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Summary

Interactions between trees andmicroorganisms are tremendously complex and themultispecies

networks resulting from these associations have consequences for plant growth and produc-

tivity. However, a more holistic view is needed to better understand trees as ecosystems and

superorganisms,wheremany interacting species contribute to the overall stability of the system.

While much progress has been made on microbial communities associated with individual tree

niches and the molecular interactions between model symbiotic partners, there is still a lack of

knowledge of the multi-component interactions necessary for holistic ecosystem-level under-

standing. We review recent studies in Populus to emphasize the importance of such holistic

efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these

important ecosystems.

I. Introduction

Populus trichocarpa was the first tree species genome sequenced
(Tuskan et al., 2006), and the ability to study genetically tractable
Populus trees in glasshouses and plantation agroecosytems, as well
as in natural ecosystem settings, make Populus spp. powerful
systems for obtaining a better understanding of plant–microbe
relationships. Ectomycorrhizas and arbuscular mycorrhizas both

occur within Populus (Karlinski et al., 2010), and Populus host
genetic variation may influence the structure and composition of
surrounding plants, soils, and overall ecosystem functions (Fischer
et al., 2007, 2010, 2014). Recognizing its potential as a model
system a decade ago, as sequencing of the Populus genome neared
completion,Martin et al. (2004) called for the community to begin
comparable efforts to sequence and study the Populus symbiont
‘mesocosm’. They argued for consideration of trees as ecosystems in
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themselves and for increased understanding of their symbiotic
interactions both at a holistic level and as genome-enabled model
systems. In this paper, we discuss the tremendous recent progress
and future potential of such efforts across the Populus ecosystem
(Fig. 1).

II. The root endosphere and rhizosphere microbiome

Diversity, structure and community-level perspectives

A variety of recent studies have examined the root mycorrhizal
components of the microbiome in Populus. A general focus of
many of these studies has been contrasting the communities
associated with wild-type and transgenic clones. For example,
three studies (Kaldorf et al., 2002; Stefani et al., 2009; Danielsen
et al., 2012) have examined both bulk soil and root fungal
populations independently in plantations with different trans-
genic Populus lines. Each of these studies found no effects of the
transgene clones on fungal communities but generally high levels
of fungal diversity in association with poplar roots. A few recent
whole-microbiome-level investigations in natural populations and

variants of Populus deltoides have now included simultaneous
examination of both bacteria and fungi in the same sampled
environments and experiments, as well as for both the rhizosphere
and root endosphere habitats (Gottel et al., 2011; Shakya et al.,
2013; Bonito et al., 2014). In such studies, researchers have done
well to begin elucidating how these different plant habitats/niches
affect microbial membership, and to begin to disentangle how
host, environmental, soil and geographic factors influence each of
these Populus-associated community types (Shakya et al., 2013;
Bonito et al., 2014). Similar results are now being obtained in a
variety of host systems with the widespread application of
pyrosequence-based approaches; and patterns of host specificity,
host fitness effects, geographic substitution and heritability are
now emerging (Lundberg et al., 2012; Peiffer et al., 2013; Bonito
et al., 2014; Talbot et al., 2014; Wagner et al., 2014). These
studies in Populus as well as in Arabidopsis thaliana and Zea mays
systems have demonstrated that, within a host species, habitat
(e.g. endosphere vs rhizosphere) and soil type, rather than host
genetic background, have larger effects on the overall structure of
the microbiome (Bulgarelli et al., 2012; Lundberg et al., 2012;
Peiffer et al., 2013; Shakya et al., 2013; Bonito et al., 2014), but
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functioning has greatly increased with
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have provided striking insights into the
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as well as a more holistic understanding of
microbial community interactions.
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the balance of the effects of genetic and soil factors within host
habitats on bacteria and fungi is less clear. Evidence from natural
systems, soil inoculum assays, and pairwise colonization assays
suggests that, perhaps as a consequence of their often weak
ectomycorrhizal (ECM) nature, root endophytic organisms may
be particularly important for Populus trees compared with other
ECM trees and result in higher levels of microbiome diversity due
to increased niche space (Bonito et al., 2014; Tshaplinski et al.,
2014).

A systematic understanding of how overall rhizosphere com-
munities and their members differ from or complement each other
in terms of functioning within the plant, across the plant and
between tree taxa is still lacking. However, meta-analysis and
synthesis studies that collectively analyse and compare such
communities should now be possible with thewidespread adoption
of community databasing and standards in microbiome sequence
studies (Yilmaz et al., 2011).

Specific interactions, mechanisms and functions

While the basic functions of mycrorrhizas in terms of nutrient and
water acquisition are known, the specific detailed signaling
mechanisms involved in the formation and functioning of both
ECM and arbuscular mycorrhizal (AM) symbiosis have remained
elusive. Genome-enabled studies using the Laccaria–Populus
system have led to several insights in this area and suggest that
mutual signaling mechanisms allow recognition, initiation and
reorganization of the symbiotic root organ. Particularly surprising
has been the role that small secreted proteins play. Mycorrhizal-
Induced Small SecretedProtein 7 (MiSSP7) production inLaccaria
bicolor appears to be induced by unknown exudates from Populus
roots (Plett et al., 2011; Plett & Martin, 2012). MiSSP7 in turn
migrates to the plant nuclei and alters the hormonal balance of the
plant defense system, allowing mycorrhizal formation to proceed
(Plett et al., 2014). However, these detailed patterns of recognition
may be species specific even within Populus host species. While the
above recognition mechanism is effective in P. trichocarpa, in P.
deltoides the host defensive system is not effectively suppressed by
Laccaria and ECM formation does not proceed (Tshaplinski et al.,
2014). Future investigations will need to further explore the
phylogenetic distributions of such signaling interactions both with
closely related model species and across diverse host–fungal
systems, to gain insight into the varying patterns of species
specificity and generalist phenomena. The recent completion of the
genome sequence of the AM fungus Rhizophagus irregularis (ex
Glomus) (Tisserant et al., 2013) may similarly provide clues
necessary to accelerate such research into the functioning of AM
systems. Additionally, the use of Populus as a host for such studies,
with its ability to form both AM and ECM symbioses, should
provide insight into the largely unanswered questions of why and
under what conditions Populus forms both types of symbiosis.
While there appear to be both genetic and environmental
influences on alternation between the two symbiosis modes in
Populus (Lodge, 1989; Gehring et al., 2006; Karlinski et al., 2010),
the detailed mechanisms and in planta functioning of such dual
symbioses are still unclear.

Beyond mycorrhizal symbionts, Populus is also host to a variety
of bacterial and fungal rhizosphere partners and root endophytes.
Indeed, several studies have shown putativemycorrhizal fungal taxa
on andwithinPopulus to be outnumbered by other root endopyhtic
fungi such as Atractiella, Phialophora, Illyonectria and Mortierella
spp. (Gottel et al., 2011; Shakya et al., 2013; Bonito et al., 2014).
Therefore, elucidating the full potential of microbiome effects on
tree growth, health and reproduction also depends on understand-
ing these often neglected plant–microbe interactions. Bacterial
endophytes have been shown to have varying functions in altering
root branching/allocation patterns through production of plant
hormoneprecursors such as indole acetic acid (IAA) (Dimkpa et al.,
2012; Weyens et al., 2012), transformation and mobilization of
nutrients such as nitrogen (N) and phosphorus (Browne et al.,
2009), enhanced mycorrhizal formation (e.g. mycorrhizal helper
bacteria; Deveau et al., 2007; Zhao et al., 2014), and aiding in
pathogen resistance through competitive exclusion or production
of antibiotics (Lugtenberg et al., 2001) or priming of plant immune
responses (Weston et al., 2012). None of these effects, however,
seem to be mutually exclusive, as various isolates of even a single
genus or species complex such as Pseudomonas fluorescens seem
capable of many of these functions, as well as pathogenic effects
(Weston et al., 2012).

III. The phyllosphere and leaf endospheremicrobiome

Diversity, structure and community-level perspectives

The interaction between plants and their associated phyllosphere
microbial communities has received increasing attention during
the last decade (Vorholt, 2012). Microbial diversity and commu-
nity structure have been described in several woody plant species
(Jumpponen & Jones, 2009; Redford et al., 2010; Finkel et al.,
2011; Cordier et al., 2012; Coince et al., 2014) but our knowledge
of the structure of both fungal andbacterial communities associated
with poplar leaves remains fragmented. Culture-independent
approaches indicate that host genotype is an important factor
structuring both fungal and bacterial communities in poplar leaves
and suggest that phyllosphere microbial community assemblage is
at least partially determined by host genetic variation (Ulrich et al.,
2008; B�alint et al., 2013). Consistent with a possible enrichment of
infrequent fungal species in the phyllosphere community of trees
(Unterseher et al., 2011), the poplar leaf fungal community was
found to be very diverse and is represented by a few abundant taxa
and numerous rare taxa (B�alint et al., 2013). Although the
phyllosphere bacterial community of poplar can vary over the
growing season (Redford & Fierer, 2009), the general structure,
consisting of the dominance of Proteobacteria, Actinobacteria and
Bacteroidetes, is not strikingly different from the pattern found for
other plant species including angiosperms, grasses and A. thaliana,
suggesting an overall conserved structure that is defined by
relatively few bacterial phyla (Ulrich et al., 2008; Redford et al.,
2010; Bodenhausen et al., 2013; Bulgarelli et al., 2013).

Integrated approaches are needed to understand the processes
responsible for determining the structure and assembly rules of
phyllosphere communities. One approach recently used various
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A. thaliana mutants and revealed that cuticular wax and ethylene
can significantly affect the community composition of phyllo-
sphere bacteria (Reisberg et al., 2013; Bodenhausen et al., 2014). In
addition, a comprehensive survey of the topographical distribution
of fungi and bacteria across various organs of individual tree species
is still needed to better understand the tissue-type specificity of
microbial community assemblages. Finally, recent studies indicate
that, in addition to the host plant, synergistic, beneficial and
antagonistic interactions among microbes may have tremendous
impacts on microbial community structure and function in both
the phyllosphere and the rhizosphere (Frey-Klett et al., 2011;
Kemen, 2014). Therefore, understanding of both leaf- and root-
associated microbiota structure also relies on the understanding of
more complex interactions, where fungal, oomycete and bacterial
communities are not considered as separate entities but as active
drivers of overall microbial community assemblages.

Specific interactions, mechanisms and functions

Although the structure and diversity of bacterial and fungal
communities associated with the leaves of woody plants species
have been reported, the associated functions remain poorly
characterized. It has been recently shown that different fungal
endophytes isolated from poplar leaves naturally infected by the
rust fungus Melampsora can dramatically reduce rust symptom
severity under laboratory conditions and significantly contribute to
quantitative resistance to the foliar rust pathogen (Raghavendra &
Newcombe, 2013). Interestingly, however, some of these same
endophytes do not show similar effects against other Populus
pathogens (Busby et al., 2013). Strikingly, root-associated micro-
biota members are also known to induce systemic responses in
leaves, resulting in increased resistance to plant pathogens (Weston
et al., 2012; Kurth et al., 2014) and herbivory (Badri et al., 2013).
These selected examples illustrate why a more holistic understand-
ing of plant disease is needed to better understand beneficial
interactions across the plant microbiome (Van der Putten et al.,
2001).

IV. The stem and wood microbiome

While the rhizosphere and phyllosphere have received considerably
more attention as microbial habitats, there is increasing evidence
that microorganisms inhabiting the heartwood tissues within some
woody plants such asPopulusmay have great importance that has to
date been unfairly neglected (Knoth et al., 2014). In Populus, many
conifers, and other important forest tree species, the heartwood has
no living parenchyma cells and only saturated xylem tissues (e.g.
wetwood) that can produce anaerobic conditions favoring fermen-
tation or even methanogenesis (Zeikus & Henning, 1974). Prior
reports suggested that communities associated with both
P. trichocarpa and P. deltoides also have the potential to fix N in
these niches, as evidenced by acetylene reduction assays (Schink
et al., 1981; Kamp, 1986). Numerous diazotrophic bacteria have
been isolated from such habitats. Cross-inoculation experiments
have shown broad growth-promoting effects of these organisms on
other plant species, including nonwoody plants such as rice (Oryza

sativa) and maize (Govindarajan et al., 2008; Knoth et al., 2013),
and isolates of bacterial genera, includingBurkholderia,Rhizobium,
Enterobacter and Paenibacillus (Doty et al., 2009; Scherling et al.,
2009) often show the ability to reduce N2 in pure cultures outside
the host. Isotopic studies using 15N in P. trichocarpa inoculated
with consortia of bacteria species showed signatures indicative of
active fixation and that wetwoodmay account for up to 65% of the
N in leaf tissues (Knoth et al., 2014). Culturable fungal endophytes
have also recently been examined within the woody tissues of
branches of Populus angustifolia (Lamit et al., 2014). While
functional aspects have not been examined, it is clear from this
first work that even the simple communities within woody tissues
can be influenced by tree genotype. Additionally, many of the
fungal genera identified seem to overlap with those commonly
found within leaf and root endophyte habitats.

Despite indications of the great importance of heartwood
habitat, all knowledge to date comes from studies of individual
bacterial and fungal isolates, and a few studies of defined consortia.
Interestingly, there is some indication that these mixed consortia of
organisms show differing effects and sometimes more robust
growth promotion (Knoth et al., 2013, 2014), and this has been
speculated to be attributable to increased niche colonization.
However, microbiome, metagenome, or even Sanger sequencing-
based surveys of microbial populations within woody habitats are
lacking. In planta localization of N-fixing bacteria has yet to be
visualized via fluorescence in situ hybridization (FISH) or other
methods. The use of combinations of advanced microscopy and
isotopically resolved mass spectroscopy techniques (e.g.
NanoSIMS), could potentially be very useful (Pett-Ridge &
Weber, 2012). Given these tantalizing results, and the potential
importance of alternative mechanisms of N fixation, microbiome
studies of heartwood should be prioritized.

V. Toward understanding microbiome functions in a
community context

Interactions between trees and their associated microbial commu-
nities are tremendously complex and the resultingmultiorganismal
networks have central roles in plant growth and productivity
(Bonfante & Anca, 2009). Amore holistic view of plant health and
disease is needed to better understand these ‘superorganisms’, in
which interacting species are thought to play a role in the overall
stability of the system. Similar to the humanmicrobiota, disruption
of the homeostasis between plants and their associated fungal and
bacterial communities may alter the stability of the system, with
potential impacts on host fitness (Frey-Klett et al., 2011). Although
culture-independent methods have contributed tremendously to
our understanding of tree-associated fungal and bacterial commu-
nity structures, the study of microbiota functions in a community
context remains challenging because of the inherent noise of plant-
associatedmicrobial communities seen in nature. One reductionist
approach to overcome this limitation is the use of reciprocal
transplantation experiments, where plants are moved from one
environment to another environment or grown with the same soil
inoculum under controlled conditions. Such an approach has been
recently used to decipher the role of soil biota in plant adaptation,
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revealing that plants are not limited to adapt or migrate, but
perhaps utilize microbial consortia to adapt to a novel or disturbed
environment (Lau & Lennon, 2012; Gundale et al., 2014).
Alternatively, extraction of presumably intact communities from
different soil types has also been used to investigate how distinct
environmental microbiomes can alter plant flowering phenology,
and represents a promising approach in the search for microbial
consortia that alter biological characteristics of interest (Wagner
et al., 2014). Finally, extensive reference culture collections of
plant-associated fungal and bacterial stains isolated from model
plant species are currently being established and will provide in the
near future an inestimable resource for assembling taxonomically
definedmicrobial communities with increasing complexity (Brown
et al., 2012; Lebeis et al., 2012; De Roy et al., 2014). The
modularity of synthetic communities has already provided new
insights into the structure and function of plant-associated
microbiota (Bodenhausen et al., 2014; Knoth et al., 2014; Rolli
et al., 2014). The assembly of more complex defined microcosms
that better mimic environmental microbiomes will aid in
(1) understanding the dynamics of host colonization by complex
root- and leaf-associated microbial communities, (2) deciphering
the contribution of plant–microbe and microbe–microbe interac-
tions in the structuring of microbial consortia, and (3) identifying
complex microcosms that promote host fitness when exposed to
biotic or abiotic stressors. While studies in Populus have been
informative in their own right, they will become of increasing
interest as a comparison with newmodels such asEucalyptus,Pinus,
and others being developed now and in the future.
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