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Control of spin-wave excitations in deterministic fractals
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We study spin-wave spectra of mesoscopic ferromagnetic Sierpinski carpets by means of broadband-
ferromagnetic resonance measurements and micromagnetic simulations. Sierpinski carpets are self-similar
fractals with noninteger Hausdorff dimension that are constructed via a deterministic iteration process. The
number of quantized spin-wave modes in the spectra increases with the iteration level of the carpets and the
frequency splitting resembles bandpass characteristics known from fractal antennas. We find that the splitting is
sensitive to the fractal dimension as well as to the relative alignment of the magnetic field and the sides of the
fractals. Micromagnetic simulations provide the localization of individual spin-wave modes determined by the
confinement and the inhomogeneity of the internal field.
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I. INTRODUCTION

Spin waves are promising candidates to carry and store
information in future memory applications [1–4]. In this
context, the control of the properties of spin waves is in the
focus of research. The spectrum of spin waves can be tuned
by a geometrical or field dependent confinement that leads
to a quantization into individual spin-wave modes [5–11].
Magnonic crystals [12–15] are artificial lattices providing
an alternating modulation of their magnetic characteristics.
The modulation can either be realized by the composition of
different magnetic materials [16] or by geometrical structuring
[17,18]. An adequate tuning of the modulation enables one to
tailor band gaps in the material and to control the generation
and propagation of spin waves that are limited to certain
permitted frequency ranges [19]. The concept of magnonic
crystals is not limited only to propagating spin-wave modes but
also standing spin waves are in the focus of research [20,21].

Fractals [22] can be assigned into two different groups: ran-
dom and deterministic fractals. Both these structures exhibit
by definition a noninteger Hausdorff dimension [23] and can
be characterized by self-similarity and scale invariance. The
existence of the random type is widely spread in nature and
can be found for example in Romanesque cauliflower, fern,
or frost patterns. Experimental fractals investigated so far are
mostly of the random type, e.g., two-dimensional deposits
of dendrites at a percolation threshold exhibiting hierarchical
levels obtained by diffusion-limited aggregation (DLA) [24].
Vibrational excitation spectra of percolation clusters show
localized low-frequency modes named fractons [25,26]. De-
terministic fractals, however, provide a self-similarity that is
not statistically distributed: at every magnification a part of the
structure can be found that is similar to the whole structure.
Their characteristics are close to quasicrystals [27] and with
respect to spin waves one can expect gaps and degeneration
in excitation spectra. Well-known examples are Sierpinski
carpets and gaskets. In fractal antennas these structures feature
multiband and wideband characteristics [28] and can be
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found nowadays in cell phones. Recent numerical calculations
[29,30] show that spin-wave spectra of low-dimensional
Sierpinski carpets are singular continuous functions of the
frequency making deterministic fractals auspicious candidates
for magnonic applications.

In this work, spin-wave excitations in Sierpinski carpets
built from ferromagnetic nanostructures are studied by means
of broadband-ferromagnetic resonance (FMR) measurements
and micromagnetic simulations. The spin-wave spectra are
expected to depend on the Hausdorff dimension, in the
following named fractal dimension, and the connectivity
properties of the fractals’ subdimensions. The presentation
of the experimental methods is followed by a discussion of
the experimental and simulation results. The localization of
the observed spin-wave modes is provided by the simulated
spatially resolved magnitude of magnetization precession. In
all, results for Sierpinski carpets exhibiting three different
fractal dimensions are presented.

II. SAMPLE FABRICATION

Samples as shown in Fig. 1(a) are fabricated by electron-
beam lithography and lift-off processing. By thermally evap-
orating 120 nm gold and 8 nm chromium as adhesive layer,
a coplanar waveguide (CPW) is deposited on top of a GaAs
substrate. A 200 nm thick layer of hydrogen silsesquioxane
(HSQ) that provides a small surface roughness of 0.3 nm root
mean square is structured by electron-beam lithography on top
of the CPW. Subsequently, the Sierpinski carpets are prepared
by thermal vapor deposition of 30 nm of Permalloy (Ni80Fe20).

Sierpinski carpets SC(n,p,i) are constructed by a de-
terministic iteration process. A square is divided into n2

congruent subsquares of which n2 − p are removed. The
resulting structure consisting of p = nd occupied subsquares
is named the generating cell SC(n,p,1) and its fractal dimen-
sion d = ln(p)/ ln(n) [31] is determined by the parameters
n and p. In other words, the fractal dimension is the ratio
of the logarithm of the number of self-similar pieces p and
the logarithm of the magnification factor n. After i iterations
of the segmentation process that is applied on the occupied
subsquares, the Sierpinski carpet SC(n,p,i) consists of ni
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FIG. 1. (Color online) (a) Scanning-electron micrograph of
Sierpinski carpets SC(4,12,2) on a coplanar waveguide consisting of
two ground and one signal lead and a layer of HSQ. (b)–(d) Generating
cells of Sierpinski carpets SC(n,p,i) with a fractal dimension of
(b) d = ln(8)/ ln(3) ≈ 1.893, (c) d ≈ 1.792, and (d) d ≈ 1.723.
(e)–(h) Scanning-electron micrographs of Sierpinski carpets
SC(4,12,i) with gradually increasing iteration levels from i = 0 to
i = 3.

subsquares of which pi are occupied. Topological properties
of Sierpinski carpets such as connectivity and lacunarity are
defined by the geometrical location of the occupied subsquares
in the generating cell [29]. In this work, the missing subsquares
are exclusively located in the center of the generating cells.
Figures 1(b)–1(d) show generating cells of Sierpinski carpets
having different fractal dimensions.

The fractals have a size of 14 μm × 14 μm × 30 nm to
ensure that four iteration levels are within the limits of
preparation; compare Figs. 1(e)–1(h). In order to obtain a high
signal-to-noise-ratio, a total of 29 to 35 fractals (depending
on the sample type) are prepared on top of the CPW. The
distance between the carpets is chosen large enough to exclude
stray-field interactions [14,32–34] in between the individual
structures.

III. BROADBAND-FMR SPECTROSCOPY

Experimental data are obtained by broadband-FMR spec-
troscopy using a vector-network analyzer [34,35]. A static
external magnetic field �H is aligned parallel to the CPW in the
x direction. The field strength μ0H is varied from −90 mT
to 90 mT. Prior to each field step, the same magnetic state
is ensured by using a hysteresis field of −90 mT. A radio-

frequency (rf) magnetic field �Hrf is created perpendicularly to
the external field �H by sending a sinusoidal rf current through
the signal lead of the CPW. The magnetic configuration of the
experimental setup is illustrated in Fig. 1(a). For each field
step μ0H , the radio frequency f is swept between 10 MHz
and 15 GHz. Eigenfrequencies of the Sierpinski carpets are
excited by energy transfer from �Hrf . Thus, resonances are
detected by means of a reduced transmission of the rf current
through the signal lead. When applying a reference field of
90 mT in the y direction only weak excitations of edge modes
[6] are expected. We measure the normalized transmission,
which is the difference between transmission and reference
spectrum. It allows the detection of resonance modes with a
high signal-to-noise ratio.

Due to the confining geometry of the structures, we
expect to exclusively excite standing spin-wave modes in
our experiments. For a long stripe where external field
and magnetization are aligned along the stripe’s axis (easy
axis), the internal magnetic field is homogeneous. However,
effective boundary conditions lead to a pinning of the dynamic
magnetization at the edges of the stripe and the wave vector
of the spin waves is quantized along the stripe’s finite width
[7]. In this configuration, magnetostatic [36] Damon-Eshbach
(DE) modes [5,7,37] with their quantized wave vector aligned
perpendicular to the magnetization are excited. When the
magnetization is aligned perpendicular to the stripe axis (hard
axis), the wave vector of the quantized spin waves is aligned
parallel to the magnetization and the modes have magnetostatic
backward volume (BV) mode character [6,8,10]. The internal
magnetic field is strongly inhomogeneous along the stripe’s
width and the lowest modes are exchange-dominated modes
[36] localized at the edges of the structures [6,8]. Thus, the
quantization of spin waves is not limited only to the structural
geometry but can also originate from inhomogeneous internal
field distributions.

In thin rectangular elements with two finite in-plane sizes,
there is no orientation of the external field that leads to
a homogeneous distribution of the internal magnetic field.
The inhomogeneity occurs mainly along the direction of the
external field [11]. The two-dimensional quantization of the in-
plane wave vector of the spin waves [10] can be described as a
product of the one-dimensional quantizations of longitudinally
and transversely magnetized long stripes [11]. The quantized
in-plane components of the wave vector are klx and kmy with
the indices l,m = 0,1,2, . . . describing the number of nodes
of the standing spin waves. In our experiments, only modes
having an even symmetry about the center of the elements,
i.e., modes with an even number of nodes, can be excited [38].
The inhomogeneity of the internal field leads to a localization
of the eigenmodes: the lowest modes have dipole-exchange
character and are strongly localized near the edges while the
dipole-dominated higher modes are weakly localized near the
center of the rectangles [11].

Complexity and confinement of the Sierpinski carpets
increase with the iteration level. The internal field is expected
to be rather inhomogeneous, especially at the edges of the holes
introduced by the segmentation steps. As a result, the number
of localized and quantized spin-wave modes will increase
with the iteration level. Due to the strong confinement and
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the inhomogeneity of the internal field, an alignment of the
magnetization that is predominantly parallel to the external
field is only expected for high field strengths. For small
fields, pronounced domain patterns can lead to a suppression
of individual spin-wave modes [39,40] depending on their
localization within the carpets.

A. Dependency on the iteration level

Figure 2 shows typical broadband spectra of Sierpinski
carpets SC(4,12,i) having a fractal dimension of d ≈ 1.792.
The spectra of solid Permalloy squares, that are Sierpinski
carpets at iteration level i = 0, contain one prominent spin-
wave mode SW-01 with a frequency of f = 9.4 GHz for
a field strength of μ0H = −90 mT; compare Fig. 2(a).
The absorption line disappears at a field strength of 2 mT
indicating the switching of the magnetizations of these carpets.
For positive fields, the absorption line shows a symmetric
field dispersion. Above the absorption line SW-01, there are
two higher-order spin-wave modes HO-01 and HO-02 of
the mode SW-01, visible in the spectra for field strengths
between ±50 mT. Below the absorption line SW-01 there are
two absorption lines corresponding to exchange-dominated
modes [6], located close to the lateral edges of the square [11]
in the direction of the magnetization. The differences in the
field dispersion of these edge modes and the modes SW and
HO originate from the decreased effective field at the lateral
edges of the structure.

For an iteration level of i = 1, two prominent absorption
lines SW-11 and SW-12 with frequencies of 9.3 GHz and
9.9 GHz at −90 mT are visible in the spectra; compare
Fig. 2(b). With decreasing field strength, the two absorption
lines have different negative slopes and the frequency splitting
between the lines increases up to 1.7 GHz for a field strength
of −10 mT. The modes HO-11 and HO-12 at frequencies of
10.9 GHz and 11.7 GHz for −90 mT are higher-order modes
of SW-12 since all three modes show the same field dispersion
and switch between 1 mT and 3 mT. The intensity of SW-11
starts to decrease at −12 mT, bends up between −5 mT and
−2 mT, and disappears between −2 mT and 6 mT before it
shows a symmetric course for positive fields. The up-bending
will be discussed in Sec. V. Edge modes have the same field
distribution as for solid squares SC(4,12,0) and are visible
below the mode SW-11.

With increasing iteration level, the excitation of further
spin-wave modes can be observed in the spectra. Five distinct
absorption lines SW-21 to SW-25 that show a clear frequency
splitting are visible in the spectra at an iteration level
of i = 2; compare Fig. 2(c). The frequencies are ranging
from 8.3 GHz for SW-21 to 11.0 GHz for SW-25 at −90 mT.
The maximum values of the frequency splittings between
the individual modes are δfSW−21,22 = 1.8 GHz at −25 mT,
δfSW−22,23 = 1.6 GHz at −12 mT, δfSW−23,25 = 1.6 GHz
at −12 mT, and δfSW−24,25 = 2.3 GHz at −1 mT. For small
fields, the field dispersion of the individual modes is different
and depends on their localization within the carpets and the
local inhomogeneity of the internal field. The mode SW-25
and its higher-order mode HO-22 switch in the small field
range between 6 mT and 8 mT. The absorption line of SW-23
bends up between −12 mT and −4 mT and disappears like
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FIG. 2. Broadband-ferromagnetic transmission spectra of Sier-
pinski carpets SC(4,12,i) with a fractal dimension of d ≈ 1.792
in dependence on the applied field strength μ0H . Dark contrast
corresponds to a reduced transmission. The iteration level of the
fractals is increased from (a) i = 0 to (d) i = 3 as indicated by the
insets in the spectra.

the associated higher-order mode HO-21 until 8 mT. Between
−10 mT and −1 mT as well as 5 mT and 14 mT the mode
SW-24 with a similar dispersion as SW-23 appears. The
absorption line of SW-22 shows a decreased intensity from
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−21 mT and vanishes between −4 mT and 9 mT. The mode
SW-21 disappears between −34 mT and 35 mT.

For the iteration level i = 3, nine different absorption
lines are visible in the spectra; compare Fig. 2(d). The
signal-to-noise ratio is significantly decreased compared to
lower iteration levels because the Sierpinski carpets consist
of considerably less ferromagnetic material. A first branch of
the modes SW-31 to SW-34 is located between frequencies of
9.3 GHz and 3.1 GHz, a second branch of SW-35 to SW-38
between 12.1 GHz and 8.9 GHz, and the mode SW-39 between
14.1 GHz and 9.7 GHz. The intensity of the modes in the
second branch is about three times higher compared to the re-
maining modes. While the frequency splitting between the
individual modes in each of the two branches stays about
the same for all field strengths, the splitting between the first
and the second branch reaches its maximum of 2.5 GHz at
−34 mT. The field range where individual modes disappear is
extended due to the additional confinement. The mode SW-39
with the smallest gap vanishes at 13 mT and reappears at
20 mT while the mode SW-33 with the largest gap disappears
between −49 mT and 61 mT. In the frequency range of
SW-33, the mode SW-34 appears at −41 mT up to −19 mT
and reappears at 27 mT until 55 mT. During disappearance
of SW-37, the mode SW-38 appears only for positive fields
between 11 mT and 19 mT. General features such as the
increased frequency splitting between the modes and the
increased complexity of the carpets can be nicely seen at this
level of iteration. Here a total of 144 subsquares are removed
additionally from each Sierpinski carpet and the spin-wave
spectrum is rather complex. In order to sustain clarity, we
focus in the further investigation on iteration levels of i = 1
and 2 where distinct modes can be observed.

B. Dependency on the fractal dimension

In order to observe the dependence of the spin-wave
spectra on the fractal dimension, Sierpinski carpets SC(3,8,i)
and SC(5,16,i) with a higher and a lower fractal dimension
are studied, respectively. The generating cells are given in
Figs. 1(b) and 1(d). The in-plane sizes of the generating
cells are the same as for SC(4,12,i). The fractal dimension
determines the size of the holes introduced in the segmentation
process while the shape of the generating cells remains
unaffected; compare Figs. 1(b)–1(d). For the same magnetic
configuration, we expect a change in the frequencies of the
individual spin-wave modes while their location within the
carpets is assumed to be similar for all fractal dimensions. Be-
cause of this correspondence we can use the same denotation
for the individual modes identified by their field dispersion.

For the iteration level i = 1 the spectra for all three fractal
dimensions show the two absorption lines SW-11 and SW-12;
see Figs. 2(b), 3(a), and 3(b). In comparison with Sierpinski
carpets SC(4,12,1), a change in the maximum frequency
splitting between the modes can be observed. While for
SC(3,8,1) the splitting of δf = 1.3 GHz at a field strength
of −5 mT is 0.4 GHz smaller, the gap is 0.4 GHz larger for
SC(5,16,1) with δf = 2.1 GHz at −10 mT. The confinement
of the modes increases with decreasing fractal dimension and
can be observed in the spectra during magnetization reversal.
The mode SW-12 disappears between 1 mT and 3 mT for
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FIG. 3. Transmission spectra of Sierpinski carpets with different
and additional fractal dimensions. (a) and (c) Spectra of SC(3,8,1)
and its higher iteration level SC(3,8,2) with d ≈ 1.893. (b) and
(d) Spectra of SC(5,16,1) and SC(5,16,2) with d ≈ 1.723.

SC(3,8,1) and switches with a discontinuity in the absorption
line at 4 mT for SC(5,16,1). The up-bending of SW-11 is
more pronounced for SC(5,16,1) compared to SC(4,12,1) and
occurs already between −9 mT and 12 mT. For SC(3,8,1),
SW-11 vanishes between −1 mT and 4 mT and only a weak
up-bending can be observed at −3 mT.
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For the iteration level i = 2, four absorption lines SW-21 to
SW-25 with frequencies ranging from 10.0 GHz to 2.0 GHz
can be observed for SC(3,8,2); compare Fig. 3(c). The
absorption lines SW-22 and SW-23 with the highest intensities
are superimposed for high field strengths and separated
between field values of ±25 mT. No excitation of SW-24 can
be observed. The maximum frequency splittings between the
modes SW-21 to SW-25 are 0.5 GHz, 1.1 GHz, and 1.0 GHz
smaller compared to Sierpinski carpets SC(4,12,2). For the
carpets SC(5,16,2), five absorption lines including SW-24
are visible and the frequencies are ranging from 2.5 GHz
to 12.0 GHz; see Fig. 3(d). The frequency splittings between
the modes are about 0.8 GHz larger compared to SC(4,12,2).

Our experimental finding is that the frequency splitting
between the spin-wave modes increases with decreasing
fractal dimension. This observation complies with numerical
calculations of the spin-wave spectra of Sierpinski carpets. In
the calculations of Monceau and Lévy [29], frequency spectra
of the normalized integrated density of states (NIDOS) are
singular continuous functions where gaps and plateaus in the
spectra are connected to symmetry and degeneracy of the
eigenmodes. With decreasing fractal dimension the authors
calculate larger gaps in the NIDOS which can be associated
with larger gaps in the frequency spectrum [29]. This is in
agreement with our experimental findings.

C. Variation of the external field vector

In order to study the angular symmetry of the mode
spectrum, the angle α between the external field vector �H
and the sides of the fourfold-symmetric Sierpinski carpets is
varied between 0◦ and 45◦ in steps of 5◦. Maximum spin-wave
excitation is guaranteed by perpendicular alignment between
the external field �H and the rf field �Hrf . Thus, instead of
rotating the external field with respect to the CPW, individual
samples are prepared for each rotation angle α.

The transmission spectra of Sierpinski carpets SC(4,12,2)
for different angles α are shown in Fig. 4. Between 0◦ and
10◦, the field dispersion of the modes SW-21 to SW-25
remains qualitatively the same. For α = 10◦, the absorption
line SW-21 has a decreased intensity, shifts up by 0.2 GHz,
and vanishes between −52 mT and 60 mT. A new mode
SW-20 with a smaller slope than the remaining modes appears
between f = 7.6 GHz and f = 4.5 GHz; compare Fig. 4(a).
SW-20 bends up at −36 mT, meets SW-22 at −22 mT,
and disappears up to 27 mT. With increasing angle α a
reduction of the complexity of the modes is observed. While
SW-20 disappears at 20◦, the intensity of SW-21 decreases
continuously until complete disappearance at 25◦; compare
Fig. 4(b). At this angle, the absorption lines SW-25 to SW-22
shift down in frequency by 0.2 GHz. The up-bending of
SW-23 occurs already for fields of −23 mT and SW-24
appears in connection with SW-23 in the field region of the
up-bending. Up to angles of 35◦ as shown in Fig. 4(c) the
modes SW-25 to SW-23 resume to shift down by 0.3 GHz
while the field dispersion of the mode SW-22 stays the same.
The up-bending of SW-23 is smoother and begins already
at −45 mT. SW-23 and SW-25 meet at 0 mT and share
the same frequency until 12 mT. SW-24 is already visible
at −39 mT. At 40◦ (not shown) the mode SW-23 shifts up
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FIG. 4. (Color online) Transmission spectra of Sierpinski carpets
SC(4,12,2) where the sides of the fractals are rotated with respect to
the external field vector �H by the angle α as mimicked by the insets.

by 0.3 GHz while no considerable changes are observed for
the remaining absorption lines. For 45◦, however, only three
absorption lines are visible; compare Fig. 4(d). While the
absorption line SW-23 is no longer visible in the spectra,
SW-25 shifts down by 0.5 GHz and shows twice the intensity
as for smaller angles. The absorption lines of SW-22 and
SW-24 smear out and the spectra show no sharp absorption
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lines in the branch between 9.7 GHz and 2.8 GHz. The modes
in this frequency range are not clearly distinguishable.

We conclude that the spin-wave spectra depend crucially
on the relative orientation of external field vector and the sides
of the Sierpinski carpets. By increasing the enclosing angle
α the number of distinct spin-wave modes decreases in the
spectra. For a parallel alignment of the field and the diagonal
of the fractals at α = 45◦ spin-wave excitation is observed in
two broad frequency bands. Variation of the angle α enables
us to control the complexity of the magnetization pattern and
with it the excitation as well as the frequency of spin-wave
modes in Sierpinski carpets, as discussed in detail in Sec. V.
Spin-wave spectra in Sierpinski carpets can be tuned by their
magnetic configuration besides geometrical parameters such
as iteration level and fractal dimension.

IV. MICROMAGNETIC SIMULATIONS

In order to correlate the measured field-dispersion rela-
tions with the spatial localization of the individual spin-
wave modes, we performed micromagnetic simulations us-
ing the MicroMagnum code [41]. Computational capac-
ities dictate a down-scaling of the sizes of the fractals
to 3.5 μm × 3.5 μm × 30 nm. The discretization cell size
is 5 × 5 × 30 nm3, in the range of the exchange length
lex =

√
2A/μ0M

2
S = 5.3 nm of the soft magnetic Permal-

loy where μ0 = 4π × 10−7 H/m is the vacuum permeabil-
ity. With A = 13 × 10−12 J/m for the exchange constant,
MS = 860 kA/m for the saturation magnetization, and
α = 0.01 for Gilbert damping, typical parameters [34,42,43]
for Permalloy are used. After simulating the field hysteresis
of the relaxed magnetization along the x axis between
−90 mT and 90 mT, a field pulse is applied in the yz

plane of the structures for the dynamic simulations. The
field vector is slightly tilted away from the x axis in order
to break the symmetry and to obtain a stable magnetiza-
tion configuration. The spatially homogeneous pulse has a
Gaussian time modulation with a full width at half maximum
of 3 ps [44] and an amplitude of 1 mT. The simulation data
are obtained for a time period of 20 ns with a time resolution
of 25 ps. The spectral distribution as well as the spatially
resolved magnitude and phase of magnetization precession
are obtained by applying fast Fourier transformation (FFT)
to the out-of-plane component of the magnetization in each
cell. Due to the small tilting of the field, we expect the
spatially resolved magnitude to be point symmetric about the
center of the carpets. Simulations for the fractal iteration levels
i = 0 to 2 are presented.

V. DISCUSSION

Figure 5 shows the simulated spectra as well as the
spatially resolved magnitude of magnetization precession of
individual spin-wave modes for Sierpinski carpets SC(4,12,0)
and SC(4,12,1). The field vector is aligned parallel to the
side of the carpets; i.e., α = 0◦. The simulated spectra of solid
squares, i.e., i = 0, show a similar field dispersion of the mode
SW-01 and its higher-order modes to that of the experimental
spectra [45]; compare Figs. 2(a) and 5(a). Between −1 mT
and −3 mT the simulations did not yield a stable magnetization

FIG. 5. (Color online) (a) Simulated field dependence of the
resonant spin-wave modes of a Sierpinski carpet SC(4,12,0). The gray
scale encodes the averaged magnitude of the Fourier-transformed
pulse response in arbitrary units. (b) Spatially resolved magnitude
of the magnetization precession at resonance in SC(4,12,0) for a
field strength of μ0H = −90 mT. The antinodes of the spin-wave
modes are marked by the white crosses. (c) Field dependence of the
resonance frequencies of a Sierpinski carpet SC(4,12,1). (d) Spatially
resolved magnitude of the magnetization precession at resonance in
SC(4,12,1) for a field strength of μ0H = −90 mT.

configuration after application of the field pulse. Differences
in frequencies and switching fields originate from the smaller
lateral sizes of the simulated structures. The spatially resolved
magnitudes of magnetization precession in Fig. 5(b) show that
the mode SW-01 is a dipole-dominated spin-wave mode with
one antinode [46] (l = 0 and m = 0) located in the center of the
structure. For the higher-order modes HO-01 and HO-02 three
(l = 0 and m = 2) and five (l = 0 and m = 4) antinodes are
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visible, respectively. The quantization in the y direction reveals
the DE character of the mode SW-01 and its higher-order
modes, since the magnetization is aligned along the x axis. The
observations comply with studies of the spin-wave spectra of
rectangular elements with comparable in-plane sizes [10,11].
The frequency of the mode SW-01 is decreasing with magnetic
field strength in accordance with the dispersion relation of DE
surface modes [37].

For the iteration level i = 1, the simulated spectra show
the absorption lines of the modes SW-11 and SW-12 as
well as the higher-order modes HO-11 and HO-12 and are
similar to the corresponding experimental spectra; compare
Figs. 2(b) and 5(c). The mode profile is related to that of
antidot arrays [17,47] and square nanorings [48]. No stable
magnetization configuration was obtained in the simulations
between −10 mT and 7 mT. In order to analyze the correlation
of field dispersion and localization of the individual modes,
it is convenient to divide the fractal SC(4,12,1) into the
rectangles A [subsquares 2, 3 and 10, 11 in Fig. 1(c)] and
B [subsquares 5, 7 and 6, 8 in Fig. 1(c)]. The subsquares 1,
4, 9, and 12 are shared one-half each by A and B. For the
rectangles A, the magnetization is aligned parallel to the easy
axis in the x direction and is supposed to switch within a few
milliteslas during reversal of the external field. In contrast,
the magnetization in rectangles B is aligned along the hard
axis in the x direction for high field strengths. For smaller
fields, the magnetization slowly turns towards the easy axis
in the y direction. Since higher field strengths are required
to align the magnetization along the hard axis than along
the easy axis, the switching of the magnetization expands
over a larger field regime for rectangles B. The spatially
resolved magnitude of precession in Fig. 5(d) shows that
the mode SW-12 and its higher-order modes HO-11 and
HO-12 are located in rectangles A and have a DE character,
since the wave vector is quantized along the y direction
perpendicular to the magnetization. The mode SW-11 is
located in rectangles B with its wave vector along the x

direction. For high field strengths, the mode SW-11 has a
BV character with a parallel alignment of wave vector and
magnetization. In the experimental spectra in Fig. 2(b), the
magnetization in rectangles B starts to turn towards the easy
axis at a field strength of −12 mT. This is visible by a decrease
in the intensity of the absorption line since magnetization and
exciting field �Hrf are not aligned perpendicularly anymore.
For −6 mT, the magnetization is predominantly aligned along
the easy axis and the mode loses its pure BV character and a
DE character is introduced. This is visible in the spectra by an
abrupt increase in frequency caused by the different dispersion
relations of DE and BV modes [36,49]. Between −2 mT and
6 mT the magnetization is completely aligned along the easy
axis and �Hrf and no spin waves are excited. The widths of
rectangles A and B decrease with the fractal dimension and
the switching of the magnetization is determined by shape
anisotropy. For SC(3,8,1) and SC(4,12,1) the absorption
line SW-12 is symmetric about the switching field range
similar to the characteristics of solid squares in Fig. 2(a). In
contrast, the discontinuity of SW-12 for the smallest fractal
dimension SC(5,16,1) resembles switching characteristics of
longitudinally magnetized long rectangles [34,35]. The up-

FIG. 6. (Color online) (a) Simulated field dependence of the
resonant modes of a Sierpinski carpet SC(4,12,2). (b) Spatially
resolved magnitude of the magnetization precession at resonance
for selected field strengths.

bending of SW-11 occurs within wider field ranges and shifts
to higher field strengths with decreasing fractal dimension. For
the highest fractal dimension SC(3,8,1), the magnetization in
rectangles B is aligned along the weakly defined hard axis
and turns towards the easy axis at −3 mT within 2 mT before
the absorption line SW-11 disappears; compare Fig. 3(a). For
the lowest fractal dimension SC(5,16,1), the magnetization
turns towards the strongly defined hard axis already at −8 mT
within a range of 6 mT; compare Fig. 3(b).

The simulated field distribution of the spin-wave modes
for a Sierpinski carpet SC(4,12,2) is shown in Fig. 6(a).
The five absorption lines SW-21 to SW-25 as well as the
higher-order modes HO-21 and HO-22 can be identified by
comparing the simulated spectra with the experimental results
in Fig. 2(c). The spatially resolved magnitudes of precession in
Fig. 6(b) show the localization of the modes within the carpet.
SW-21 is an exchange-dominated mode strongly localized at
the edges of the holes that were introduced in this segmentation
step. At the edges, the internal magnetic field is expected
to be significantly reduced in direction of the applied field
[10,11]. The mode SW-22 in between the holes in rectangles
A is weaker localized and has a stronger dipole dominated
character. SW-23 and its higher-order mode HO-21 are dipole-
dominated DE modes located between the holes in rectangles B
where a homogeneous internal field is expected. Their wave
vectors are quantized along the y direction perpendicularly
to the magnetization. This configuration is shared by the DE
modes SW-25 and HO-22 that can be found above and below
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FIG. 7. (Color online) (a) Simulated field dependence of the
resonance frequencies of a Sierpinski carpet SC(4,12,2) where the
sides of the fractal are rotated relatively to the external field vector
�H by the angle α = 45◦. (b) Spatially resolved magnitude of the

magnetization precession at resonance for a field strength of −90 mT.
(c) Simulated static magnetization of SC(4,12,2) for α = 0◦ and 45◦.
The color scale displays the alignment of the magnetization relative
to the magnetic field along the positive x direction.

the holes in rectangles A. Similarly to the experimental spectra,
SW-23 bends up at −41 mT, disappears as well as HO-21
at −28 mT, before the mode SW-24 appears at −27 mT.
The latter is predominantly located in rectangles B with its
magnitude distributed uniformly around the holes. The origin
of the up-bending of SW-23 may be attributed to frequency
gaps in the dispersion relation of the spin-wave modes but
cannot be clarified completely. For fields between −6 mT and
20 mT, the simulated static magnetization is rather unstable
and the pulse excitation leads to a complex mode spectrum
during magnetization reversal. For higher fields, a symmetric
mode spectrum for positive and negative field directions can
be observed.

Further simulations were performed for Sierpinski carpets
SC(3,8,i) and SC(5,16,i) at i = 1,2 and the corresponding
modes SW-21 to SW-25 as well as SW-11 and SW-12 could
be identified in the spectra (results not shown). The spatially
resolved magnitude of precession shows that the localization
of the individual modes is similar to that for SC(4,12,i) and
justifies the same notation for all three fractal dimensions.
In accordance with the experimental results, the frequency
splitting between individual modes increases with decreasing
fractal dimension.

Figure 7(a) shows simulated data for a Sierpinski carpet
SC(4,12,2) where the external field is rotated with respect
to the sides of the fractal by an angle of α = 45◦. The field

distribution shows one absorption line with a high intensity and
a branch consisting of several nearby low-intensity absorption
lines. The field distribution is similar to the experimental
spectra in Fig. 4(d) and the high-intensity mode can be
identified as SW-25. The spatially resolved magnitude of
precession in Fig. 7(b) shows that the mode SW-25 is
unlocalized and distributed over the whole fractal. When
turning the magnetic field vector towards the diagonal of the
fractal, the orientations of the magnetization in rectangles A
and B assimilate. As a consequence, the dipole-dominated
modes SW-23 and SW-25 combine to one spin-wave mode
for angles α > 35◦ as observed in the experimental data
in Figs. 4(c) and 4(d). The simulated static magnetizations
for the angles α = 0◦ and 45◦ are shown in Fig. 7(c). The
inhomogeneity of the internal magnetic field is significantly
reduced when the external field is aligned along the diagonal,
since the magnetization meets the edges of the fractal with
an angle of 45◦ instead of 90◦. Thus, the excitation of the
exchange-dominated modes SW-21 and SW-22 localized at
edges, where the inhomogeneity of the internal field is high,
is almost completely suppressed for α > 35◦.

VI. CONCLUSION

We have studied spin-wave spectra of Permalloy Sierpinski
carpets by experiments and micromagnetic simulations. The
number of quantized spin-wave modes in the spectra increases
with the iteration level and the accompanying inhomogeneity
of the internal field of the carpets. The frequency splitting be-
tween the modes increases with decreasing fractal dimension
in agreement with the theory in Ref. [29]. Independently of
these two geometrical parameters the number and frequencies
of the spin-wave modes are controlled by tuning the com-
plexity of the magnetization patterns of the Sierpinski carpets
via the external magnetic field. The wave characteristics and
the localization of the spin-wave modes are identified by
the simulated spatially resolved magnitude of magnetization
precession.

Ferromagnetic Sierpinski carpets are potential candidates
for magnonics as high-frequency multiband devices whose
frequency characteristics can be tuned both by geometrical
structuring and their magnetic configuration.
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num, Jan Michael Möller for support during sample prepara-
tion, and Michael Volkmann for excellent technical assistance.
Financial support of the Deutsche Forschungsgemeinschaft via
Sonderforschungsbereich 668 “Magnetism from the Single
Atom to the Nanostructure” and Graduiertenkolleg 1286
“Functional Metal-Semiconductor Hybrid Systems” is grate-
fully acknowledged. This work has been supported by the ex-
cellence cluster “The Hamburg Centre for Ultrafast Imaging—
Structure, Dynamics, and Control of Matter on the Atomic
Scale” of the Deutsche Forschungsgemeinschaft.

064416-8



CONTROL OF SPIN-WAVE EXCITATIONS IN . . . PHYSICAL REVIEW B 91, 064416 (2015)

[1] R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 93,
257202 (2004).

[2] S. V. Vasiliev, V. V. Kruglyak, M. L. Sokolovskii, and A. N.
Kuchko, J. Appl. Phys. 101, 113919 (2007).

[3] K.-S. Lee and S.-K. Kim, J. Appl. Phys. 104, 053909 (2008).
[4] T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L.

Stamps, and M. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
[5] C. Mathieu, J. Jorzick, A. Frank, S. O. Demokritov, A. N.

Slavin, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini,
F. Rousseaux, and E. Cambril, Phys. Rev. Lett. 81, 3968 (1998).

[6] J. Jorzick, S. O. Demokritov, B. Hillebrands, M. Bailleul, C.
Fermon, K. Y. Guslienko, A. N. Slavin, D. V. Berkov, and N. L.
Gorn, Phys. Rev. Lett. 88, 047204 (2002).

[7] K. Y. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N.
Slavin, Phys. Rev. B 66, 132402 (2002).

[8] J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and
P. A. Crowell, Phys. Rev. Lett. 89, 277201 (2002).

[9] J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A.
Crowell, Phys. Rev. B 67, 020403 (2003).

[10] K. Y. Guslienko, R. W. Chantrell, and A. N. Slavin, Phys. Rev.
B 68, 024422 (2003).

[11] C. Bayer, J. Jorzick, B. Hillebrands, S. O. Demokritov, R. Kouba,
R. Bozinoski, A. N. Slavin, K. Y. Guslienko, D. V. Berkov,
N. L. Gorn, and M. P. Kostylev, Phys. Rev. B 72, 064427
(2005).

[12] M. Krawczyk and D. Grundler, J. Phys.: Condens. Matter 26,
123202 (2014).

[13] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys. Rep.
507, 107 (2011).

[14] J. Topp, D. Heitmann, M. P. Kostylev, and D. Grundler, Phys.
Rev. Lett. 104, 207205 (2010).

[15] A. V. Chumak, A. A. Serga, B. Hillebrands, and M. P. Kostylev,
Appl. Phys. Lett. 93, 022508 (2008).

[16] S. Schnittger, S. Dreyer, C. Jooss, S. Sievers, and U. Siegner,
Appl. Phys. Lett. 90, 042506 (2007).

[17] S. Martens, O. Albrecht, K. Nielsch, and D. Görlitz, J. Appl.
Phys. 105, 07C113 (2009).

[18] G. Meier, M. Kleiber, D. Grundler, D. Heitmann, and
R. Wiesendanger, Appl. Phys. Lett. 72, 2168 (1998).

[19] Z. K. Wang, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok,
S. Jain, and A. O. Adeyeye, Appl. Phys. Lett. 94, 083112 (2009).

[20] S.-K. Kim, J. Phys. D: Appl. Phys. 43, 264004 (2010).
[21] M. Mruczkiewicz, M. Krawczyk, V. K. Sakharov, Y. V.

Khivintsev, Y. A. Filimonov, and S. A. Nikitov, J. Appl. Phys.
113, 093908 (2013).

[22] B. B. Mandelbrot, Fractals: Form, Chance, and Dimension
(Freeman, San Francisco, 1977).

[23] F. Hausdorff, Math. Ann. 79, 157 (1918).
[24] H. Brune, Surf. Sci. Rep. 31, 125 (1998).
[25] S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg,

Phys. Rev. B 28, 4615 (1983).

[26] T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod. Phys.
66, 381 (1994).

[27] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020
(1987).

[28] C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, IEEE
Trans. Antennas Propag. 46, 517 (1998).
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