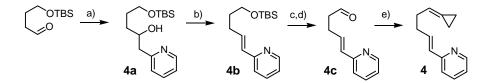
SUPPORTING INFORMATION

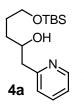
A Rhodium Catalyzed C-H Activation/Cycloisomerization Tandem

Christophe Aïssa and Alois Fürstner*


Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany.

e-mail: fuerstner@mpi-muelheim.mpg.de

General. Unless stated otherwise, all reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, Et₂O (Mg-Anthracene), CH₂Cl₂ (P₄O₁₀), MeCN, Et₃N (CaH₂), MeOH (Mg), DMF, DMA (Desmodur[®], dibutyltin dilaurate), hexanes, toluene (Na/K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded with a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hertz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{C} = 77.0$ ppm; residual CHCl₃ in CDCl₃: $\delta_{H} = 7.24$ ppm; CD₂Cl₂: $\delta_{C} = 53.8$ ppm; residual CH₂Cl₂ in CD₂Cl₂: $\delta_{H} = 5.32$ ppm). IR: Nicolet FT-7199 spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determination: Bruker APEX III FT-MS (7 T magnet). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds were used as received.


Substrates

Representative Sequence: Preparation of Compound 4

a) 2-methylpyridine, *n*-BuLi, THF; b) MsCl, pyridine, CH_2Cl_2 , 80°C; c) HCl 5%, EtOH; d) (COCl)₂, DMSO, Et₃N, CH_2Cl_2 ; e) 3-(bromopropyl)triphenylphosphonium bromide, *t*-BuOK, THF reflux.

Compound 4a. 2-Methylpyridine (0.27 mL, 2.70 mmol) was added to a cooled (-50°C)

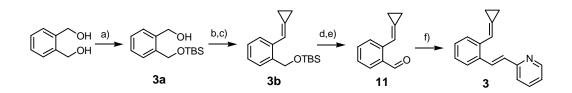
solution of *n*-BuLi (1.6 M in hexanes, 1.77 mL, 2.84 mmol) in THF (15 mL) at such a rate that the internal temperature did not exceed -45° C. Once the addition was complete, the mixture was allowed to stir at -20° C for 5 min before it was cooled to -50° C and a solution of 4-(*tert*-butyldimethylsilyloxy)butanal (600 mg, 2.97 mmol)¹ in THF (4 mL) was added via canula. The mixture was allowed to stir at -20° C for 2 h and at ambient temperature for 1 h before the reaction was quenched with aq. sat. NaHCO₃ and EtOAc. A standard extractive work up

followed by flash chromatography (hexanes/EtOAc, 2/1) afforded product **4a** as a yellow oil (631 mg, 72%). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.47$ (dd, J = 5.6, 2.0 Hz, 1H), 7.59 (td, J = 7.7, 1.9 Hz, 1H), 7.19-7.02 (m, 2H), 4.09-3.97 (m, 1H), 3.70-3.58 (m, 2H), 2.91 (dd, J = 14.8, 3.5 Hz, 1H), 2.84 (dd, J = 14.9, 8.2 Hz, 1H), 1.78-1.49 (m, 4H), 0.86 (s, 9H), 0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 160.2$, 148.5, 136.6, 123.7, 121.3, 70.8, 63.2, 43.5, 33.6, 29.0, 26.0 (3C), 18.3, -5.0, -5.4; IR (neat): $\tilde{\nu} = 3392$ (broad), 3068, 2953, 2928, 2895, 2857, 1595, 1570, 1473, 1463, 1437, 1388, 1360, 1255, 1097, 836, 776, 662 cm⁻¹; MS (EI): *m/z* (%): 295 (3), 238 (100), 203 (7), 146 (63), 122 (40), 93 (90), 75 (54); HRMS (ESI+.) calcd for (C₁₆H₂₉NO₂Si + Na): 318.18598; found: 318.18574; elemental analysis (%) calcd for C₁₆H₂₉NO₂Si: C 65.05, H 9.89, N 4.74; found: C 64.96, H 9.88, N 4.67.

Compound 4b. A mixture of alcohol 4a (600 mg, 2.03 mmol), mesyl chloride (0.31 mL, 4.06 mmol) and pyridine (1.8 mL) in CH₂Cl₂ (6 mL) was heated in a Teflon-screw-cap Schlenk tube at 80°C for 7 h. All volatile materials were stripped off under high vacuum, the residue was dissolved in *tert*-butyl methyl ether (20 mL), and the organic phase was washed with aq. sat. NaHCO₃ and brine before it was dried over Na₂SO₄ and evaporated. Purification of the crude material by flash chromatography (hexanes/EtOAc, 15/1) afforded product 4b as a yellow oil (279)

mg, 50%). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.52-8.48$ (m, 1H), 7.57 (td, J = 7.8, 1.9 Hz, 1H), 7.21 (d, J = 7.9 Hz, 1H), 7.06 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 6.73 (dt, J = 15.6, 7.0 Hz, 1H), 6.47 (d, J = 15.7 Hz, 1H), 3.65 (t, J = 6.3 Hz, 2H), 2.31 (qd, J = 7.1, 1.4 Hz, 2H), 1.77-1.65 (m, 2H), 0.88 (s, 9H), 0.03 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.0$, 149.4, 136.3, 135.4, 130.1, 121.5, 120.9, 62.5, 32.0, 29.1, 25.9 (3C), 18.3, -5.3 (2C); IR (neat): $\tilde{\nu} = 3004$, 2954, 2929, 2894, 2857, 1654, 1564, 1471, 1431, 1388, 1361, 1255, 1099, 971, 835, 776, 662 cm⁻¹; MS (EI): m/z (%): 277 (2), 262 (4), 220 (100), 204 (17); HRMS (EI): calcd for C₁₆H₂₇NOSi: 277.18620; found 277.18578; elemental analysis (%) calcd for C₁₆H₂₇NOSi: C 69.26, H 9.81, N 5.05, found: C 69.38, H 9.74, N 4.97.

Compound 4. HCl (5% w/w in EtOH, 1 mL) was added via syringe to a solution of 4b (284 mg, 1.03 mmol) in EtOH (10 mL) and the resulting solution was stirred for 90 min. The solvent was evaporated, the crude material was diluted with Et₂O (20 mL), the organic phase was washed with sat. aq. NaHCO₃, the aqueous layer was re-extracted Et₂O (2 x 10 mL), and the combined organic phases were dried over Na₂SO₄, filtered and evaporated. The resulting crude material was used in the next step without further purification.


A solution of DMSO (185 μ L, 2.6 mmol) in CH₂Cl₂ (0.3 mL) was added via canula to a solution of (COCl)₂ (113 μ L, 1.3 mmol) in CH₂Cl₂ (3 mL) at -78°C. After 10 min, a solution of the crude alcohol obtained above in CH₂Cl₂ (1 mL) was introduced and the resulting mixture was stirred for 15 min at this temperature. Et₃N (0.7 mL, 5 mmol) was then rapidly added and stirring continued for 30 min at ambient temperature before the reaction was

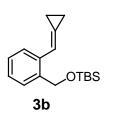
¹ Kang, E. J.; Cho, E. J.; Ji, M. K.; Young, E. Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J.-S.; Kim, H.-J.; Lee, S.-G.; Lah, M. S.; Lee, E. *J. Org. Chem.* **2005**, *70*, 6321-6329.

quenched with sat. aq. NaHCO₃ (5 mL). The aqueous layer was extracted with CH_2Cl_2 (2 x 10 mL), and the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and evaporated.

A solution of the resulting crude aldehyde 4c in THF (2 mL) was added to a refluxing suspension of the freshly prepared ylide derived from 3-(bromopropyl)triphenylphosphonium bromide (511 mg, 1.1 mmol) and t-BuOK (246 mg, 2.2 mmol) in refluxing THF $(11 \text{ mL})^2$ and reflux was continued for 14 h. For work up, the mixture was allowed to reach ambient temperature before it was diluted with tert-butyl methyl ether (20 mL) and washed with water (20 mL). The aqueous layer was extracted with *tert*-butyl methyl ether (3 x 10 mL), the combined organic phases were dried over Na₂SO₄, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10/1) to give product 4 as a pale yellow oil (100 mg, 54%). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.50$ (d, J = 4.9 Hz, 1H), 7.57 (td, *J* = 7.7, 1.8 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.06 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 6.78-6.75 (m, 1H), 6.48 (d, J = 16.8 Hz, 1H), 5.85-5.76 (m, 1H), 2.47-2.30 (m, 4H), 1.02 (s, 4H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.1$, 149.4, 136.3, 135.4, 130.1, 121.8, 121.5, 120.9, 117.2, 32.6, 31.2, 2.1, 2.0; IR (neat): $\tilde{v} = 3049$, 3002, 2978, 2927, 2844, 1653, 1585, 1564, 1469, 1430, 971, 756 cm⁻¹; MS (EI): *m/z* (%): 185 (10), 184 (41), 170 (19), 157 (22), 156 (24), 144 (31), 143 (11), 131 (17), 130 (32), 118 (100), 117 (68); HRMS (CI, *i*-butane) calcd for $(C_{13}H_{15}N + H)$: 186.12828; found: 186.12803; elemental analysis (%) calcd for $C_{13}H_{15}N$: C 84.28, H 8.16, N 7.56; found: C 84.15, H 8.08, N 7.64.

Representative Sequence: Preparation of Compounds 3 and 11

a) TBSCl, NaH, THF; b) (COCl)₂, DMSO, Et₃N, CH₂Cl₂; c) 3-(bromopropyl)triphenylphosphonium bromide, *t*-BuOK, THF reflux; d) TBAF, THF; e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂; f) (i) 2-methylpyridine, *n*-BuLi, THF; (ii) MsCl, pyridine, CH₂Cl₂, 80°C.


Compound 3a. Commercially available 1,2-bis(hydroxymethyl)benzene (1.38 g, 10 mmol) was added in portions to a vigorously stirred suspension of NaH (240 mg, 10 mmol) in THF (30 mL) at 0°C. After stirring for 16 h, TBSCl (1.5 g, 10 mmol) was added in portions and stirring was continued for 1 h at ambient temperature. A standard extractive work up followed by flash chromatography (hexanes/EtOAc, 10/1) gave compound 3a as a colorless oil (2.42 g, 96%).¹H NMR (300 MHz, CDCl₃): δ = 7.39-7.33 (m, 1H), 7.32-

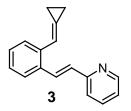
7.25 (m, 3H), 4.79 (s, 2H), 4.66 (d, J = 6.4 Hz, 2H), 3.20 (t, J = 6.4 Hz, 1H, -OH), 0.90 (s, 9H), 0.11 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 138.8$, 138.6, 126.4, 128.7, 128.3, 127.9, 64.7, 63.9, 25.9 (3C), 18.2, -5.3 (2C); IR (neat): $\tilde{\nu} = 3372$ (br), 3069, 3025, 2955, 2929, 2884, 2857, 1606, 1471, 1462, 1389, 1361, 1255, 1079, 1041, 836, 776, 746 cm⁻¹; MS (EI) m/z (%) 195 (60), 119 (23), 75 (100), 57 (11); HRMS (ESI+): calcd for (C₁₄H₂₄O₂Si + Na):

² Phosphonium bromide and *t*-BuOK were mixed in THF at ambient temperature and the resulting mixture was refluxed for 2 h to give a suspension of the required ylide.

275.14378; found: 275.14365; elemental analysis (%) calcd for $C_{14}H_{24}O_2Si$: C 66.61, H 9.58; found: C 66.73, H 9.59.

Compound 3b. A solution of DMSO (0.73 mL, 10.3 mmol) in CH₂Cl₂ (1 mL) was added to a

solution of $(COCl)_2$ (0.45 mL, 5.15 mmol) in CH₂Cl₂ (12 mL) at -78°C. After stirring for 10 min at this temperature, a solution of compound **3a** (1.0 g, 3.97 mmol) in CH₂Cl₂ (4 mL) was introduced and stirring was continued for 15 min at that temperature. Et₃N (2.8 mL, 20 mmol) was then rapidly added via syringe and the mixture was stirred for 30 min at ambient temperature before it was poured into aq. sat. NaHCO₃ (10 mL). The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL), the combined


organic layers were washed, dried over Na_2SO_4 , filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20/1) to give the corresponding aldehyde as a yellow oil (939 mg) which was used without further purification.

A solution of this crude material in THF (5 mL) and added to a refluxing suspension of the ylide prepared from (3-bromopropyl)triphenylphosphonium bromide (1.9 g, 1.1 mmol) and *t*–BuOK (269 mg, 2.4 mmol) in THF (25 mL).² Reflux was continued for 14 h before the mixture was allowed to reach ambient temperature. A standard extractive work up followed by flash chromatography (hexanes) afforded compound **3b** as a pale yellow oil (595 mg, 58% over two steps). ¹H NMR (300 MHz, CDCl₃): δ = 7.74-7.70 (m, 1H), 7.45-7.40 (m, 1H), 7.23-7.18 (m, 2H), 6.94-6.90 (m, 1H), 4.84 (s, 2H), 1.43-1.35 (m, 2H), 1.20-1.13 (m, 2H), 0.92 (s, 9H), 0.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ = 137.6, 135.4, 127.0, 126.9, 126.6, 125.9, 125.6, 114.7, 63.3, 26.0 (3C), 18.4, 4.2, 1.0, -5.2 (2C); IR (neat): $\tilde{\nu}$ = 3068, 3049, 3032, 2955, 2928, 2884, 2856, 1601, 1471, 1462, 1388, 1361, 1254, 1083, 1046, 836, 776, 750 cm⁻¹; MS (EI): *m*/*z* (%): 274 (10), 217 (51), 143 (66), 128 (43), 75 (100); HRMS (EI): calcd for C₁₇H₂₆OSi: 274.17529; found: 274.17556; elemental analysis (%) calcd for C₁₇H₂₆OSi: C 74.39, H 9.55; found: C 74.28, H 9.48.

Compound 11. A solution of compound **3b** (1.1 g, 4.02 mmol) and TBAF (1 M in THF, 4 mL) was stirred for 1 h at ambient temperature. For work up, the mixture was partitioned between Et_2O (10 mL) and sat. aq. NH₄Cl (10 mL), the aqueous layer was extracted with Et_2O (2 x 10 mL), the combined organic phases were washed with brine, dried over Na₂SO₄, filtered and evaporated, and the residue was rapidly passed through a short pad of silica (hexanes/Et₂O,

 $10/1 \rightarrow 3/1$). An aliquot of the resulting alcohol (143.6 mg, 0.9 mmol) was dissolved in CH₂Cl₂ (1 mL) and this solution was added to a cooled $(-78^{\circ}C)$ solution of DMSO (140 mg, 1.8 mmol) and (COCl)₂ (85 μ L, 1.0 mmol) in CH₂Cl₂ (4 mL). The resulting mixture was stirred for 15 min at -78°C before Et₃N (0.56 mL, 4.0 mmol) was introduced. Stirring was continued for 30 min at ambient temperature before the reaction was quenched with sat. aq. NaHCO₃ (5 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL), the combined organic phases were dried over Na₂SO₄ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 5/1) to give aldehyde **11** as a colorless oil (112 mg, 79%) over two steps). ¹H NMR (300 MHz, CD₂Cl₂): $\delta = 10.31$ (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.81 (dd, J = 7.7, 1.5 Hz, 1H), 7.68 (quint., J = 2.0 Hz, 1H), 7.56 (td, J = 7.7, 1.4 Hz, 1H), 7.38 (td, J = 7.5, 1.1 Hz, 1H), 1.49-1.39 (m, 2H), 1.33-1.22 (m, 2H); ¹³C NMR (75 MHz, CD_2Cl_2 : $\delta = 192.9, 140.4, 133.7, 132.7, 131.7, 130.9, 127.9, 127.2, 114.3, 4.7, 1.8; IR (neat):$ $\tilde{v} = 3066, 2977, 2838, 2735, 1688, 1596, 1566, 1483, 1450, 1408, 1296, 1208, 1184, 1159,$ 975, 928, 868, 802, 791, 749 cm⁻¹; MS (EI): m/z (rel. intensity): 158 (60), 129 (100), 118 (31), 115 (40), 102 (16), 89 (11), 77 (10); HRMS (EI) calcd for $C_{11}H_{10}O$: 158.07316; found: 158.07306.

Compound 3. The alkylidenation reaction was performed as described for the preparation of

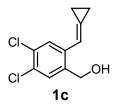
CI

compound 4a, providing pyridine 3 as a yellow oil (388 mg, 42% over two steps). ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 8.61-8.57$ (m, 1H), 8.10 (d, J = 15.8 Hz, 1H), 7.76 (dd, J = 7.6, 1.6 Hz, 1H), 7.70 (td, J = 7.7, 1.8 Hz, 1H), 7.66 (dd, J = 7.7, 1.8 Hz, 1H), 7.4 (d, J = 7.9 Hz, 1H), 7.32-7.23 (m, 2H), 7.21 (quint., J = 2.0 Hz, 1H), 7.18 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.08 (d, J = 15.8 Hz, 1H), 1.47-1.39 (m, 2H), 1.28-1.21 (m, 2H); ¹³C NMR (75 MHz, CD₂Cl₂): $\delta = 154.4$, 148.2, 135.7, 133.2, 129.5,

12.3, 127.0, 126.0, 125.83 (2C), 125.81, 125.2, 121.1, 121.0, 114.2, 2.9, 0.0; IR (neat): $\tilde{\nu} =$ 3054, 3002, 2974, 1777, 1713, 1680, 1584, 1480, 1469, 1430, 970, 773, 740 cm⁻¹; MS (EI): m/z (%): 233 (29), 232 (100), 218 (35), 217 (36), 205 (12), 204 (15); HRMS (EI): calcd for C₁₇H₁₅N: 233.12045; found: 233.12026; elemental analysis (%) calcd for C₁₇H₁₅N: C 87.52, H 6.48, N 6.00; found: C 87.43, H 6.35, N 5.88.

The deuterated compound **3-D** was obtained analogously; it showed the following spectroscopic properties: ¹H NMR (300 MHz, CDCl₃): $\delta = 8.59$ (ddd, J = 5.0, 1.8, 0.8 Hz, 1H), 8.06 (d, J = 15.8 Hz, 0.07H), 7.72 (dd, J = 7.5, 1.6 Hz, 1H), 7.66 (td, J = 7.7, 1.8 Hz, 1H), 7.62 (dd, J = 7.7, 1.8 Hz, 1H), 7.37 (dt, J = 7.9, 0.9 Hz, 1H), 7.31-7.17 (m, 3H), 7.12 $(ddd, J = 7.5, 4.9, 1.1 \text{ Hz}, 1\text{H}), 7.05-7.01 \text{ (m, 1H)}, 1.43-1.35 \text{ (m, 2H)}, 1.24-1.17 \text{ (m, 2H)}; {}^{13}\text{C}$ NMR (75 MHz, CDCl₃): $\delta = 155.8$, 149.6, 136.7, 136.5, 134.3, 130.1 (t, J = 23 Hz), 129.6, 128.0, 126.8 (2C), 126.7, 126.4, 122.00, 121.95, 115.4, 3.1, 1.2; MS (EI): m/z (%): 234 (33), 233 (100), 219 (26), 218 (38), 206 (12), 205 (12); HRMS (EI): calcd for $(C_{17}H_{14}DN)$: 234.126727; found: 234.126460.

Unless stated otherwise, all other compounds were prepared analogously. Their analytical and spectroscopic date are compiled below:


Compound 1a. White solid (510 mg, 77%). m.p.: 52-54°C; ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.45 (s, 1H), 7.41 (s, 1H), 4.69 (s, 2H), 4.66 (d, J = 5.7 Hz, 2H), 2.78-2.69 (m, 1H, -OH), 0.91 (s, 9H), 0.15 (s, 6H); ¹³C NMR (75 MHz, ЮH OTBS $CDCl_3$): $\delta = 139.0, 138.6, 131.5, 131.4, 130.5, 129.9, 63.0, 62.4, 25.8$ (3C), 18.2, -5.3 (2C); IR (neat): $\tilde{v} = 3354$ (br), 2955, 2930, 2884, 1a 2858, 1596, 1559, 1471, 1387, 1362, 1257, 1097, 1052, 1007, 937, 888, 838, 776, 681 cm⁻¹; MS (EI): m/z (%): 265 (18), 263 (26), 75 (100);

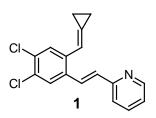
HRMS (ESI+): calcd for ($C_{14}H_{22}Cl_2O_2Si + Na$): 343.06584; found 343.06610; elemental analysis (%) calcd for C₁₄H₂₂Cl₂O₂Si: C 52.33, H 6.90; found: C 52.41, H 6.83.

Compound 1b. White solid (228 mg, 44 % over two steps). m.p.: 90-94°C; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.75$ (s, 1H), 7.52 (s, 1H), 6.75 (quint., J = 2.0 Hz, 1H), 4.75 (s, 2H), 1.41-1.32 (m, 2H), 1.22-1.13 (m, 2H), 0.93 (s, 9H), 0.10 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 137.7, 134.9, 130.6,$ CI 130.2, 128.5, 128.0, 127.3, 112.7, 62.1, 25.9 (3C), 18.3, 4.2, 1.1, -5.3 OTBS (2C); IR (KBr): $\tilde{\nu} = 3073, 3051, 1760, 1739, 1554, 1485, 1471, 1456,$ CI 1385, 1366, 1261, 1090, 936, 860, 839, 779, 678 cm⁻¹; MS (EI): m/z1b (%): 342 (14), 307 (25), 285 (23), 211 (40), 176 (22), 141 (28), 75

(100); HRMS (ESI+): calcd for $(C_{17}H_{24}Cl_2OSi + Na)$: 365.08657; found 365.08671; elemental analysis (%) calcd for C₁₇H₂₄Cl₂OSi: C 59.47, H 7.05; found: C 59.30, H 6.94.

Compound 1c. A solution of compound **1b** (930 mg, 2.7 mmol) and TBAF (1 M in THF, 2.7

CI

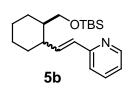

mL) in THF (15 mL) was stirred for 1 h before the reaction was quenched with sat. aq. NH₄Cl. A standard extractive work up followed by flash chromatographic purification of the crude material gave product 4c as a white solid (466 mg, 75%). m.p. 112-115°C; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.79$ (s, 1H), 7.44 (s, 1H), 6.85 (quint., J = 2.0 Hz, 1H), 4.72 (s, 2H), 1.45-1.37 (m, 2H), 1.24-1.15 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 136.9, 135.9, 131.6, 130.2, 129.6, 128.6, 127.8, 112.6, 62.2, 4.2, 1.1; IR

(KBr): $\tilde{\nu} = 3315, 3320, 3040, 2974, 2920, 1765, 1551, 1486, 1471, 1449, 1423, 1409, 1378,$ 1225, 1134, 1049, 986, 891, 678 cm⁻¹; MS (EI): m/z (%): 228 (7), 199 (37), 197 (56), 195 (32), 193 (100), 188 (11), 186 (17), 177 (10), 175 (30), 162 (37). HRMS (EI) calcd for $C_{11}H_{10}Cl_2O$: 228.01087; found: 228.01057; elemental analysis (%) calcd for $C_{11}H_{10}Cl_2O$: C 57.67, H 4.40; found: C 57.82, H 4.47.

Compound 12. White solid (329 mg, 78%). m.p.: 67-70°C. ¹H NMR (300 MHz, CDCl₃): $\delta =$ 10.21 (s, 1H), 7.87 (s, 1H), 7.85 (s, 1H), 7.54-7.50 (m, 1H), 1.47-1.46 (m, 2H), 1.32-1.22 (m, 2H); ¹³C NMR (75 MHz, CDCl₃); $\delta = 190.0$, 139.5, 138.2, 132.9, 132.4, 131.4, 131.2, 129.3, 112.1, 4.6, 1.9; IR (neat): $\tilde{v} = 3076, 3026, 2977, 2890, 1733, 1678, 1574, 1458, 1412, 1372, 1212,$ ö 12 1134, 977, 943, 922, 901, 878, 847 cm⁻¹; MS (EI) *m/z* (rel. intensity) 228

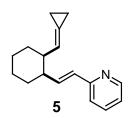
(31), 226 (48), 199 (19), 197 (26), 193 (32), 191 (100), 163 (54), 128 (74); HRMS (EI) calcd for $C_{11}H_8Cl_2O$: 225.99522; found: 225.99529; elemental analysis calcd for $C_{11}H_8Cl_2O$: C 58.18, H 3.55; found: C 58.06, H 3.51.

Compound 1. White solid (96 mg, 53% over two steps). m.p. 111-114°C; ¹H NMR (300

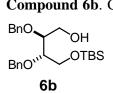

MHz, CDCl₃): $\delta = 8.59$ (d, J = 4.8 Hz, 1H), 7.93 (d, J = 15.8 Hz, 1H), 7.77 (s, 1H), 7.67 (s, 1H), 7.65 (td, J = 7.8, 1.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.15 (ddd, J = 7.4, 4.9, 1.1 Hz, 1H), 7.07 (quint.,)J = 2.0 Hz, 1H), 6.99 (d, J = 15.8 Hz, 1H), 1.45-1.36 (m, 2H), 1.25-1.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃); $\delta = 154.8$, 149.6, 136.4, 136.3, 134.2, 131.6, 130.9, 130.3, 128.7, 128.1 (2C), 127.8, 122.5, 122.3, 113.5, 3.9, 1.2; IR (KBr): $\tilde{v} = 3046, 3022, 2973, 1735, 1630,$

1582, 1563, 1475, 1465, 1431, 1230, 1139, 954, 883, 764 cm⁻¹; MS (EI): *m/z* (%): 303 (22), 302 (67), 301 (36), 300 (100), 288 (18), 287 (13), 286 (28), 285 (14); HRMS (EI): calcd for C₁₇H₁₃Cl₂N: 301.04251; found: 301.04242; elemental analysis (%) calcd for C₁₇H₁₃Cl₂N: C 67.38, H 4.30, N 4.70; found: C 67.57, H 4.34, N 4.63.

Compound 5a. Colorless oil (1.56 g, 87%). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.78$ (dd, J =10.2, 8.5 Hz, 1H), 3.61 (ddd, J = 11.3, 8.5, 4.3 Hz, 1H), 3.52 (dd, J = 10.3, ЮH 3.3 Hz, 1H), 3.51-3.33 (m, 2H), 1.96-1.81 (m, 2H), 1.61-1.23 (m, 8H), 0.87 OTBS (s, 9H), 0.05 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 65.0, 64.5, 40.7,$


39.1, 28.0, 26.6, 25.8 (3C), 24.3, 23.8, 18.1, -5.6 (2C); IR (neat) $\tilde{v} = 3374$, 5a 2927, 2857, 1472, 1463, 1450, 1389, 1361, 1255, 1086, 837, 775 cm⁻¹; MS (EI): m/z (%): 201 (5), 109 (100), 105 (68), 75 (88); HRMS (ESI+): calcd for ($C_{14}H_{30}O_2Si +$ Na): 281.19073; found: 281.19083; elemental analysis (%) calcd for C₁₄H₃₀O₂Si: C 65.06, H 11.70; found: C 64.89, H 11.75.

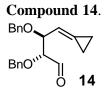
Compound 5b. Colorless oil (1.23 g, 64%, mixture of diastereomers \approx 6:1). ¹H NMR (300


MHz, CDCl₃, major isomer): $\delta = 8.51$ (d, J = 4.3 Hz, 1H), 7.57 (td, J =7.7, 1.8 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.06 (ddd, J = 7.5, 5.0, 1.1 Hz, 1H), 6.56 (dd, J = 15.8, 8.9 Hz, 1H), 6.41 (d, J = 15.5 Hz, 1H), 3.56 (dd, J = 9.9, 3.3 Hz, 1H), 3.39 (dd, J = 9.9, 6.3 Hz, 1H), 2.13-1.99 (m, 1H), 1.91-1.82 (m, 1H), 1.79-1.61 (m, 3H), 1.42-1.06 (m, 5H), 0.85 (s, 9H), -0.04 (s, 6H); ¹³C NMR (75MHz, CDCl₃): $\delta = 156.1$, 149.4, 139.9, 136.3, 129.3, 121.5, 121.0, 66.3, 44.3, 43.5, 33.3, 29.3, 25.6 (3C), 18.1, -5.4 (2C); characteristic signals for the minor diastereomer: $\delta = 6.91$ (dd, J = 15.5, 8.9 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H); IR (neat): $\tilde{v} = 2926, 2854, 1651, 1585, 1564, 1470, 1430, 1251, 1110, 1080, 1004, 972, 833, 772 \text{ cm}^{-1};$ MS (EI): m/z (%): 331 (2), 274 (100); HRMS (ESI+): calcd for ($C_{20}H_{33}NOSi + Na$): 354.22236; found: 354.22246.

Compound 5. Yellow oil; the pure cis isomer was obtained by HPLC separation (253 mg,

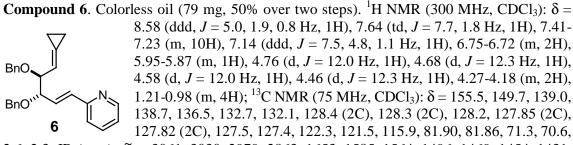
31%). ¹H NMR (300 MHz, CD₂Cl₂): $\delta = 8.46$ (ddd, J = 4.6, 1.6, 0.8 Hz, 1H), 7.57 (td, J = 7.7, 1.9 Hz, 1H), 7.19 (dt, J = 7.9, 1.0 Hz, 1H), 7.05 (ddd, J = 7.5, 4.8 Hz, 1.1 Hz, 1H), 6.61 (dd, J = 15.7, 7.7 Hz, 1H), 6.39 (d, J = 15.8 Hz, 1H), 5.72-5.64 (m, 1H), 2.23-2.03 (m, 1H), 1.94-1.69 (m, 4 H), 1.44-1.22 (m, 4H), 1.10-0.91 (m, 4H); ¹³C NMR (75 MHz, CD_2Cl_2): $\delta = 156.7, 149.7, 140.8, 136.5, 129.2, 123.0, 121.7, 121.1, 121.$ 120.9, 47.1, 45.9, 33.3, 33.2, 26.3, 26.2, 2.6, 1.9; IR (neat): $\tilde{\nu} = 3048$,

3001, 2976, 2924, 2851, 1651, 1586, 1563, 1469, 1446, 1430, 971, 762 cm⁻¹; MS (EI): m/z(%): 239 (26), 238 (61), 224 (26), 210 (36), 196 (29), 182 (25), 170 (18), 157 (33), 144 (46), 130 (100), 117 (53), 106 (30), 93 (77), 79 (33); HRMS (ESI+): calcd for $(C_{17}H_{22}N)$: 240.17467; found: 240.174765.

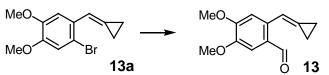


Compound 6b. Colorless oil (1.18 g, 90%). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42-7.25$ (m, 10H), 4.74 (d, J = 11.7 Hz, 1H), 4.71-4.60 (m, 3H), 3.87.3.73 (m, 2H), 3.72-3-61 (m, 2H), 0.93 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 138.54, 138.52, 128.6$ (2C), 128.5 (2C), 128.12 (2C), 128.07 (2C), 127.89, 127.86, 80.4, 79.5, 73.2, 73.0, 62.5, 61.7, 26.0 (3C), 18.4, -5.3 (2C); IR (neat): $\tilde{\nu} = 3451, 3089, 3064, 3031, 2953, 2928, 2883, 2857,$

1606, 1496, 1471, 1462, 1454, 1255, 1094, 1028, 1006, 837, 777, 735, 698 cm⁻¹; MS (EI): *m/z*. (%) 219 (6), 181 (29), 91 (100); HRMS (ESI+): calcd for $(C_{24}H_{36}O_4Si + Na)$: 439.22751; found 439.22725; elemental analysis (%) calcd for $C_{24}H_{36}O_4Si$: C 69.19, H 8.71; found: C 66.51, H 8.25.


Compound 6c. Dess-Martin periodinane (1.4 g, 3.29 mmol) was added to a solution of alcohol **6b** (1.14 g, 2.74 mmol) in CH₂Cl₂ (15 mL). After stirring for 40 min, the reaction was quenched with sat. aq. Na₂S₂O₃ and sat. aq. NaHCO₃, the aqueous phase was extracted with tert-butyl methyl ether, the combined BnO organic layers were washed with brine, dried over Na₂SO₄, filtered and evaporated, and the residue rapidly passed through a short pad of silica gel. BnO` The resulting crude aldehyde was subjected to olefination, using (3-6c

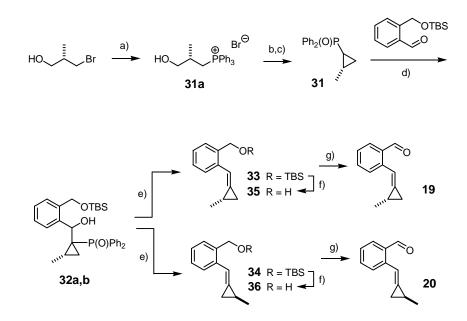
bromopropyl)triphenylphosphonium bromide (1.4 g, 3 mmol) and t-BuOK (674 mg, 6 mmol) in THF (20 mL). The crude material was desilylated with TBAF (1.28 mL, 1.28 mmol (1 M in THF) in THF (9 mL). A standard aqueous work up followed by purification via flash chromatography (hexanes/EtOAc, $10/1 \rightarrow 7/1$) afforded product **6c** as a pale yellow oil (215 mg, 24% over three steps). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42-7.25$ (m, 10H), 5.86 (dquint, J = 10.6, 1.9 Hz, 1H), 4.86 (d, J = 11.6 Hz, 1H), 4.67 (d, J = 11.6 Hz, 1H), 4.65 (d, *J* = 11.9 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 4.26 (dd, *J* = 8.7, 6.0 Hz, 1H), 3.81-3-66 (m, 2H), 3.64-3.53 (m, 1H), 2.23-2.14 (m, 1H, -OH), 1.31-1.03 (m, 4H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 138.64, 138.6, 128.6, 128.5 (2C), 128.4 (2C), 128.0 (2C), 127.88 (2C), 128.0 (2C), 127.88 (2C), 128.0 (2$ 127.85, 127.7, 115.6, 81.5, 80.1, 73.6, 70.5, 62.4, 2.7, 2.5; IR (neat): $\tilde{v} = 3451, 3087, 3062,$ 3030, 2989, 2923, 2870, 1605, 1496, 1454, 1089, 1055, 1028, 736, 698; MS (EI): m/z (%): 173 (7), 91 (100); HRMS (ESI+): calcd for $(C_{21}H_{24}O_3 + Na)$: 347.16177; found: 347.16152; elemental analysis (%) calcd for C₂₁H₂₄O₃: C 77.75, H 7.46; found: C 77.63, H 7.35.


Compound 14. Alcohol 6c (52 mg, 0.16 mmol) in MeCN (1 mL) was added via canula to a suspension of MS 4Å (100 mg) in MeCN (4 mL). PDC (120 mg, 0.32 mmol) was then introduced in one portion and the suspension was stirred for 4 h at ambient temperature. For work up, all insoluble materials were filtered off through a short pad of Celite, the filtrate was evaporated and the product purified by flash chromatography (hexanes/EtOAc, 4/1) to give aldehyde 14

(42 mg, 81%), which was immediately used in the rearrangement step because of its low stability.

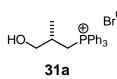
2.6, 2.3; IR (neat): $\tilde{v} = 3061, 3030, 2979, 2863, 1653, 1585, 1564, 1496, 1469, 1454, 1431,$ 1112, 1090, 1067, 1028, 976, 737, 697 cm⁻¹; MS (EI): *m/z* (%): 306 (17), 224 (18), 173 (5), 91 (100); HRMS (ESI+): calcd for (C₂₇H₂₇NO₂ + Na): 420.19339; found 420.19324.

Compound 13. t-BuLi (1.7 M in pentane, 0.38 mL, 0.65 mmol) was slowly added via syringe



to a solution of aryl bromide $13a^3$ in THF (6 mL) at -78°C. After stirring for 3 h at -78°C, DMF (69 µL, 0.89 mmol) was introduced and stirring continued for 1h. The reaction was

quenched with water (5 mL), the aqueous phase was extracted with *tert*-butyl methyl ether (3 x 5 mL), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $15/1 \rightarrow 4/1$) to give aldehyde **13** as a yellow solid (85 mg, 66%). m.p.: 92-94°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.28$ (s, 1H), 7.51 (quint., J = 2.0 Hz, 1H), 7.33 (s, 1H), 7.27 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 1.45-1-41 (m, 2H), 1.34-1.28 (m, 2H); 13 C NMR (75 MHz, CDCl₃): $\delta =$ 190.0, 153.6, 148.3, 136.0, 129.0, 125.7, 113.0, 110.2, 109.0, 56.0, 55.9, 4.2, 1.6; IR (neat): $\tilde{v} = 2971, 2936, 2854, 1665, 1588, 1502, 1463, 1451, 1424, 1364, 1322, 1269, 1259, 1212,$ 1181, 1104, 1000, 872, 743 cm⁻¹; MS (EI): m/z (%): 218 (100), 203 (19), 189 (42), 187 (26), 175 (23), 159 (15), 145 (24), 132 (12), 115 (28), 103 (15), 91 (12), 77 (21); HRMS (EI) calcd for C₁₃H₁₄O₃: 218.09429; found: 218.09404.


³ Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6303-6307.

Preparation of Compounds 19 and 20

a) PPh₃, toluene, reflux, 72h. b) NaOH, water, reflux, 2h. c) 1) MsCl, DMAP, Et₃N, CH₂Cl₂, 0°C; 2) NaHMDS, THF, -50°C \rightarrow r.t.; d) (i) *n*-Buli, THF, - 78°C; (ii) 2-(*tert*-butyldimethylsilyloxymethyl)benzaldehyde, -78°C, then separation of diastereomers. e) NaH, DMF/THF, 50°C; f) TBAF, THF. g) (COCl₂, DMSO, Et₃N, CH₂Cl₂.

Compound 31a. A solution of commercially available (S)-(+)-3-bromo-2-methyl-1-propanol

(2 mL, 19.1 mmol) and Ph₃P (5 g, 19.1 mmol) in toluene (20 mL) was stirred under reflux for 72 h. After reaching ambient temperature, the white precipitate was filtered off, carefully rinsed with toluene, and dried in vacuo to give the phosphonium salt **31a** as a white solid (5.1 g, 64%). m.p.: 177-179°C; $[\alpha]_D^{20} = -6.5$ (c = 0.45, CH₂Cl₂); ¹H NMR (300

MHz, CD₂Cl₂): δ = 7.96-7.76 (m, 9H), 7.75-7.64 (m, 6H), 4.63 (ddd, *J* = 16.1, 14.8, 2.3 Hz, 1H), 3.59 (dt, *J* = 11.5, 4.2 Hz, 1H), 3.48 (dd, *J* = 11.3, 8.4 Hz, 1H), 2.65 (ddd, *J* = 16.1, 12.1, 9.3 Hz, 1H), 2.30-2.04 (m, 1H), 0.58 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 137.3 (d, *J* = 3 Hz, 3C), 134.1 (d, *J* = 10 Hz, 6C), 130.8 (d, *J* = 13 Hz, 6C), 120.0 (d, *J* = 86 Hz, 3C), 66.7 (d, *J* = 13 Hz), 32.2 (d, *J* = 4 Hz), 26.6 (d, *J* = 51 Hz), 17.8 (d, *J* = 2 Hz); IR (neat): \tilde{V} = 3313 (br), 2926, 2862, 1586, 1485, 1435, 1109, 161, 1039, 996, 812, 750, 717, 691 cm⁻¹; MS (EI): *m*/*z* (%): 262 (100), 257 (82), 201 (35), 183 (60), 108 (25); HRMS (ESI+) calcd for (C₂₂H₂₄OP + Na): 335.15593; found: 335.15619.

Compound 31. aq. NaOH (20% *w/w*, 110 mL) was added to a solution of phosphonium bromide **31a** (5.1 g, 12.22 mmol) in water (27 mL) and the resulting mixture was stirred under reflux for 2 h. For work up, the mixture was allowed to cool before it was extracted with CH₂Cl₂ (3 x 40 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and evaporated to give a colorless oil which was dissolved in CH₂Cl₂ (50 mL). DMAP (149 mg, 1.22

mmol) and Et_3N (1.87 mL, 13.42 mmol) were added before mesyl chloride (0.94 mL, 12.2 mmol) was slowly introduced at 0°C. The resulting mixture was stirred for 1 h before the reaction was quenched with aq. sat. NH₄Cl. A standard extractive work up gave the crude

mesylate which was dissolved in THF (17 mL) and added via syringe pump to a cold solution of NaHMDS (2.47 g, 13.42 mmol) in THF (600 mL) over a period of 2.5 h at such as rate as to maintain the internal temperature between -50°C and -35°C. Once the addition was complete, the mixture was allowed to stir for an additional 2 h at 0-5°C. The reaction was quenched with aq. sat. NH₄Cl (20 mL), the aqueous phase was extracted with tert-butyl methyl ether (3 x 30 mL), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1/10) to give product 31 as a white solid (1.43 g, 46% overall). m.p. 138-140°C; ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.79-7.65 (m, 4H), 7.59-7.41 (m, 6H), 1.51-1.32 (m, 1H), 1.26-0.97 (m, 2H), 1.21 (d, J = 5.8 Hz, 3H), 0.79-0.69 (m, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): $\delta = 136.3$ (d, J = 115 Hz), 134.7 (d, J = 100 Hz), 131.85 (d, J = 2 Hz), 131.85 (d, J = 100 Hz), 13 2 Hz), 131.3 (d, J = 9 Hz, 2C), 131.2 (d, J = 9 Hz, 2C), 128.84 (d, J = 11 Hz, 2C), 128.80 (d, J = 12 Hz, 2C), 18.5 (d, *J* = 3 Hz), 15.8 (d, *J* = 105 Hz), 12.0 (d, *J* = 4 Hz), 11.2 (d, *J* = 5 Hz); IR (neat): $\tilde{v} = 3052, 3000, 2959, 2925, 1486, 1438, 1178, 1122, 1110, 992, 919, 858, 718,$ 695 cm^{-1} ; MS (EI): m/z (%): 256 (51), 255 (42), 212 (21), 202 (32), 201 (100), 77 (33); HRMS (EI) calcd for C₁₆H₁₇OP: 256.10171; found: 256.10172.

Compound 35. *n*-BuLi (1.6 M in hexanes, 0.63 mL, 1 mmol) was added dropwise to a solution of compound **31** (256 mg, 1 mmol) in THF (4 mL) at -78°C. After stirring at this temperature for 20 min, a solution of 2-(*tert*-butyldimethylsilyl-oxymethyl)benzaldehyde (250 mg, 1 mmol) in THF (1 mL) was added and stirring was continued for 30 min at that temperature. For work up, the reaction was diluted with *tert*-butyl methyl ether (10 mL) and quenched with water (10 mL), the aqueous phase was extracted with *tert*-butyl methyl ether

(2 x 10 mL), the combined organic layers were dried over Na_2SO_4 , filtered and evaporated, and the residue purified by flash chromatography to give the two diastereomers of adduct **32** in pure form.

NaH (40 mg, 1.67 mmol) was added to a solution of the less polar fraction of 32 (268 mg, 0.53 mmol) in DMF (3.75 mL) and THF (1 mL) and the resulting mixture was stirred at 50°C for 1 h. For work up, the mixture was cooled to 0°C, the reaction was carefully quenched with water (5 mL), the organic phase was extracted with $E_{12}O$ (3 x 5 mL), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and evaporated, and the residue purified by flash chromatography (pentanes/Et₂O, $10/1 \rightarrow 4/1$) to give a first fraction containing product 33 and a second fraction of pure 35. The fraction consisting of silvl ether 33 (44 mg, 0.15 mmol) was dissolved with THF (0.75 mL) and treated with TBAF (1 M in THF, 0.15 mL) for 30 min before it was diluted with Et₂O (5 mL) and washed with sat. aq. NH_4Cl and brine (5 mL each). The organic phase was dried over Na_2SO_4 , filtered and evaporated, and the residue purified by flash chromatography (pentanes/Et₂O, $10/1 \rightarrow 4/1$) to give a second crop of product 35 which was obtained as a white solid (41 mg, 44%). m.p. 47- 50° C; ¹H NMR (600 MHz, CD₂Cl₂): δ = 7.67 (dd, J = 7.8, 0.9 Hz, 1H), 7.34 (ddt, J = 7.5, 0.8, 0.5 Hz, 1H), 7.30 (td, J = 7.5, 1.2 Hz, 1H), 7.21 (td, J = 7.5, 1.3 Hz, 1H), 7.02-6.99 (m, 1H), 4.81-4.76 (m, 2H), 1.81-1.75 (m, 1H), 1.76-1.73 (m, 1H, -OH), 1.37 (td, J = 8.9, 1.8 Hz, 1H), 1.25 (d, J = 6.2 Hz, 3H), 0.84 (ddd, J = 8.7, 5.1, 1.9 Hz, 1H); ¹³C NMR (150 MHz, CD₂Cl₂): δ = 137.6, 136.5, 133.8, 128.8, 128.3, 127.0, 126.7, 115.1, 63.7, 17.4, 11.8, 9.2; IR (neat): $\tilde{\nu}$ = 3238, 3070, 3026, 2993, 2950, 2923, 2893, 2863, 1488, 1449, 1225, 1188, 993, 939, 743 cm⁻ ¹: MS (EI): *m/z* (%): 159 (10), 143 (100), 128 (60), 115 (31), 91 (21), 77 (14); HRMS (EI) calcd for $(C_{12}H_{14}O + H)$: 175.11229; found: 172.11207.

Compound 36. Obtained of the more polar fraction of **32** as described above. White solid (70 mg, 55%). m.p. 50-52°C; $[\alpha]_D^{20} = -14$ (c = 0.25, CH₂Cl₂) ¹H NMR (300 ЮH MHz, CD₂Cl₂): δ = 7.82 (dd, J = 7.7, 1.1 Hz, 1H), 7.35 (dd, J = 7.3, 1.3 Hz,

1H), 7.32-7.17 (m, 2H), 7.11-7.05 (m, 1H), 4.78 (s, 2H), 1.86-1.58 (m, 1H, -OH), 1.66-1.48 (m, 2H), 1.21 (d, J = 5.7 Hz, 3H), 1.08-1.00 (m, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 138.2, 137.2, 134.3, 129.1, 128.5, 127.5, 126.9, 114.3, 65.0, 18.4, 12.4, 9.0; IR (neat): $\tilde{\nu} = 3235$, 3071, 3025, 2993, 2950, 2923, 2893, 2863,

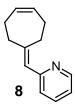
1488, 1448, 1225, 1188, 993, 939, 742 cm⁻¹; MS (EI): m/z (%): 159 (9), 143 (100), 128 (53), 115 (23), 91 (14), 77 (9); HRMS (EI) calcd for (C₁₂H₁₄O + H): 175.11229; found: 172.11218.

Compound 19. Colorless oil (31 mg, 78 %). $[\alpha]_D^{20} = 135$ (c = 0.9, CH₂Cl₂); ¹H NMR (400

MHz, CD₂Cl₂): $\delta = 10.34$ (s, 1H), 7.80 (dd, J = 7.8, 1.6 Hz, 1H), 7.75 (d, J = 7.9Hz, 1H), 7.66-7-63 (m, 1H), 7.56 (tdd, J = 7.4, 1.5, 0.5 Hz, 1H), 7.38 (td, J = 7.5, 0.9 Hz, 1H), 1.84-1.74 (m, 1H), 1.43 (td, J = 9.3, 1.8 Hz, 1H), 1.23 (d, J = 6.2 Hz, 3H), 0.90 (ddd, J = 8.9, 5.4, 2.0 Hz, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): $\delta = 192.8, 140.2, 138.0, 133.8, 132.6, 131.7, 128.0, 127.1, 114.4, 17.2, 12.0,$ 9.6; IR (neat): $\tilde{\nu} = 2957, 2926, 2864, 2732, 1688, 1596, 1566, 1483, 1450,$

1406, 1377, 1209, 1184, 1006, 964, 869, 815, 748 cm⁻¹; MS (EI): *m/z* (%): 172 (28), 157 (55), 143 (92), 128 (100), 118 (32), 115 (48), 102 (15), 89 (17), 77 (16); HRMS (EI) calcd for C₁₂H₁₂O: 172.08881; found: 172.08867.

Compound 20. Pale yellow oil (26 mg, 48%). $[\alpha]_{D}^{20} = -3.5$ (c = 1.25, CH₂Cl₂); ¹H NMR (300

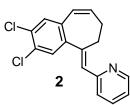


MHz, CD₂Cl₂): δ = 10.33 (s, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.80 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.72-7.67 (m, 1H), 7.55 (td, J = 7.6, 1.1 Hz, 1H), (td, J = 7.2, 1.1 Hz, 1H), 1.68-1.55 (m, 2H), (d, J = 6.1 Hz, 3H), 1.11-0.99 (m, 1H); ¹³C NMR (75 MHz, CD_2Cl_2): $\delta = 192.9, 140.6, 138.1, 133.7, 132.8, 131.5, 127.7, 127.2,$ 113.4, 17.9, 12.2, 9.2; IR (neat): $\tilde{v} = 2959, 2925, 2865, 2736, 1689, 1595,$ 1566, 1483, 1450, 1410, 1377, 1209, 1185, 1006, 964, 869, 812, 754 cm⁻¹; MS

(EI): *m*/*z* (%): 172 (21), 157 (50), 143 (87), 128 (100), 118 (32), 115 (47), 102 (13), 89 (15), 77 (12); HRMS (EI) calcd for C₁₂H₁₂O: 172.08881; found: 172.08894.

C-H-Activation / Cycloisomerization Tandem Reactions

Representative procedure for the pyridine directed, rhodium catalyzed C-H activation/cycloisomerization tandem. Preparation of compound 8. A Teflon-screw

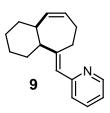

Schlenk tube equipped with a magnetic stir bar was charged with compound 4 (21 mg, 0.1 mmol), RhCl(PPh₃)₃ (4.6 mg, 0.005 mmol), AgSbF₆ (2.6 mg, 0.0075 mmol) and THF (2 mL). The flask was sealed and immersed into a preheated oil bath (120°C bath temperature). After stirring for 6 h at that temperature, the mixture was allowed to cool before it was filtered through a short pad of silica which was carefully rinsed with Et₂O. The combined filtrates

were evaporated and the residue was purified by flash chromatography (hexanes/Et₂O, $20/1 \rightarrow 10/1$) to give product 8 as a colorless oil (13 mg, 62%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.58 \cdot 8.51$ (m, 1H), 7.57 (td, J = 7.7, 1.9 Hz, 1H), 7.14 (d, J = 7.9 Hz, 1H), 7.02 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 6.34 (s, 1H), 5.82-5.67 (m, 2H), 2.88-2.79 (m, 2H), 2.55-2.47 (m, 2H), 2.34-2.22 (m, 4H); 13 C NMR (75 MHz, CDCl₃): $\delta = 157.3$, 150.0, 149.1, 135.7, 130.7, 130.5, 124.2, 123.8, 120.4, 38.2, 31.2, 29.4, 27.0; IR (neat): $\tilde{\nu} = 3012, 2925, 2842,$ 1642, 1585, 1559, 1471, 1427, 1148, 774, 742, 712 cm⁻¹; MS (EI): *m/z* (%): 185 (89), 184 (100), 170 (48), 157 (82), 144 (23), 130 (68), 118 (65), 93 (50), 79 (43). HRMS (EI): calcd

for $C_{13}H_{15}N$: 185.12045; found: 185.12029; elemental analysis (%) calcd for $C_{13}H_{15}N$: C 84.28, H 8.16, N 7.56; found: C 84.86, H 8.25, N 7.45.

The following compounds were prepared analogously. Their analytical and spectral data are compiled below:

Compound 2. White solid (20 mg, 77%). m.p.: 78-79°C. ¹H NMR (300 MHz, CD_2Cl_2): $\delta =$

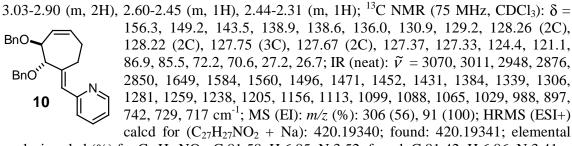

8.62 (ddd, J = 5.0, 1.8, 0.7 Hz, 1H), 7.68 (td, J = 7.6, 1.9 Hz, 1H), 7.49 (s, 1H), 7.30 (s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.14 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 6.58 (s, 1H), 6.28 (dt, J = 12.0, 2.0 Hz, 1H), 6.03 (dt, J = 12.0, 4.5 Hz, 1H), 3.21 (t, J = 6.2 Hz, 2H), 2.76-2.66 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.3$, 149.4, 146.3, 143.6, 136.1, 134.7, 134.5, 132.5, 130.8, 130.1, 128.8, 127.3, 127.2, 124.7, 121.3, 31.7, 28.7; IR (neat): $\tilde{\nu} = 3015, 2959, 2920, 2889, 2826, 1631, 1584, 1560,$

1471, 1424, 1145, 888, 767, 741 cm⁻¹; MS (EI): *m/z* (%): 304 (19), 303 (59), 302 (75), 301 (94), 300 (100), 290 (10), 289 (12), 288 (61), 287 (28), 286 (94). 251 (38), 209 (20), 115 (23); HRMS (EI) calcd for C₁₇H₁₃Cl₂N: 301.04250 found: 301.04251.

Compound 7. Colorless oil (19 mg, 68%). ¹H NMR (600 MHz, CD₂Cl₂): $\delta = 8.61$ (ddd, J =4.8, 1.7, 0.7 Hz, 1H), 7.66 (td, J = 7.7, 1.8 Hz, 1H), 7.41-7.38 (m, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.26-7.18 (m, 3H), 7.13 (ddd, J = 7.5, 4.8, 0.9 Hz, 1H), 6.59 (s, 1H), 6.38 (dt, J = 12.1, 2.1 Hz, 1H), 5.95 (dt, J = 12.1, 4.3Hz, 1H), 3.24 (t, J = 6.2 Hz, 2H), 2.76-2.69 (m, 2H); ¹³C NMR (150 MHz, CD_2Cl_2): $\delta = 157.2, 149.5, 149.1, 144.3, 136.5, 134.7, 133.0, 131.7, 129.6,$ 127.7, 127.5, 127.2, 126.4, 125.0, 121.4, 32.1, 29.4; IR (neat): $\tilde{\nu} = 3057$, 3011, 2962, 2919, 2888, 2852, 2825, 1631, 1585, 1558, 1483, 1471, 1439,

1426, 775 cm⁻¹; MS (EI): *m/z* (%): 233 (79), 232 (86), 218 (100); HRMS (EI): calcd for C17H15N: 233.12045 found: 233.12025 The deuterated compound 7-D was obtained analogously. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.70$ (dd, J = 4.9 Hz, 1H), 7.70 (td, J = 7.7, 1.9Hz, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.34-7.24 (m, 4H), 7.17 (ddd, J = 7.5, 4.8, 0.9 Hz, 1H), 6.68 (s, 1H), 6.44 (s, 1H), 6.00 (dt, J = 12.1, 4.4 Hz, 0.07 H), 3.29 (t, J = 6.4 Hz, 2H), 2.79-2.72 (m, 2H): ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.8, 149.2, 148.6, 143.8, 135.9, 134.2, 132.1$ (t, J = 24 Hz), 131.3, 129.3, 127.3, 127.2, 126.8, 126.3, 124.4, 120.9, 31.6, 28.9; MS (EI): m/z (%): 234 (82), 233 (92), 219 (100); HRMS (EI): calcd for C₁₇H₁₄DN: 234.12672; found: 234.12692.

Compound 9. Colorless oil (18 mg, 67%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.52$ (ddd, J =

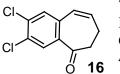


7

5.0, 1.7, 0.8 Hz, 1H), 7.54 (td, J = 7.7, 1.9 Hz, 1H), 7.10 (d, J = 7.9 Hz, 1H), 6.99 (ddd, J = 7.4, 4.8, 1.1 Hz, 1H), 6.30 (s, 1H), 5.48-5.46 (m, 1H), 5.29-5.21 (m, 1H), 3.14 (ddd, J = 12.9, 6.0, 3.3 Hz, 1H), 2.76 (ddd, J =12.9, 11.0, 6.3 Hz, 1H), 2.58-2.19 (m, 4H), 1.87-1.66 (m, 4H), 1.53-1.08 (m, 4H); ¹³C NMR (75 Hz, CDCl₃): δ = 157.4, 153.6, 149.0, 135.7, 134.3, 128.0, 124.8, 123.5, 120.3, 53.4, 40.8, 34.4, 33.6, 29.1, 27.2, 26.4, 26.3; IR (neat): $\tilde{v} = 3073, 3003, 2923, 2850, 1641, 1585, 1559, 1472, 1453, 1427,$

740, 659 cm⁻¹; MS (EI): m/z (%): 239 (89), 224 (19), 210 (21), 196 (14), 182 (15), 168 (11), 157 (100), 144 (19), 130 (25), 117 (17), 106 (10), 93 (31); HRMS (ESI+) calcd for $(C_{17}H_{21}N)$ + H): 240.17467; found: 240.17462 elemental analysis calcd (%) for C₁₇H₂₁N: C 85.30, H 8.84, N 5.85; found: C 85.26, H 8.74, N 5.72.

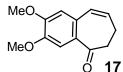
Compound 10. White solid (11 mg, 53%). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.64-8.60$ (m, 1H), 7.64 (td, J = 7.7, 1.9 Hz, 1H), 7.45-7.25 (m, 10H), 7.22 (d, J = 7.9 Hz, 1H), 7.11 (ddd, J= 7.5, 4.8, 1.2 Hz, 1H), 6.63 (s, 1H), 5.75 (dtd, J = 11.9, 5.3, 1.5 Hz, 1H), 5.68-5.60 (m, 1H), 4.82-4.67 (m, 3H), 4.53 (d, J = 11.9 Hz, 1H), 4.38-4.31 (m, 1H), 4.29 (d, J = 7.4 Hz, 1H),



analysis calcd (%) for C₂₇H₂₇NO₂: C 81.58, H 6.85, N 3.52; found: C 81.42, H 6.86, N 3.41.

Representative procedure for the rhodium catalyzed C-H activation/cycloisomerization tandem of the aldehyde substrate. Preparation of compound 15. A Teflon-screw Schlenk flask equipped with a small stir bar was charged with compound 11 (18 mg, 0.11 mmol), [Rh(coe)₂Cl]₂ (4 mg, 0.005 mmol), (*p*-MeOC₆H₄)₃P (7 mg, 0.02 mmol) and 1,2-dichloroethane (2 mL) under Ar. Ethylene was bubbled through the solution via a needle for 60 sec before the flask was sealed and immersed into a pre-heated oil bath (120°C bath temperature). After stirring for 2.5 h at that temperature, the mixture was allowed to cool before it was diluted with Et₂O (5 mL). Filtration through a short pad of silica, evaporation of the filtrate followed by flash chromatographic purification of the residue (hexanes/EtOAc, 20/1) afforded ketone 15 as a colorless oil (14 mg, 76%). Its analytical and spectroscopic data are in full agreement with those reported in the literature.⁴

Compounds 16-18 were obtained analogously. Their analytical and spectroscopic data are compiled below:


Compound 16. White solid (37 mg, 82%). m.p.: 78-81°C. ¹H NMR (300 MHz, CDCl₃): $\delta =$

7.97 (s, 1H), 7.30 (s, 1H), 6.35 (d, J = 11.7 Hz, 1H), 6.25 (dt, J = 11.7, 5.2 Hz, 1H), 2.95-2-85 (m, 2H), 2.54-2.43 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 199.4$, 136.6, 135.7, 135.5, 135.2, 133.1, 131.5, 131.4, 129.4, 41.6, 23.9; IR (neat): $\tilde{\nu} = 2967$, 2917, 1672, 1647, 1575, 1462, 1424, 1358, 1346, 1273, 1235, 1196, 1177, 1141, 1036, 928, 901, 879, 762, 672

cm⁻¹; MS (EI): m/z (%): 228 (64), 226 (100), 200 (23), 198 (33), 193 (16), 191 (50), 165 (18), 163 (52), 128 (50); HRMS (EI) calcd for C₁₁H₈Cl₂O: 225.99522; found: 225.99507; elemental analysis calcd for C₁₁H₈Cl₂O: C 58.18, H 3.55; found: C 58.08, H 3.64.

Compound 17. Pale yellow solid (23 mg, 72%). m.p.: 80-82°C. ¹H NMR (300 MHz, CDCl₃):

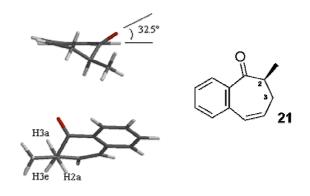
 δ = 7.54 (s, 1H), 6.63 (s, 1H), 6.37 (d, *J* = 11.8 Hz, 1H), 6.20-6.10 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.91-2-85 (m, 2H), 2.45-2.36 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 200.2, 152.3, 147.7, 132.4, 131.4, 131.2, 129.1, 113.7, 112.2, 56.00, 55.97, 42.1, 23.2; IR (neat): $\tilde{\nu}$ = 3084, 2999, 2957, 2840, 1650, 1591, 1514, 1461, 1440, 1364, 1247,

1213, 1189, 1129, 1069, 1031, 875, 851, 783 cm⁻¹; MS (EI): m/z (%): 218 (100), 203 (11), 190 (24), 175 (21), 159 (23), 147 (11), 132 (6), 115 (16), 103 (8), 91 (8), 77 (8); HRMS (EI) calcd for C₁₃H₁₄O₃: 218.09430; found: 218.09407.

Compound 18. Pale yellow oil (28 mg, 72%). ¹H NMR (300 MHz, CDCl₃): δ = 7.39-7.27 (m, 10H), 5.97 (dt, J = 11.7, 5.8 Hz, 1H), 5.77 (ddt, J = 11.6, 4.7, 1.3 Hz, 1H), 4.71 (d, J = 11. 7 Hz, 1H), 4.70 (d, J = 11.7 Hz, 1H), 4.65 (d, J = 11.9 Hz, 1H), 4.53 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 7.3 Hz, 1H), 4.25 (ddd, J = 7.1, 4.7, 0.8 Hz, 1H), 2.72 (ddd, J = 14.3, 9.6, 4.7 Hz, 1H), 2.57-2.30 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 208.5, 138.3, 137.6, 132.1, 129.7, 128.6 (2C), 128.5 (2C), 128.2 (2C), 128.1, 127.9 (2C), 127.8, 86.4, 76.3, 72.8, 72.4, 40.0, 23.8; IR

⁴ Crich, D.; Gastaldi, S. New. J. Chem. **2000**, *24*, 249-250.

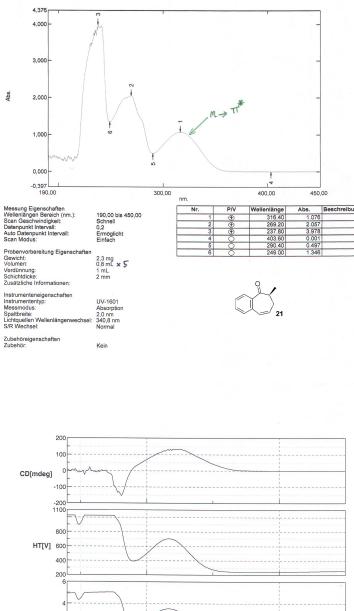
(neat): $\tilde{\nu} = 3030, 2866, 1716, 1496, 1454, 1205, 1087, 1067, 1027, 732, 695 \text{ cm}^{-1}$; MS (EI): *m/z* (%): 231 (11), 91 (100); HRMS (ESI+) calcd for (C₂₁H₂₂O₃ + Na): 345.14612; found: 345.14635; elemental analysis calcd for C₂₁H₂₂O₃: C 78.23, H 6.88; found: C 78.21, H 7.03.

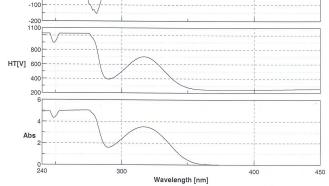

Ketone 21. Colorless oil (21 mg, 53%). $[\alpha]_D^{20} = 167$ (c = 0.3, CH₂Cl₂); ¹H NMR (400 MHz,

CD₂Cl₂): δ = 7.23 (dd, J = 7.7, 1.5 Hz, 1H), 7.45 (td, J = 7.6, 1.5 Hz, 1H), 7.32-7.20 (m, 2H); 6.45 (dd, J = 11.5, 2.0 Hz, 1H), 6.06 (ddd, J = 11.8, 6.6, 4.2 Hz, 1H), 3.07 (ddq, J = 11.1, 6.7, 3.9 Hz, 1H), 2.49 (dddd, J = 18.3, 6.4, 3.8, 1.0 Hz, 1H), 2.35 (dddd, J = 18.2, 11.1, 4.1, 2.3 Hz, 1H); 1.20 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 205.0, 137.6, 135.4, 132.2,

131.8, 130.8, 129.5, 127.4, 44.5, 33.6, 16.3; IR (neat): $\tilde{v} = 3024$, 2971, 2932, 2825, 1677, 1593, 1481, 1445, 1424, 1376, 1291, 1278, 1242, 1207, 1004, 964, 781 cm⁻¹; MS (EI): m/z (%): 172 (100), 157 (33), 144 (21), 130 (92), 115 (35), 102 (22); HRMS (EI) calcd for C₁₂H₁₂O: 172.08882; found: 172.08863.

The UV spectrum showed 3 absorption bands: 316 ($n \rightarrow \pi^*$), 269, 234 nm. A positive circular dichroism was measured for the $n \rightarrow \pi^*$ transition. The sign of the circular dichroism is in accordance with the absolute configuration indicated for **21**. As reported in the literature, the sign of the dihedral angle between the planes defined by the carbonyl group and the benzene ring (+32.5°) and the sign of the circular dichroism for the $n \rightarrow \pi^*$ transition are identical.⁵ The shown conformation is consistent with the observed coupling constants: ${}^{3}J_{H2a,H3a} = 11.1$ Hz and ${}^{3}J_{H2a,H3e} = 3.9$ Hz, which indicate that the methyl group is in equatorial position. This conformation was also calculated to be the most stable one (Spartan 02, 2001, MMFF level).


Ketone 22. Colorless oil (4 mg, 70%). $[\alpha]_D^{20} = -313$ (c = 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.83$ (dd, J = 7.8, 1.6 Hz, 1H), 7.47 (td, J = 7.5, 1.4 Hz, 1H), 7.28 (td, J = 7.6, 1.2 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 6.40 (dd, J = 11.8, 1.8 Hz, 1H), 6.03 (dd, J = 11.9, 4.4 Hz, 1H), 2.88 (d, J = 6.4 Hz, 2H), 2.82-2.71 (m, 1H), 1.16 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 201.3, 140.0, 137.2, 136.1, 132.7, 132.1, 129.41, 129.38, 127.4, 49.6, 30.9, 20.6; IR (neat): <math>\tilde{\gamma} = 3020, 296, 2929, 2874, 1672, 1595, 1482, 1456, 1443, 143, 1456, 1456, 1443, 1456, 145$

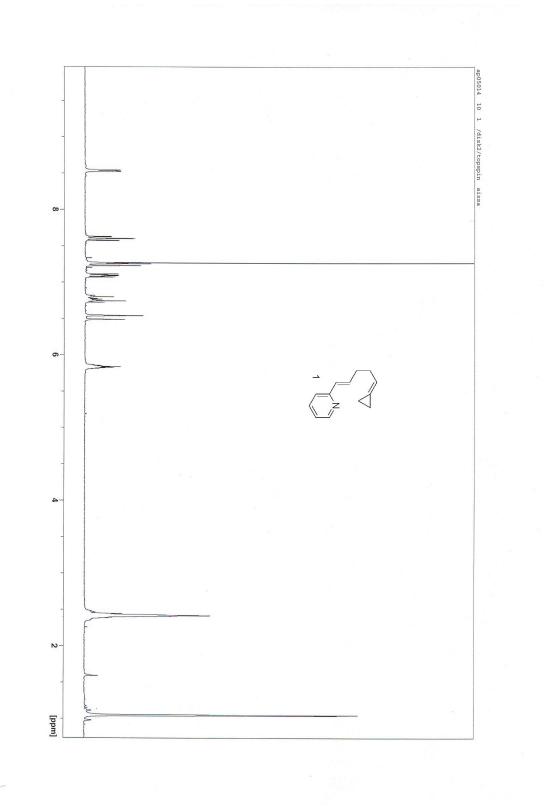

127.4, 49.6, 30.9, 20.6; IR (neat): V = 3020, 296, 2929, 2874, 1672, 1595, 1482, 1456, 1443, 1428, 1375, 1357, 1312, 1279, 1123, 1106, 782, 751 cm⁻¹; MS (EI): <math>m/z (%): 172 (100), 157 (54), 143 (28), 129 (73), 115 (26), 102 (16), 77 (17); HRMS (EI) calcd for $C_{12}H_{12}O$: 172.08881; found: 172.08904.

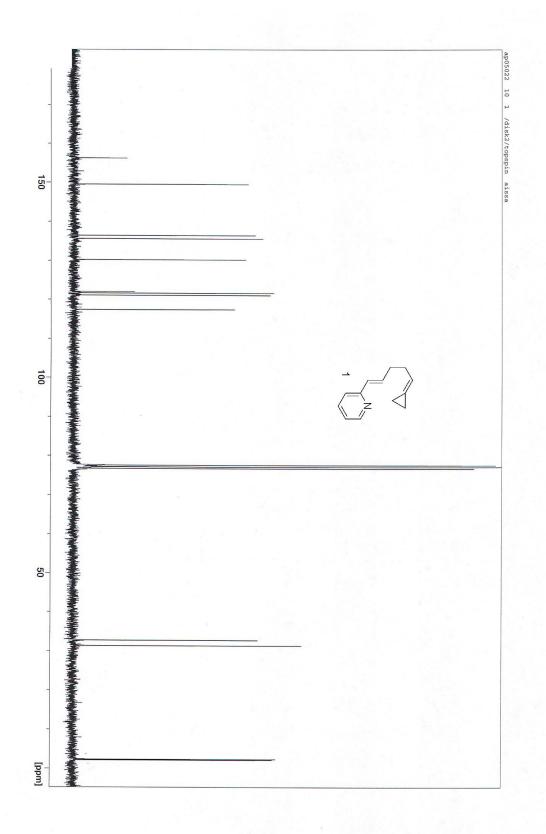
⁵ Barry, J.; Kagan, H.-B.; Snatzke, G. *Tetrahedron* **1971**, *27*, 4737-4748.

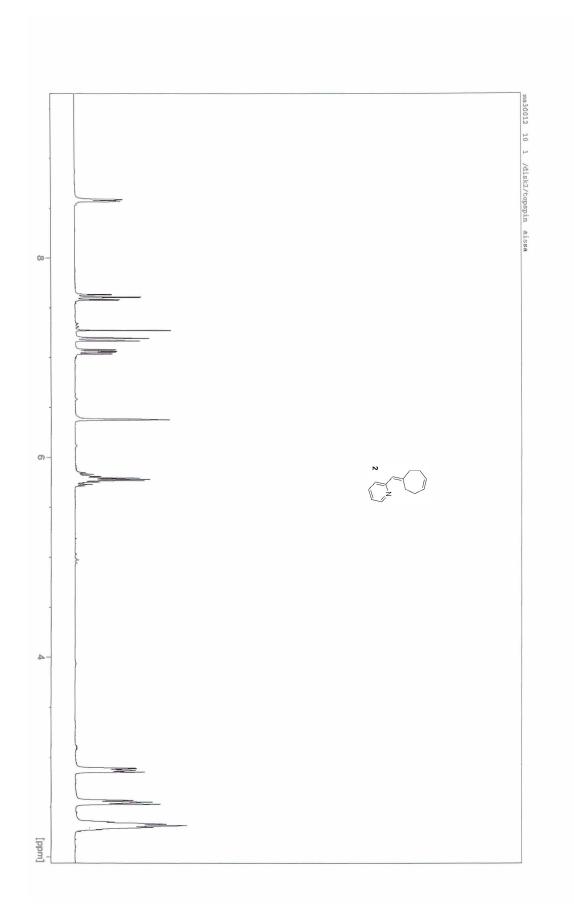
Container 180316 - Datei_070524_180316.spc

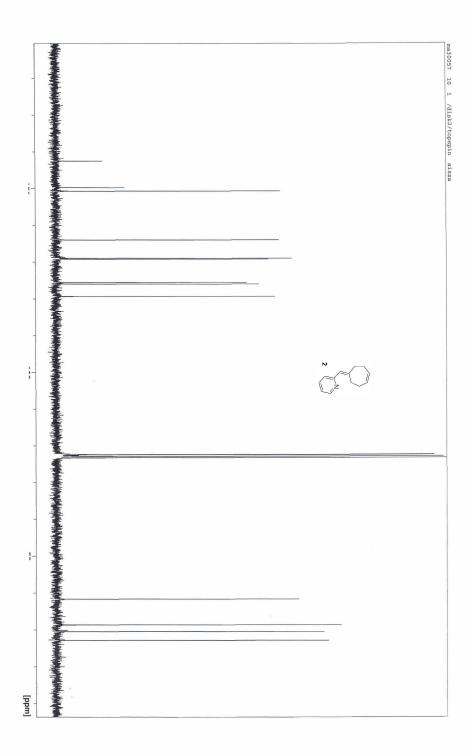
Abs.

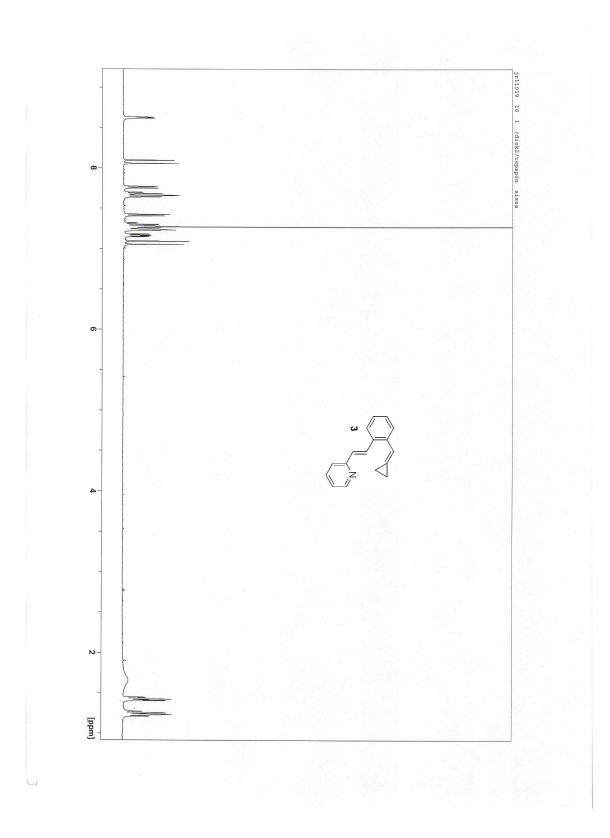
24.05.2007 16:17 AIS-CE-308-01_2,3 mg in 1mL DCM_20°C J-810 B048760750 1 nm 1 sec Standard 450 - 240 nm 1nm 50 nm/min 5 20.07 C Date File name Model Serial No. Band width Response Sensitivity Measurement range Data pitch Scanning speed Accumulation Temperature 20.07 C

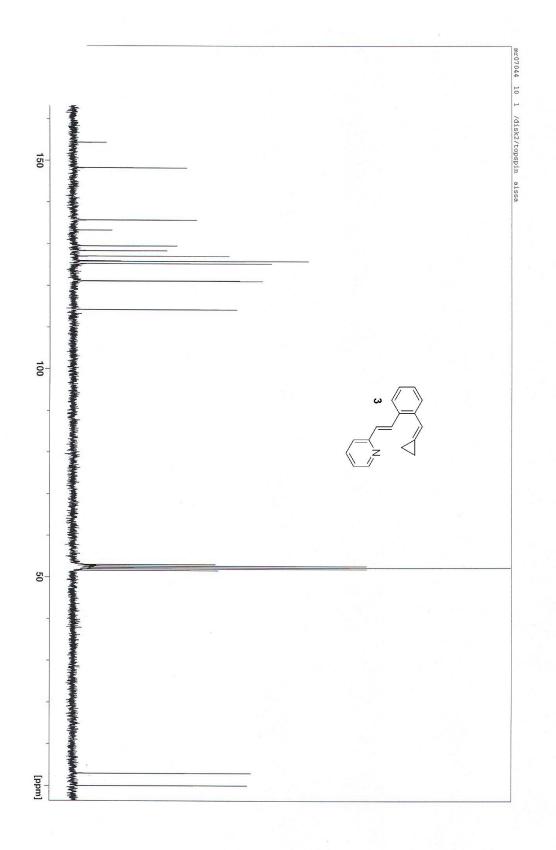

Aissa christophe

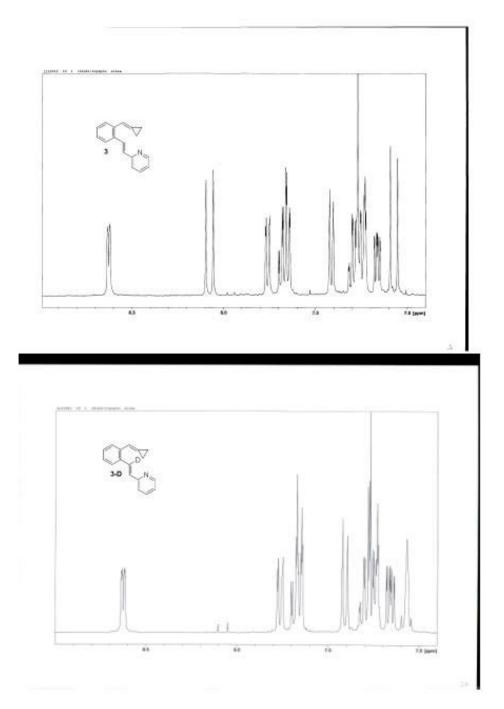

Sample name Operator Comment

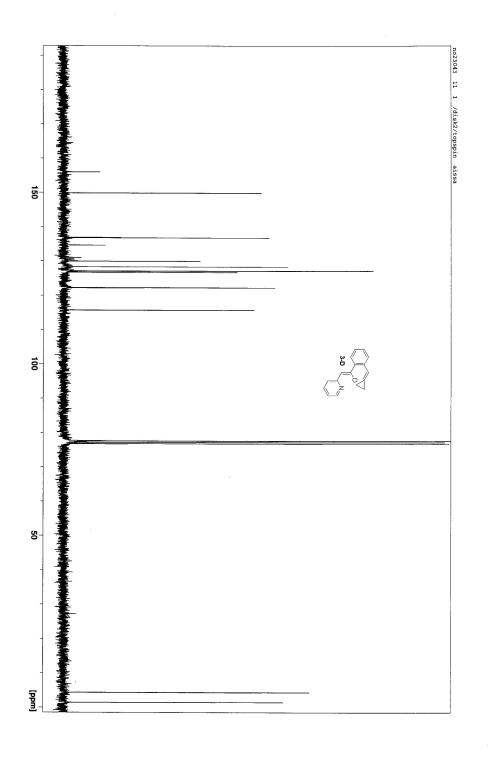

S15

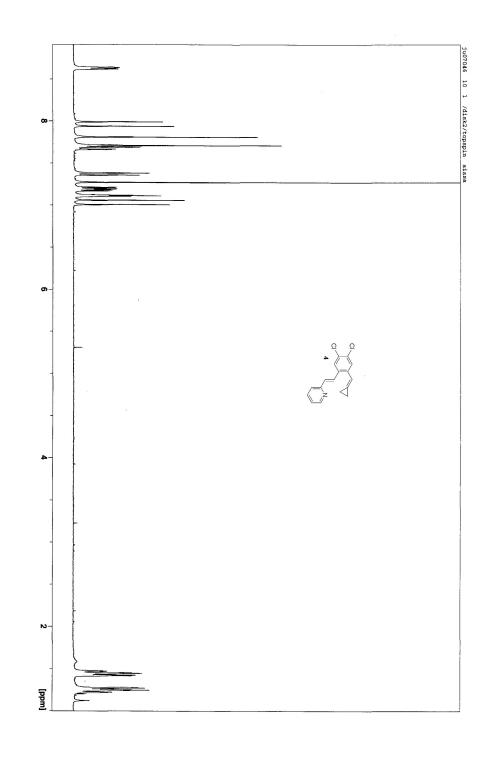

24.05.2007

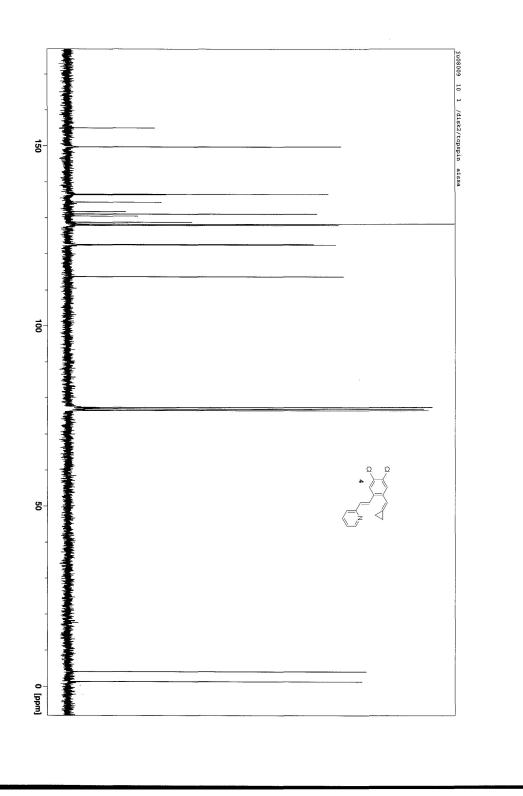

18:03:55

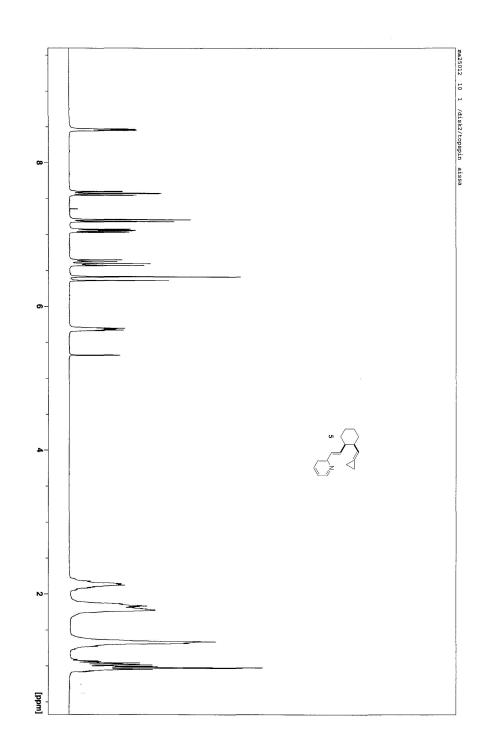


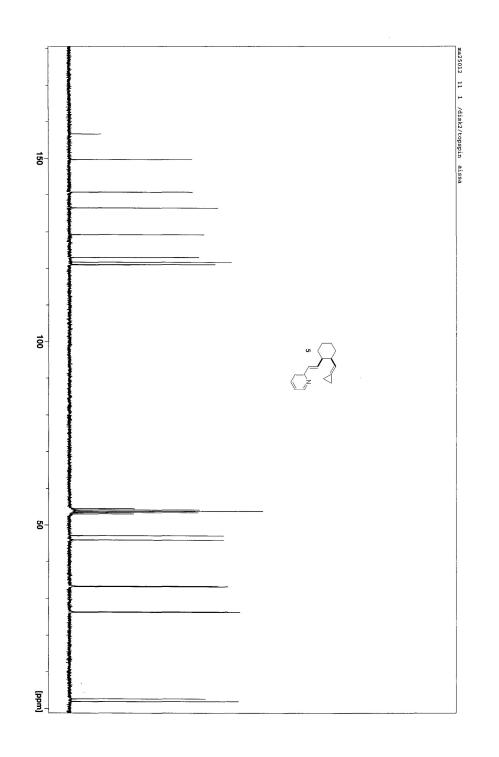




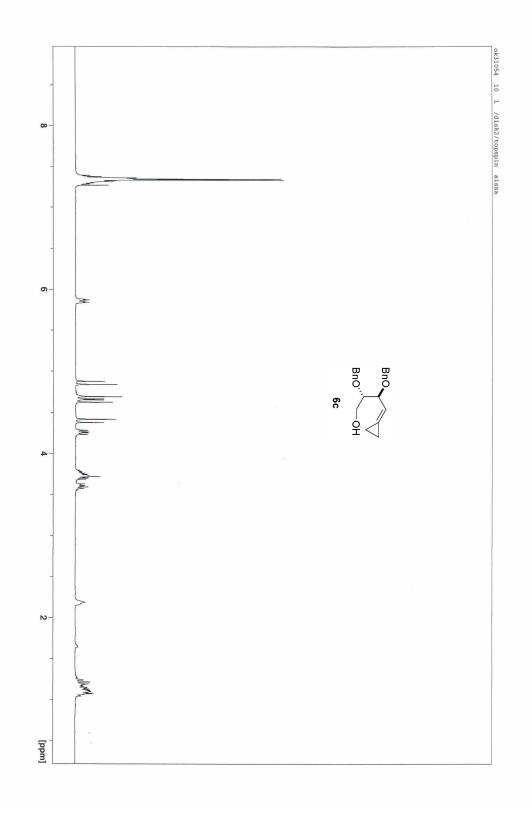




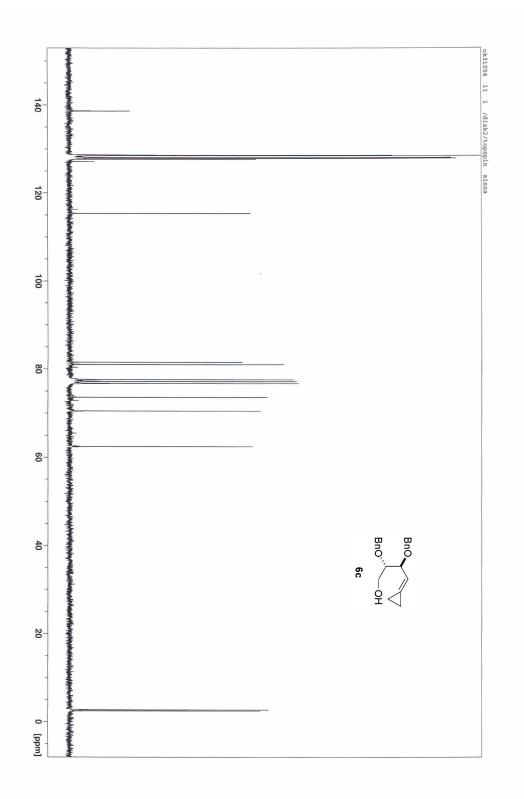

, P

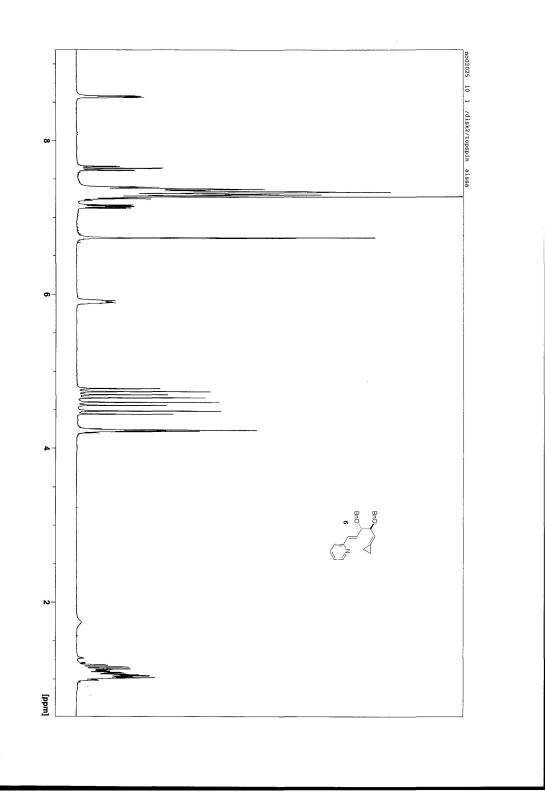


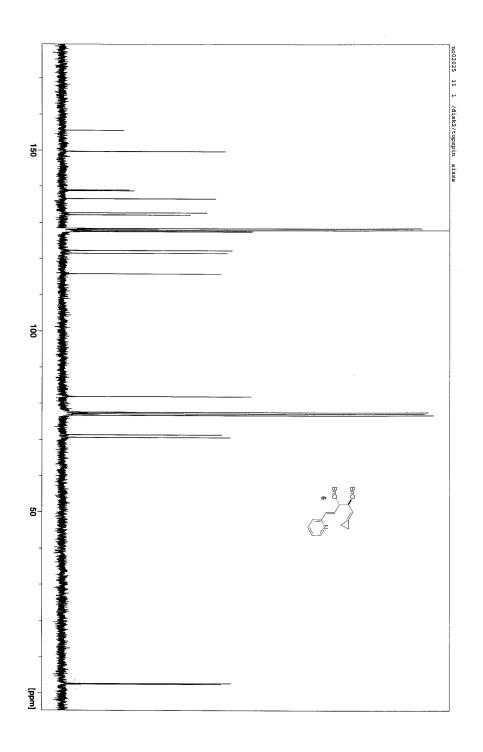
4

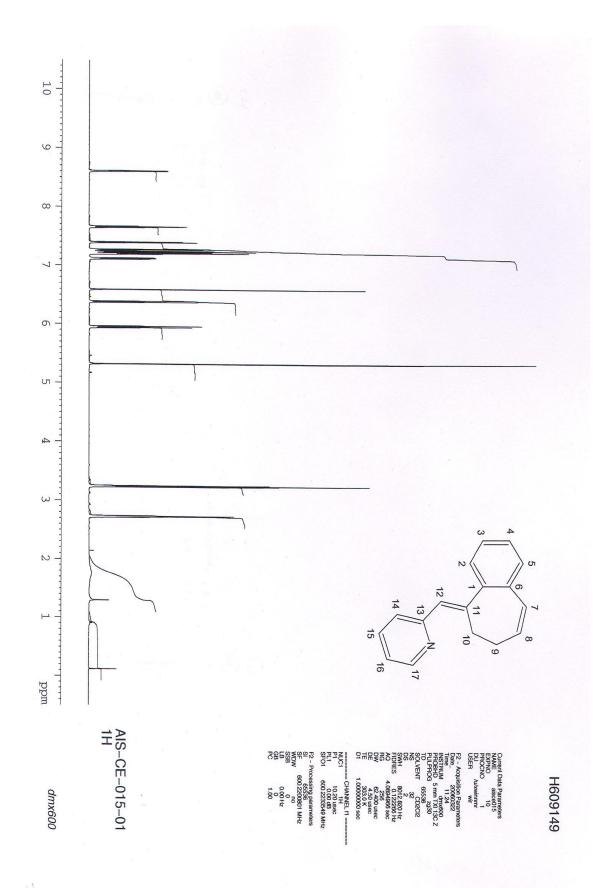


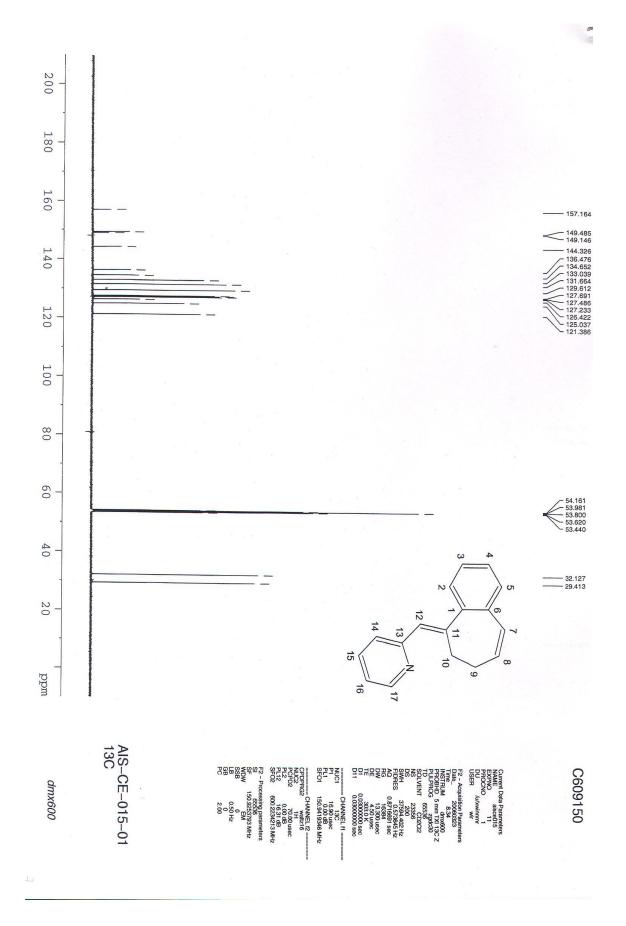
S25

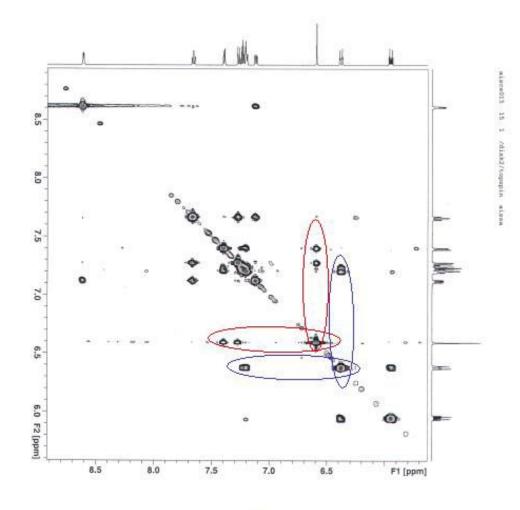




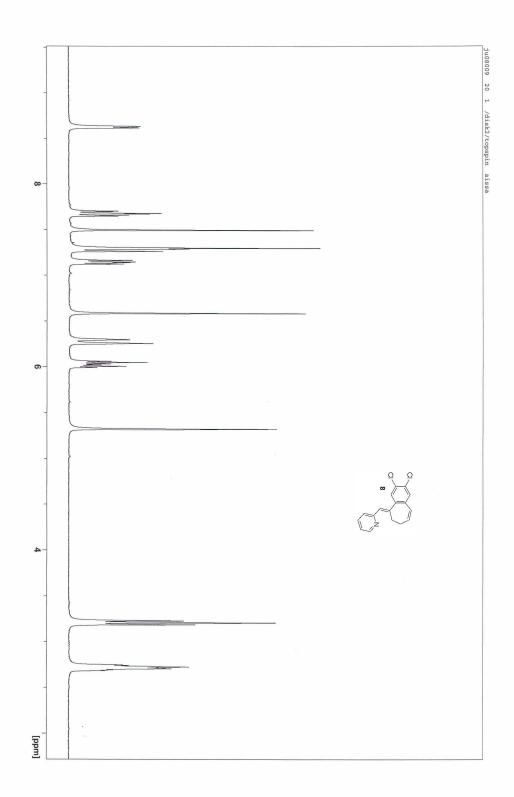

 $\varphi^{\alpha} t$

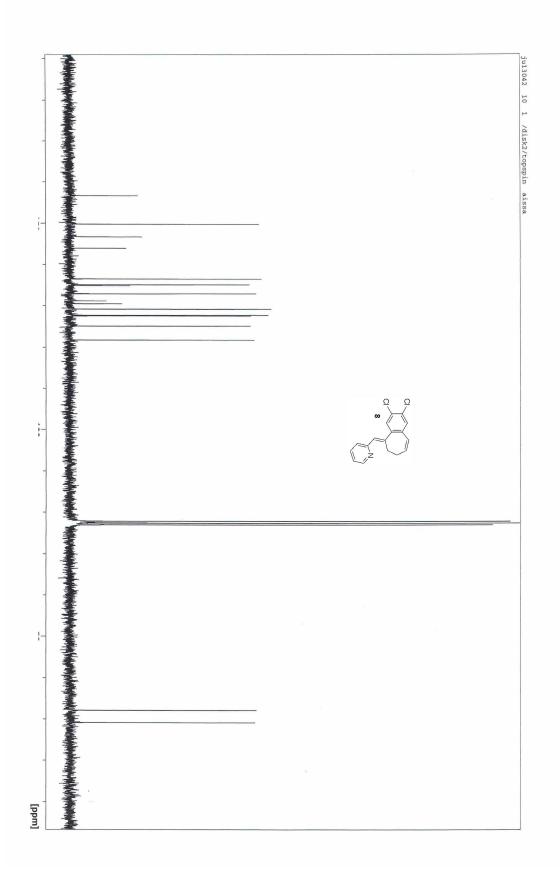

6c IN

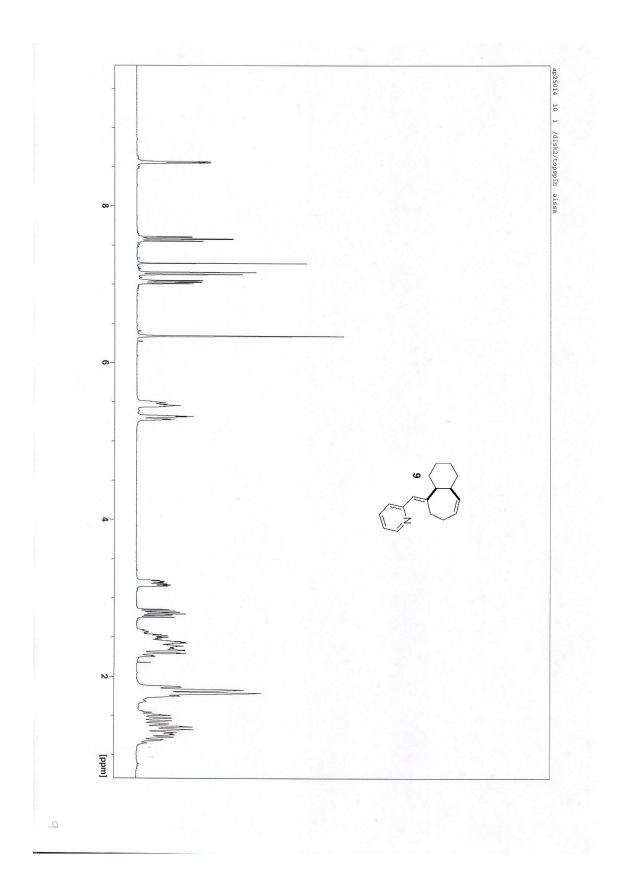


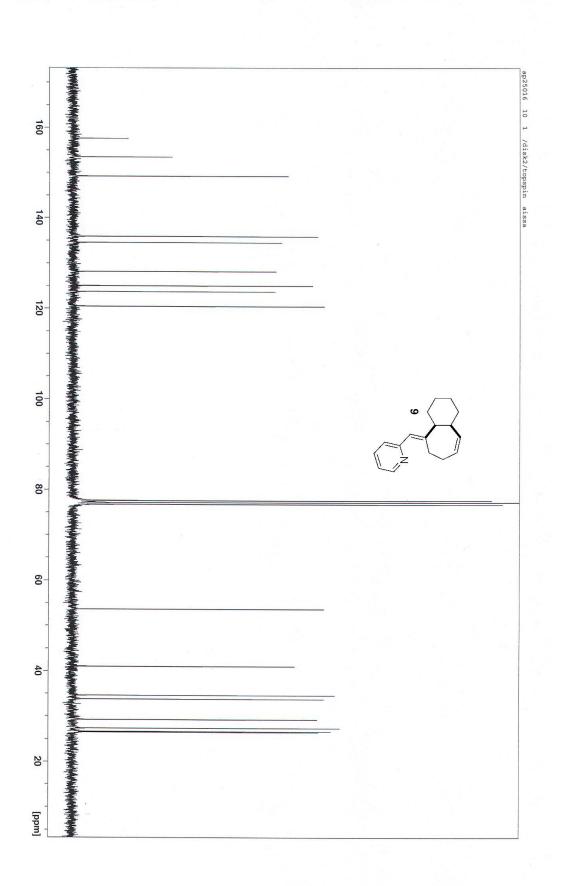

)5

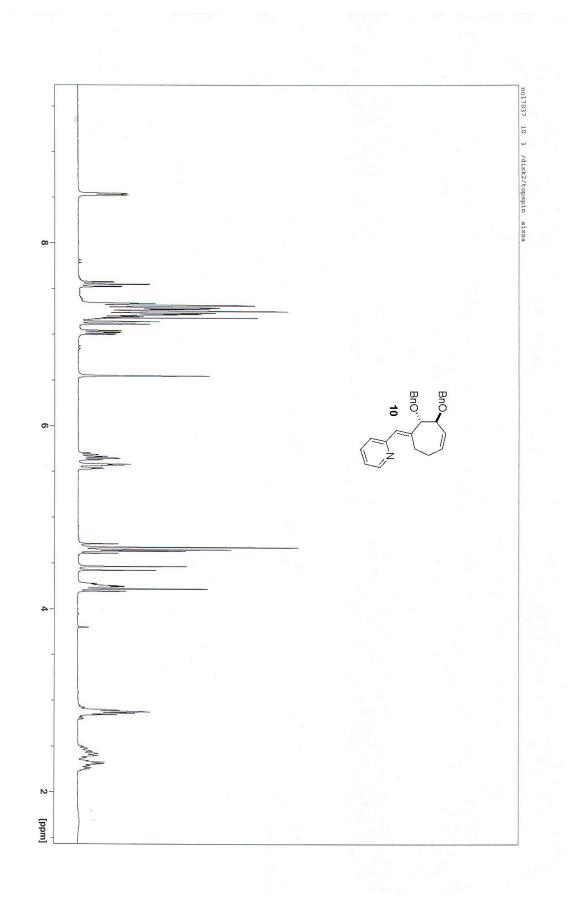
S32

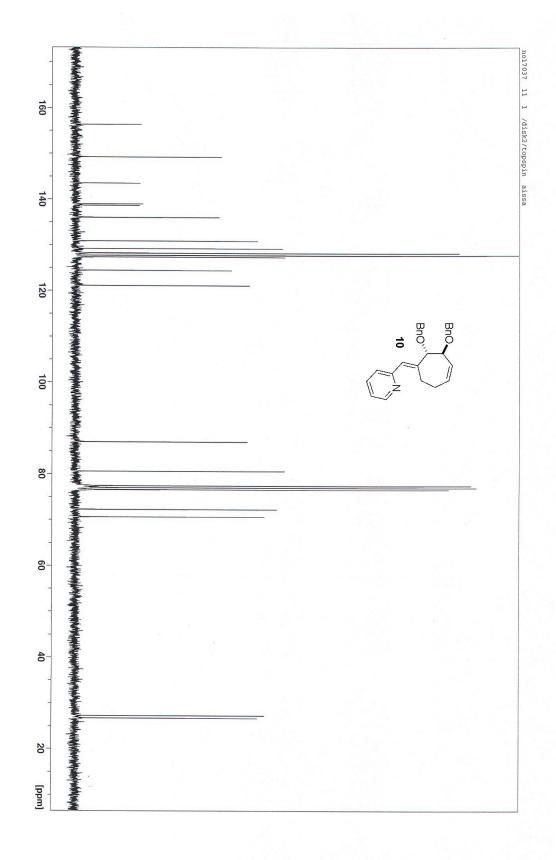

S33

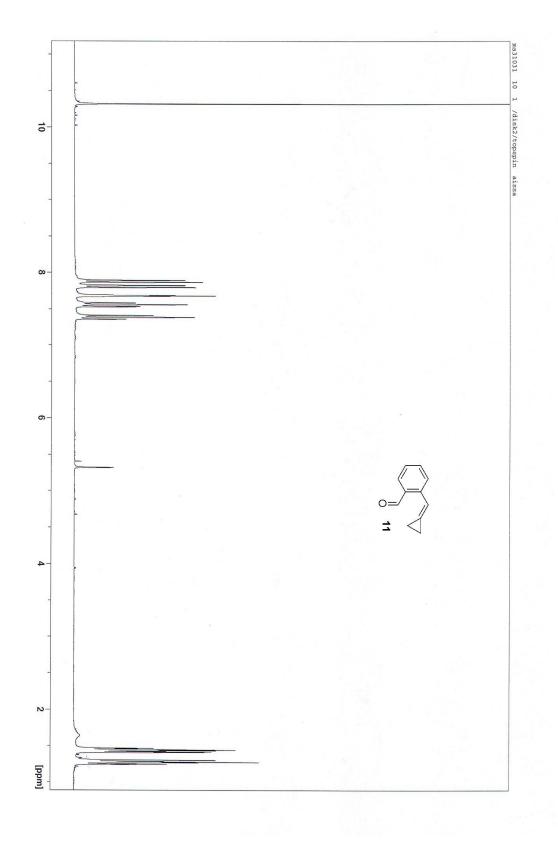


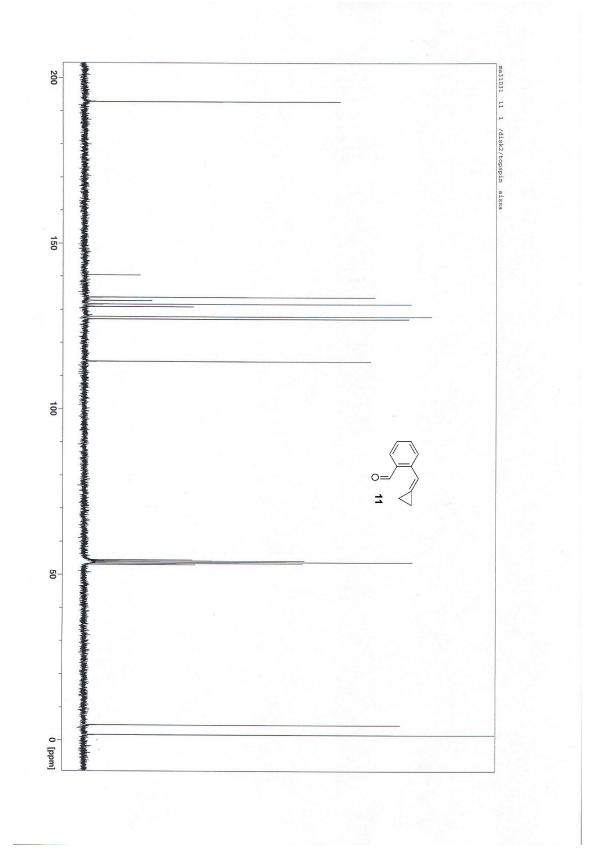


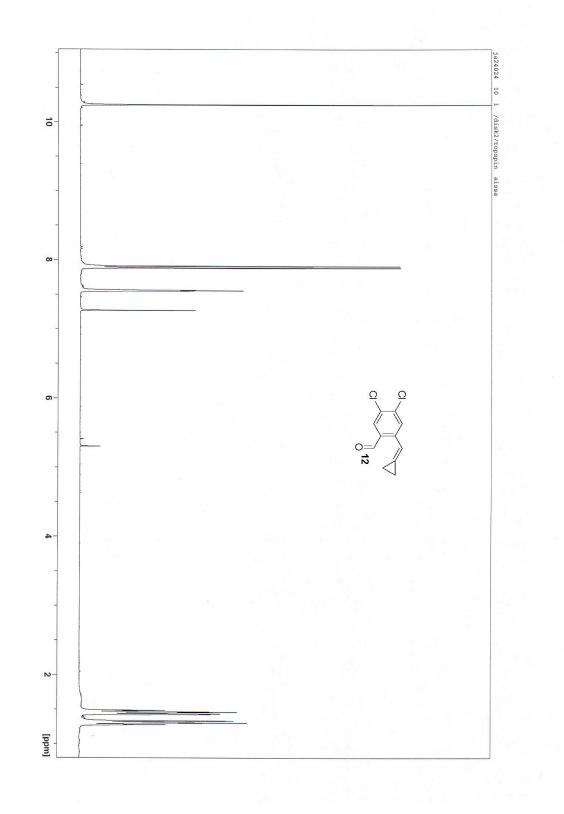

101

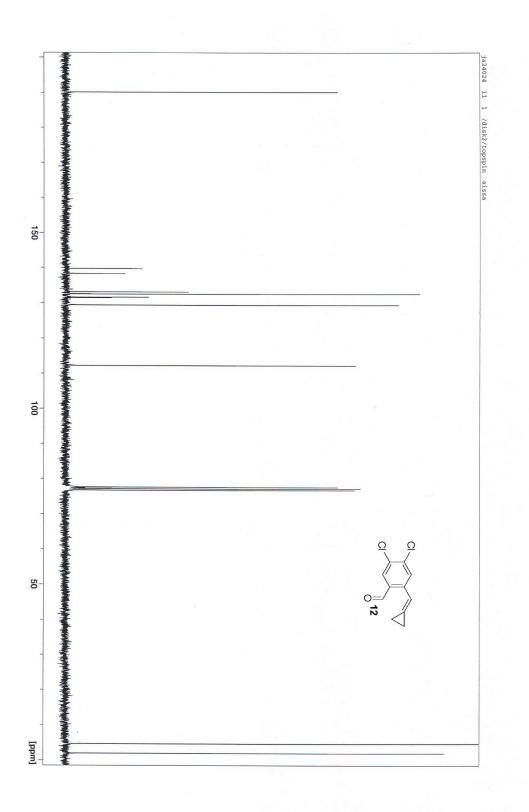


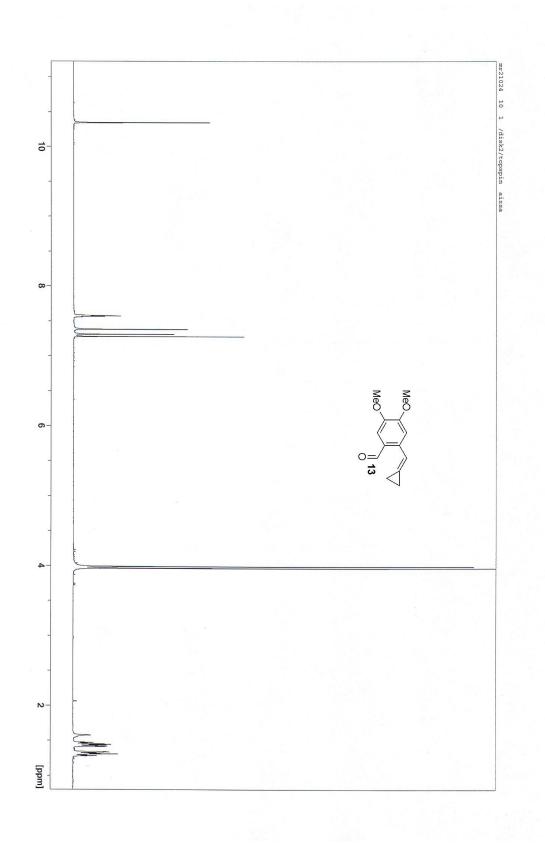

S36

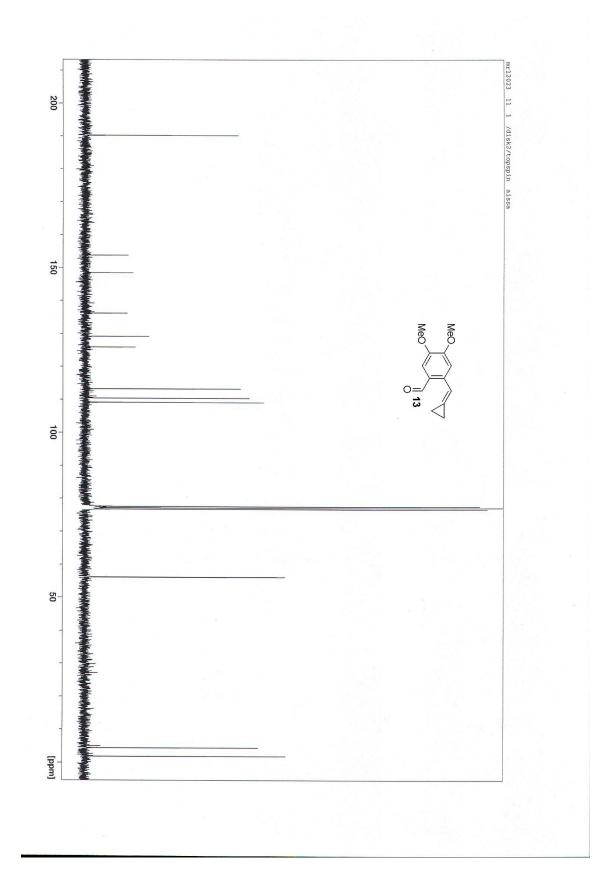


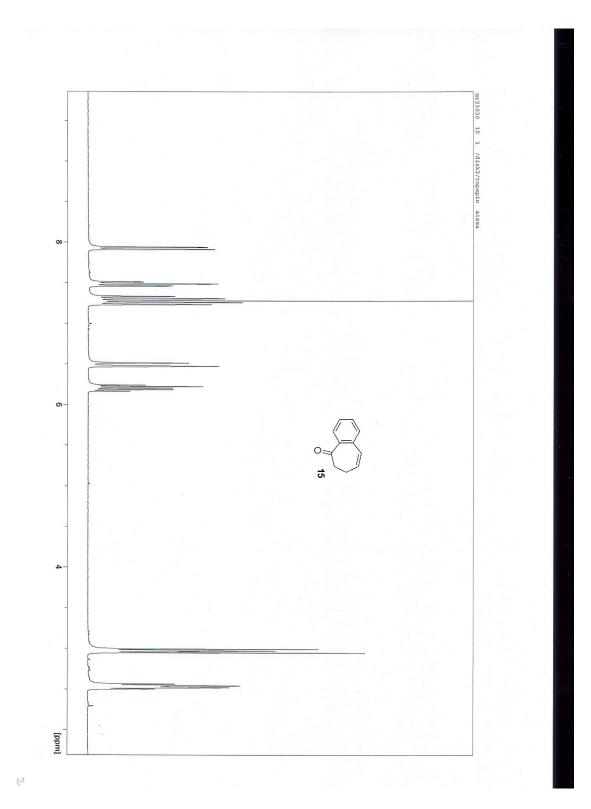


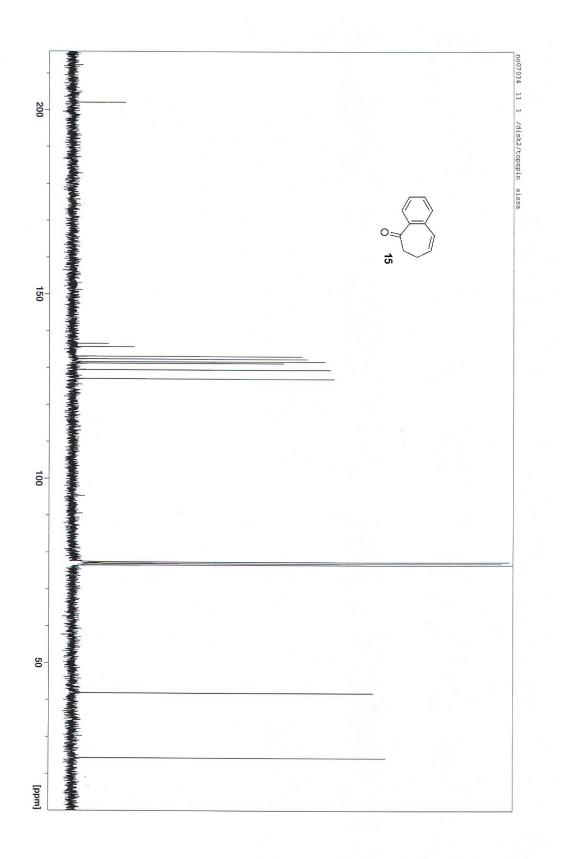


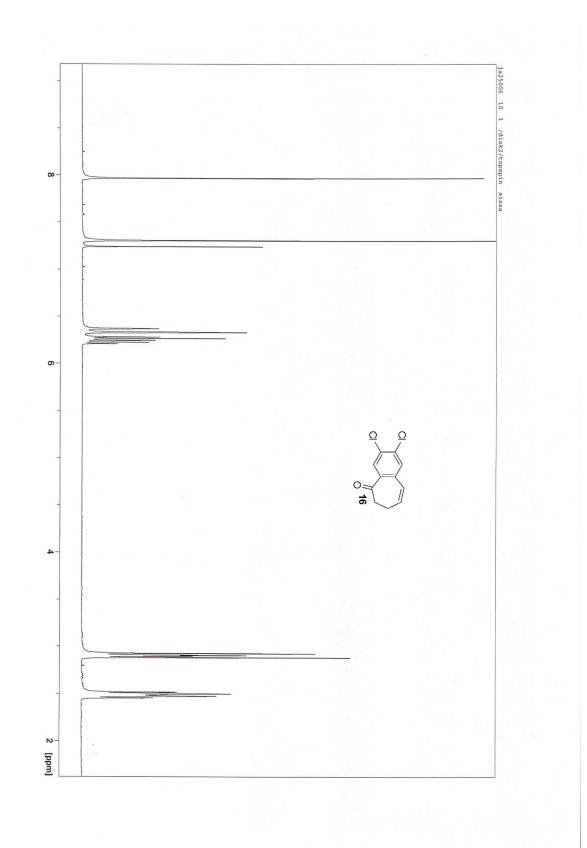


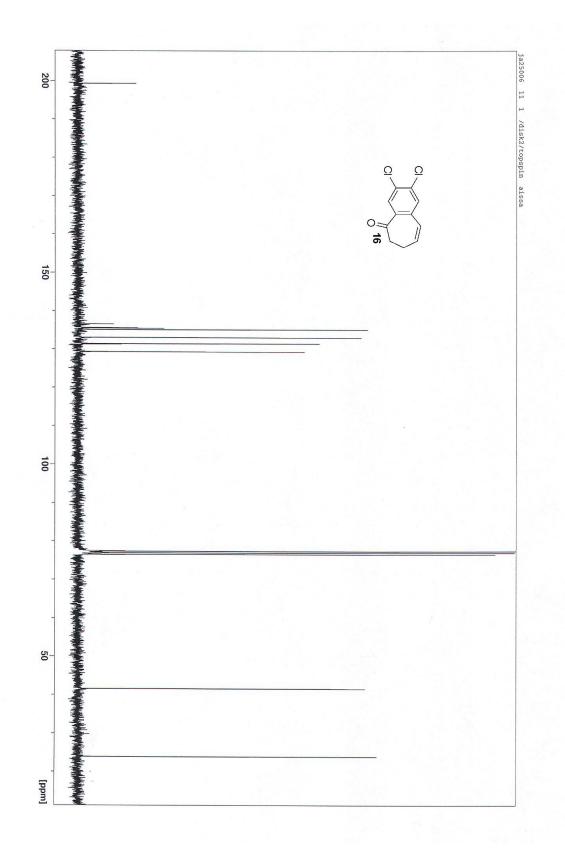


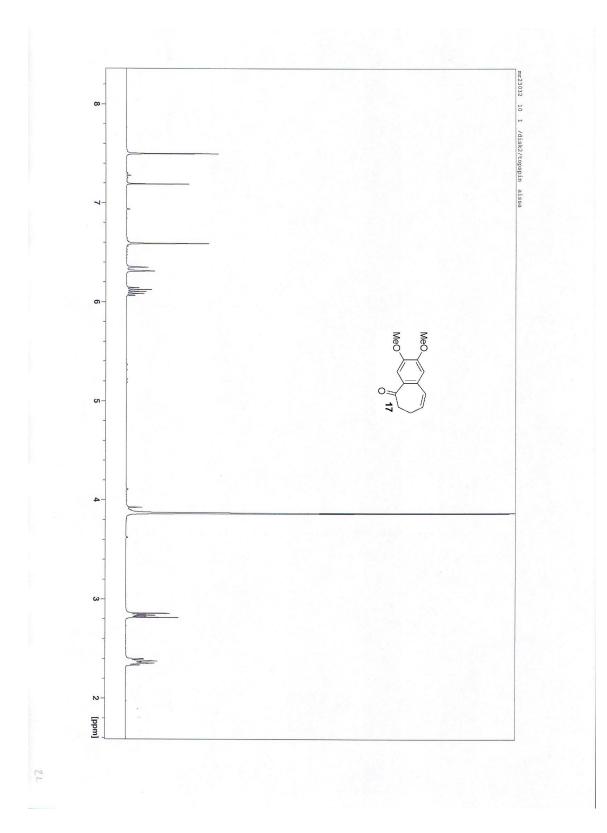


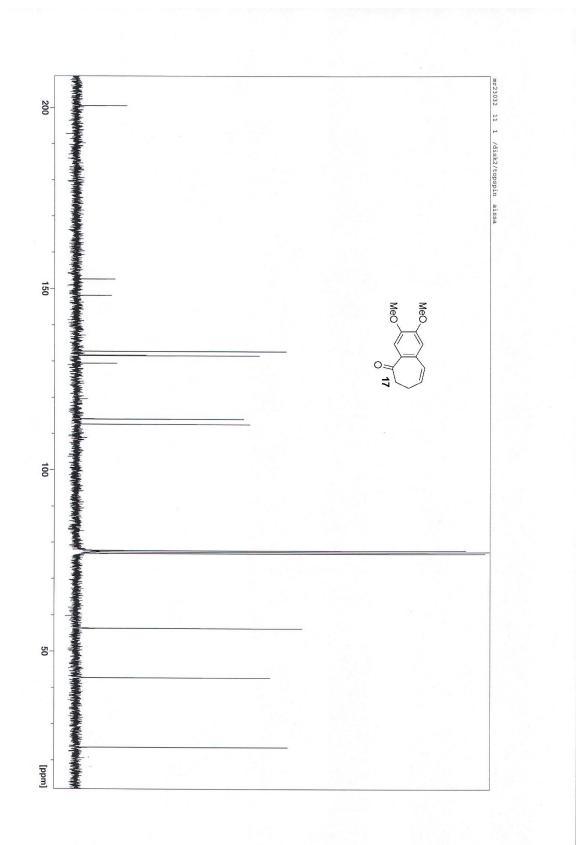


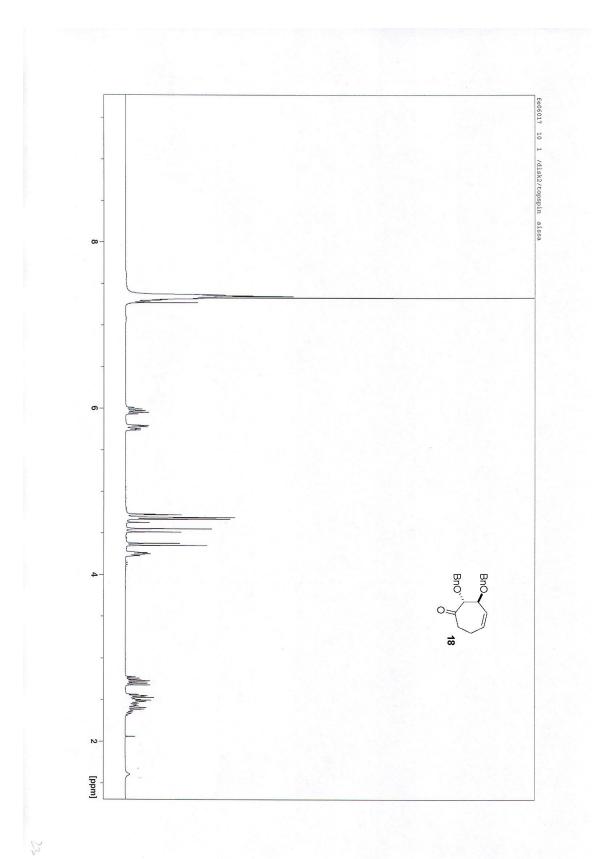


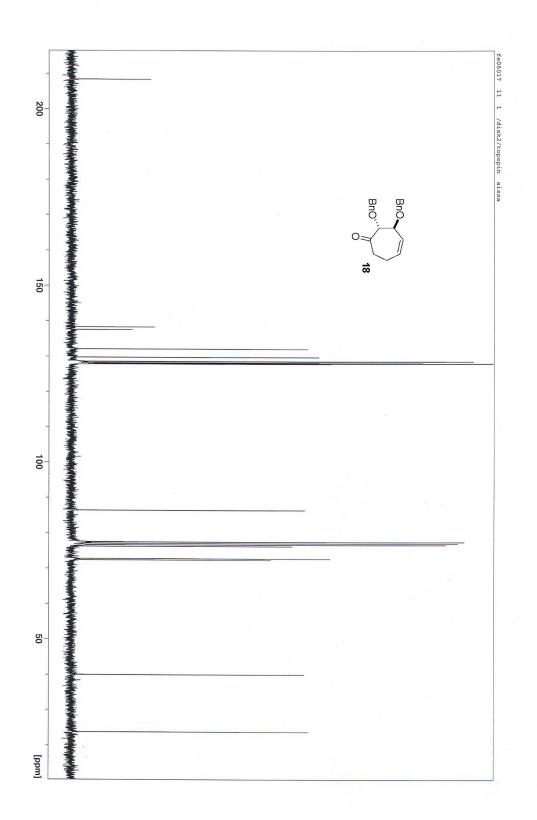


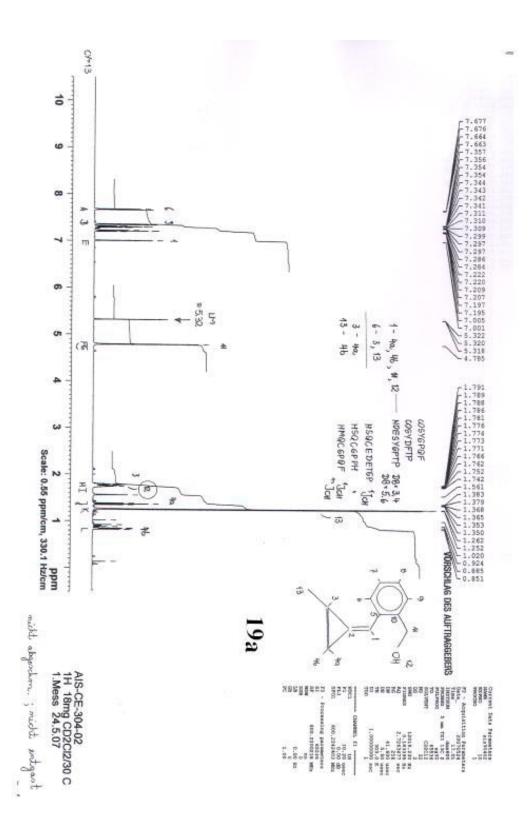


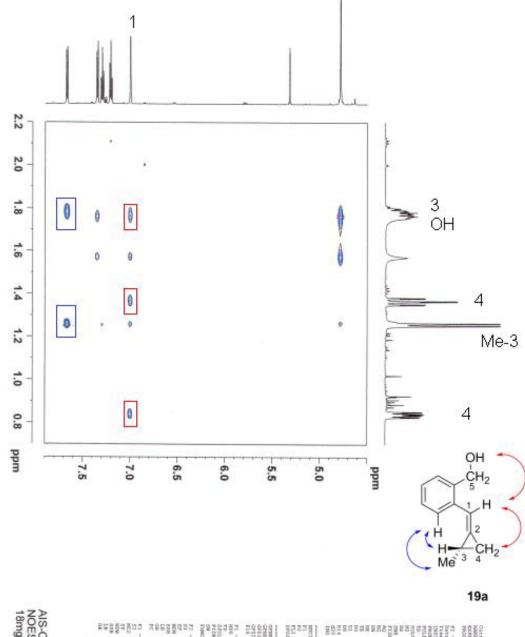


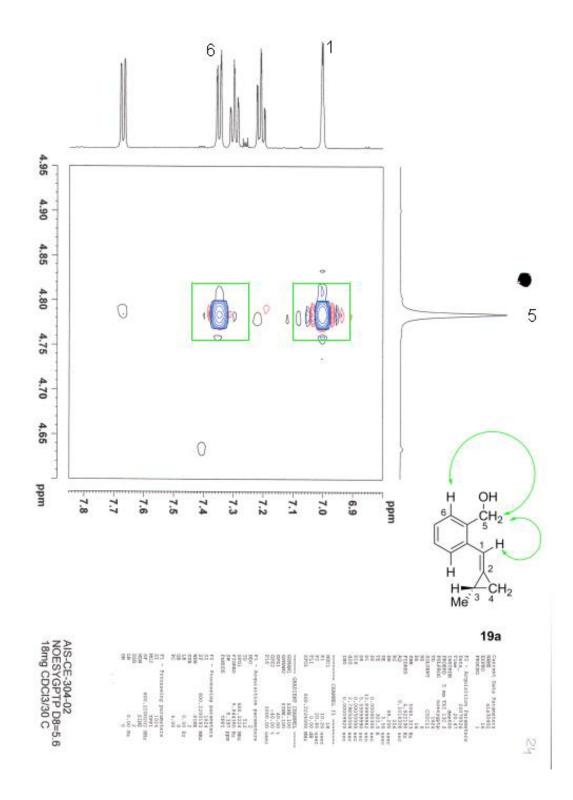


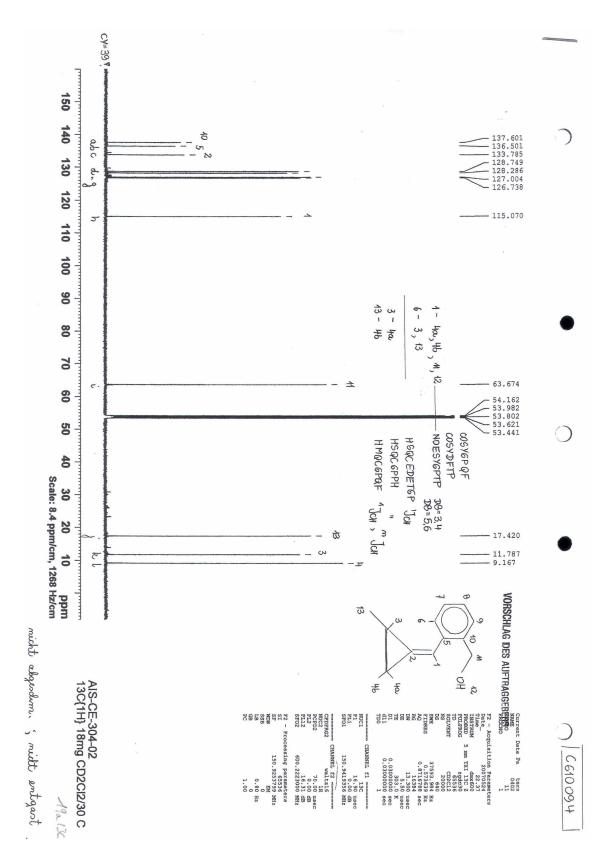


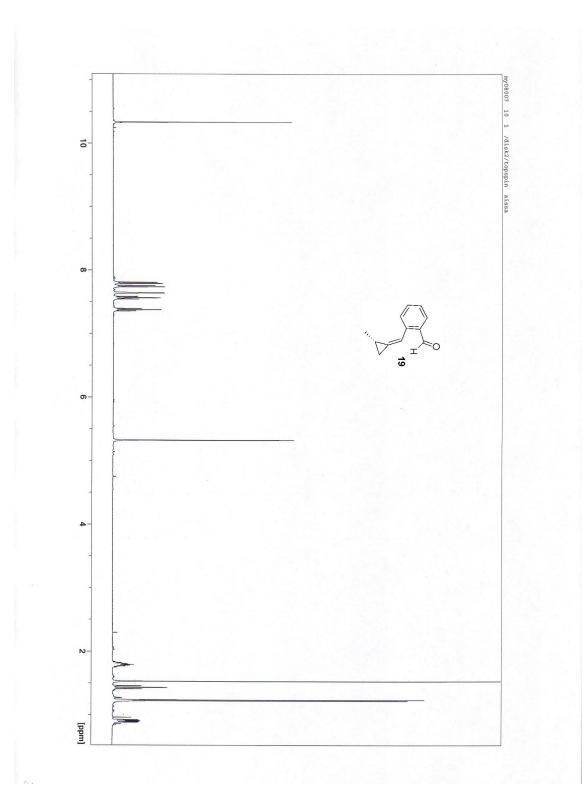


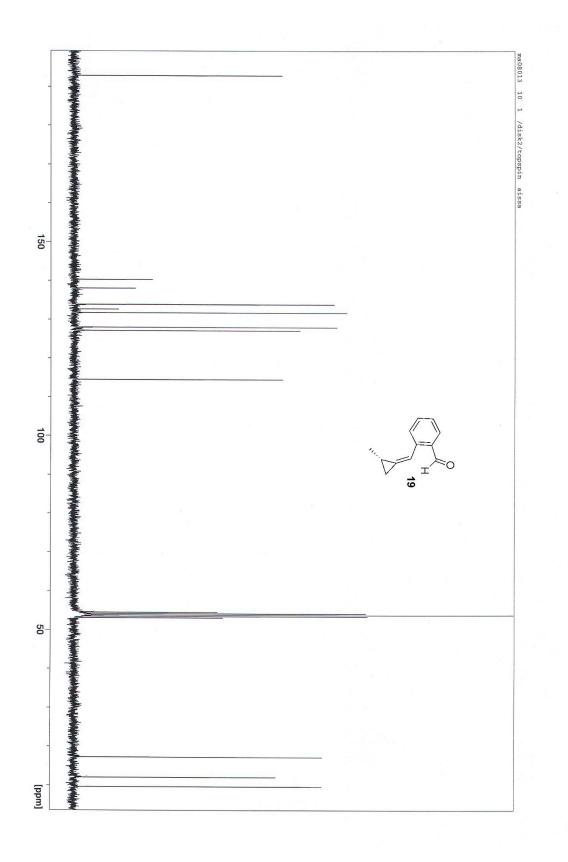


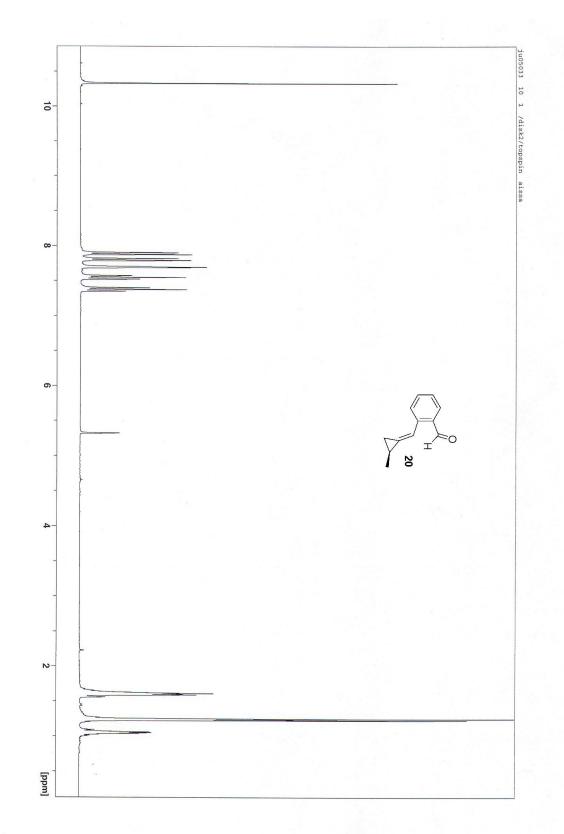


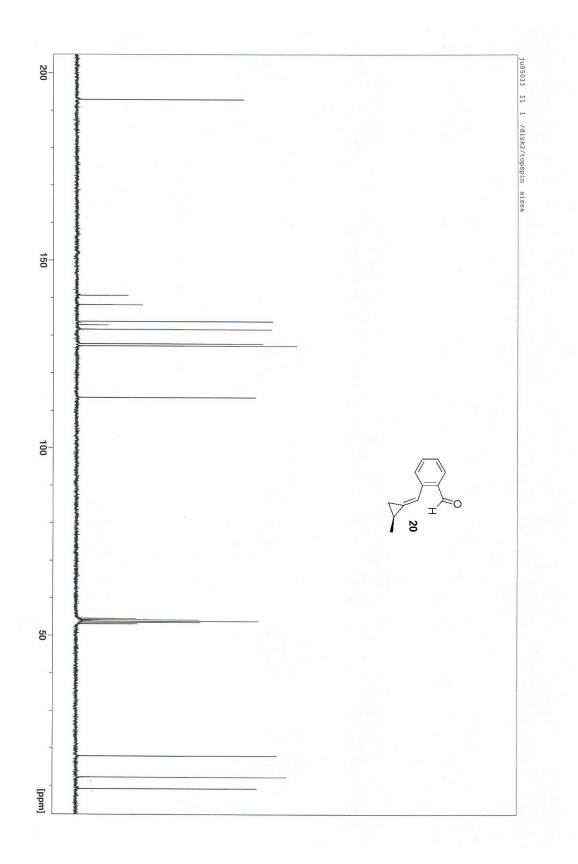


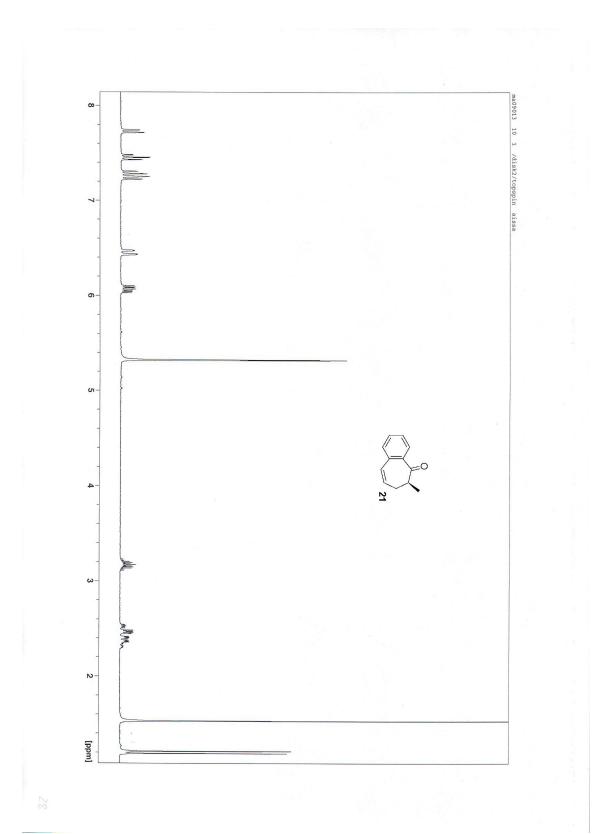


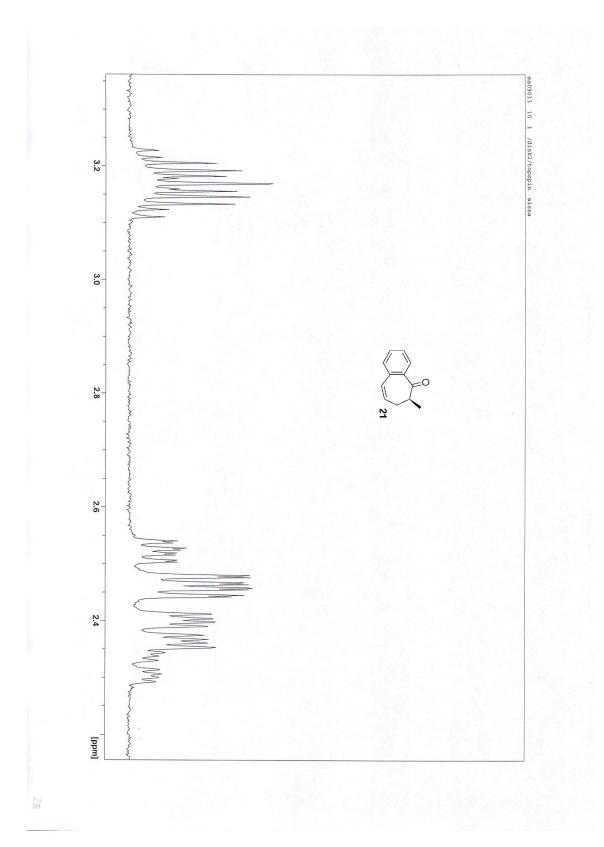


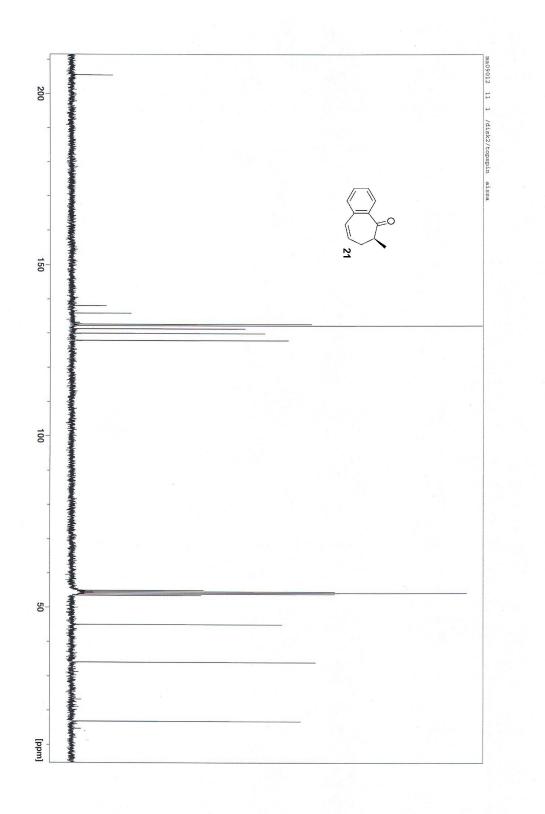


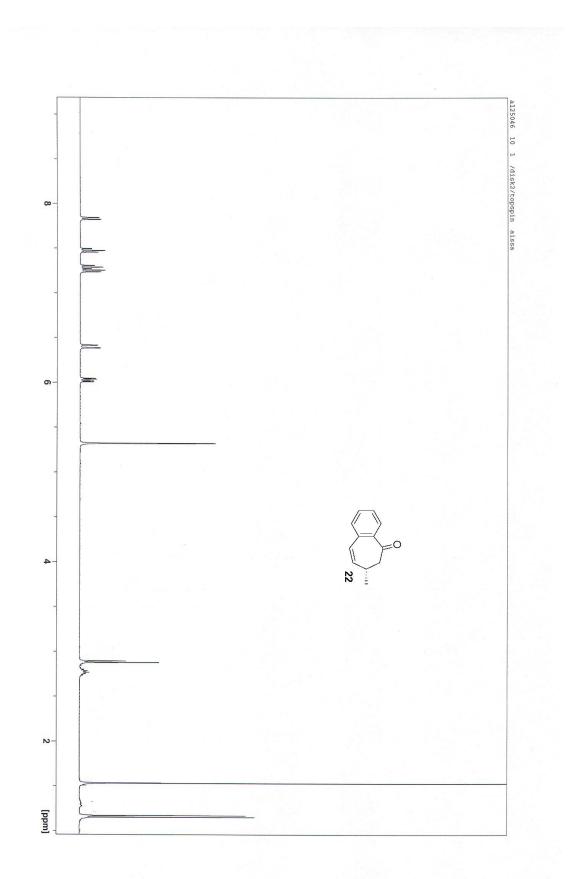

g CE-	1	9.8 · · · · · · · · · · · · · · · · · · ·	DATE - You	*STRATE	8º. 3	868	Sper .	CLENCE CONTROL	CON CONTRACT
CE-304-02 SYGPTP D8=5.6 g CDCI3/30 C	essalay paraseters to 0.020002 to 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	900 Jacametera 900 J2200100 WH 2010 0.00 Hc 0.00 Hc	rfarition parameters 8.04.500 N2 8.04.500	94012007 CHAMBEL 31208_1.000 51208_1.000 51208_1.000 51200_000 to 1000_000 toteo	CMANNEL FL	94.200 U4480 5.50 U4460 2.50 U4460 2.500000000 0460 5.500000000 0460 5.500000000 0460 5.500000000 0460 5.500000000 0460 5.500000000 0460		1141 Lion Tarassetars 2010526 20165407 das6600 1 am TOL 130: 2 nonstrippe	Data Perumatara ala36402 19 1










N

