonary carcinoids (PCA, in purple) identified three

groups using the clustering module from GenePattern31 and consensus CDF32,33 (left panel). The significance of the clustering was evaluated by using

SigClust34 with a P o0.0001. Fisher’s exact test35 was used to check associations between the clusters and the histological subtypes (right panel).

(b) Gene set enrichment analysis21 for SCLC versus PCA using RNAseq expression data. Low gene expression is indicated in blue and high expression, in

red. On the right side are given the altered pathways in PCA (green) and SCLC (purple).
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from tumour cells using the Illumina TruSeq protocol for mRNA. The final
libraries were sequenced with a paired-end 2� 100 bp protocol aiming at 8.5 Gb
per sample, resulting on a 30� mean coverage of the annotated transcriptome. All
the sequencing was carried on an Illumina HiSeq 2000 sequencing instrument
(Illumina, San Diego, CA, USA).

Sequence data processing and mutation detection. Raw sequencing data are
aligned to the most recent build of the human genome (NCBI build 37/hg19) using
BWA (version: 0.5.9rc1)25 and possible PCR duplicates are subsequently removed
from the alignments. Somatic mutations were detected using our in-house-
developed sequencing analysis pipeline. In brief, the mutation-calling algorithm
incorporates parameters such as local copy number profiles, estimates of tumour
purity and ploidy, local sequencing depth, as well as the global sequencing error
into a statistical model with which the presence of a mutated allele in the tumour is
determined. Next, the absence of this variant in the matched normal is assessed by
demanding that the corresponding allelic fraction is compatible with the estimated
background sequencing error in the normal. In addition, we demand that the allelic
fractions between tumour and normal differ significantly. To finally remove
artificial mutation calls, we apply a filter that is based on the forward–reverse bias
of the sequencing reads. Further details of this approach are given in Peifer et al.2

Genomic rearrangement reconstruction from paired-end data. To reconstruct
rearrangements from paired-end data, we refined our initial method2 by adding
breakpoint-spanning reads. Here, locations of encompassing read pairs are
screened for further reads where only one pair aligns to the region and the other
pair either does not align at all or is clipped by the aligner. These reads are then
realigned using BLAT to a 1,000 bp region around the region defined by the
encompassing reads. Rearrangements confirmed by at least one spanning read are
finally reported. To filter for somatic rearrangements, we subtracted those regions
where rearrangements are present in the matched normal and in all other
sequenced normals within the project.

Analysis of significantly mutated genes and pathways. The analysis of sig-
nificantly mutated genes is done in a way that both gene expression and the
accumulation of synonymous mutations are considered to obtain robust assess-
ments of frequently mutated, yet biologically relevant genes. To this end, the overall
background mutation rate is determined first, from which the expected number of
mutations for each gene is computed under the assumption of a purely random
mutational process. This gene-specific expected number of mutations defines the
underlying null model of our statistical test. To account for misspecifications, for
example, due to a local variation of mutation rates, we also incorporated the
synonymous to non-synonymous ratio into a combined statistical model to
determine significantly mutated genes. Since mutation rates in non-expressed genes
are often high than the genome-wide background rate2,26, genes that are having a
median Fragments Per Kilobase of transcript per Million fragments mapped
(FPKM) value o1 in our transcriptome sequencing data are removed prior testing.
To account for multiple hypothesis testing, we are using the Benjamini–Hochberg
approach27. Mutation data of the total of 44 samples, for which either whole-exome
sequencing (WES) or whole-genome sequencing (WGS) was performed, were used
for this analysis.

In case of the pathway analysis, gene lists of the methylation and the SWI/SNF
complex were obtained from recent publications9,13,14,28. To assess whether
mutations in these pathways are significantly enriched, all genes of the pathway are
grouped together as if they represent a ‘single gene’ and subsequently tested if the
total number of mutation exceed mutational background of the entire pathway. To
this end, the same method as described above was used. Mutation data of the total
of 44 samples, for which either WES or WGS was performed, were used for this
analysis.

Analysis of chromosomal gene copy number data. Hybridization of the Affy-
metrix SNP 6.0 arrays was carried out according to the manufacturers’ instructions
and analysed as follows: raw signal intensities were processed by applying a log-
linear model to determine allele-specific probe affinities and probe-specific back-
ground intensities. To calibrate the model, a Gauss–Newton approach was used
and the resulting raw copy number profiles are segmented by applying the circular
binary segmentation method29.

Analysis of RNAseq data. For the analysis of RNAseq data, we have developed a
pipeline that affords accurate and efficient mapping and downstream analysis of
transcribed genes in cancer samples (Lynnette Fernandez-Cuesta and Ruping Sun,
personal communication). In brief, paired-end RNAseq reads were mapped onto
hg19 using a sensitive gapped aligner, GSNAP30. Possible breakpoints were called by
identifying individual reads showing split-mapping to distinct locations as well as
clusters of discordant read pairs. Breakpoint assembly was performed to leverage
information across reads anchored around potential breakpoints. Assembled contigs
were aligned back to the reference genome to confirm bona fide fusion points.

Dideoxy sequencing. All non-synonymous mutations found in the genome/
exome data were checked in RNAseq data when available. Genes recurrently
mutated involved in pathways statistically significantly mutated, or interesting
because of their presence in other lung neuroendocrine tumours, were selected for
validation. One hundred and fifty eight mutations were considered for validation:
115 validated and 43 did not (validation rate 73%). Sequencing primer pairs were
designed to enclose the putative mutation (Supplementary Data 1), or to encom-
pass the candidate rearrangement (Supplementary Table 7) or chimeric transcript
(Supplementary Table 2 and 5). Sequencing was carried out using dideoxy-
nucleotide chain termination (Sanger) sequencing, and electropherograms were
analysed by visual inspection using four Peaks.

Gene expression data analyses. Unsupervised consensus clustering was applied
to RNAseq data of 69 pulmonary carcinoids, 49 adenocarcinomas and 43 SCLC2,20

samples. The 3,000 genes with highest variation across all samples were filtered out
before performing consensus clustering. We used the clustering module from
GenePattern31 and the consensus CDF32,33. Significance was obtained by using
SigClust34. Fisher’s exact test35 was used to check for associations between clusters
and histological subtypes. gene set enrichment analysis21 were performed on
69 pulmonary carcinoids and 43 SCLC2,20 samples; and the gene set oncogenic
signatures were used.
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