Toward the Total Synthesis of Spirastrellolide A, Part 3: Intelligence gathering and preparation of a ring-expanded analogue

Alois Fürstner,* Bernhard Fasching, Gregory W. O'Neil, Michaël D. B. Fenster, Cédrickx Godbout and Julien Ceccon
Max-Planck-Institut für Kohlenforschung,D-45470 Mülheim/Ruhr, Germany
E-mail: fuerstner@mpi-muelheim.mpg.de

General: All reactions were carried out under Ar in flame-dried glassware. IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FTMS (7 T magnet). The solvents used were purified by distillation over the drying agents indicated and were transferred under Argon: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right)$, DMF (Desmodur ${ }^{\circledR}$, dibutyltin dilaurate), $\mathrm{MeOH}(\mathrm{Mg})$, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a Bruker AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm, coupling constants (J) in Hz . The solvent signals were used as references $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$: $\delta_{\mathrm{C}} \equiv 54.0 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} \equiv 128.0 \mathrm{ppm}$; residual $\mathrm{C}_{6} \mathrm{H}_{6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{H}} \equiv 7.15 \mathrm{ppm}$; $\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm}$). Where indicated, the signal assignments are unambiguous; the numbering scheme is arbitrary and is shown in the inserts. The assignments are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygs and cosydqtp); HSQC (invietgssi) optimized for ${ }^{1} J(\mathrm{C}, \mathrm{H})=145 \mathrm{~Hz}$; HMBC (inv4gs/p/rnd) for correlations via ${ }^{n} J(\mathrm{C}, \mathrm{H})$; HSQCTOCSY (invietgsml) using an MLEV17 mixing time of 120 ms .

Ester 5b. To a solution of $3(63 \mathrm{mg}, 0.108 \mathrm{mmol})$ in acetone $(1.2 \mathrm{~mL})$ at room
 temperature was added N -methylmorpholine N -oxide ($17 \mathrm{mg}, 0.141 \mathrm{mmol}$) and the resulting mixture was stirred for 20 min . A 2.5% wt solution of OsO_{4} in tertbutanol ($22 \mu \mathrm{~L}, 2.16 \mu \mathrm{~mol}$) was then added and the mixture was stirred for 12 h . The reaction was quenched with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and extracted with ethyl acetate ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, and concentrated in vacuo to yield an intermediate diol as a mixture of diastereomers that was used without further purification.

To a solution of the crude intermediate diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.08 \mathrm{~mL})$ at room temperature was added $\mathrm{Pb}(\mathrm{OAc})_{4}(58 \mathrm{mg}, 0.128 \mathrm{mmol})$ and the mixture was stirred for 30 min . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$ and diluted with ethyl acetate $(15 \mathrm{~mL})$. The organic phase was washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo to yield aldehyde 4 that was used without further purification.
To a solution of crude aldehyde 4 in THF (1.1 mL) at $0^{\circ} \mathrm{C}$ was added methoxycarbonyl-triphenylphosphorane ($43 \mathrm{mg}, 0.128 \mathrm{mmol}$) and the mixture was stirred at room temperature for 1.5 h . The reaction was concentrated in vacuo and purified by flash chromatography (10/1 to $4 / 1$ hexanes-ethyl acetate) on SiO_{2} to yield 5b ($30 \mathrm{mg}, 44 \%$ over 3 steps) as an oil. $[\alpha]_{D}^{20}=+5.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (ATR) 2953, 2876, 1726, 1661, 1455, 1436, 1380, 1307, 1277, 1190, 1167, 1074, 1048, 1003, 976, 924, 861, 835, 789, $733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.69$ (dd, $J=15.6$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64$ (dd, $J=15.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65 (ddd, $J=10.7,3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=8.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H})$, 3.86 (dd, $J=6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (dd, $J=9.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (m, 1H), 3.39 (s, 3 H), 3.27 ($\mathrm{s}, 3 \mathrm{H}$), 2.14 (dd, $J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (dd, $J=12.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dt}, J=13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.02$ (d, J = 6.7 Hz, 3H), $0.92(\mathrm{~m}, 9 \mathrm{H}), 0.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 166.8$, $145.0,139.8,128.7,128.0,127.8,122.8,109.6,98.3,81.6,79.7,73.4,72.9,72.4$, 68.6, 63.9, 57.8, 51.3, 50.0, 43.4, 38.4, 36.3, 30.4, 24.3, 16.8, 7.3, 5.3. HRMS (ESI+): Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{8} \mathrm{NaSiCl}(\mathrm{M}+\mathrm{Na})^{+}$: 661.2927. Found 661.2934.

Ketone 5c. To a flask containing $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 30.8 \mu \mathrm{~mol})$ at room
 temperature (previously activated by heating at $120^{\circ} \mathrm{C}$ for 1.5 h), was added a solution of diethylmethylphosphonate ($6.5 \mu \mathrm{~L}, 37.0 \mu \mathrm{~mol}$) in THF (250 $\mu \mathrm{L}$) and the mixture was stirred for 30 min . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and aldehyde 4 (18 $\mathrm{mg}, 30.8 \mu \mathrm{~mol}$) was added as a solution in THF: $\mathrm{H}_{2} \mathrm{O}$ ($40: 1,250 \mu \mathrm{l})$. The reaction was stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, filtered through Celite, and concentrated in vacuo. Purification by flash chromatography (4/1 hexanes-ethyl acetate) on SiO_{2} afforded $\mathbf{5 c}\left(16 \mathrm{mg}, 85 \%\right.$) as an oil. $[\alpha]_{D}^{20}=+7.1$ (c $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 2928, 1774, 1709, 1457, 1351, 1292, 1258, 1178, 1096, 1007, 834, 802, $720 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.41$ (d, J=7.6 Hz, 2H), $7.25-7.13$ $(\mathrm{m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=15.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, J=10.6$, $3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.49(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (dd, $J=12.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=7.8,1.6 \mathrm{~Hz}$, 1 H), 3.48 (dd, $J=15.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (m, 1H), 3.29 (s, 3H), 2.17 (dd, $J=14.3,6.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.09 (dd, $J=12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{dt}, \mathrm{J}=13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H})$, 1.20 (dq, $J=12.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.02 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~m}, 9 \mathrm{H}), 0.50(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 197.0,142.5,139.6,131.9,128.8,128.0,127.8,109.5$, 98.3, 81.5, 79.8, 73.3, 72.8, 72.6, 68.2, 64.1, 57.9, 49.8, 43.5, 38.3, 36.3, 30.3, 27.3, 24.3, 16.8, 7.3, 5.3. HRMS (ESI+): Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{NaSiCl}(\mathrm{M}+\mathrm{Na})^{+}$: 645.2987. Found 645.2984.

Compound 8. To a stirred solution of alkene $3(10 \mathrm{mg}, 17 \mu \mathrm{~mol})$ in THF $(500 \mu \mathrm{~L})$ at
 room temperature was added 9-BBN ($10 \mathrm{mg}, 85$ $\mu \mathrm{mol}$) and the reaction was stirred for 3 h . To a separate flask containing 2-bromopropene ($15 \mu \mathrm{~L}$, 0.17 mmol) in DMF ($700 \mu \mathrm{~L}$) at room temperature was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11 \mathrm{mg}, 34 \mu \mathrm{~mol})$, (dppf) $\mathrm{PdCl}_{2}(1$ $\mathrm{mg}, 1.7 \mu \mathrm{~mol})$ and $\mathrm{AsPh}_{3}(1 \mathrm{mg}, 3.4 \mu \mathrm{~mol})$. The mixture was stirred for 10 min before the dropwise addition of the intermediate alkylborane solution (followed by a $500 \mu \mathrm{~L}$ THF rinse). The resulting mixture was heated to $65{ }^{\circ} \mathrm{C}$ for 4 h and then cooled to room temperature. The reaction was
quenched with water (4 mL) and extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (4/1 hexanes-ethyl acetate) on SiO_{2} to afford $8(4.3 \mathrm{mg}, 41 \%)$ as an oil. $[\alpha]_{D}^{20}=-8.1$ (c $\left.0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (film): 2989, 2873, 145, 1381, 1132, 1073, $977,791 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.70-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.42(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{dt}, \mathrm{J}=$ $7.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (ddd, $J=10.2,7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.63-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.39$ (m, 1H), $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.49(\mathrm{~m}, 8 \mathrm{H})$, 1.72 (s, 3H), 1.37 (ddd, $J=12.5,7.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=12.1,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.27-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.84(\mathrm{~m}$, 1 H), 0.60 ($\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 147.2,134.3,129.1$, 128.8, 128.1, 109.5, 108.7, $97.8,80.5,79.6,73.3,73.1,72.2,68.4,64.8,57.6,47.7$, 43.5, 37.6, 36.5, 32.9, 31.3, 30.2, 24.3, 23.1, 16.9, 7.2, 5.4. HRMS (ESI+): Calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{NaSiCl}(\mathrm{M}+\mathrm{Na})^{+}: 645.3345$. Found: 645.3349.

Diene 9a. To a solution of acid $2(30 \mathrm{mg}, 26.8 \mu \mathrm{~mol})$ in toluene $(1.34 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$
 were added triethylamine ($11.2 \mu \mathrm{~L}, 67 \mu \mathrm{~mol}$) and 2,4,6-trichlorobenzoyl chloride ($6.3 \mu \mathrm{~L}, 40.2 \mu \mathrm{~mol}$) and the reaction was stirred for 45 min . A solution of alcohol 3 ($10 \mathrm{mg}, 22.3 \mu \mathrm{~mol}$) and DMAP ($16 \mathrm{mg}, 112$ $\mu \mathrm{mol})$ in toluene (1.34 mL) was then added and the mixture was warmed to room temperature for 2.0 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(20$ mL) and extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10/1 to $4 / 1$ hexanes-ethyl acetate) on SiO_{2} afforded $9 \mathrm{a}(26 \mathrm{mg}, 76 \%)$ as an oil. $[\alpha]_{D}^{20}=-18$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 3071, 3029, 2951, 2911, 1739, 1641, 1457, 1240, 1112, 1018, $735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dt}, \mathrm{J}=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.27$ $(\mathrm{m}, 2 \mathrm{H}), 5.20(\mathrm{dt}, J=10.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.42(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H})$, $3.94-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.41(\mathrm{~m}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H})$,
$2.60-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=15.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.01$ (m, 8H), $2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dt}, \mathrm{J}=13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.29(\mathrm{~m}, 12 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.04(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 170.4, 139.6, 139.0, 135.6, 128.6, 128.1, 127.9, 127.8, 116.8, 116.3, 109.0, 99.6, $98.1,80.0,79.3,75.6,75.2,74.5,74.4,73.9,73.5,73.2,72.3,71.8,70.8,68.2,66.4$, $65.4,64.9,58.0,57.7,56.2,47.0,43.8,43.4,43.0,41.8,40.8,40.5,39.7,38.1,36.3$, 32.2, 31.3, 31.1, 29.7, 29.6, 25.8, 25.5, 24.9, 24.1, 23.6, 18.3, 17.4, 16.7. HRMS (ESI+): Calcd for $\mathrm{C}_{81} \mathrm{H}_{143} \mathrm{O}_{15} \mathrm{NaS}_{2} \mathrm{Si}_{4} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}$: 1589.8527. Found: 1589.8522.

Diene 9b. To a stirred solution of $2(20 \mathrm{mg}, 12.7 \mu \mathrm{~mol})$ in methanol $(2.1 \mathrm{~mL})$, diethyl
 ether $(600 \mu \mathrm{~L})$, and water $(300 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added PPTS (15 mg) and the mixture was allowed to stir at room temperature for 19 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography ($2 / 1$ to $1 / 1$ to $0 / 1$ hexanesethyl acetate) afforded 9 b ($13 \mathrm{mg}, 90 \%$) as an oil. $[\alpha]_{D}^{20}=-71.1$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 3452, 2934, 2869, 1737, 1641, 1454, 1093, $928 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.25$ (m, 1H), $6.18(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dt}, J$ $=10.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, \mathrm{J}=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.38$ $(\mathrm{m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.81(\mathrm{~m}, 3 \mathrm{H})$, $3.70-3.41(\mathrm{~m}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 3 \mathrm{H})$, $2.46-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{dd}, J=15.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.01(\mathrm{~m}, 8 \mathrm{H}), 2.00-1.91$ (m, 2H), $1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dt}, J=13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.29(\mathrm{~m}, 12 \mathrm{H})$, 1.34 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.04(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.89$ (m, $1 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 170.4,139.6,139.0$, 135.6, 128.6, 128.1, 127.9, 127.8, 116.8, 116.3, 109.0, 99.6, 98.1, 80.0, 79.3, 75.6, $75.2,74.5,74.4,73.9,73.5,73.2,72.3,71.8,70.8,68.2,66.4,65.4,64.9,58.0,57.7$, $56.2,47.0,43.8,43.4,43.0,41.8,40.8,40.5,39.7,38.1,36.3,32.2,31.3,31.1,29.7$,
29.6, 25.8, 25.5, 24.9, 24.1, 23.6, 18.3, 17.4, 16.7. HRMS (ESI+): Calcd for $\mathrm{C}_{57} \mathrm{H}_{87} \mathrm{O}_{15} \mathrm{NaClS}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 1133.5067$. Found: 1133.5077.

Diene 9c. To a vigorously stirred solution of N -chlorosuccinimide ($7 \mathrm{mg}, 53.6 \mu \mathrm{~mol}$),
 2,6-lutidine ($13 \mu \mathrm{~L}, 107 \mu \mathrm{~mol}$), and $\mathrm{AgNO}_{3}(10 \mathrm{mg}$, $60.3 \mu \mathrm{~mol}$) in 80% aq. acetonitrile ($540 \mu \mathrm{~L}$) was added a solution of $\mathbf{9 b}(15 \mathrm{mg}, 13.4 \mu \mathrm{~mol})$ in THF $(200 \mu \mathrm{~L})$. The mixture was stirred for 20 min and was then quenched by the sequential addition of saturated aq. solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}(100 \mu \mathrm{~L})$, $\mathrm{NaHCO}_{3}(100 \mu \mathrm{~L})$, and $\mathrm{NaCl}(100 \mu \mathrm{~L})$ in 1 min intervals. The resulting mixture was then filtered through Celite with ethyl acetate, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (1/1 to $0 / 1$ hexanes-ethyl acetate) afforded $9 \mathbf{c}(6 \mathrm{mg}, 69 \%)$ as an oil. $[\alpha]_{D}^{20}=-56.1$ (c 0.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 3450, 2934, 2873, 1773, 1705, 1496, 1455, 1429, 1418, 1376, 1295, 1195, 1096, 1050, 1003, 975, 934, 851, 823, 737, 699, $641 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H})$, $5.66(\mathrm{dt}, J=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}$, $1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.51$ $(\mathrm{m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{bs}, 1 \mathrm{H}), 2.37$ (dd, $J=13.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=6.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 2 \mathrm{H})$, $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}$, $4 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ $1.13(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 202.0,170.5,139.4,139.0,135.5,128.6,128.1,127.9$, 116.7, 116.5, 109.0, 98.1, 97.6, 80.0, 79.3, 75.6, 74.7, 74.6, 74.4, 74.0, 73.5, 73.2, $71.9,71.5,70.4,68.3,66.1,65.5,64.9,57.7,56.3,47.0,44.2,43.9,43.4,43.1,41.8$, $40.7,39.8,39.7,38.1,36.3,31.3,31.2,29.8,29.7,27.9,27.7,27.6,24.1,23.6,18.1$, 16.7. HRMS (ESI+): Calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{O}_{16} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+}$: 1043.5098. Found 1043.5105.

Diene 9d. To a solution of acid $2(15 \mathrm{mg}, 20.1 \mu \mathrm{~mol})$ in toluene $(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was
 added triethylamine ($6.0 \mu \mathrm{~L}, 50.3 \mu \mathrm{~mol}$) and 2,4,6trichlorobenzoyl chloride ($4.0 \mu \mathrm{~L}, 30.1 \mu \mathrm{~mol}$) and the reaction was stirred for 45 min . A solution of alcohol 3 ($8 \mathrm{mg}, 16.8 \mu \mathrm{~mol}$) and DMAP (10 mg , $0.101 \mathrm{mmol})$ in toluene (1.0 mL) was then added and the mixture was warmed to room temperature for 2.0 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography ($4 / 1$ to $2 / 1$ hexanes-ethyl acetate) on SiO_{2} afforded 9 d ($16 \mathrm{mg}, 80 \%$) as an oil. $[\alpha]_{D}^{20}=-53.1$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 2979, 2935, 2871, 1738, 1644, 1580, 1547, 1496, 1455, 1379, 1343, 1261, 1249. 1219, 1190, 1169, 1093, 1027, 975, 927, $737,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H})$, $6.33(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=17.3,1.5 \mathrm{~Hz}$, 1 H), 5.25 (dd, $J=6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (dt, $J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dt}, J=10.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{qt}, J=5.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}$, $2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 6 \mathrm{H}), 2.17-2.03$ (m, 6H), 2.01 - 1.87 (m, 4H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dt}, J=13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.18(\mathrm{~m}$, $6 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 170.4,142.6$, 139.2, 135.6, 128.5, 128.1, 127.9, 127.6, 116.8, 113.4, 108.9, 107.9, 100.7, 100.6, 98.1, 81.5, 80.0, 79.3, 76.0, 74.8, 74.6, 74.4, 74.2, 73.6, 73.1, 71.1, 68.0, 64.9, 63.2, $62.5,58.5,57.7,56.3,47.2,43.5,43.2,42.8,41.8,40.1,38.7,38.3,36.4,36.4,33.3$, 32.0, 31.3, 29.7, 29.3, 27.7, 26.3, 25.9, 25.8, 25.6, 25.2, 24.2, 23.8, 23.8, 17.5, 16.6, 16.5. HRMS (ESI+): Calcd for $\mathrm{C}_{63} \mathrm{H}_{95} \mathrm{O}_{15} \mathrm{NaS}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}:$1213.5678. Found 1213.5693.

Allyl acetate 13. To a stirred solution of 11 ($10 \mathrm{mg}, 21.2 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was
 added 12 ($37 \mathrm{mg}, 212 \mu \mathrm{~mol}$) and catalyst 10 ($2 \mathrm{mg}, 2.1$ $\mu \mathrm{mol})$. The resulting solution was refluxed for 16 h , cooled to room temperature, and directly submitted to flash chromatography. Purification over SiO_{2} (1/1 to 1/2 hexanes-ethyl acetate) afforded 11 ($5 \mathrm{mg}, 49 \%$) and $13\left(4 \mathrm{mg}, 33 \%, 65 \%\right.$ brsm) as a colorless oil. $[\alpha]_{D}^{20}=$ -50.2 (c 0.62, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): 3433, 2930, 2828, 1737, 1671, 1456, 1239, 1094, 957, $736 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.86$ (dd, $J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.89 (dt, J = 10.6, 2.4 Hz, 1H), 3.75 (d, J = 9.6 Hz, 1H), 3.72-3.61 (m, 2H), 3.58 $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}$, 2H), 2.72-2.62 (m, 2H), 2.52 (dd, J = 12.8, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36-2.23 (m, 2H), 2.21 $2.12(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.52(\mathrm{~m}, 9 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,134.9,126.4,99.3,74.9,73.3$, $72.4,71.1,70.0,65.2,58.9,57.3,56.4,40.2,37.1,34.9,31.7,28.9,25.8,25.5,25.1$, 24.1, 21.0, 17.2, 17.2. HRMS (ESI+): Calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{NaS}_{2}(\mathrm{M}+\mathrm{Na})^{+}$: 557.2213. Found: 557.2214.

Allyl Acetate 15. To a solution of terminal alkene 14 ($25 \mathrm{mg}, 42.6 \mu \mathrm{~mol}$) in toluene (5 mL) was added $12(73 \mathrm{mg}, 426 \mu \mathrm{~mol})$ and catalyst
 $10(4 \mathrm{mg}, 4.3 \mu \mathrm{~mol})$. The resulting mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 90 min , cooled to room temperature and concentrated in vacuo. The crude product was purified by flash chromatography (2/1 hexanes-ethyl acetate) on SiO_{2} to afford 15 (14 $\mathrm{mg}, 48 \%)$ as an oil. $[\alpha]_{D}^{20}=+42.5$ (c 1.36, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): 3399, 3030, 2955, 2876, 1741, 1622, 1232, 976, $741 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.03-$ 5.95 (m, 2H), 4.56-4.42 (m, 3H), 4.39-4.27 (m, 2H), 3.97 (ddd, J = 8.4, 6.4, 3.6 Hz, 1H), 3.81 (ddd, J = 11.1, 9.6, 5.0 Hz, 1H), 3.58-3.51 (m, 3H), 3.28-3.23 (m, 1H), 3.26 (s, 3H), 2.82-2.74 (m, 1H), 2.49-2.29 (m, 3H), 2.16 (dd, J = 12.7, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{~d}$,
$J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.75-0.63(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 169.8,161.3$, 138.9, 131.3, 128.6, 128.1, 127.9, 127.9, 98.1, 82.8, 79.4, 73.2, 73.0, 70.8, 66.7, $64.5,64.2,57.8,39.9,39.3,36.1,33.3,33.0,27.6,20.4,18.2,7.3,5.5$. HRMS (ESI+): Calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{NO}_{8} \mathrm{NaCISi}(\mathrm{M}+\mathrm{Na})^{+}$: 690.3199. Found: 690.3203.

Compound 14. To a solution of 16 ($474 \mathrm{mg}, 0.486 \mathrm{mmol}$) in DMF (10 mL) at $0{ }^{\circ} \mathrm{C}$ was added a solution of TAS-F (743 mg, 2.43
 mmol) in DMF (5 mL) and water ($175 \mu \mathrm{~L} 9.72$ mmol) over 10 min . The reaction was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 3 h and then quenched with $\mathrm{pH}=7$ buffer solution (30 mL). The mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography ($1 / 1$ hexanes-ethyl acetate) on SiO_{2} to afford 14 ($226 \mathrm{mg}, 97 \%$) as an oil. $[\alpha]_{D}^{20}=+58.2$ (c 2.14, CHCl_{3}). IR (film): 3400, 2933, 1454, $1095 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.24-7.08$ (m, 5H), 6.06 (ddd, $J=17.0,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (dt, $J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}$, 1H), $4.31-4.19$ (m, 2H), 4.14 (ddd, $J=10.8,6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (ddd, $J=11.1$, $9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.38-$ $3.32(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (dd, J = 17.0, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (dd, J = 17.0, 10.9 Hz, 2H), 2.23 (dd, J = 12.7, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $1.46(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 161.7,138.9,135.8,128.6,127.9,127.8,117.8,98.2,82.0,79.6,74.1,73.2$, 71.8, 67.5, 64.6, 57.8, 39.6, 38.2, 37.7, 33.7, 32.8, 27.5, 17.3. HRMS (ESI+): Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+}: 504.2123$. Found: 504.2125.

Compound 17. To a stirred solution of $14(32 \mathrm{mg}, 66.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at -78
 ${ }^{\circ} \mathrm{C}$ was added a premixed solution of 2,6 -lutidine $(11.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ and TESOTf ($16.6 \mu \mathrm{~L}, 73.5$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{~L})$, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 1 mL) and extracted with diethyl ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography ($2 / 1$ hexanes-ethyl acetate) on SiO_{2} to
afford 17 ($52 \mathrm{mg}, 76 \%$) as an oil (inseparable mixture of 3 isomers). $[\alpha]_{D}^{20}=+53.2$ (c $0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): $3383,3063,2954,1646,1455,1101,741 \mathrm{~cm}^{-1}$. Major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.07(\mathrm{~m}, 1 \mathrm{H}), 6.06$ (ddd, $J=17.0,10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.14$ (m, 1H), 4.54-4.43 (m, 2H), 4.39-4.29 (m, 2H), 3.98 (ddd, $J=8.3,6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81 (ddd, $J=11.1,9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60-3.49$ (m, 3H), 3.26 (s, 3H), 2.46 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43-2.39 (m, 2H), 2.39-2.27 (m, 1H), $2.14(\mathrm{dd}, \mathrm{J}=12.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.87 (dddd, $J=13.9,7.7,6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H})$, 1.43-1.35 (m, 2H), 1.29 (ddd, $J=12.8,11.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, 0.85 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.69 (dd, $J=7.7,15.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.68 (dd, $J=16.2,8.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 161.2,135.7,128.6,128.1,127.9,117.6,97.9$, 82.8, 79.5, 74.0, 73.2, 70.8, 66.7, 64.5, 57.7, 39.8, 39.4, 36.1, 33.2, 33.0, 27.6, 18.2, 7.2, 5.5. HRMS (ESI+): Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{NaSiCl}(\mathrm{M}+\mathrm{Na})^{+}: 618.2988$. Found: 618.2985.

Compound 18. To a solution of 17 ($52 \mathrm{mg}, 86.8 \mu \mathrm{~mol}$) in acetonitrile (7 mL) and
 water (1 mL) was added $\mathrm{Mo}(\mathrm{CO})_{6}(23 \mathrm{mg}, 86.8$ $\mu \mathrm{mol}$) and the resulting mixture was heated to 90 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to room temperature, filtered through a plug of $\mathrm{SiO}_{2}(2 / 1$, hexanes-ethyl acetate, 5 mL) and concentrated in vacuo. The crude product was purified by flash chromatography ($2 / 1$ hexanes-ethyl acetate) on SiO_{2} to afford 18 (48 $\mathrm{mg}, 92 \%$) as an oil (inseparable mixture of 5 isomers). $[\alpha]_{D}^{20}=+25.7$ (c 0.97, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): $3410,3088,2955,1708,1455,1232,1097,741 \mathrm{~cm}^{-1}$. Characteristic data of the major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.06$ (ddd, $J=17.0,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.50-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, \mathrm{J}=10.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (s, 3H), 2.62 (dd, $J=16.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (dd, $J=16.2,2.7 \mathrm{~Hz}$, 1 H), 2.21 (dd, $J=12.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 213.4,138.8$, 135.8, 128.6, 127.9, 127.7, 117.7, 98.1, 79.6, 74.0, 73.2, 72.4, 70.9, 66.8, 64.6, 57.7, 46.7, 43.4, 39.7, 38.9, 33.4, 26.2, 15.9, 7.2, 5.4. HRMS (ESI+): Calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{NaSiCl}(\mathrm{M}+\mathrm{Na})^{+}: 621.2985$. Found: 621.2983.

Diene 19. To a solution of $2(30 \mathrm{mg}, 26.4 \mu \mathrm{~mol})$ in toluene (1 mL) at room
 temperature were added $\mathrm{Et}_{3} \mathrm{~N}(7.4 \mu \mathrm{~L}, 52.8$ $\mu \mathrm{mol}$) and 2,4,6-trichlorobenzoyl chloride ($4.1 \mu \mathrm{l}, 26.4 \mu \mathrm{~mol}$) and the resulting solution was stirred for 1 h . A solution of 18 (19 mg, $31.4 \mu \mathrm{~mol}$) and DMAP ($3 \mathrm{mg}, 26.4 \mu \mathrm{~mol}$) in toluene (1.8 mL) was then added dropwise and the mixture was stirred for 2 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(2$ mL) and the aqueous phase was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography ($6 / 1$ hexanes-ethyl acetate) on SiO_{2} to afford 19 ($23 \mathrm{mg}, 50 \%$) as an oil. $[\alpha]_{D}^{20}=-20.8$ (c 1.16, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): 3408, 2953, 2876, 1739, 1717, 1636, 1457, 1415, 1238, 1112, 1006, 929, $739 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.35-$ 7.31 (m, 2H), 7.25-7.18(m, 2H), 7.13-7.09 (m, 1H), 6.60 (ddd, $J=17.4,10.5,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09$ (ddd, $J=16.8,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}) 5.63(\mathrm{dt}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-$ $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.24-5-15(\mathrm{~m}, 3 \mathrm{H}), 4.52(\mathrm{dd}, \mathrm{J}=10.2,5.8 \mathrm{~Hz}, 1$ H), 4.44-4.33 (m, 5H), 4.30-4.22 (m, 1 H), 3.90-3.78(m, 3H), 3.72-3.52 (m, 5 H), $3.37-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, \mathrm{J}=16.9,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77-2.55 (m, 3H), 2.52-2.29(m, 9H), 2.28-1.92(m, 11 H$), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.75-1.57 (m, 5H), 1.56-1.33 (m, 8H), 1.28-0.65 (m, 83H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 210.1,170.3,143.2,139.0,135.7,128.6,127.9,127.9,117.7,112.8,100.1$, 98.0, 80.7, 79.5, 77.3, 75.9, 75.4, 74.4, 74.1, 74.0, 73.6, 73.3, 72.3, 68.8, 68.4, 67.7, 66.9, 64.5, 58.4, 57.8, 54.6, 47.7, 46.4, 45.5, 43.3, 42.1, 39.9, 39.7, 39.6, 39.5, 39.3, $32.9,32.6,31.9,31.5,29.1,26.3,25.9,25.5,25.4,23.8,23.2,20.2,17.6,16.3,7.8$, $7.6,7.5,7.4,7.2,6.5,6.1,5.9,5.8,5.4$. HRMS (ESI+): Calcd for $\mathrm{C}_{87} \mathrm{H}_{159} \mathrm{O}_{16} \mathrm{NaClS}_{2} \mathrm{Si}_{5}$ $(\mathrm{M}+\mathrm{Na})^{+}: 1721.9497$. Found: 1721.9517.

Compound 21. To a solution of diene $19(16 \mathrm{mg}, 9.4 \mu \mathrm{~mol})$ in toluene (6 mL) at 60 ${ }^{\circ} \mathrm{C}$ was added complex $10(20 \mathrm{mg}, 23.5 \mu \mathrm{~mol})$ in several portions over 18 h . The reaction was cooled to room temperature, a drop of ethyl-vinyl ether was added and
the solution was stirred for 1 h . The solvents were removed in vacuo, and the residue was filtered through a plug of silica (10/1 hexanes-ethyl acetate) yielding compound $20(12 \mathrm{mg}, 7.1 \mu \mathrm{~mol})$ that was used without further purification.

To a vigorously stirred solution of N -chlorosuccinimide ($4 \mathrm{mg}, 28.4 \mu \mathrm{~mol}$), 2,6-lutidine ($6.5 \mu \mathrm{~L}, 56.8 \mu \mathrm{~mol}$), and $\mathrm{AgNO}_{3}(11 \mathrm{mg}, 32.0 \mu \mathrm{~mol})$ in 80% aq. acetonitrile ($355 \mu \mathrm{~L}$) was added 20 ($12 \mathrm{mg}, 7.1 \mu \mathrm{~mol}$) as a solution in THF ($355 \mu \mathrm{~L}$). The mixture was stirred 30 min and was then quenched by the sequential addition of saturated aq. solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}(100 \mu \mathrm{~L}), \mathrm{NaHCO}_{3}(100 \mu \mathrm{~L})$, and $\mathrm{NaCl}(100 \mu \mathrm{~L})$, added in 1 min intervals. The mixture was filtered through Celite with ethyl acetate, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (4/1 hexanes-ethyl acetate) afforded 21 ($8 \mathrm{mg}, 49 \%$ over 2 steps) as an oil. $[\alpha]_{D}^{20}=+14.2$ (c $0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 3378, 2932, 2875, 1740, 1670, 1458, 1414, 1289, 1243,

 $1185,1094,1004,917,807 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.31$ ($\mathrm{d}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}\left(43,43^{\prime}\right)$), 7.19 (t, J = $\left.7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}\left(45,45^{\prime}\right)\right)$, 7.09 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(46)), 6.63$ (b, 1H, $H(25)), 6.12(b, 1 H, H(26)), 5.70$ (ddd, $J=10.8,4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(37)$), 4.85 (dd, $J=10.1,1.4 \mathrm{~Hz}$, 1H, H(27)), 4.49 (ddt, $J=9.5,4.0$,
$2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(38)), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(41 \mathrm{a})), 4.34(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}(41 \mathrm{~b})$), 4.25 (m, 1H), 4.06 (m, 1H) 3.98 (ddt, J = 10.8, 9.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(29)), 3.86(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(28)), 3.81(\mathrm{t}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(3)), 3.73(\mathrm{t}, \mathrm{J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.58 (m, 2H, H(40)), 3.33 (s, 3H, (29-OMe), 2.99 (bs, 3H, (20-OMe), 2.85 (dd, $J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(36 \mathrm{a})$), 2.57 (d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(36 \mathrm{~b})$), 2.52 (dd, $J=$ $14.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2 \mathrm{a})), 2.43-2.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}(34,15,30 \mathrm{a})$), $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}$, $1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(39 \mathrm{a})), 1.89-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(33 \mathrm{a})), 1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.65 (m, 2H, H(39b, 32b)), 1.57 (m, 1H), 1.52 (m, 1H, H(33b)), 1.43 (m, 1H H(30b)), $1.39(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 15 \mathrm{H}), 1.17-1.06(\mathrm{~m}, 47 \mathrm{H}), 1.02(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.70$ (m, 42H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 207.77$ (C35), 202.43 (C16), 170.23 (C1), 139.07 (C42), 135.7 (C25), 128.56 (C45), 127.80 (C43), 127.67 (C46), 124.6 (C26), 98.84 (C31), 96.97 (C17), 79.99 (C29), 77.86 (C7), 77.28 (C3), 73.11 (C41), 72.2 (C27), 72.08 (C37), 71.40 (C13), 68.99 (C9), 67.73 (C11), 67.44 (C38), 67.06 (C40),
66.06 (C28), 57.75 (C29-OMe), 54.2 (C20-OMe), 46.60 (C10), 44.65, 44.38 (C34), 43.89 (C15), 40.64 (C2), 39.52 (C36), 39.0 (C30), 37.40 (C32), 37.2, 32.36 (C39), 30.73 (C4), 30.25, 30.16, 28.08, 27.2 (C19), 24.6 (C33), 23.74, 23.07, 22.35, 18.33, 18.29, 14.32, 13.01 (C34-Me), 7.75, 7.68, 7.54, 7.15, 7.10. HRMS (ESI+): Calcd for $\mathrm{C}_{82} \mathrm{H}_{153} \mathrm{NO}_{17} \mathrm{Si}_{5} \mathrm{Cl}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 1598.9661$. Found 1598.9668.

Ester 24. Ozone was bubbled through a solution of 22 ($682 \mathrm{mg}, 1.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ for 10 min . The resulting blue solution was purged with argon (until the solution became colorless) and $\mathrm{Ph}_{3} \mathrm{P}$ ($818 \mathrm{mg}, 3.12 \mathrm{mmol}$) was then added. The solution was warmed to room temperature for 1.0 h and concentrated in vacuo to yield the crude aldehyde 23 that was used without further purification.

The crude aldehyde 23 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and methoxycarbonyl triphenylphosphorane ($500 \mathrm{mg}, 1.50 \mathrm{mmol}$) was added. The solution was allowed to warm to room temperature for 2 h and was then concentrated in vacuo. Purification by flash chromatography (10/1 hexanes-ethyl acetate) on SiO_{2} afforded 24 (642 mg, 86\% over 2 steps) as an oil. $[\alpha]_{D}^{20}=+52.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) 2954, 2928, 2856, 1730, 1663, 1471, 1463, 1362, 1112, 837, 611, $504 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (dd, $\left.J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-$ 7.35 (m, 6H), 6.75 (dd, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (dd, $J=15.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (td, $J=6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dt}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{dt}, J=12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.08$ (s, 9H), 1.07 (s, 9H), $0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1$, $145.4,136.0,135.9,133.1,130.0,129.9,127.8,127.6,123.7,76.4,73.2,66.9,59.2$, 57.9, 51.4, 34.1, 27.0, 25.9, 19.4, 18.2, -5.37, -5.40. HRMS (ESI+): Calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{NaSi}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}: 627.2693$. Found 627.2699.

Compound 25. To a stirred solution of 24 ($425 \mathrm{mg}, 0.702 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$
 at $-78^{\circ} \mathrm{C}$ was added a solution of DIBAL-H $(1.0 \mathrm{M}$ in hexanes, $1.54 \mathrm{~mL}, 1.54 \mathrm{mmol}$). The reaction was stirred for 5 min and then warmed to $0^{\circ} \mathrm{C}$ for
0.5 h . The reaction was quenched with a 1.0 M solution of Rochelle's salt (25 mL) and stirred vigorously with ethyl acetate $(25 \mathrm{~mL})$ for 45 min until 2 clear layers had
formed. The layers were separated and the aqueous phase re-extracted with ethyl acetate (25 mL). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo to yield an intermediate allylic alcohol that could be used without further purification. $[\alpha]_{D}^{20}=-13.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) 3451, 2954, 2928, $2856,1589,1471,1463,1428,1389,1361,1105,836,703,741,703,611,505 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.47(\mathrm{~m}, 6 \mathrm{H}), 5.47$ (dd, $J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (dt, $J=15.2,10,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{td}, J=6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=3.6,1.6 \mathrm{~Hz}$, 2 H), $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.1,135.9,134.6,133.8$, $133.4,130.5,129.8,129.6,127.7,127.3,76.0,74.5,67.4,62.6,59.4,58.1,34.2$, 27.0, 25.9, 19.3, 18.2, -5.4. HRMS (ESI+): Calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{NaSi}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}$: 599.2751. Found 599.2750.

To a suspension of $\mathrm{NaH}(50 \mathrm{mg}, 2.08 \mathrm{mmol})$ in THF (2.5 mL) and DMF (2.5 mL) at 0° C was added a solution of the crude allylic alcohol in THF (1.0 mL) and DMF (1.0 mL) and the resulting solution was stirred for 20 min . Allyl bromide ($304 \mu \mathrm{~L}, 3.51 \mathrm{mmol}$) was then added and the mixture was allowed to warm to room temperature for 2.0 h . The reaction was quenched with ice water (30 mL) and extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (10/1 hexanes-ethyl acetate) on SiO_{2} to afford 25 ($393 \mathrm{mg}, 97 \%$ over 2 steps) as an oil. $[\alpha]_{D}^{20}=+5.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) 3135, 3072, 3050, 2954, 2928, 2856, 1590, 1472, 1463, 1428, 1389, 1361, 1106, 835, 703, 611, $505 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H})$, 5.57 (ddt, $J=15.6,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=15.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 2 \mathrm{H})$, $4.47(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.05(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 136.0, 135.9, 134.8, 134.0, 133.5, 131.6, 131.3, 129.8, 129.6, 127.6, 127.4, 116.5, $76.4,74.4,70.4,69.5,67.8,59.4,58.2,34.4,27.0,25.9,19.4,18.2,-5.3,-5.4$. HRMS (ESI+): Calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{NaSi}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}$: 639.3062. Found 639.3063.

Compound 26. To a solution of $25(393 \mathrm{mg}, 0.681 \mathrm{mmol})$ in methanol $(6.8 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added PPTS ($205 \mathrm{mg}, 0.817 \mathrm{mmol}$) and the mixture was allowed to warm to
room temperature for 10 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10/1 to $4 / 1$ hexanes-ethyl acetate) on SiO_{2} afforded an intermediate primary alcohol ($281 \mathrm{mg}, 82 \%$) as an oil. $[\alpha]_{D}^{20}=+33.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) 3453, 2930, 2857, 1735, 1672, 1589, 1472, 1463, 1428, 1390, 1362, 1112, 1064, 926, 822, $742,703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}$, 6 H), 5.85 (m, 1H), $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.67$ (ddt, J = 15.6, 8.0, 1.2 Hz, 1H), 5.39 (td, 1H, J = $15.5,5.6 \mathrm{~Hz}) 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, \mathrm{J}=8.0,5.6 \mathrm{~Hz}) 3.90(\mathrm{dd}, J=5.6,4.4 \mathrm{~Hz}), 3.78$ (ddd, $J=5.1,3.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.71(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H})$, 0.99 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.0,135.9,134.8,133.7,133.5,131.5$, 130.8, 129.9, 129.7, 127.7, 127.5, 116.7, 78.5, 74.1, 70.6, 69.6, 67.6, 59.7, 58.3, 33.6, 27.0, 19.4. HRMS (ESI+): Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{NaSi}_{1} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}: 525.2193$. Found 525.2198.

To a solution of oxalyl chloride ($73 \mu \mathrm{~L}, 0.838 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DMSO ($79 \mu \mathrm{~L}, 1.12 \mathrm{mmol}$) and the resulting solution was stirred for 15 min . The intermediate primary alcohol ($281 \mathrm{mg}, 0.558 \mathrm{mmol}$) was then added dropwise as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(580 \mu \mathrm{~L})$ and the resulting reaction mixture was stirred for 15 min . Triethylamine was then added ($389 \mu \mathrm{~L}, 2.792 \mathrm{mmol}$) and the reaction was warmed to room temperature for 1 h . The reaction was quenched with water (25 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude product was used without further purification.

To a solution of the crude aldehyde in acetonitrile (5.6 mL) and water (5.6 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added KCN ($182 \mathrm{mg}, 2.795 \mathrm{mmol}$) and Dowex ${ }^{\circledR} 50 \mathrm{WX} 4(50 \mathrm{mg})$. The resulting mixture was stirred for 1 h , quenched with aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, and extracted with tert-butyl methyl ether ($2 \times 25 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo, to give a ca. 1:1 mixture of diastereomers that was used in the next step without further purification.
To a solution of crude cyanohydrin in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 2,6-lutidine $(163 \mu \mathrm{~L}, 1.40 \mathrm{mmol})$ and TESOTf ($152 \mu \mathrm{~L}, 0.670 \mathrm{mmol}$). The resulting reaction mixture was allowed to warm to room temperature for 1 h and was then quenched with aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$ and the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in
vacuo. Purification by flash chromatography (10/1 to $4 / 1$ hexanes-ethyl acetate) on SiO_{2} afforded 26 (262 mg, 73 \% over 3 steps) as an oil. IR (ATR) 2957, 2877, 1726, 1696, 1648, 1461, 1428, 1362, 1112, 1006, 937,
 822, $703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ $(\mathrm{m}, 4 \mathrm{H}), 7.57(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 12 \mathrm{H}), 5.72$ (m, 2H), 5.53 (m, 2H), $5.24(\mathrm{tt}, J=15.6,5.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.08 (m, 4H), 4.54 (dd, $J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=8.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (ddd, $J=8.5,6.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.82(\mathrm{~m}$, $2 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 8 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~m}$, $1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.67-0.58(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 136.0,136.0,135.9,134.8,134.7,133.8,133.7,133.4$, 133.3, 132.1, 132.1, 130.8, 130.7, 129.9, 129.9, 129.7, 129.7, 127.7, 127.7, 127.5, $127.5,116.6,116.6,76.2,75.6,74.4,74.3,70.6,70.6,69.4,67.1,66.7,59.5,58.6$, 58.3, 38.6, 38.1, 27.0, 19.4, 6.6, 6.5, 4.5, 4.4. HRMS (ESI+): Calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{NaSi}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{Na})^{+}: 664.3013$. Found 664.3016.

Compound 28. To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of compound $26(129 \mathrm{mg}, 0.201 \mu \mathrm{~mol})$ in THF (4 mL) was added lithium
 diisopropylamide $(650 \mu \mathrm{~L}, 0.3 \mathrm{M}$ in THF $197 \mu \mathrm{~mol})$. The mixture was stirred for 10 min before a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of compound $27(82 \mathrm{mg}, 154 \mu \mathrm{~mol})$ in THF $(2.0 \mathrm{~mL})$ was added over 1 min . The mixture was stirred for 2 h and quenched by the addition of aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The layers were separated and the aqueous phase extracted with diethyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The crude product was purified by flash chromatography (2/1 hexanes-ethyl acetate) on SiO_{2} to afford $28(77 \mathrm{mg}, 48 \%)$ as an oil. $[\alpha]_{D}^{20}=-15.8$ (c 2.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (kap.): 3071, 2956, 1687, 1646, 1589, 1457, 1240, 1111, 1007, 742, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.85-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 10 \mathrm{H}), 7.13-$ 7.07 (m, 1H), 5.89 (tdd, $J=1.4,8.6,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.76 (tdd, $J=5.2,10.4,17.2 \mathrm{~Hz}$, 1 H), 5.36 (td, $J=5.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.17$ (m, 1H), 5.02 (ddd, $J=1.5,3.3,10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.73 (dd, $J=5.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (ddd, $J=6.3,9.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37$4.30(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=3.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (ddd, $J=3.6,6.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (td, J = 3.6, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68-3.63 (m, 2H), 3.62-3.50 (m, 4H), $3.08(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.55$
(m, 2H), 2.52-2.37 (m, 2H), 2.16 (dd, J = 7.2, 14.7 Hz, 1H), 1.96-1.71 (m, 4H), 1.701.54 (m, 2H), 1.19 (s, 9H), 1.10-0.84 (m, 2H), 1.03 (t, J = $7.9 \mathrm{~Hz}, 18 \mathrm{H}$), 0.88 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.75-0.62(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 160.7, 139.1, 136.4, 136.3, 135.5, 134.2, 133.9, 132.6, 130.9, 130.2, 130.0, 128.6, 128.1, 127.9, 127.9, 127.7, 121.8, 115.9, 83.0, 77.1, 74.8, 73.2, 71.9, 71.0, 70.9, 69.6, 66.9, 66.6, 57.3, 42.2, 38.8, 35.5, 33.2, 33.0, 29.3, 27.3, 19.7, 18.4, 7.2, 7.2, 6.2, 5.6. HRMS (ESI+): Calcd for $\mathrm{C}_{58} \mathrm{H}_{89} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaClSi}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 1067.5558$. Found: 1067.5563.

Compound 29. To a solution of $28(77 \mathrm{mg}, 76.1 \mu \mathrm{~mol})$ in acetonitrile (3.5 mL) and water (3.5 mL) was added $\mathrm{Mo}(\mathrm{CO})_{6}(20 \mathrm{mg}, 76.1$
 $\mu \mathrm{mol})$ and the mixture was heated to $90^{\circ} \mathrm{C}$ for 1 h . The reaction was cooled to room temperature, flushed through a plug of SiO_{2} (4/1 hexanes ethyl acetate), and concentrated in vacuo to yield an intermediate ketone as a brown oil that was used without further purification.

To a solution of the crude ketone in DMF (2.0 mL) and water $(40 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added a solution of TASF ($105 \mathrm{mg}, 0.381 \mathrm{mmol}$) in DMF (1.8 mL). The reaction was allowed to warm to room temperature for 1.75 h , and was then quenched with a $\mathrm{pH}=$ 7.4 buffer solution (25 mL) and extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo to yield an intermediate hemi-ketal that was used without further purification.

To a solution of the crude hemi-ketal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and methanol $(500 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added PPTS ($7 \mathrm{mg}, 22.8 \mu \mathrm{~mol}$) and the mixture was warmed to room temperature for 45 min . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. Purification by flash chromatography (4/1 to $2 / 1$ hexanes-ethyl acetate) afforded 29 ($18.4 \mathrm{mg}, 45 \%$ over 3 steps) as an oil. $[\alpha]_{D}^{20}=$ +13.8 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 3480, 3030, 2932, 1646, 1454, 1381, 1191, 1170, 1095, 975, $923 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.14$ (m, 5H), 6.17 (dtd, $J=15.5$, $5.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddt}, J=15.5,5.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H})$, 5.21 (dq, $J=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.99(\mathrm{dq}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{ddd}, J=10.4$, $5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dt}, J=$ $5.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.66(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H})$,
$2.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, \mathrm{J}=14.7,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 4 \mathrm{H})$, $1.12(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{dt}, 13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.35\left(\mathrm{~m}, 2 \mathrm{H}^{*}\right), 1.22(\mathrm{dq}, \mathrm{J}=$ $12.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}^{*}$), 1.15 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 135.5$, 130.7, 129.6, 128.7, 128.1, 127.9, 116.1, 109.5, 98.1, 84.2, 79.6, 73.6, 73.5, 71.7, $71.1,70.3,67.5,64.9,57.5,48.3,43.6,38.3,36.3,29.3,24.3,16.8$. HRMS (ESI+): Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+}$: 559.2430. Found 559.2433.

Compound 30. To a solution of acid $2(25 \mathrm{mg}, 24.2 \mu \mathrm{~mol})$ in toluene $(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$
 was added triethylamine ($9.0 \mu \mathrm{~L}, 50.1 \mu \mathrm{~mol}$) and 2,4,6-trichlorobenzoyl chloride ($5.0 \mu \mathrm{~L}$, $30.6 \mu \mathrm{~mol})$ and the reaction was stirred for 1 h . A solution of alcohol 29 ($11 \mathrm{mg}, 20.4 \mu \mathrm{~mol}$) and DMAP ($13 \mathrm{mg}, 0.102 \mathrm{mmol}$) in toluene $(1.0 \mathrm{~mL})$ was then added and the mixture was stirred at room temperature for 6 h . The reaction was quenched with aq. $\mathrm{NaHCO}_{3}(15$ mL) and extracted with ethyl acetate (2×15 mL). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10/1 hexanes-ethyl acetate) on SiO_{2} afforded 30 ($24 \mathrm{mg}, 82 \%$) as an oil. $[\alpha]_{D}^{20}=-18.7\left(c \quad 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) 2953, 2876, 1738, 1580, 1456, 1416, 1380, 1240, 1190, 1070, 1004, 974, 924, $725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.19 (dd, $J=15.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dq}, J=17.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{dq}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 2 \mathrm{H}), 4.36$ (m, 2H), $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.80(\mathrm{~m}$, 7 H), 3.63 (m, 2H), 3.56 (m, 2H), 3.31 (s, 3H), 3.16 (dd, $J=9.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (s, 3 H), $3.98(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-$ $2.25(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.02(\mathrm{~m}, 7 \mathrm{H}), 2.02-1.75(\mathrm{~m}, 8 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.43(\mathrm{~m}$, $4 \mathrm{H}), 1.42-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~m}, 36 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85-0.70(\mathrm{~m}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 201.6,170.1,143.0,139.3$, 135.5, 129.9, 129.3, 128.5, 128.1, 127.9, 127.6, 116.2, 113.0, 108.9, 98.1, 97.3, 80.0, 79.8, 79.3, 77.5, 75.2, 74.7, 74.4, 74.3, 74.1, 73.3, 73.2, 73.1, 71.3, 70.3, 68.2, $67.9,67.4,65.0,57.6,54.7,48.4,47.0,45.8,43.4,42.0,41.9,40.2,39.8,38.2,36.3$,
32.1, 31.6, 29.7, 26.9, 24.1, 23.8, 22.6, 19.1, 18.2, 16.7, 7.5, 7.5, 7.4, 6.3, 5.9, 5.8. HRMS (ESI+): Calcd for $\mathrm{C}_{82} \mathrm{H}_{143} \mathrm{O}_{17} \mathrm{NaClSi}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 1569.8966$. Found 1569.8983.

Compound 31. To a solution of $30(18 \mathrm{mg}, 11.6 \mu \mathrm{~mol})$ in methanol (1.4 mL), diethyl
 ether $(400 \mu \mathrm{~L})$ and water $(200 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added PPTS $(10 \mathrm{mg})$ and the resulting mixture was stirred at room temperature for 12 h . The reaction was quenched with aq. NaHCO_{3} (15 mL) and extracted with ethyl acetate (3×15 $\mathrm{mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (1/1 to 0/1 hexanes-ethyl acetate) afforded 31 ($8.1 \mathrm{mg}, 64 \%$) as an oil. $[\alpha]_{D}^{20}=-52.0$ (c 0.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 2923, 2852, 1736, 1660, 1632, 1456, 1377, 1259, 1216, 1193, 1090, 975, 925, 878, $803 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}$, $2 H), 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~m}$, $1 \mathrm{H}), 5.21$ (ddd, $J=17.3,3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J=10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (ddd, $J=10.5,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.23(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.81 \mathrm{dt}(J=5.4,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $3 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dd, $J=14.4,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}$, $1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.57$ $(\mathrm{m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (d, J=7.0 Hz, 3H), $1.31(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.02(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-$ $0.81(\mathrm{~m}, 4 \mathrm{H}), 0.62(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 202.1, 170.5, 139.5, 139.0, 135.4, 129.6, 129.2, 128.6, 116.4, 116.3, 109.0, 98.1, $97.6,80.0,79.2,75.5,74.5,74.4,73.9,73.2,73.1,71.8,71.6,71.3,70.4,70.3,68.3$, $66.3,66.2,65.4,65.1,57.6,56.3,47.0,44.2,43.4,43.3,42.6,41.7,40.4,39.7,38.1$, 36.3, 31.1, 31.0, 29.7, 27.7, 24.1, 23.5, 18.2, 18.0, 16.6. HRMS (ESI+): Calcd for $\mathrm{C}_{58} \mathrm{H}_{87} \mathrm{O}_{17} \mathrm{NaCl}(\mathrm{M}+\mathrm{Na})^{+}:$1091.5712. Found 1091.5705.

Compound 32. To a stirred solution of $31(7 \mathrm{mg}, 6.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added complex 10 ($1 \mathrm{mg}, 1.3 \mu \mathrm{~mol}$) and the mixture was heated to $40^{\circ} \mathrm{C}$ for 15 h. The reaction was cooled to room temperature and concentrated in vacuo. Purification by flash chromatography ($2 / 1$ to $1 / 1$ to $0 / 1$ hexanes-ethyl acetate) afforded 32 ($4.3 \mathrm{mg}, 64 \%$) as an oil. $[\alpha]_{D}^{20}=-10.1$ (c 0.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 2979, 2933, 1638, 1458, 1415, 1259, 1221, 1211, 1169, 1123, 1090, 1025, 987, 962, 911, $797 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.57(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(47$, $\left.47^{\prime}\right)$), $7.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(48,48$ ')), $7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(49)), 6.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(30))$, 6.21 (dt, $J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(29)), 6.06(\mathrm{dd}, J=15.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(25)), 5.74$ (dt, $J=15.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(26)), 5.18(\mathrm{dd}, J=6.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(41)), 4.88(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}(45 \mathrm{a})$), $4.69(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(45 \mathrm{~b})$), $4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(7)), 4.44$ (dd, $J=$ $9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(31)$), $4.34(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(21)$), 4.29 (m, 1H, H9)), $4.10-$ 4.00 (m, 3H, H(13, 42, 22)), 3.93 (dd, J = 12.9, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(28 \mathrm{a})$), 3.91 (m, 1H (OH)), 3.87 (dd, J = 13.2, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(28 \mathrm{~b})$), 3.82 (m, 3H, H(33, 27a, 27b)), 3.67 (m, 1H, H(23)), $3.63-3.55(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}(3,32,11)$), 3.31 (s, $3 \mathrm{H},(30 \mathrm{OMe})$), 3.27 (m, 1H, H(20)), 2.92 (s, 3H, (20 OMe)), 2.33 (m, 2H, H(15a, 2a)), 2.26 (dd, $J=14.2,4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}(15 \mathrm{~b})$), $2.20(\mathrm{dd}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(40 \mathrm{a})$), 2.16 (dd, $J=14.0,4.3 \mathrm{~Hz}$, 1 H), 2.11 (dd, $J=14.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2 \mathrm{~b})$), 2.07 (dd, $J=12.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(34 \mathrm{a})$), $2.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(43)), 1.90(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(40 \mathrm{~b})), 1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(19 \mathrm{a})), 1.75(\mathrm{~m}$, 1H, H(18b)), 1.71 (m, 1H), 1.69 (m, 1H, H(19b)), 1.66 (m, 1H, H(14)), 1.58 (m, 2H, $H(10)), 1.53(m, 1 H, H(8 a)), 1.50(m, 1 H), 1.48-1.39(m, 3 H, H(8 b, 38,24)), 1.38-$ 1.15 (m, 6H), $1.32(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H},(24-\mathrm{Me})), 1.14-1.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}(4,12 \mathrm{~b})), 0.98$ (m, 1H), $0.95-0.75(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H},(38-M e)), 0.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H},(14-\mathrm{Me})) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 201.9$ (C16), 169.4 (C1), 138.9 (C46), 132.6 (C25), 129.2 (C29, C30), 129.1 (C26), 108.9 (C39), 98.0 (C35), 97.4 (C17), 79.8 (C42) , 79.3 (C33), 75.3 (C23), 74.9 (C11), 74.2 (C3), 74.1 (C41), 73.6 (C20), 73.3 (C45), 72.5 (C31), 71.8 (C13), 71.7 (C21), 70.3 (C22), 70.0 (C27), 69.6 (C28), 68.4 (C44), 65.4 (C32), 65.2 (C9), 65.1 (C7), 57.6 (C33-OMe), 55.9 (C20-OMe), 46.9 (C8, C40), 44.3 (C15), 44.2 (C10), 43.5 (C34), 43.0 (C2), 40.9, 39.8 (C14), 38.2
(C38), 38.1 (C24), 36.2, 31.8 (C12), 31.5 (C4), 30.2, 29.8 (C43), 27.6 (C18), 24.0, 23.9 (C19), 23.7, 23.1, 18.9 (C24-Me), 18.0 (C14-Me), 16.6 (C38- Me). HRMS (ESI+): Calcd for $\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{O}_{17} \mathrm{Cl}(\mathrm{M})^{-}: 1061.5258$. Found 1061.5246.

