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Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore in-
tegrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic work-
flow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)]
to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of
bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that
evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by
Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking
genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct
gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously
identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study
on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4).
Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differ-
ential diagnostics in medical genetics.
ag
.

st
m

.s
ci

en
ce

m
D

ow
nl

oa
de

d 
fr

om
 

INTRODUCTION

At the time of this writing, roughly 7000 Mendelian diseases are rec-
ognized (1–3). Although these diseases are individually rare, up to 8%
of the population is affected by a specific genetic disorder (4). Because
of the vast number of diseases, many of which have a broad and in-
completely understood phenotypic spectrum, and the high genetic
heterogeneity of many clinical syndromes such as intellectual disabil-
ity, the diagnostic process in medical genetics is often challenging, even
for experienced and expert clinicians. The traditional medical genetics
evaluation relies on recognizing a characteristic pattern of signs or
symptoms to guide targeted genetic testing for confirmation of the di-
agnosis, with the major diagnostic methods including karyotyping,
array comparative genomic hybridization (CGH), biochemical testing,
and Sanger sequencing of individual genes. However, the diagnostic
yield remains less than 50% even after extensive workups (5), with
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the costs of clinical and molecular genetic analysis for patients whose
diagnosis is not clear after the first visit reaching 25,000 U.S. dollars
or more (5).

The term “diagnostic odyssey” has been used to describe the expe-
rience of patients and families affected by rare diseases that cannot be
diagnosed; for instance, the average time between the onset of symptoms
and the correct diagnosis is currently 14 years for patients with type 2
myotonic dystrophy (6). The lack of a diagnosis canmeanmissed oppor-
tunities for tailored approaches to clinical management and treatment
strategies, a substantial burden of guilt and uncertainty for families, and
the inability tomakeaccurate statements on recurrence risk andprognosis,
not to mention the economic costs of unnecessary diagnostic procedures.

Whole-exome sequencing (WES), first used in 2010 to identify the
cause of a Mendelian disease (7), is rapidly becoming attractive as a
tool for diagnostic testing in general medical genetics (8). Additionally,
next-generation sequencing (NGS) panel, WES, and whole-genome
sequencing (WGS) approaches have been introduced for carrier
screening (9), as well as in neonatal intensive care units (10). However,
medical interpretation of WES results remains challenging, and the
successes have, for the most part, been limited to single cases or small
groups of patients (11). Identifying the one or two causative mutations
among the myriad of variants present in the WES findings of an in-
dividual has been compared to finding a needle in a haystack (12). A
typical exome contains more than 30,000 variants when compared
to the human reference sequence, with about 10,000 of them repre-
senting nonsynonymous amino acid substitutions, alterations of con-
served splice site residues, or small insertions or deletions (13, 14).
Although the community has developed numerous bioinformatic
tools to filter out common variants and predict their pathogenicity
(15, 16), each human genome harbors about 100 genuine loss-of-function
anslationalMedicine.org 3 September 2014 Vol 6 Issue 252 252ra123 1
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variants with ∼20 genes completely inactivated (17). Therefore, purely
sequence-based evaluation of genes in diagnostic WES typically iden-
tifies tens or hundreds of candidates. Although this is acceptable in a
research context, in which other strategies such as genetic linkage or
comparison with a study group of individuals thought to have the
same disease can often reduce the search space, extensive evaluation of
long lists of candidate genes does not scale well to the diagnostic
setting.

Depth and uniformity of coverage have a major influence on the
performance of targeted capture for NGS. For instance, at a mean on-
target read depth of 20×, up to 15% of heterozygous single-nucleotide
variants (SNVs) will be missed (18). Although initial WES studies aimed
for a coverage of 20-fold, deeper coverage is needed for accurate detec-
tion of heterozygous variants (19), and current studies typically use a
coverage of 50- to 70-fold (20, 21) or higher. This has led to debate in
the community as to the relative value of various NGS approaches for
diagnostics, with proponents of targeted panel sequencing (22), WES
(23), and WGS (24).

Here, we explore a different approach toward the translation of
NGS-based diagnostics into clinical diagnostics in a medical genetics
clinic. We contend that WES is not optimal in a purely diagnostic set-
ting because we can currently offer a confident interpretation of var-
iants only in ∼2740 known Mendelian disease genes; the identification
of a potentially pathogenic variant in a gene regarded as a good can-
didate because of biochemical or model organism data often repre-
sents the starting point for a good research project, but is more likely
to engender confusion in a diagnostic setting. Therefore, by enriching
for genes known to be associated with Mendelian disease, we shift the
focus from the whole exome to that part of the exome/genome that is
clinically interpretable in a diagnostic setting. We refer to this portion
of our genome as the disease-associated genome (DAG). A pathogenic
variant in one of these genes is, in principle, interpretable in the con-
text of the presenting clinical phenotype and our knowledge of the
diseases associated with the gene in question. We have previously
shown that phenotypically driven genomic data fusion (25) and com-
parison of human to model organism phenotypes (26) markedly improves
the ability to correctly identify candidate disease-causing mutations
in WES studies. Here, we use the Human Phenotype Ontology (HPO)
and associated data to develop a computational procedure for differ-
ential diagnosis with the DAG panel. The HPO provides a structured,
comprehensive, and well-defined set of more than 10,000 terms de-
scribing human phenotypic abnormalities. It provides annotations of
nearly 7300 human hereditary syndromes that yield computable rep-
resentations of the diseases, associated disease genes, as well as the signs,
symptoms, laboratory findings, and other phenotypic abnormalities
that characterize the diseases (3, 27). Here, we adapt our semantic
similarity approach toward differential diagnosis, using terms and
annotations from the HPO (28), to rank candidate genes in a diagnos-
tic setting. Our algorithm is freely available for academic use through
http://compbio.charite.de/PhenIX/.
RESULTS

Here, we present an approach to Mendelian disease diagnostics that
involves the targeted sequencing of the DAG panel combined with a
phenotype-driven computational analysis strategy [Phenotypic Inter-
pretation of eXomes (PhenIX)] that ranks candidate genes based on
www.ScienceTr
the presence of rare, predicted pathogenic variants and the clinical
relevance of the genes with associated disease phenotypes. Our al-
gorithm first filters the variants according to rarity, target region loca-
tion, and predicted pathogenicity. Next, the remaining candidate
genes are evaluated for clinical relevance on the basis of the semantic
similarity of the patient’s phenotypic abnormalities to the phenotypic
spectrum of diseases associated with each candidate gene. In brief, our
method aims to identify and rank disease genes by combining poten-
tial clinical relevance with deleterious variants found within those genes
(see Materials and Methods).

Design and validation of the DAG panel
We established a comprehensive catalog of Mendelian disease genes
using data from the HPO project (3), part of which is derived from
information in the Online Mendelian Inheritance in Man (OMIM) (1)
and Orphanet (2) resources. The HPO project, which was initiated in
2007, has grown to include more than 10,000 terms describing indi-
vidual phenotypic abnormalities that have been used to generate more
than 110,000 annotations to more than 7000 mainly Mendelian dis-
ease entries (3, 27). The data in the HPO thus provide a powerful cu-
rated resource for translational research by providing the means to
capture, store, and exchange phenotypic information about human
disease and have been used to integrate phenotypic information into
computational analysis (25, 26, 28–32). We additionally included plau-
sible candidate disease genes from recent publications describing
large-scale WES studies, obtained by surveying the recent literature
(8, 33–37), for a total of 2741 genes (genes and references are included
in table S6).

Because our aim was to obtain nearly complete coverage of the DAG,
we designed enrichment probes for the DAG using SureSelect technol-
ogy (38). In total, 96 samples were sequenced (6 samples per lane of
an Illumina HiSeq 1500 sequencer), resulting in an average coverage
of 361.7 ± 81.6 reads (135.6 ± 10.6 after removal of duplicates), with
98% of the DAG target region being covered by at least 20 reads (fig.
S1 and tables S1 and S2).

To estimate the advantage of the high coverage of the DAG panel
with respect to comprehensive variant calling, we randomly sampled
reads from the Binary Alignment/Map (BAM) files from the DAG tar-
get region (twice over each of the 96 sequenced DAG samples) to a
target average coverage of 100-fold to simulate the coverage expected
from typical exome sequencing. After this, the down-sampled BAM files
were processed in the same way as the original BAM files, and the
distribution of called variants was compared (table S3). A substantial
number of variants called from the original BAM file were not called
from the files simulated to have exome or genome coverage, including
an average of 5.2 ± 2.0 variants listed in the Human Gene Mutation
Database (HGMD) (39).

Phenotypic interpretation of eXomes: PhenIX
We developed a computational algorithm to filter and rank candidate
genes according to variant rarity and pathogenicity and potential clin-
ical relevance of the gene harboring the variants. As input, PhenIX re-
quires (i) a variant call format (VCF) file representing the results of
sequencing the DAG target region (or an exome or a genome), and
(ii) a list of HPO terms representing the clinical features of the indi-
vidual being sequenced. Each variant is scored on the basis of rarity
and predicted pathogenicity; after this, all variants mapping to a given
gene are combined. The genes harboring predicted pathogenic variants
anslationalMedicine.org 3 September 2014 Vol 6 Issue 252 252ra123 2
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are assigned a phenotype score by using the semantic similarity be-
tween associated disease phenotypes and the patient’s phenotype.
However, the gene is down-weighted if the distribution of variants
in a gene is incompatible with the mode of inheritance of the asso-
ciated disease, for example, if a single heterozygous variant is observed
in a gene associated with an autosomal recessively inherited disease.
Finally, a rank is calculated on the basis of the combined variant and
the phenotype scores.

To estimate the performance of our method, we conducted exten-
sive computational simulations using mutation data from the HGMD.
Sample data sets were simulated for a given disease and inheritance
model by spiking with mutations from HGMD into a VCF file gen-
erated with the DAG panel. Appropriate HPO terms were chosen
from the annotations of the corresponding disease. Several test scenar-
ios were considered. The performance of the method was near 100%
when all the HPO terms annotating the disease were used for the anal-
ysis (for example, Greig cephalopolysyndactyly syndrome is annotated
with 44 HPO terms representing individual signs and symptoms of that
disease). In another, more realistic, test scenario, up to five terms were
chosen at random, of which two were made imprecise by exchanging
themwith themore general parent term, and two unrelated confounder
(“noise”) terms were added at random. Here, the correct gene was
ranked in first place in 86.5% of 8504 simulations, corresponding to a
32.5-fold improvement over pure variant filtering (Fig. 1 and fig. S2).
www.ScienceTr
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Retrospective analysis
We then tested the performance of our method with the generated
DAG data from 52 individuals with a diagnosis of Mendelian disease
that had been confirmed by Sanger sequencing (Table 1). HPO terms
were entered, and filtering was performed at a frequency threshold
of 1%. The average rank of the correct gene among the 2741 disease
genes in the DAG panel was 2.1. The mean rank of the autosomal reces-
sive genes was 5, substantially lower than for the autosomal dominant
genes (1.7). The lower rank for the recessive genes was partially related
to results for an individual with eczematoid acrodermatitis enteropathica,
who had a missense mutation in SLC39A4 that was correctly flagged
as pathogenic, as well as a synonymous mutation that had been shown
to cause a splice defect. The latter mutation was not identified as del-
eterious by PhenIX, resulting in a final rank of 14 for SLC39A4.

Prospective analysis
To further validate our methodology, we investigated 40 individuals
who, after extensive clinical genetic evaluation (physical examination
by medical geneticist, array CGH, and often targeted Sanger gene se-
quencing), remained without a diagnosis (clinical features summarized
in Table 2). We designed a standard evaluation procedure in which
deep phenotyping (40) with the selection of representative HPO terms
(3, 27) was followed by targeted NGS of the DAG panel. Computa-
tional analysis was performed as described above to generate a ranked
list of candidates based on the combined variant and clinical relevance
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Fig. 1. Computational evaluation of PhenIX. HGMD mutations were
inserted into variant files from DAG panels from which the causative muta-

tions had been removed and phenotypic annotations of the corresponding
diseases were extracted from the HPO database. The genes were ranked
with PhenIX. Results were simulated either on the entire disease set (All) or
by filtering for known autosomal dominant (AD) or autosomal recessive
(AR) diseases (fig. S2). A total of 8504 (All), 3471 (AD), and 5006 (AR) simu-
lations were performed. Data are shown as the percentage of simulations
in which the correct genes was ranked in Nth place. Variant, only variant
scores used to rank candidate genes; All terms, all HPO terms used to an-
notate a disease were used for PhenIX analysis; ≤5 terms, up to five HPO
terms were chosen at random from the terms used to annotate the disease;
≤5 terms & noise, up to five annotations are used, two of which are made
imprecise by exchanging them with a more general parent term; addition-
ally, two random noise terms were added. Results are shown for the correct
gene being ranked as the single top hit, or being among the top 5, 10, or
20 hits for the three test scenarios.
Table 1. Fifty-two control patient cases with known mutations. The
number of patients with a mutation in the given gene is indicated in
parentheses.
Mode of
inheritance
anslationalMedic
Genes
ine.org 3 September 2014 Vol 6 Issue 252 252r
Average
rank
AD
 ACVR1, ATL1, BRCA1, BRCA2, CHD7 (4), CLCN7,
COL1A1, COL2A1, EXT1, FGFR2 (2), FGFR3, GDF5,
KCNQ1, MLH1 (2), MLL2/KMT2D, MSH2, MSH6,
MYBPC3, NF1 (6), P63, PTCH1, PTH1R (2), PTPN11
(2), SCN1A, SOS1, TRPS1, TSC1, WNT10A
1.7
AR
 ATM, ATP6V0A2, CLCN1 (2), LRP5, PYCR1, SLC39A4
 5
X
 EFNB1, MECP2 (2), DMD, PHF6
 1.8
Table 2. Summary of clinical signs and symptoms in 40 patients with
unknown diagnosis.
Clinical presentation
a123
n

Intellectual disability + multiple congenital anomalies
(more than two other organ systems affected)
13
Intellectual disability + other neuropsychological features
 7
Intellectual disability + musculoskeletal abnormalities
 5
Intellectual disability + eye abnormalities
 1
Intellectual disability + dysmorphic features
 1
Multiple congenital anomalies (more than two organ
systems affected) without intellectual disability
6

Skeletal phenotype
 5
Eye and/or ear phenotype
 2
3

http://stm.sciencemag.org/


R E S EARCH ART I C L E

 o
n 

M
ar

ch
 2

3,
 2

01
5

st
m

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

scores. Because our computational simulations almost always placed the
true disease gene in the top 10 candidates, we limited our evaluation to
the top 20 ranked genes, as well as any gene with a pathogenic mutation
at the same nucleotide position listed in HGMD (39) or ClinVar (41)
for each patient. Initial clinical evaluation was performed by one of the
authors, and a short list of the most likely candidates was presented to
the entire group in clinical rounds, where up to the best two candidate
genes were chosen on the basis of clinical experience. These genes were
subjected to Sanger validation and cosegregation studies. If the variants
in the selected genes cosegregated as expected and the clinical manifesta-
www.ScienceTranslationalMedicine.org 3 Sep
tions of the patient were sufficiently ex-
plained by a disease associated with the
gene, then a positive diagnosis was made.
Otherwise, the short list was reexamined
for additional candidates (Fig. 2). We es-
timate that an experienced clinical genet-
icist would spend a total of 1 hour in the
initial evaluation of the patient and in de-
ciding whether to perform DAG panel
sequencing and an additional 1 hour study-
ing the list of top 20 candidates, evaluating
the results of the Sanger validation and co-
segregation studies before being able to
decide whether a definitive diagnosis can
be made.

By applying this procedure to 40 in-
dividuals, we identified a definitive diag-
nosis in 11 (28%) cases. Table 2 shows a
clinical summary of these cases, and ta-
bles S4 and S5 include a full list of HPO
terms used to search in PhenIX. PhenIX
analysis was performed according to the
flow chart in Fig. 2, and the top 20 genes
were inspected. Discussion at clinical ge-
netics rounds flagged one (n = 16 only one)
or two (n = 6) genes as being likely candi-
dates. These genes were then subjected to
Sanger validation, cosegregation studies,
and close examination. This led to defini-
tive diagnoses being made in 11 of 40 pa-
tients (28%) (Table 3).
DISCUSSION

Genomic medicine, including WES and
WGS, is poised to transform clinical prac-
tice in many fields (42). Here, we present
a phenotype-driven computational and
clinical workflow for the efficient diagnosis
of rare Mendelian diseases. Our approach
uses the results of clinical analysis to sub-
stantially improve the ranking of candidate
genes, and provides a clear pathway to in-
tegrate the results of bioinformatic analysis
into the clinical workflow by clinical evalu-
ation of phenotypic matching among the
best candidates.
Here, we have shown how to use a computable representation of
clinical phenotypes to prioritize candidate genes in diagnostic sequenc-
ing with a target panel of 2741 known Mendelian disease genes. Our
workflow represents a tight integration of clinical and bioinformatic
analysis (Fig. 2). Clinical expertise is required to perform deep pheno-
typing and choose representative HPO terms to describe the clinical
features of the patient being investigated. Experience is necessary to real-
ize whether a given phenotypic abnormality is likely to be characteristic
of a disease or an incidental finding, for example, a feature such as low-
grade myopia may not be related to the genetic disease being sought
Fig. 2. PhenIX workflow, showing the clinical and bioinformatic analysis steps. After initial clin-
ical evaluation, a decision is made to perform PhenIX analysis if no clinical diagnosis can be found.

After sequencing and computational analysis, clinical evaluation of the top 20 gene candidates iden-
tifies genes for validation by Sanger sequencing and cosegregation studies.
tember 2014 Vol 6 Issue 252 252ra123 4
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and adding this feature to PhenIX analysis may lower the score of the
actual disease-causing gene. After sequencing, alignment, and variant
calling, PhenIX analysis is used to generate a list of the top 20 candi-
dates. Additional candidates can be listed if desired. Clinical exper-
tise is required to examine this list for promising candidates based
on additional information from original publications and databases,
such as OMIM. To assist with this process, the PhenIXWeb page pro-
vides links to a number of useful resources including OMIM, the
University of California Santa Cruz (UCSC) Genome Browser, ClinVar,
and HGMD. We suggest that a presentation of the case together with
a description of the best PhenIX candidates at clinical genetics rounds
should be performed, followed by validation of the most plausible can-
didate(s) by Sanger sequencing and cosegregation studies. In our ex-
perience, discussions on the differential diagnosis proceed quickly
when organized in this fashion and fit well into a typical clinical work-
flow. We chose to limit our NGS analysis only to the sample from the
affected individual, because in the diagnostic setting, family samples
(trios) may not be available initially. In addition, the cost of sequenc-
ing may be a factor. However, trio sequencing could easily be adapted
into our workflow.

On the basis of our results, we suggest that targeting all known dis-
ease genes, that is, a DAG, rather than the whole exome or genome, is
advantageous in terms of target coverage, cost per sample, and the ability
to provide quick and accurate clinical interpretation of the variants. Cases
that remain unsolved after PhenIX analysis of the DAG panel can be
considered for more time-intensive clinical research WES/WGS studies,
because these approaches are able to search for potential mutations in
previously undescribed disease genes.

There are several areas in which our approach can be improved
and extended. The phenotypic analysis based on semantic similarity
depends on an annotated corpus of information about the phenotypic
features that characterize various diseases. The HPO currently has
more than 110,000 annotations to more than 7000 diseases listed in
www.ScienceTr
OMIM (3). Increasing the depth of annotation to these diseases would
improve the performance (43). A number of challenges remain in the
ontological modeling of certain classes of diseases and phenotypes in
areas such as neurobehavioral abnormalities (44). The DAG panel, as
presented here, currently contains baits only for protein coding genes.
However, other medically relevant sequences of the genome could be
captured in a similar way, such as enhancers of the sonic hedgehog gene,
in which point mutations can cause characteristic skeletal malformations
(45). Hand in hand with this, future bioinformatics research will be re-
quired to confidently identify medically relevant variants in noncoding
sequences, as well as presumptive synonymous variants that actually
lead to a deleterious effect such as defective splicing in the case of the
“silent” SLC39A4 mutation mentioned above. Our approach con-
centrates on known disease genes and is thus not designed or intended
to identify new disease genes; other computational tools such as the
Exomiser (26) and eXtasy (25) have been presented for this purpose.

In summary, we have presented a diagnostic tool for genetics pro-
fessionals that combines targeted enrichment and NGS of a compre-
hensive panel of genes known to be associated with Mendelian disease;
bioinformatics analysis of sequencing results is tightly coupled to the
expertise and workflow of genetics professionals, allowing a complete
workup of NGS results in roughly 2 hours per patient. A recent study
on the use of diagnostic exome sequencing of 250 unselected, consec-
utive cases achieved a diagnostic yield of 25% (8), and another larger-
scale exome-based study on persons with intellectual disability reached
a diagnostic yield of 16% (46). Although it is hard to compare the di-
agnostic yield between different studies, the results presented here are
competitive, with an average rank of the correct gene of 2.1 in a retrospec-
tive study on representative diseases and a yield of 28% in a prospec-
tive study with cases chosen for the fact that a diagnosis could not be
achieved. Additionally, our method requires less sequencing than high
coverage WES or WGS, which may translate into cost benefits. Our bio-
informatic and clinical workflow could be completed in roughly 2 hours
Table 3. Clinical category and final diagnoses of 11 patients whose
diagnoses were identified by PhenIX analysis. Additional information,
including complete lists of HPO terms used to describe the phenotypic
abnormalities seen in these patients, is available in table S4. Patients P6
and P10 were referred from external centers. Rank shows the rank after
PhenIX analysis before clinical evaluation. The average rank for all 11 cases
was 2.5. MoI, mode of inheritance; AD, autosomal dominant; AR, autosomal
recessive; XR, X-linked recessive.
ID
 Age, sex
 Presentation
anslationa
Gene
lMedicine.org
Rank
3 Sept
Diagnosis
ember 2014 Vol 6 Issue 252 252ra123
MoI
P1
 3 years (female)
 Intellectual disability + multiple congenital anomalies
 MLL
 2
 Wiedemann-Steiner syndrome (54)
 AD
P2
 5 years (female)
 Intellectual disability + multiple congenital anomalies
 SYNGAP1
 4
 Mental retardation, MRD5 (55)
 AD
P3
 6 years (female)
 Skeletal phenotype
 FGFR2
 1
 Pfeiffer syndrome (56)
 AD
P4
 Death at 5.5 months
(female)
Multiple congenital anomalies without intellectual
disability
SH3PXD2B
 6
 Frank-ter Haar syndrome (57)
 AR
P5
 6 months (female)
 Intellectual disability + neurological abnormalities
 SLC6A3
 1
 Parkinsonism-dystonia (58)
 AR
P6
 Fetus (male), death at
22 weeks of gestation
Skeletal phenotype
 ALPL
 2
 Infantile hypophosphatasia (59)
 AR
P7
 7 years (male)
 Eye phenotype
 NHS
 2
 Nance-Horan syndrome/cataract 40,
X-linked (60)
XR
P8
 14 years (male)
 Intellectual disability + multiple congenital anomalies
 MLL
 1
 Wiedemann-Steiner syndrome (54)
 AD
P9
 6 years (female)
 Intellectual disability + multiple congenital anomalies
 DYRK1A
 4
 Mental retardation, MRD7 (61)
 AD
P10
 4 children between
1½ and 7 years
Intellectual disability + multiple congenital anomalies
 MCOLN1
 1
 Type IV mucolipidosis (62)
 AR
P11
 3 years (male)
 Intellectual disability + multiple congenital anomalies
 RBM10
 3
 TARP syndrome (63)
 XR
5
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and a list of HPO terms. Our method thus provides the means for quick
and effective differential diagnostics in medical genetics.
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MATERIALS AND METHODS

Consent
This study was approved by the Institutional Review Board of the
Charité Universitätsmedizin Berlin. Informed written consent was
obtained from adult subjects and parents of children.

Case selection
The control group consisted of 52 individuals with suspected genetic
diagnoses seen at the Institute of Medical Genetics and Human Ge-
netics of the Charité university hospital between 2010 and 2013, and
who received an etiological diagnosis based on clinical findings and
the identification of mutations in the genes indicated in Table 1. In
addition, 38 patients seen during this time frame who remained with-
out an etiological diagnosis were investigated in this study. Patients
were chosen on the basis of availability of DNA samples from parents
(for validation of cosegregation by Sanger sequencing), consent for re-
search, and the inability to identify a genetic diagnosis despite a high
index of suspicion of an underlying genetic cause. Two additional
cases were referred from external clinics and were not seen in our de-
partment (P6 and P10 in Table 3).

Capture of the targeted disease-related genome and NGS
A SureSelectXT Automation Custom Capture Library (Agilent) target
enrichment panel was generated using the coordinates given in table
S6. The enrichment panel comprised all coding exons of 2741 genes
associated with at least one Mendelian disease, as well as 133 control
genes. Capture was performed according to the manufacturer’s instruc-
tions using an NGS Workstation Option B (Agilent) for automated
library preparation starting with 3 mg of DNA per sample. Then, sequen-
cing of 100–base pair paired-end reads was carried out on a HiSeq
1500 (Illumina). Sequence reads were mapped to the haploid human
reference genome (hg19) with Novoalign (Novocraft Technologies).
SNVs and short insertions and deletions (indels) were called using GATK
version 2.8 (47). Variant annotation was performed with Jannovar (48).
In total, 96 samples were sequenced on two HiSeq 1500 flow cells.

PhenIX: Bioinformatic ranking of candidate genes
Ranking of candidate genes was performed in two steps. First, off-
target and synonymous variants were removed, and the remaining
variants were analyzed with respect to population frequency by using
data from dbSNP (49) and from the Exome Variant Server [National
Heart, Lung, and Blood Institute (NHLBI) GO Exome Sequencing
Project 2014, http://evs.gs.washington.edu/EVS/]. For the purposes of
analysis, we assumed the minor allele frequency of each variant to
be the maximum frequency reported by dbSNP or that of the African
American or European American populations represented in the Exome
Variant Server. A frequency score is calculated as max(0,1 − 0.13533e100*f),
and variants with no frequency data (f = 0) were assigned a score of
1.0, resulting in values between 1.0 and 0.0 for variants with frequen-
cies of up to 2%. Predicted pathogenicity of missense variants was
derived from dbNSFP version 2.4 (50) using the fields for MutationTaster
(16), polyphen-2 (15), and SIFT (51). Scores from these three predic-
www.ScienceTr
tion tools were normalized to be between 0.0 (benign) and 1.0
(pathogenic), and the single most pathogenic score was taken for each
variant. For classes of variants other than missense mutations, a path-
ogenicity score was calculated as described (26). Finally, the overall
variant score was calculated as the product of the frequency and path-
ogenicity score. A clinical relevance score was calculated using the se-
mantic similarity between phenotypic abnormalities entered by the
user and 2741 disease genes in our database. The phenotypic abnor-
malities of all diseases associated with a given gene were assigned to the
gene, because our method ranks candidate genes rather than individ-
ual diseases. For instance, the FBN1 gene is mutated in Marfan syn-
drome, acromicric dysplasia, and a number of other diseases, and the
phenotypic abnormalities of each of those diseases were assigned to
FBN1. Then, the semantic similarity score of the Phenomizer algorithm
(28) was calculated for each of the genes. The maximum score was set
to 1.0, and the other scores were normalized accordingly. The final score
was calculated as the average of the variant and the gene relevance score.
However, if the variant distribution for a gene was not compatible with
the mode of inheritance of the associated diseases (for example, a gene
has only a single heterozygous mutation but the associated disease is
autosomal recessive, or the gene has only a single homozygous mutation
but the disease is autosomal dominant), then the gene relevance score
was divided by 2 before calculating the final score. The final score was
calculated as the mean of the variant score and the gene relevance score.
The major distinctions between PhenIX and our previously published
algorithm PHIVE, which is implemented in the Exomiser (26), are, thus,
the restriction of the analysis to variants in clinically interpretable dis-
ease genes using only human phenotype information rather than model
organism phenotype data, the analysis of sequencing results for previ-
ously reported mutations in ClinVar and the public version of HGMD,
and the use of prioritization based on the modes of inheritance of dis-
eases associated with candidate genes compared with the distribution of
sequenced variants.

Computational evaluation of PhenIX prioritization
To test the performance of PhenIX prioritization with DAG panel se-
quencing, we used a simulation approach based on known disease-
causing mutations from the HGMD. A total of 28,516 mutations were
selected on the basis of being assigned as disease-causing, single-
nucleotide mutations (including indels) by HGMD and with HPO an-
notations available for the disease in question. For the simulations,
10,000 variants were randomly selected from this set. We first removed
the causative mutations from the 52 VCF files generated from the ret-
rospective cohort with known mutations. Then, we added an addition-
al mutation to one of these files. For autosomal dominant diseases, one
heterozygous mutation was added, and for autosomal recessive dis-
eases, either one homozygous mutation or two heterozygous mutations
were added. The phenotypic (HPO) annotations for the corresponding
disease were then compared to the HPO annotations associated with
the 2741 disease genes (if a disease gene was associated with multiple
diseases, all annotations were merged). There were three test scenarios.
In the first case, all HPO annotations for the disease in question were
used. To simulate incomplete phenotyping, we performed the simula-
tions with up to five HPO terms chosen at random from the annotations
of the disease. Finally, to simulate the effects of noise, we randomly chose
two of the five terms and promoted them to their less-specific parent
terms, and finally, two new terms were chosen randomly from the whole
of HPO and added to the annotations.
anslationalMedicine.org 3 September 2014 Vol 6 Issue 252 252ra123 6
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A rank was determined for the original disease gene after PhenIX
analysis. In all the analysis, an ordinal ranking method was used in
which equal scoring genes are resolved arbitrarily but consistently by
assigning a unique rank to each of the ties. In our case, we sorted the
equally scored genes alphabetically and assign the ranks. We recorded
the number of times the correct disease gene was ranked in first place,
as well as the total recall (correct gene listed at any rank). For each simu-
lation, 1 of the 52 DAG panel VCF files was chosen.

Clinical evaluation and validation of NGS results
We clinically evaluated the NGS results using the PhenIX server, which
implements the algorithm described above. PhenIX presents a ranked
gene list together with links to various other resources such as the UCSC
browser (52), Entrez Gene (53), OMIM (1), Orphanet (2), ClinVar (41),
MutationTaster (16), and HGMD (39). Evaluation was performed by
trained genetics professionals. For each unsolved case, the top 20 ranked
candidates were examined by comparison with the above-mentioned data
sources and as appropriate with the original literature. An initial assess-
ment of these 20 candidates was possible in about 2 hours and resulted in
a short list of candidates thought to be potential matches. These were
discussed at clinical rounds by a team of clinicians and researchers includ-
ing L.M., T.Z., L.G.-N., S.D., N.E., M.S., N.C.Ø., M.R.S., R.F., U.K.,
P.K., P.N.R., S.M., and D.H. A consensus decision was reached on
candidates to be validated by Sanger sequencing and cosegregation
studies. We considered a case to be solved after clinical analysis and
cosegregation studies if a degree of certainty was reached that led to
reporting of the mutation and diagnosis in our clinical setting.

SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/6/252/252ra123/DC1
Fig. S1. Distribution of the coverage fraction for all sequenced 96 samples.
Fig. S2. Computational evaluation of PhenIX.
Table S1. Percentage of target bases that exceed coverages of 10, 20, ..., 100 reads.
Table S2. Read alignment and coverage summary statistics.
Table S3. Average number of variants called only from the original BAM files from the DAG panels.
Table S4. Detailed clinical and molecular findings for the 11 individuals in whom a previously
unknown diagnosis was clarified by PhenIX analysis.
Table S5. Clinical presentation of 29 patients for whom PhenIX analysis failed to reveal a mo-
lecular diagnosis.
Table S6. List of genes (with references) present in the DAG panel.
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