Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Neutron Detection Uncertainties in the θ13 Analysis of the Double Chooz Experiment

MPG-Autoren
/persons/resource/persons30570

Haser,  Julia Anna
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Diss_JHaser_FINAL_2014_pdfa.pdf
(Verlagsversion), 35MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Haser, J. A. (2015). Neutron Detection Uncertainties in the θ13 Analysis of the Double Chooz Experiment. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0025-6A2E-1
Zusammenfassung
The reactor antineutrino experiment Double Chooz aims to provide a precise measurement of the neutrino mixing angle θ13. In the analysis with one detector, accuracy in the predicted neutrino spectrum from simulation is a necessity with regard to normalization and energy shape. The detection efficiency of neutron events, which are part of the coincidence signal created by neutrinos, introduce the largest uncertainty contribution of the normalization of the experiment related to the signal detection. In order to accomplish a matching of the efficiencies observed in data and simulation, a correction of the Monte Carlo normalization and an associated systematic uncertainty are inputs in the θ13 analysis. Calibration source deployments in the inner two detector volumes allow for a measurement of the neutron detection efficiency using 252Cf fission neutrons. New methods enable to compute the correction integrated over the whole volume and the corresponding uncertainty of the selection cut related efficiency. With these revised approaches a factor two improvement in the detection efficiency uncertainty was achieved. The correction of the neutron capture fraction – the capture fraction quantifies the proportion of captures on a particular element – is evaluated and tested for its robustness. Furthermore, a crosscheck of this quantity is discussed using neutrons produced by cosmic muon spallation. Finally, the uncertainty on border effects, emerging from neutron migration at the fiducial volume boundaries, is estimated by means of different Monte Carlo configurations with varying parameters and neutron physics modelings.