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Abstract

Both functional and also more recently resting state magnetic resonance imaging

have become established tools to investigate functional brain networks. Most

studies use these tools to compare different populations without controlling for

potential differences in underlying brain structure which might affect the functional

measurements of interest. Here, we adapt a simulation approach combined with

evaluation of real resting state magnetic resonance imaging data to investigate the

potential impact of partial volume effects on established functional and resting state

magnetic resonance imaging analyses. We demonstrate that differences in the

underlying structure lead to a significant increase in detected functional differences

in both types of analyses. Largest increases in functional differences are observed

for highest signal-to-noise ratios and when signal with the lowest amount of partial

volume effects is compared to any other partial volume effect constellation. In real

data, structural information explains about 25% of within-subject variance observed

in degree centrality – an established resting state connectivity measurement.

Controlling this measurement for structural information can substantially alter

correlational maps obtained in group analyses. Our results question current

approaches of evaluating these measurements in diseased population with known

structural changes without controlling for potential differences in these

measurements.
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Introduction

Functional and resting state magnetic resonance imaging (fMRI and rsMRI) have

now become established tools to investigate brain function and connectivity.

Numerous studies in the past decades have applied fMRI and more recently

rsMRI-based measurements to evaluate experience and clinical phenotype-related

functional alterations [1–21]. These studies have provided a vast heterogeneity of

findings which have been attributed to group differences in brain functional

activity or connectivity. However, the effect of potential between-group structural

differences has not been systematically investigated. These structural differences

are likely to give rise to partial volume effects defined as differential relative

contribution of grey matter, white matter, or cerebrospinal fluid to the observed

voxel- or region-wise signal [22]. In our study, we further assume that the

observed voxel-wise signal containing these partial volume effects is a linear

combination of the signal from the different tissue types. These effects have been

largely ignored by making the implicit assumption that they are controlled for in

fMRI and rsMRI analyses. This is because within-subject statistical maps and

within-subject correlational maps are respectively computed, and are then used to

evaluate between-group differences [23, 24] [25, 26]. Moreover, the signal in

typical fMRI and rsMRI analyses might be sufficiently strong to make differences

in noise levels across groups negligible, in particular when applying strict

correction for multiple comparisons. Therefore, it might be argued that partial

volume effects introduced by underlying structural differences, potentially present

in fMRI and rsMRI analyses, do not strongly affect the final statistics with these

kinds of analyses.

However, this assumption is rather questionable especially because of the

relatively low spatial resolution of fMRI and the thickness of the targeted cortical

structures, which is in the range of 2–3 millimeters [27]. Thus, even subtle

structural between-group differences might lead to differences in the amount of

partial volume effects contributing to the signal in the corresponding functional

voxels and correspondingly to differences in the observed signal [28]. These

limitations are particularly applicable to studies of aging and of neurodegenerative

disorders which are generally characterized by grey matter loss. For example,

reductions in grey matter volume in a region of interest would inevitably lead to

increased contribution of cerebrospinal fluid (CSF) to signal measured in the

corresponding region. The increased contribution of CSF would lead to higher

noise and correspondingly reduce the within-subject statistical estimates such as

beta coefficients. The changes in within-subject statistics due to increased partial

volume effects would then transfer to second-level statistics, erroneously

suggesting between-group functional differences.

Similarly, rsMRI studies commonly use measurements that are based on

within-subject metrics such as correlation coefficients computed between different

regions over time. These functional connectivity maps (e.g. Fisher’s z-transformed

or original) are then used to directly compare the different groups or to extract

other more advanced connectivity indices such as the total flow or the clustering

Partial Volume Effects in Functional and Resting State MRI

PLOS ONE | DOI:10.1371/journal.pone.0114227 December 2, 2014 2 / 18



coefficient. With the same arguments as above, between-group differences in grey

matter volume in a region of interest would lead to greater noise level in this

region in the group with lower grey matter volume. Correlation coefficients are

well known to be strongly affected by noise. Correspondingly, decreased average

correlation strength would be observed in this group in the affected region.

Here we investigate the effects of differential partial volume contribution from

grey matter, white matter, and cerebrospinal fluid on results of typical fMRI and

rsMRI analyses.

Methods

Generated data

All data generation steps and statistical analyses were implemented in Matlab 7.12

(MathWorks Inc., Sherborn, MA). To obtain realistic parameters for the data

generation procedure, a publicly available fMRI dataset (auditory block design

experiment, BOLD/EPI images, 2T Siemens, 96 acquisitions, TR57s, voxel:

36363 mm3, 64 slices, matrix size 64664) of a single subject commonly used

for teaching purposes was downloaded from the statistical parametric mapping

website. The imaging data and a more detailed description of the auditory

paradigm and the imaging sequence can be found at the following URL: http://

www.fil.ion.ucl.ac.uk/spm/data/auditory. These single subject auditory task fMRI

data were then used to manually define three voxels of interest, each located in the

centre of an easily localized grey matter, white matter, or cerebrospinal fluid

anatomical structure (Figure 1) to reduce partial volume effects introduced by the

signal from other tissue types. Means and standard deviations of the signal from

each voxel over time were computed to obtain distribution characteristics for each

tissue class. The means and standard deviations for white matter and

cerebrospinal fluid were then used to generate random Gaussian signal for both

tissue types with the same mean and standard deviation as observed in the

auditory fMRI data.

To generate grey matter signal of a block design fMRI experiment, a boxcar

function with the mean corresponding to the mean of the grey matter voxel was

computed generating data for 300 time bins and a block duration of 30 seconds (

Figure 2a and Figure S1 in File S1). For rsMRI analyses, as these mostly focus on

correlation-based measurements, a sinusoidal shape function with the same mean

and also 300 time bins was used to generate the voxel-wise grey matter signal.

Noise in the grey matter signal was simulated by adding to the boxcar function

and to the sinusoidal function random uncorrelated Gaussian noise with the

standard deviation corresponding to that observed in the original grey matter

voxel. As real fMRI and rsMRI data may contain correlated noise across the

different tissue types, e.g. due to subjects’ motion, we additionally generated data

with correlated (r50.2, across tissue types and voxels) random Gaussian noise for

both types of analyses. To evaluate how different signal-to-noise ratios affect the

results, the grey matter signal using the boxcar- or the sinusoidal function was
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generated for four different signal-to-noise ratios (0.5, 1, 1.5, and 2) by keeping

the noise constant whilst scaling the signal with a factor determined as signal-to-

noise ratio multiplied with the standard deviation of noise (Figure 2b,c). The

signal for the fMRI simulation study thereby refers to the activation level with

respect to the baseline of the simulated block paradigm [29]. For the rsMRI, signal

refers to the standard deviation of generated sinusoidal signal without noise.

Noise refers in both cases to the standard deviation of random fluctuations added

on top of the grey matter signal. The grey matter fMRI and rsMRI signal was

convolved with a hemodynamic response function using the spm_get_bf function

provided by the SPM8 software package (Statistical Parametric Mapping software:

http://www.fil.ion.ucl.ac.uk/spm/) with a time bin length of 1 second.

Further, to simulate partial volume effects, 30 different constellations of the

mixture between grey matter, white matter, and cerebrospinal fluid signal were

generated (Table 1) using linear combinations of signal from each tissue type.

Thereby, for each of the 6 different ratios of white matter and cerebrospinal fluid

contribution, 5 different percent contributions of grey matter were generated (

Table 1). Following this procedure, 40 datasets were generated separately for fMRI

and rsMRI for each of the 4 signal-to-noise ratios and each of the 30 constellations

of differential tissue contributions (4*305120 combinations). Each dataset

Figure 1. Schematic overview of the data generation procedure and statistical testing performed in this study. x – mean of the corresponding voxel
time series, sx – standard deviation of the corresponding voxel time series, GM – grey matter, WM – white matter, CSF – cerebrospinal fluid, fMRI –
functional magnetic resonance imaging, SNR – signal-to-noise ratio.

doi:10.1371/journal.pone.0114227.g001
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Figure 2. Data generation and statistical results. a) Data generated using the boxcar function to simulate a block design functional magnetic resonance
imaging (fMRI) signal. Original signal, signal with Gaussian noise, and the convolved noisy signal are displayed. b) Simulated fMRI time series with four
different signal-to-noise ratios are displayed. c) Simulated rsMRI time series with two different signal-to-noise ratios are displayed. d) Two exemplary results
of the fMRI simulation study for estimation of beta coefficients are displayed for the 980 functional voxels generated for each constellation of partial volume
effect contribution. gm – grey matter, wm – white matter, csf – cerebrospinal fluid, SNR – signal-to-noise ratio.

doi:10.1371/journal.pone.0114227.g002

Table 1. Differential partial volume effect constellations.

WM/CSF ratio

Tissue proportion 1/4 2/3 3/2 4/1 1/0

GM/WM/CSF [0.165,0.167,0.668] [0.165,0.334,0.501] [0.165,0.501,0.334] [0.165,0.668,0.167] [0.165,0.835,0]

GM/WM/CSF [0.330,0.134,0.536] [0.330,0.268,0.402] [0.330,0.402,0.268] [0.330,0.536,0.134] [0.330,0.670,0]

GM/WM/CSF [0.495,0.101,0.404] [0.495,0.202,0.303] [0.495,0.303,0.202] [0.495,0.404,0.101] [0.495,0.505,0]

GM/WM/CSF [0.660,0.068,0.272] [0.660,0.136,0.204] [0.660,0.204,0.136] [0.660,0.272,0.068] [0.660,0.340,0]

GM/WM/CSF [0.825,0.035,0.140] [0.825,0.070,0.105] [0.825,0.105,0.070] [0.825,0.140,0.035] [0.825,0.175,0]

GM/WM/CSF [0.990,0.002,0.008] [0.990,0.004,0.006] [0.990,0.006,0.004] [0.990,0.008,0.002] [0.990,0.010,0]

Different constellations of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) contribution simulated in this study to evaluate the impact of
partial volume effects on functional and resting state magnetic resonance imaging.

doi:10.1371/journal.pone.0114227.t001
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included 980 functional voxels. For rsMRI correlational analyses, only 60

functional voxels per subject were generated for computational reasons. These 40

datasets were then split into two equal groups of 20 each and used for subsequent

statistical analyses.

Real data

To evaluate effects of structural information on rsMRI measurements, a freely

available dataset of 21 healthy control subjects (11M/10F, 22–61 years old)

comprising rsMRI and T1-weighted data was downloaded from www.nitrc.org. A

detailed description of this dataset including sequence parameters is provided in

Landman et al. [30]. In brief, for each subject 7 min (210 time points, TR/

TE52000/30 ms) of rsMRI data were acquired using a 2D echo planar imaging

sequence with an in-plane resolution of 363 mm (240 mm field of view) and

thirty-seven 3 mm transverse slices with 1 mm slice gap. Structural data were

obtained using a MPRAGE sequence (TR/TE/TI56.7/3.1/842 ms) with a

16161.2 mm3 resolution. Only data from the first of two available MRI sessions

were used for each subject.

Preprocessing of imaging data was performed using the statistical parametric

mapping software (SPM12b, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

implemented in Matlab 7.12. Preprocessing comprised motion correction of

rsMRI data, co-registration to the structural scans, segmentation and spatial

normalization of structural data preserving the concentration to MNI (Montreal

Neurological Institute) space using unified segmentation [31], application of these

spatial normalization parameters to the co-registered functional data, and

smoothing by a Gaussian kernel with 8 mm FWHM (full width at half

maximum). In the spatial normalization step, the initial resolution of

36363 mm3 was kept for rsMRI data to avoid artificial up- or downsampling.

Z-transformed voxel-wise degree centrality metrics were extracted from the

preprocessed rsMRI images using the REST toolbox [32] with default settings

(Removing linear trend: ‘‘Detrend’’ option and ‘‘Bandpass’’ filtering with a high-

and low-pass frequency filter of 0.01 and 0.08 Hz). Degree centrality is an

established functional connectivity metric representing for each voxel the number

of Pearson correlations with all other voxels in the brain exceeding a predefined

threshold. The threshold was set to r..25 as suggested by Buckner et al. [33] for

this metric. All computations were restricted to a grey matter mask obtained by

thresholding the MNI template used for spatial normalization by a value of 0.2

(.20% probability of being grey matter).

Further, as we wanted to evaluate the relative contribution of grey and white

matter tissue to the rsMRI signal in each voxel, the segmented and normalized

grey and white matter probability maps were also smoothed with a Gaussian

kernel of 8 mm FWHM and downsampled to a resolution of 36363 mm3 to

match the rsMRI data.
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Statistical analyses of generated data

For fMRI analyses, within-subject first-level beta coefficient maps contrasting the

two conditions as generated by the boxcar function were computed using the

general linear model design for each possible combination of signal-to-noise ratio

and amount of partial volume effects (Figure 2d). These first-level contrast maps

were then entered into independent samples t-tests comparing for each signal-to-

noise ratio the data having differential grey matter contribution but the same

white matter to cerebrospinal fluid ratio. To simulate a realistic whole-brain

analysis and assuming 10e6 functional voxels for a typical whole-brain fMRI

experiment, a conservative Bonferroni threshold of p,.05 corrected for this

number of voxels was applied in all fMRI analyses.

For rsMRI analyses, Pearson correlation maps were computed for each dataset

between the generated 60 voxels time series resulting in 1770 ((60*60 – 60)/2)

inter-voxel correlation coefficients in the left lower triangle. These correlation

coefficients were Fisher’s z-transformed to approximate a Gaussian distribution

and entered into an independent samples t-test comparing for each signal-to-

noise ratio the data coming from each tissue class combination across the two

groups. For these analyses, full Bonferroni correction of p,.05 was applied to

control for multiple comparisons.

Importantly, the obtained datasets used for the statistical comparisons do not

differ in any other parameters besides the amount of partial volume effects

introduced into the data. Correspondingly, all differences observed in group

comparisons either in fMRI or rsMRI analyses can be attributed to differences in

the amount of partial volume effects. Functional measurements are expected to

reflect true functional but not structural differences. Accordingly, all significant

between-group differences induced by partial volume effects in this study are

considered as false positive errors as they do not reflect true functional differences.

Statistical analyses of real data

In a first analysis, we aimed to evaluate how grey and white matter signal in each

voxel contribute to the degree centrality value observed in the corresponding

voxel. For this, we deployed a leave-one-out approach to compute voxel-wise

general linear models (GLMs) predicting degree centrality values using voxel-wise

grey and white matter information. Thereby, voxel-wise GLMs obtained using all

but one subjects are used to predict degree centrality of the subject who was not

used for training. We then computed correlations between predicted and observed

degree centrality maps for each subject.

As we assume that regions with a higher degree of partial volume effects as

indicated by their white matter and cerebrospinal fluid contribution show higher

noise levels, we would expect these regions to be stronger desynchronized with

respect to other brain regions. Correspondingly, we would expect lower degree

centrality values for regions with higher contributions from non-grey matter

tissues. To test this hypothesis, we divided all voxel-wise degree centrality values

obtained for all subjects into 10 chunks, based either on white matter or
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cerebrospinal fluid probability values (defined as 1 – grey matter – white matter)

observed in the corresponding voxels. Each chunk was defined as a white matter

or cerebrospinal fluid range of 0.1, e.g. all white matter voxels with values between

0 and 0.1 or between 0.1 and 0.2 and so on. We then computed independent

samples t-tests to compare degree centrality values observed in the chunks defined

by white matter or cerebrospinal fluid values applying a Bonferroni-corrected

threshold of p,.05.

Lastly, we evaluated the impact of partial volume effects on statistical maps

obtained using standard SPM regression analyses. For this, we computed in a first

step voxel-wise GLMs for all subjects predicting degree centrality values using

corresponding grey and white probabilities. In a second step, we then performed

two standard SPM regression analyses with age and gender as covariates first using

the observed degree centrality values and then second time using residual degree

centrality values after removing the variance explained by the GLM computed in

step one (from here on referred to as adjustment). As we were not interested in

age and gender effects per se but rather in similarity of statistical maps obtained

with and without adjustment of degree centrality maps for structural information,

a liberal threshold of p,0.05 at voxel level with a cluster threshold of.30 voxels

was applied in these analyses. We then evaluated positive and negative

correlations with age and gender in both analyses resulting in four statistical maps

for each. To assess the similarity between obtained statistical maps, Jaccard indices

were computed for the binarized maps obtained with and without adjustment.

This index of similarity is defined as the size of the intersection divided by the size

of the union of the observed statistical maps. It equals one when a perfect and zero

when no overlap exists.

Results

Generated data

The comparison of fMRI data with differential contribution of grey matter signal

to the generated functional voxels and uncorrelated noise resulted in a strongly

increased number of false positive errors (Figure 3). These increases were observed

for all signal-to-noise ratios and for all constellations of white matter to

cerebrospinal fluid ratios. The smallest difference in the amount of partial volume

contribution tested in this study results in a false positive detection of differences

between the generated fMRI datasets. Most importantly, the number of false

positive errors strongly increases with an increased signal-to-noise ratio. We

observe the highest number of false positive errors when comparing signal with

lowest partial volume effect contribution to any other constellation of partial

volume effects tested in this study.

When assuming correlated noise, we observe a strong but less increased number

of false positive errors for generated fMRI data across the three tissue types. In

contrast to uncorrelated data, an increased amount of false positives is associated
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with a higher CSF contribution and a lower signal-to noise ratio (Figure S2 in File

S1).

Similarly, in rsMRI analyses a strong dependence is observed between the false

positive error rate and the amount of partial volume effects (Figure 4). Though

the overall sensitivity of rsMRI analyses to partial volume effects is less evident as

compared to fMRI, the amount of partial volume effect- related differences

surviving the correction for multiple comparisons is still substantial for most

comparisons. Also for rsMRI data, greater signal-to-noise ratio and comparing

signal with lowest partial volume effect contribution to other constellations lead

to an increased sensitivity to partial volume effects. Higher amounts of false

positive errors are thereby observed for combinations with higher grey matter

contribution.

For rsMRI data with correlated noise, we find a substantially lower number of

false positive errors as compared with correlated data. Higher amounts of false

positive errors are associated with higher signal-to-noise ratios and for higher gray

matter contribution (Figure S3 in File S1).

Figure 3. Results of the functional magnetic resonance imaging simulation study. Numbers of significant voxels detected for each signal-to-noise ratio
(SNR), grey matter contribution (GM), and white matter (WM) to cerebrospinal fluid ratio (CSF) ratio are displayed as a colour scale. The colour scale
indicates the number of significant voxels detected for each partial volume effect constellation (out of 980).

doi:10.1371/journal.pone.0114227.g003
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Real data

The median correlation strength between observed and predicted degree centrality

maps of each subject in the leave-one-out cross-validation was r5.50,

corresponding to an explained variance of 25%, with the lowest correlation

strength being 0.4 (all p,.001 Bonferroni corrected for multiple comparisons) (

Figure 5a).

When comparing degree centrality across different chunks of white matter and

cerebrospinal fluid probabilities, significant differences in mean degree centrality

are observed for most of the comparisons (Figure 5b–d). Consistently lower

degree centrality values are observed in regions with higher white matter or

cerebrospinal fluid probabilities.

For the four contrasts evaluated in the current study, Jaccard indices between

significance maps obtained with and without adjustment of degree centrality

values for structural information ranged between 0.22 and 0.56 (Figure 6).

Figure 4. Results of the resting state magnetic resonance imaging simulation study. Numbers of significant voxels detected for each signal-to-noise
ratio (SNR), grey matter contribution (GM), and white matter (WM) to cerebrospinal fluid ratio (CSF) ratio are displayed as a colour scale. The colour scale
indicates the number of significant connectivity differences detected for each partial volume effect constellation (maximum 3600).

doi:10.1371/journal.pone.0114227.g004
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Discussion

We demonstrate in generated data that small to moderate differences in partial

volume effects as induced by differential tissue contribution substantially increase

the false-positive rate for both fMRI and rsMRI. These increases are observed for

all signal-to-noise ratios evaluated in this study with the highest signal-to-noise

ratios being more affected by differences in partial volume effects. Importantly,

Figure 5. Results of partial volume effects estimation for real resting state magnetic resonance imaging data. a) T-values obtained when comparing
voxel-wise degree centrality values grouped by their relative cerebrospinal fluid concentration. Black squares indicate non-signficant results (p,.05
Bonferroni corrected). b) T-values obtained when comparing voxel-wise degree centrality values grouped by their relative white matter concentration. Black
squares indicate non-signficant results (p,.05 Bonferroni corrected). c) Mean and standard deviations of degree centralities observed after grouping by their
relative cerebrospinal fluid (CSF) or white matter (WM) concentration. *indicates a significantly lower degree centrality value as compared to the next lower
contribution of respective tissue. d) A plot of observed vs. predicted degree centrality values for a representative subject in the leave-one-out cross-
validation using grey and white matter probabilities to compute the voxel-wise general linear models.

doi:10.1371/journal.pone.0114227.g005

Partial Volume Effects in Functional and Resting State MRI

PLOS ONE | DOI:10.1371/journal.pone.0114227 December 2, 2014 11 / 18



the generated data used in this study for group comparisons do not differ in any

other aspects besides the degree of signal contribution from different tissue types.

The observed differences can therefore clearly be attributed to differential partial

volume effects. We demonstrate that even minor differences in these can have a

strong impact on statistical outcome. We observe the highest number of false-

positive errors when groups with a very low degree of partial volume effects are

compared to groups with any other partial volume effect contribution evaluated

in this study. We further show in a real rsMRI dataset that underlying structural

differences are significantly linked to observed functional connectivity measure-

ments and that adjusting for this information can have a substantial impact on the

observed group-level statistical findings.

Our findings in real rsMRI data suggest that underlying structural information

can explain up to 25% in variance observed in functional connectivity metrics

(0.25 determination coefficient, corresponding to the observed median correla-

tion of 0.5 between predicted and observed degree centrality values) with lower

degree centrality values observed in regions with higher contributions of non-grey

matter tissues. Adjusting for this structural information can have a substantial

impact on the observed statistical maps. Importantly, all of these findings refer to

a healthy control population. Based on these results and on our results for the

generated data, we would expect an even stronger link between structural and

rsMRI metrics in diseased populations affected by neurodegenerative processes.

Figure 6. Statistical parametric mapping (SPM) results obtained when testing for negative and positive
correlations with age and sex on the group level with and without adjustment for underlying structural
information are displayed. On the right, Jaccard indices of overlap for the corresponding statistical maps are
shown.

doi:10.1371/journal.pone.0114227.g006
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Grey matter tissue loss in these populations would lead to a higher contribution of

non-grey matter tissues and correspondingly to decreased functional connectivity

metrics.

In the simulation part of our study, we further find a lower sensitivity of fMRI

and rsMRI data to false positive errors when assuming correlated noise across

tissue types and voxels. These findings are not surprising considering that

differences in beta coefficients observed between simulated groups with different

constellations of partial volume effects are due to differential noise properties

across tissue types. Introducing correlations in this noise leads to a more

homogeneous combined final signal across the different constellations of grey and

white matter contribution and correspondingly to less between group differences

in the estimated beta coefficients. Additionally, in rsMRI analyses further

differences are introduced due to the fact that correlated noise (across voxels) is

recognized as signal when computing correlations. Correspondingly the combined

signal becomes more homogenous between simulated groups with different

constellations of partial volume effects. Importantly, though the amount of false

positive errors due to partial volume effects decreases for both fMRI and rsMRI

analyses when assuming correlated noise, these correlations are known to

introduce different types of biases as for example repeatedly shown in studies

evaluating the effects of motion or scanner instabilities [34–36].

The magnitude of structural differences evaluated in this study in generated

data is commonly observed in normal aging [37–40], in many neurological and

psychiatric diseases [38, 41, 42], between males and females [40, 43], but also for

learning and treatment-induced structural changes [44–47]. Also, the signal-to-

noise ratios used in our study for simulation of fMRI and rsMRI data are of

comparable amplitude to those evaluated in other simulation studies [29]. If not

controlled for, these differences in the underlying structure might significantly

bias the interpretation of observed functional and resting state differences.

Numerous studies have applied both fMRI and rsMRI without controlling for

partial volume effects to study between-group differences in different populations

revealing for example significant changes of hippocampal connectivity in

Alzheimer’s disease [5, 48]. Considering that strong hippocampal atrophy is well

validated in this disease, the question remains whether these findings indeed

reflect real functional alterations or merely capture the increase in partial volume

effects resulting from neurodegeneration of this brain structure. Other studies

reported, for example, electroconvulsive therapy induced functional connectivity

changes in prefrontal regions in depression [49]. Considering that this treatment

is known to induce structural changes, the underlying nature of the observed

functional differences would require further exploration [47, 50, 51].

Intriguingly, the number of false positive errors for both fMRI and rsMRI

strongly increases with an increased signal-to-noise ratio. This effect is due to the

fact that greater signal-to-noise ratio also leads to initially higher average beta and

correlation coefficients as compared to a noisier signal. Introducing partial

volume effects increases the noise level and leads to a stronger average decrease of

the extracted statistical measurements. Correspondingly, the group statistics
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become more sensitive to differences introduced by the differential degree of

partial volume effects. Moreover, fMRI and, in particular, rsMRI studies often

apply region-of-interest approaches extracting mean values from predefined

anatomical brain areas but without restricting computations of mean values to the

grey matter compartments of corresponding regions [52–54]. This procedure

leads to even stronger averaging of signal from different tissue types and therefore

magnifies partial volume effects and correspondingly the risk of false positives. It

is important to note that partial volume effects have been for decades a central

methodological focus in studies applying positron emission tomography

[22, 28, 55–58]. These studies have resulted in a large number of tools and

methodological developments which allow one to control for partial volume

effects using, for example, tissue probability estimates obtained from high

resolution structural magnetic resonance scans [22, 55, 56]. Studies applying fMRI

and rsMRI as more recent developments have largely ignored these effects and

methodological advances by assuming that the applied statistical procedure

provides a sufficient control for these effects. As shown in this study, the currently

applied fMRI and rsMRI statistical analyses are strongly affected by partial volume

effects induced by underlying structural differences. Our findings indicate that

these effects should be taken into account in future studies to allow a more

functional interpretation of fMRI and rsMRI outcomes.

It is important to note that in the simulation part of our study we make several

assumptions on the properties of signal and noise in fMRI and rsMRI data. We

assume the observed final voxel-wise signal to be a linear combination of the

signal from different tissue types. This assumption is based on geometric

properties of the voxel-wise MR signal. It is the most plausible to assume that a

tissue covering for example 2/3 of the area covered by a voxel is also contributing

2/3 to the observed signal in the corresponding voxel. In contrast, any other

assumption of non-linear contribution would require further assumptions of

more complex interactions between tissue types and MR physics, e.g. differential

spatial point spread functions for different tissue types. We further assume that

noise in grey matter, white matter and cerebrospinal fluid is sufficiently described

by a Gaussian distribution. This assumption is also made in commonly applied

parametric statistics to analyse fMRI and rsMRI data and has been repeatedly used

in previous studies to simulate fMRI data [29, 59]. Lastly, in our study we only

evaluate the situation assuming either uncorrelated noise or a correlation of 0.2

between tissue types and voxels. All of these assumptions might affect the

observed relationship between partial volume effects and the observed functional

differences. Deviations from these assumptions in real data might therefore result

in different findings regarding the impact of partial volume effects onto rsMRI

and fMRI analyses.

Another important issue is related to the correction procedure proposed in our

study and concerns the dissociation of partial volume effects from potentially real

functional differences which are induced by differences in the underlying

structure. The main assumption behind the proposed correction procedure is that

the variability in functional signal is different from the one observed in underlying
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structure. Correspondingly, in case that these are strongly correlated, the

proposed approach is unlikely to dissociate between these two types of effects.

To conclude, although simulation approaches as applied in our study are in

general very powerful to uncover mechanisms behind hypothesized effects, they

are also limited by the necessity of numerous assumptions which might be true or

not. Therefore, they cannot be considered as direct evidence for existence of such

effects in real data and require further studies to validate the existence and impact

of these effects in real fMRI data. Similarly, further studies are also required to

establish the impact of these effects onto fMRI and rsMRI differences observed

across different pathological conditions.
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