SUPPORTING INFORMATION

A Rhodium Catalyzed C-H Activation/Cycloisomerization Tandem

Christophe Aïssa and Alois Fürstner*
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany.
e-mail: fuerstner@mpi-muelheim.mpg.de

Abstract

General. Unless stated otherwise, all reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg-Anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, DMF, DMA (Desmodur ${ }^{\circledR}$, dibutyltin dilaurate), hexanes, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded with a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hertz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}\right.$: $\delta_{\mathrm{C}}=77.0 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.24 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}}=5.32 \mathrm{ppm}$). IR: Nicolet FT-7199 spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determination: Bruker APEX III FT-MS (7 T magnet). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds were used as received.

Substrates

Representative Sequence: Preparation of Compound 4

a) 2-methylpyridine, n-BuLi, THF; b) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80^{\circ} \mathrm{C}$; c) $\mathrm{HCl} 5 \%$, EtOH ; d) $(\mathrm{COCl})_{2}, \mathrm{DMSO}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; e) 3-(bromopropyl)triphenylphosphonium bromide, t - BuOK , THF reflux.

Compound 4a. 2-Methylpyridine ($0.27 \mathrm{~mL}, 2.70 \mathrm{mmol}$) was added to a cooled $\left(-50^{\circ} \mathrm{C}\right)$ solution of $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $1.77 \mathrm{~mL}, 2.84 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at
 such a rate that the internal temperature did not exceed $-45^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was allowed to stir at $-20^{\circ} \mathrm{C}$ for 5 min before it was cooled to $-50^{\circ} \mathrm{C}$ and a solution of 4-(tert-butyldimethylsilyloxy)butanal (600 $\mathrm{mg}, 2.97 \mathrm{mmol})^{1}$ in THF (4 mL) was added via canula. The mixture was allowed to stir at $-20^{\circ} \mathrm{C}$ for 2 h and at ambient temperature for 1 h before the reaction was quenched with aq. sat. NaHCO_{3} and EtOAc. A standard extractive work up followed by flash chromatography (hexanes/EtOAc, 2/1) afforded product 4a as a yellow oil ($631 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.47$ (dd, $J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (td, $J=$ $7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.09-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.91$ (dd, $J=14.8$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.49(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.2,148.5,136.6,123.7,121.3,70.8,63.2,43.5,33.6,29.0$, 26.0 (3C), 18.3, -5.0, -5.4; IR (neat): $\tilde{v}=3392$ (broad), 3068, 2953, 2928, 2895, 2857, 1595, 1570, 1473, 1463, 1437, 1388, 1360, 1255, 1097, 836, 776, $662 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 295$ (3), 238 (100), 203 (7), 146 (63), 122 (40), 93 (90), 75 (54); HRMS (ESI+.) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}+\mathrm{Na}\right)$: 318.18598; found: 318.18574; elemental analysis (\%) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C} 65.05$, H 9.89, N 4.74; found: C 64.96, H 9.88, N 4.67.

Compound 4b. A mixture of alcohol $\mathbf{4 a}(600 \mathrm{mg}, 2.03 \mathrm{mmol})$, mesyl chloride ($0.31 \mathrm{~mL}, 4.06$
 $\mathrm{mmol})$ and pyridine $(1.8 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was heated in a Teflon-screwcap Schlenk tube at $80^{\circ} \mathrm{C}$ for 7 h . All volatile materials were stripped off under high vacuum, the residue was dissolved in tert-butyl methyl ether (20 mL), and the organic phase was washed with aq. sat. NaHCO_{3} and brine before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the crude material by flash chromatography (hexanes/EtOAc, 15/1) afforded product $\mathbf{4 b}$ as a yellow oil (279 $\mathrm{mg}, 50 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.52-8.48(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.8$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=15.6$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{qd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.77-1.65 (m, 2H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.0,149.4$, $136.3,135.4,130.1,121.5,120.9,62.5,32.0,29.1,25.9$ (3C), 18.3, -5.3 (2C); IR (neat): $\tilde{v}=$ 3004, 2954, 2929, 2894, 2857, 1654, 1586, 1564, 1471, 1431, 1388, 1361, 1255, 1099, 971, 835, 776, $662 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 277 (2), 262 (4), 220 (100), 204 (17); HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NOSi}$: 277.18620; found 277.18578; elemental analysis (\%) calcd for $\mathrm{C}_{16} \mathrm{H}_{27}$ NOSi: C 69.26, H 9.81, N 5.05, found: C 69.38, H 9.74, N 4.97.
Compound 4. $\mathrm{HCl}(5 \% w / w$ in $\mathrm{EtOH}, 1 \mathrm{~mL})$ was added via syringe to a solution of $\mathbf{4 b}$ (284 $\mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ and the resulting solution was stirred for 90
 min . The solvent was evaporated, the crude material was diluted with $\mathrm{Et}_{2} \mathrm{O}(20$ mL), the organic phase was washed with sat. aq. NaHCO_{3}, the aqueous layer was re-extracted $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting crude material was used in the next step without further purification.
A solution of DMSO ($185 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added via canula to a solution of $(\mathrm{COCl})_{2}(113 \mu \mathrm{~L}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 10 min , a solution of the crude alcohol obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was introduced and the resulting mixture was stirred for 15 min at this temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$ was then rapidly added and stirring continued for 30 min at ambient temperature before the reaction was

[^0]quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 10$ mL), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated.

A solution of the resulting crude aldehyde $\mathbf{4 c}$ in THF (2 mL) was added to a refluxing suspension of the freshly prepared ylide derived from 3-(bromopropyl)triphenylphosphonium bromide ($511 \mathrm{mg}, 1.1 \mathrm{mmol}$) and t-BuOK ($246 \mathrm{mg}, 2.2 \mathrm{mmol}$) in refluxing $\operatorname{THF}(11 \mathrm{~mL})^{2}$ and reflux was continued for 14 h . For work up, the mixture was allowed to reach ambient temperature before it was diluted with tert-butyl methyl ether (20 mL) and washed with water $(20 \mathrm{~mL})$. The aqueous layer was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10/1) to give product 4 as a pale yellow oil ($100 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.75$ $(\mathrm{m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.76(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1,149.4,136.3,135.4,130.1,121.8,121.5,120.9,117.2$, 32.6, 31.2, 2.1, 2.0; IR (neat): $\tilde{v}=3049,3002,2978,2927,2844,1653,1585,1564,1469$, 1430, $971,756 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 185$ (10), 184 (41), 170 (19), 157 (22), 156 (24), 144 (31), 143 (11), 131 (17), 130 (32), 118 (100), 117 (68); HRMS (CI, i-butane) calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}+\mathrm{H}\right)$: 186.12828; found: 186.12803; elemental analysis (\%) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}$ 84.28, H 8.16, N 7.56; found: C 84.15, H 8.08, N 7.64 .

Representative Sequence: Preparation of Compounds 3 and 11

a) $\mathrm{TBSCl}, \mathrm{NaH}, \mathrm{THF} ;$ b) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; c) 3-(bromopropyl)triphenylphosphonium bromide, t-BuOK, THF reflux; d) TBAF, THF; e) $(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; f) (i) 2-methylpyridine, n-BuLi, THF; (ii) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80^{\circ} \mathrm{C}$.

Compound 3a. Commercially available 1,2-bis(hydroxymethyl)benzene ($1.38 \mathrm{~g}, 10 \mathrm{mmol}$) was added in portions to a vigorously stirred suspension of $\mathrm{NaH}(240 \mathrm{mg}$,

3a $10 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for $16 \mathrm{~h}, \mathrm{TBSCl}(1.5 \mathrm{~g}, 10$ mmol) was added in portions and stirring was continued for 1 h at ambient temperature. A standard extractive work up followed by flash chromatography (hexanes/EtOAc, 10/1) gave compound 3a as a colorless oil ($2.42 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.8,138.6,126.4,128.7,128.3,127.9$, 64.7, 63.9, 25.9 (3C), 18.2, -5.3 (2C); IR (neat): $\tilde{v}=3372$ (br), 3069, 3025, 2955, 2929, 2884, 2857, 1606, 1471, 1462, 1389, 1361, 1255, 1079, 1041, 836, 776, $746 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 195 (60), 119 (23), 75 (100), 57 (11); HRMS (ESI+): calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right)$:

[^1]275.14378; found: 275.14365; elemental analysis (\%) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: C 66.61, H 9.58; found: C 66.73, H 9.59.
Compound 3b. A solution of DMSO $(0.73 \mathrm{~mL}, 10.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to a

3b solution of $(\mathrm{COCl})_{2}(0.45 \mathrm{~mL}, 5.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 10 min at this temperature, a solution of compound $\mathbf{3 a}$ (1.0 $\mathrm{g}, 3.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was introduced and stirring was continued for 15 min at that temperature. $\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ was then rapidly added via syringe and the mixture was stirred for 30 min at ambient temperature before it was poured into aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, the combined organic layers were washed, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20/1) to give the corresponding aldehyde as a yellow oil (939 mg) which was used without further purification.

A solution of this crude material in THF (5 mL) and added to a refluxing suspension of the ylide prepared from (3-bromopropyl)triphenylphosphonium bromide ($1.9 \mathrm{~g}, 1.1 \mathrm{mmol}$) and t-BuOK ($269 \mathrm{mg}, 2.4 \mathrm{mmol}$) in THF (25 mL). ${ }^{2}$ Reflux was continued for 14 h before the mixture was allowed to reach ambient temperature. A standard extractive work up followed by flash chromatography (hexanes) afforded compound $\mathbf{3 b}$ as a pale yellow oil ($595 \mathrm{mg}, 58 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.6,135.4,127.0,126.9,126.6,125.9$, 125.6, 114.7, 63.3, 26.0 (3C), 18.4, 4.2, 1.0, -5.2 (2C); IR (neat): $\tilde{v}=3068,3049,3032$, 2955, 2928, 2884, 2856, 1601, 1471, 1462, 1388, 1361, 1254, 1083, 1046, 836, 776, $750 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (EI): $m / z(\%): 274$ (10), 217 (51), 143 (66), 128 (43), 75 (100); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}: 274.17529$; found: 274.17556; elemental analysis (\%) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}$: C 74.39 , H 9.55; found: C 74.28, H 9.48.

Compound 11. A solution of compound 3b ($1.1 \mathrm{~g}, 4.02 \mathrm{mmol}$) and TBAF (1 m in THF, 4
 mL) was stirred for 1 h at ambient temperature. For work up, the mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was rapidly passed through a short pad of silica (hexanes $/ \mathrm{Et}_{2} \mathrm{O}$, $10 / 1 \rightarrow 3 / 1$). An aliquot of the resulting alcohol ($143.6 \mathrm{mg}, 0.9 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ and this solution was added to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of DMSO ($140 \mathrm{mg}, 1.8$ $\mathrm{mmol})$ and $(\mathrm{COCl})_{2}(85 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The resulting mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ before $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 4.0 \mathrm{mmol})$ was introduced. Stirring was continued for 30 min at ambient temperature before the reaction was quenched with sat. aq. NaHCO_{3} (5 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 5/1) to give aldehyde 11 as a colorless oil ($112 \mathrm{mg}, 79 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=10.31(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (quint., $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=192.9,140.4,133.7,132.7,131.7,130.9,127.9,127.2,114.3,4.7,1.8 ;$ IR (neat): $\tilde{v}=3066,2977,2838,2735,1688,1596,1566,1483,1450,1408,1296,1208,1184,1159$, 975, 928, 868, 802, 791, $749 \mathrm{~cm}^{-1}$; MS (EI): m / z (rel. intensity): 158 (60), 129 (100), 118 (31), 115 (40), 102 (16), 89 (11), 77 (10); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}: 158.07316$; found: 158.07306 .

Compound 3. The alkylidenation reaction was performed as described for the preparation of
 compound $\mathbf{4 a}$, providing pyridine $\mathbf{3}$ as a yellow oil ($388 \mathrm{mg}, 42 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.61-8.57(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.4(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.21$ (quint., $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (ddd, $J=7.5,4.8,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=154.4,148.2,135.7,133.2,129.5$, 12.3, 127.0, 126.0, 125.83 (2C), 125.81, 125.2, 121.1, 121.0, 114.2, 2.9, 0.0; IR (neat): $\tilde{v}=$ 3054, 3002, 2974, 1777, 1713, 1680, 1584, 1480, 1469, 1430, 970, 773, $740 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 233 (29), 232 (100), 218 (35), 217 (36), 205 (12), 204 (15); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}$: 233.12045; found: 233.12026; elemental analysis (\%) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}$ 87.52, H 6.48, N 6.00; found: C 87.43, H 6.35, N 5.88.

The deuterated compound 3-D was obtained analogously; it showed the following spectroscopic properties: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.59$ (ddd, $J=5.0,1.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 0.07 \mathrm{H}), 7.72(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12$ (ddd, $J=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.8,149.6,136.7,136.5,134.3,130.1(\mathrm{t}, J=23 \mathrm{~Hz}), 129.6$, 128.0, 126.8 (2C), 126.7, 126.4, 122.00, 121.95, 115.4, 3.1, 1.2; MS (EI): m/z (\%): 234 (33), 233 (100), 219 (26), 218 (38), 206 (12), 205 (12); HRMS (EI): calcd for ($\left.\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{DN}\right)$: 234.126727; found: 234.126460.

Unless stated otherwise, all other compounds were prepared analogously. Their analytical and spectroscopic date are compiled below:
Compound 1a. White solid ($510 \mathrm{mg}, 77 \%$). m.p.: $52-54^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$

1a $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-$ $2.69(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OH}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=139.0,138.6,131.5,131.4,130.5,129.9,63.0,62.4,25.8$ (3C), 18.2, -5.3 (2C); IR (neat): $\tilde{v}=3354$ (br), 2955, 2930, 2884, 2858, 1596, 1559, 1471, 1387, 1362, 1257, 1097, 1052, 1007, 937, 888, 838, 776, $681 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 265 (18), 263 (26), 75 (100); HRMS (ESI+): calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right)$: 343.06584; found 343.06610; elemental analysis (\%) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Si}$: C 52.33, H 6.90; found: C $52.41, \mathrm{H} 6.83$.
Compound 1b. White solid ($228 \mathrm{mg}, 44 \%$ over two steps). m.p.: $90-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300

1b $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.75$ (quint., $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, 0.10 (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.7,134.9,130.6$, 130.2, 128.5, 128.0, 127.3, 112.7, 62.1, 25.9 (3C), 18.3, 4.2, 1.1, -5.3 (2C); IR (KBr): $\tilde{v}=3073,3051,17601739,1554,1485,1471,1456$, 1385, 1366, 1261, 1090, 936, 860, 839, 779, $678 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 342 (14), 307 (25), 285 (23), 211 (40), 176 (22), 141 (28), 75 (100); HRMS (ESI+): calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{OSi}+\mathrm{Na}\right)$: 365.08657; found 365.08671; elemental analysis (\%) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{OSi}$: C 59.47, H 7.05; found: C 59.30, H 6.94 .

Compound 1c. A solution of compound 1b ($930 \mathrm{mg}, 2.7 \mathrm{mmol}$) and TBAF (1 M in THF, 2.7
 mL) in THF (15 mL) was stirred for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. A standard extractive work up followed by flash chromatographic purification of the crude material gave product $\mathbf{4 c}$ as a white solid ($466 \mathrm{mg}, 75 \%$). m.p. $112-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.85$ (quint., $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H})$, 1.45-1.37 (m, 2H), 1.24-1.15 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $136.9,135.9,131.6,130.2,129.6,128.6,127.8,112.6,62.2,4.2,1.1 ;$ IR $(\mathrm{KBr}): \tilde{v}=3315,3320,3040,2974,2920,1765,1551,1486,1471,1449,1423,1409,1378$, 1225, 1134, 1049, 986, 891, $678 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 228 (7), 199 (37), 197 (56), 195 (32), 193 (100), 188 (11), 186 (17), 177 (10), 175 (30), 162 (37). HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}: 228.01087$; found: 228.01057; elemental analysis (\%) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}$ 57.67, H 4.40; found: C 57.82, H 4.47.

Compound 12. White solid ($329 \mathrm{mg}, 78 \%$). m.p.: $67-70^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
 $10.21(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.46$ $(\mathrm{m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.0$, 139.5, 138.2, 132.9, 132.4, 131.4, 131.2, 129.3, 112.1, 4.6, 1.9; IR (neat): $\tilde{v}=3076,3026,2977,2890,1733,1678,1574,1458,1412,1372,1212$, 1134, 977, 943, 922, 901, $878,847 \mathrm{~cm}^{-1}$; MS (EI) m / z (rel. intensity) 228 (31), 226 (48), 199 (19), 197 (26), 193 (32), 191 (100), 163 (54), 128 (74); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$: 225.99522 ; found: 225.99529 ; elemental analysis calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$: C 58.18, H 3.55; found: C 58.06, H 3.51.

Compound 1. White solid (96 mg , 53% over two steps). m.p. $111-114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}$,
 $1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (ddd, $J=7.4,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (quint., $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.25-$ $1.16(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.8,149.6,136.4$, 136.3, 134.2, 131.6, 130.9, 130.3, 128.7, 128.1 (2C), 127.8, 122.5, 122.3, 113.5, 3.9, 1.2; $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=3046,3022,2973,1735,1630$, 1582, 1563, 1475, 1465, 1431, 1230, 1139, 954, 883, $764 \mathrm{~cm}^{-1} ;$ MS (EI): $m / z(\%): 303$ (22), 302 (67), 301 (36), 300 (100), 288 (18), 287 (13), 286 (28), 285 (14); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}$: 301.04251; found: 301.04242; elemental analysis (\%) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}$: C 67.38, H 4.30, N 4.70; found: C 67.57, H 4.34, N 4.63.

Compound 5a. Colorless oil ($1.56 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78$ (dd, $J=$

5a $10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=11.3,8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.33(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=65.0,64.5,40.7$, 39.1, 28.0, 26.6, 25.8 (3C), 24.3, 23.8, 18.1, -5.6 (2C); IR (neat) $\tilde{v}=3374$, 2927, 2857, 1472, 1463, 1450, 1389, 1361, 1255, 1086, 837, $775 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m / z (\%): 201 (5), 109 (100), 105 (68), 75 (88); HRMS (ESI+): calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}+\right.$ Na): 281.19073; found: 281.19083; elemental analysis (\%) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$: C 65.06, H 11.70; found: C 64.89, H 11.75 .

Compound 5b. Colorless oil ($1.23 \mathrm{~g}, 64 \%$, mixture of diastereomers $\approx 6: 1$). ${ }^{1}$ H NMR (300
 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer): $\delta=8.51(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=$ $7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (ddd, $J=7.5,5.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56$ (dd, $J=15.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (dd, $J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.06(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$,
-0.04 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1,149.4,139.9,136.3,129.3,121.5$, $121.0,66.3,44.3,43.5,33.3,29.3,25.6$ (3C), 18.1, -5.4 (2C); characteristic signals for the minor diastereomer: $\delta=6.91$ (dd, $J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$; IR (neat): $\tilde{v}=2926,2854,1651,1585,1564,1470,1430,1251,1110,1080,1004,972,833,772 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 331 (2), 274 (100); HRMS (ESI+): calcd for ($\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NOSi}+\mathrm{Na}$): 354.22236; found: 354.22246.

Compound 5. Yellow oil; the pure cis isomer was obtained by HPLC separation (253 mg ,
 31%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.46$ (ddd, $J=4.6,1.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (td, $J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dt, $J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=7.5,4.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=15.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.64(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.69$ (m, 4 H$), 1.44-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.10-0.91(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=156.7,149.7,140.8,136.5,129.2,123.0,121.7,121.1$, 120.9, 47.1, 45.9, 33.3, 33.2, 26.3, 26.2, 2.6, 1.9; IR (neat): $\tilde{v}=3048$, 3001, 2976, 2924, 2851, 1651, 1586, 1563, 1469, 1446, 1430, 971, $762 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 239 (26), 238 (61), 224 (26), 210 (36), 196 (29), 182 (25), 170 (18), 157 (33), 144 (46), 130 (100), 117 (53), 106 (30), 93 (77), 79 (33); HRMS (ESI+): calcd for ($\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}$): 240.17467; found: 240.174765 .

Compound 6b. Colorless oil ($1.18 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.25(\mathrm{~m}$,

6b $10 \mathrm{H}), 4.74(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.60(\mathrm{~m}, 3 \mathrm{H}), 3.87 .3 .73(\mathrm{~m}, 2 \mathrm{H})$, 3.72-3-61 (m, 2H), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.54,138.52,128.6$ (2C), 128.5 (2C), 128.12 (2C), 128.07 (2C), $127.89,127.86,80.4,79.5,73.2,73.0,62.5,61.7,26.0$ (3C), 18.4, -5.3 (2C); IR (neat): $\tilde{v}=3451,3089,3064,3031,2953,2928,2883,2857$, 1606, 1496, 1471, 1462, 1454, 1255, 1094, 1028, 1006, 837, 777, 735, $698 \mathrm{~cm}^{-1} ;$ MS (EI): m / z (\%) 219 (6), 181 (29), 91 (100); HRMS (ESI+): calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 439.22751; found 439.22725; elemental analysis (\%) calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$: C 69.19, H 8.71; found: C 66.51, H 8.25.

Compound 6c. Dess-Martin periodinane ($1.4 \mathrm{~g}, 3.29 \mathrm{mmol}$) was added to a solution of alcohol $\mathbf{6 b}(1.14 \mathrm{~g}, 2.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After stirring for 40 min , the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. aq. NaHCO_{3}, the aqueous phase was extracted with tert-butyl methyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue rapidly passed through a short pad of silica gel. The resulting crude aldehyde was subjected to olefination, using (3bromopropyl)triphenylphosphonium bromide ($1.4 \mathrm{~g}, 3 \mathrm{mmol}$) and t-BuOK $(674 \mathrm{mg}, 6 \mathrm{mmol})$ in THF (20 mL). The crude material was desilylated with TBAF (1.28 mL , $1.28 \mathrm{mmol}(1 \mathrm{M}$ in THF) in THF (9 mL). A standard aqueous work up followed by purification via flash chromatography (hexanes/EtOAc, 10/1 $\rightarrow 7 / 1$) afforded product $\mathbf{6 c}$ as a pale yellow oil ($215 \mathrm{mg}, 24 \%$ over three steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.25$ (m, 10H), 5.86 (dquint, $J=10.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-$ 3-66 (m, 2H), 3.64-3.53 (m, 1H), 2.23-2.14 (m, 1H, -OH), 1.31-1.03 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.64,138.6,128.6,128.5$ (2C), 128.4 (2C), 128.0 (2C), 127.88 (2C), $127.85,127.7,115.6,81.5,80.1,73.6,70.5,62.4,2.7,2.5$; IR (neat): $\tilde{v}=3451,3087,3062$, 3030, 2989, 2923, 2870, 1605, 1496, 1454, 1089, 1055, 1028, 736, 698; MS (EI): m/z (\%): 173 (7), 91 (100); HRMS (ESI+): calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}+\mathrm{Na}\right)$: 347.16177; found: 347.16152; elemental analysis (\%) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}$: C 77.75, H 7.46 ; found: C 77.63, H 7.35.

Compound 14. Alcohol $\mathbf{6 c}(52 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added via canula to a
 suspension of MS $4 \AA(100 \mathrm{mg})$ in $\mathrm{MeCN}(4 \mathrm{~mL})$. PDC ($120 \mathrm{mg}, 0.32 \mathrm{mmol}$) was then introduced in one portion and the suspension was stirred for 4 h at ambient temperature. For work up, all insoluble materials were filtered off 14 through a short pad of Celite, the filtrate was evaporated and the product purified by flash chromatography (hexanes/EtOAc, 4/1) to give aldehyde 14 ($42 \mathrm{mg}, 81 \%$), which was immediately used in the rearrangement step because of its low stability.
Compound 6. Colorless oil ($79 \mathrm{mg}, 50 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.58 (ddd, $J=5.0,1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$
 $7.23(\mathrm{~m}, 10 \mathrm{H}), 7.14$ (ddd, $J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 2 \mathrm{H})$, $5.95-5.87(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 2 \mathrm{H})$, 1.21-0.98 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.5,149.7,139.0$, $138.7,136.5,132.7,132.1,128.4$ (2C), 128.3 (2C), 128.2, 127.85 (2C), 127.82 (2C), 127.5, 127.4, 122.3, 121.5, 115.9, 81.90, 81.86, 71.3, 70.6, 2.6, 2.3; IR (neat): $\tilde{v}=3061,3030,2979,2863,1653,1585,1564,1496,1469,1454,1431$, 1112, 1090, 1067, 1028, 976, 737, $697 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 306 (17), 224 (18), 173 (5), 91 (100); HRMS (ESI+): calcd for $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}+\mathrm{Na}\right)$: 420.19339; found 420.19324.
Compound 13. t - BuLi (1.7 M in pentane, $0.38 \mathrm{~mL}, 0.65 \mathrm{mmol}$) was slowly added via syringe to a solution of aryl bromide $\mathbf{1 3 a}^{3}$ in
 THF (6 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 3 h at $-78^{\circ} \mathrm{C}$, DMF ($69 \mu \mathrm{~L}, 0.89$ mmol) was introduced and stirring continued for 1 h . The reaction was quenched with water (5 mL), the aqueous phase was extracted with tert-butyl methyl ether (3 x 5 mL), the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $15 / 1 \rightarrow 4 / 1$) to give aldehyde 13 as a yellow solid ($85 \mathrm{mg}, 66 \%$). m.p.: $92-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.28(\mathrm{~s}, 1 \mathrm{H}), 7.51$ (quint., $\left.J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 3.97$ $(\mathrm{s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.45-1-41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 190.0, 153.6, 148.3, 136.0, 129.0, 125.7, 113.0, 110.2, 109.0, 56.0, 55.9, 4.2, 1.6; IR (neat): $\tilde{v}=2971,2936,2854,1665,1588,1502,1463,1451,1424,1364,1322,1269,1259,1212$, 1181, 1104, 1000, 872, $743 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 218 (100), 203 (19), 189 (42), 187 (26), 175 (23), 159 (15), 145 (24), 132 (12), 115 (28), 103 (15), 91 (12), 77 (21); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$: 218.09429; found: 218.09404.

[^2]
Preparation of Compounds 19 and 20

a) PPh_{3}, toluene, reflux, 72 h. b) NaOH , water, reflux, 2h. c) 1) $\mathrm{MsCl}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; 2) NaHMDS , THF, $-50^{\circ} \mathrm{C} \rightarrow$ r.t.; d) (i) n-Buli, THF, $-78^{\circ} \mathrm{C}$; (ii) 2-(tert-butyldimethylsilyloxymethyl)benzaldehyde, $-78^{\circ} \mathrm{C}$, then separation of diastereomers. e) NaH , DMF/THF, $50^{\circ} \mathrm{C}$; f) TBAF, THF. g) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound 31a. A solution of commercially available (S)-(+)-3-bromo-2-methyl-1-propanol $\stackrel{\mathrm{Br}^{\ominus}}{ }{ }^{\ominus} \quad \begin{aligned} & (2 \mathrm{~mL}, 19.1 \mathrm{mmol}) \text { and } \mathrm{Ph}_{3} \mathrm{P}(5 \mathrm{~g}, 19.1 \mathrm{mmol}) \text { in toluene }(20 \mathrm{~mL}) \text { was } \\ & \text { stirred under reflux for } 72 \mathrm{~h} \text {. After reaching ambient temperature, the }\end{aligned}$ white precipitate was filtered off, carefully rinsed with toluene, and dried in vacuo to give the phosphonium salt 31a as a white solid (5.1 g , $64 \%)$. m.p.: $177-179^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-6.5\left(\mathrm{c}=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$
$\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.96-7.76(\mathrm{~m}, 9 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 6 \mathrm{H}), 4.63$ (ddd, $J=16.1,14.8,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{dt}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=16.1,12.1$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.04(\mathrm{~m}, 1 \mathrm{H}), 0.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ 137.3 (d, $J=3 \mathrm{~Hz}, 3 \mathrm{C}), 134.1$ (d, $J=10 \mathrm{~Hz}, 6 \mathrm{C}), 130.8(\mathrm{~d}, J=13 \mathrm{~Hz}, 6 \mathrm{C}), 120.0(\mathrm{~d}, J=86$ $\mathrm{Hz}, 3 \mathrm{C}), 66.7(\mathrm{~d}, J=13 \mathrm{~Hz}), 32.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 26.6(\mathrm{~d}, J=51 \mathrm{~Hz}), 17.8(\mathrm{~d}, J=2 \mathrm{~Hz})$; IR (neat): $\tilde{v}=3313$ (br), 2926, 2862, 1586, 1485, 1435, 1109, 161, 1039, 996, 812, 750, 717, $691 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 262 (100), 257 (82), 201 (35), 183 (60), 108 (25); HRMS (ESI+) calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{OP}+\mathrm{Na}\right)$: 335.15593 ; found: 335.15619 .

Compound 31. aq. $\mathrm{NaOH}(20 \% ~ w / w, 110 \mathrm{~mL})$ was added to a solution of phosphonium
 bromide 31a ($5.1 \mathrm{~g}, 12.22 \mathrm{mmol}$) in water (27 mL) and the resulting mixture was stirred under reflux for 2 h . For work up, the mixture was allowed to cool before it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give a colorless oil which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. DMAP ($149 \mathrm{mg}, 1.22$
$\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.87 \mathrm{~mL}, 13.42 \mathrm{mmol})$ were added before mesyl chloride $(0.94 \mathrm{~mL}, 12.2$ mmol) was slowly introduced at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. A standard extractive work up gave the crude
mesylate which was dissolved in THF (17 mL) and added via syringe pump to a cold solution of NaHMDS $(2.47 \mathrm{~g}, 13.42 \mathrm{mmol})$ in THF $(600 \mathrm{~mL})$ over a period of 2.5 h at such as rate as to maintain the internal temperature between $-50^{\circ} \mathrm{C}$ and $-35^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was allowed to stir for an additional 2 h at $0-5^{\circ} \mathrm{C}$. The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 30 \mathrm{~mL}$), the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1/10) to give product $\mathbf{3 1}$ as a white solid ($1.43 \mathrm{~g}, 46 \%$ overall). m.p. 138$140^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.79-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.26-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79-0.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=136.3(\mathrm{~d}, J=115 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=100 \mathrm{~Hz}), 131.85(\mathrm{~d}, J=2 \mathrm{~Hz}), 131.85(\mathrm{~d}, J=$ 2 Hz), 131.3 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{C}), 131.2(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{C}), 128.84(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{C}), 128.80(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 2 \mathrm{C}), 18.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=105 \mathrm{~Hz}), 12.0(\mathrm{~d}, J=4 \mathrm{~Hz}), 11.2(\mathrm{~d}, J=5 \mathrm{~Hz})$; IR (neat): $\tilde{v}=3052,3000,2959,2925,1486,1438,1178,1122,1110,992,919,858,718$, $695 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 256$ (51), 255 (42), 212 (21), 202 (32), 201 (100), 77 (33); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{OP}: 256.10171$; found: 256.10172.
Compound 35. n - BuLi (1.6 M in hexanes, $0.63 \mathrm{~mL}, 1 \mathrm{mmol}$) was added dropwise to a solution of compound $\mathbf{3 1}(256 \mathrm{mg}, 1 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 20 min , a solution of 2-(tert-butyldimethylsilyloxymethyl)benzaldehyde ($250 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (1 mL) was added and stirring was continued for 30 min at that temperature. For work up, the reaction was diluted with tert-butyl methyl ether (10 mL) and quenched with water (10 mL), the aqueous phase was extracted with tert-butyl methyl ether $(2 \times 10 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue purified by flash chromatography to give the two diastereomers of adduct 32 in pure form.
$\mathrm{NaH}(40 \mathrm{mg}, 1.67 \mathrm{mmol})$ was added to a solution of the less polar fraction of $32(268 \mathrm{mg}$, $0.53 \mathrm{mmol})$ in DMF (3.75 mL) and THF (1 mL) and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . For work up, the mixture was cooled to $0^{\circ} \mathrm{C}$, the reaction was carefully quenched with water (5 mL), the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue purified by flash chromatography (pentanes $/ \mathrm{Et}_{2} \mathrm{O}, 10 / 1 \rightarrow 4 / 1$) to give a first fraction containing product 33 and a second fraction of pure 35. The fraction consisting of silyl ether $33(44 \mathrm{mg}, 0.15 \mathrm{mmol})$ was dissolved with THF $(0.75 \mathrm{~mL})$ and treated with TBAF (1 M in THF, 0.15 mL) for 30 min before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine (5 mL each). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue purified by flash chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}, 10 / 1 \rightarrow 4 / 1$) to give a second crop of product 35 which was obtained as a white solid ($41 \mathrm{mg}, 44 \%$). m.p. $47-$ $50^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.67(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (ddt, $J=7.5,0.8$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H})$, 4.81-4.76 (m, 2H), 1.81-1.75 (m, 1H), 1.76-1.73 (m, 1H, -OH), $1.37(\mathrm{td}, J=8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.25 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ (ddd, $J=8.7,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $=137.6,136.5,133.8,128.8,128.3,127.0,126.7,115.1,63.7,17.4,11.8,9.2 ; \operatorname{RR}$ (neat): $\tilde{v}=$ 3238, 3070, 3026, 2993, 2950, 2923, 2893, 2863, 1488, 1449, 1225, 1188, 993, 939, $743 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (EI): m / z (\%): 159 (10), 143 (100), 128 (60), 115 (31), 91 (21), 77 (14); HRMS (EI) calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}+\mathrm{H}\right)$: 175.11229; found: 172.11207.

Compound 36. Obtained of the more polar fraction of $\mathbf{3 2}$ as described above. White solid
 $(70 \mathrm{mg}, 55 \%)$. m.p. $50-52^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-14\left(\mathrm{c}=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.82(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 1.86-1.58(\mathrm{~m}, 1 \mathrm{H}$, $-\mathrm{OH}), 1.66-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=138.2,137.2,134.3,129.1,128.5,127.5,126.9$, 114.3, 65.0, 18.4, 12.4, 9.0; IR (neat): $\tilde{v}=3235,3071,3025,2993,2950,2923,2893,2863$, 1488, 1448, 1225, 1188, 993, 939, $742 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 159 (9), 143 (100), 128 (53), 115 (23), 91 (14), 77 (9); HRMS (EI) calcd for ($\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}+\mathrm{H}$): 175.11229; found: 172.11218.

Compound 19. Colorless oil ($31 \mathrm{mg}, 78 \%$). $[\alpha]_{D}^{20}=135\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=10.34(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9$

$\mathrm{Hz}, 1 \mathrm{H}$), 7.66-7-63 (m, 1H), 7.56 (tdd, $J=7.4,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (td, $J=$ $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{td}, J=9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{ddd}, J=8.9,5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=192.8,140.2,138.0,133.8,132.6,131.7,128.0,127.1,114.4,17.2,12.0$, 9.6; \mathbb{R} (neat): $\tilde{v}=2957,2926,2864,2732,1688,1596,1566,1483,1450$, 1406, 1377, 1209, 1184, 1006, 964, 869, 815, $748 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 172 (28), 157 (55), 143 (92), 128 (100), 118 (32), 115 (48), 102 (15), 89 (17), 77 (16); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}: 172.08881$; found: 172.08867 .

Compound 20. Pale yellow oil ($26 \mathrm{mg}, 48 \%$). $[\alpha]_{D}^{20}=-3.5\left(\mathrm{c}=1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (300
 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=10.33(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{td}, J=7.2,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}),(\mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-0.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=192.9,140.6,138.1,133.7,132.8,131.5,127.7,127.2$, 113.4, 17.9, 12.2, 9.2; IR (neat): $\tilde{v}=2959,2925,2865,2736,1689,1595$, $1566,1483,1450,1410,1377,1209,1185,1006,964,869,812,754 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 172 (21), 157 (50), 143 (87), 128 (100), 118 (32), 115 (47), 102 (13), 89 (15), 77 (12); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$: 172.08881 ; found: 172.08894 .

C-H-Activation / Cycloisomerization Tandem Reactions

Representative procedure for the pyridine directed, rhodium catalyzed C-H activation/cycloisomerization tandem. Preparation of compound 8. A Teflon-screw Schlenk tube equipped with a magnetic stir bar was charged with compound 4 $(21 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(4.6 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{AgSbF}_{6}(2.6 \mathrm{mg}$, $0.0075 \mathrm{mmol})$ and THF (2 mL). The flask was sealed and immersed into a preheated oil bath $\left(120^{\circ} \mathrm{C}\right.$ bath temperature). After stirring for 6 h at that temperature, the mixture was allowed to cool before it was filtered through a short pad of silica which was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/Et $2 \mathrm{O}, 20 / 1 \rightarrow 10 / 1$) to give product $\mathbf{8}$ as a colorless oil ($13 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.58-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (ddd, $J=7.6,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.34(\mathrm{~s}, 1 \mathrm{H}), 5.82-5.67$ (m, 2H), 2.88-2.79 (m, 2H), 2.55$2.47(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.3,150.0,149.1,135.7$, $130.7,130.5,124.2,123.8,120.4,38.2,31.2,29.4,27.0$; IR (neat): $\tilde{v}=3012,2925,2842$, 1642, 1585, 1559, 1471, 1427, 1148, 774, 742, $712 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 185 (89), 184 (100), 170 (48), 157 (82), 144 (23), 130 (68), 118 (65), 93 (50), 79 (43). HRMS (EI): calcd
for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}$: 185.12045; found: 185.12029; elemental analysis (\%) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}$: C 84.28, H 8.16, N 7.56; found: C 84.86, H 8.25, N 7.45.

The following compounds were prepared analogously. Their analytical and spectral data are compiled below:

Compound 2. White solid (20 mg , 77%). m.p.: $78-79^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$
 8.62 (ddd, $J=5.0,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=7.6$, $4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dt}$, $J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.3,149.4,146.3,143.6,136.1,134.7$, $134.5,132.5,130.8,130.1,128.8,127.3,127.2,124.7,121.3,31.7$, 28.7; IR (neat): $\tilde{v}=3015,2959,2920,2889,2826,1631,1584,1560$, 1471, 1424, 1145, 888, 767, $741 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 304 (19), 303 (59), 302 (75), 301 (94), 300 (100), 290 (10), 289 (12), 288 (61), 287 (28), 286 (94). 251 (38), 209 (20), 115 (23); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}$: 301.04250 found: 301.04251.
Compound 7. Colorless oil ($19 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.61$ (ddd, $J=$
 $4.8,1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.27 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (ddd, $J=7.5,4.8,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{dt}, J=12.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=12.1,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=157.2,149.5,149.1,144.3,136.5,134.7,133.0,131.7,129.6$, 127.7, 127.5, 127.2, 126.4, 125.0, 121.4, 32.1, 29.4; IR (neat): $\tilde{v}=3057$, 3011, 2962, 2919, 2888, 2852, 2825, 1631, 1585, 1558, 1483, 1471, 1439, 1426, $775 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 233 (79), 232 (86), 218 (100); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}$: 233.12045 found: 233.12025 The deuterated compound 7-D was obtained analogously. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{ddd}, J=7.5,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=12.1,4.4 \mathrm{~Hz}, 0.07 \mathrm{H}), 3.29(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-$ $2.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.8,149.2,148.6,143.8,135.9,134.2,132.1$ (t, $J=24 \mathrm{~Hz}$), 131.3, 129.3, 127.3, 127.2, 126.8, 126.3, 124.4, 120.9, 31.6, 28.9; MS (EI): m / z (\%): 234 (82), 233 (92), 219 (100); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{DN}$: 234.12672; found: 234.12692.

Compound 9. Colorless oil ($18 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.52$ (ddd, $J=$
 $5.0,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (ddd, $J=7.4,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.48-5.46(\mathrm{~m}, 1 \mathrm{H})$, 5.29-5.21 (m, 1H), 3.14 (ddd, $J=12.9,6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=$ $12.9,11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.08$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta=157.4,153.6,149.0,135.7,134.3$, $128.0,124.8,123.5,120.3,53.4,40.8,34.4,33.6,29.1,27.2,26.4,26.3$; IR (neat): $\tilde{v}=3073,3003,2923,2850,1641,1585,1559,1472,1453,1427$, $740,659 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 239$ (89), 224 (19), 210 (21), 196 (14), 182 (15), 168 (11), 157 (100), 144 (19), 130 (25), 117 (17), 106 (10), 93 (31); HRMS (ESI+) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}\right.$ +H): 240.17467; found: 240.17462 elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}: \mathrm{C} 85.30, \mathrm{H}$ 8.84, N 5.85; found: C 85.26, H 8.74, N 5.72.

Compound 10. White solid ($11 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.64-8.60(\mathrm{~m}$, $1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (ddd, J $=7.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{dtd}, J=11.9,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.60(\mathrm{~m}, 1 \mathrm{H})$, $4.82-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
3.03-2.90 (m, 2H), 2.60-2.45 (m, 1H), 2.44-2.31 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
 $156.3,149.2,143.5,138.9,138.6,136.0,130.9,129.2,128.26$ (2C), 128.22 (2C), 127.75 (3C), 127.67 (2C), 127.37, 127.33, 124.4, 121.1, 86.9, 85.5, 72.2, 70.6, 27.2, 26.7; IR (neat): $\tilde{v}=3070,3011,2948,2876$, $2850,1649,1584,1560,1496,1471,1452,1431,1384,1339,1306$, $1281,1259,1238,1205,1156,1113,1099,1088,1065,1029,988,897$, $742,729,717 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 306 (56), 91 (100); HRMS (ESI+) calcd for $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}+\mathrm{Na}\right)$: 420.19340 ; found: 420.19341; elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}$: C 81.58, H 6.85, N 3.52; found: C 81.42, H 6.86, N 3.41.

Representative procedure for the rhodium catalyzed C-H activation/cycloisomerization tandem of the aldehyde substrate. Preparation of compound 15. A Teflon-screw Schlenk flask equipped with a small stir bar was charged with compound 11 ($18 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{coe})_{2} \mathrm{Cl}\right]_{2}(4 \mathrm{mg}, 0.005 \mathrm{mmol}),\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}(7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $1,2-$ dichloroethane (2 mL) under Ar. Ethylene was bubbled through the solution via a needle for 60 sec before the flask was sealed and immersed into a pre-heated oil bath $\left(120^{\circ} \mathrm{C}\right.$ bath temperature). After stirring for 2.5 h at that temperature, the mixture was allowed to cool before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. Filtration through a short pad of silica, evaporation of the filtrate followed by flash chromatographic purification of the residue (hexanes/EtOAc, 20/1) afforded ketone 15 as a colorless oil ($14 \mathrm{mg}, 76 \%$). Its analytical and spectroscopic data are in full agreement with those reported in the literature. ${ }^{4}$
Compounds 16-18 were obtained analogously. Their analytical and spectroscopic data are compiled below:
Compound 16. White solid ($37 \mathrm{mg}, 82 \%$). m.p.: $78-81^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
 7.97 (s, 1H), $7.30(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=11.7,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95-2-85(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta=199.4,136.6,135.7,135.5,135.2,133.1,131.5,131.4,129.4$, 41.6, 23.9; IR (neat): $\tilde{v}=2967,2917,1672,1647,1575,1462,1424$, $1358,1346,1273,1235,1196,1177,1141,1036,928,901,879,762,672$ cm^{-1}; MS (EI): m/z (\%): 228 (64), 226 (100), 200 (23), 198 (33), 193 (16), 191 (50), 165 (18), 163 (52), 128 (50); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}: 225.99522$; found: 225.99507; elemental analysis calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$: C 58.18, H 3.55; found: C 58.08, H 3.64.
Compound 17. Pale yellow solid ($23 \mathrm{mg}, 72 \%$). m.p.: $80-82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
 $\delta=7.54(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.10(\mathrm{~m}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.91-2-85(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2,152.3,147.7,132.4,131.4$, $131.2,129.1,113.7,112.2,56.00,55.97,42.1,23.2$; \mathbb{R} (neat): $\tilde{v}=$ 3084, 2999, 2957, 2840, 1650, 1591, 1514, 1461, 1440, 1364, 1247, 1213, 1189, 1129, 1069, 1031, 875, 851, $783 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 218 (100), 203 (11), 190 (24), 175 (21), 159 (23), 147 (11), 132 (6), 115 (16), 103 (8), 91 (8), 77 (8); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}: 218.09430$; found: 218.09407 .
Compound 18. Pale yellow oil ($28 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.27$
 $(\mathrm{m}, 10 \mathrm{H}), 5.97(\mathrm{dt}, J=11.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{ddt}, J=11.6,4.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=$ $7.1,4.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (ddd, $J=14.3,9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.30(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.5,138.3,137.6,132.1,129.7,128.6$ (2C), 128.5 (2C), 128.2 (2C), 128.1, 127.9 (2C), 127.8, 86.4, 76.3, 72.8, 72.4, 40.0, 23.8; IR

[^3](neat): $\tilde{v}=3030,2866,1716,1496,1454,1205,1087,1067,1027,732,695 \mathrm{~cm}^{-1} ;$ MS (EI): m / z (\%): 231 (11), 91 (100); HRMS (ESI+) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right)$: 345.14612; found: 345.14635; elemental analysis calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}$: C 78.23, H 6.88; found: C 78.21, H 7.03.

Ketone 21. Colorless oil ($21 \mathrm{mg}, 53 \%$). $[\alpha]_{D}^{20}=167\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.23$ (dd, $\left.J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.20 (m, 2H); 6.45 (dd, $J=11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (ddd, $J=11.8,6.6$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (ddq, $J=11.1,6.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dddd, $J=18.3,6.4$, $3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (dddd, $J=18.2,11.1,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.20(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=205.0,137.6,135.4,132.2$, 131.8, 130.8, 129.5, 127.4, 44.5, 33.6, 16.3; IR (neat): $\tilde{v}=3024,2971,2932,2825,1677$, 1593, 1481, 1445, 1424, 1376, 1291, 1278, 1242, 1207, 1004, 964, $781 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 172 (100), 157 (33), 144 (21), 130 (92), 115 (35), 102 (22); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}: 172.08882$; found: 172.08863 .

The UV spectrum showed 3 absorption bands: $316\left(\mathrm{n} \rightarrow \pi^{*}\right)$, 269, 234 nm . A positive circular dichroism was measured for the $n \rightarrow \pi^{*}$ transition. The sign of the circular dichroism is in accordance with the absolute configuration indicated for 21. As reported in the literature, the sign of the dihedral angle between the planes defined by the carbonyl group and the benzene ring $\left(+32.5^{\circ}\right)$ and the sign of the circular dichroism for the $n \rightarrow \pi^{*}$ transition are identical. ${ }^{5}$ The shown conformation is consistent with the observed coupling constants: ${ }^{3} J_{\mathrm{H} 2 \mathrm{a}, \mathrm{H} 3 \mathrm{a}}=11.1 \mathrm{~Hz}$ and ${ }^{3} J_{\mathrm{H} 2 \mathrm{a}, \mathrm{H} 3 \mathrm{e}}=3.9 \mathrm{~Hz}$, which indicate that the methyl group is in equatorial position. This conformation was also calculated to be the most stable one (Spartan 02, 2001, MMFF level).

Ketone 22. Colorless oil ($4 \mathrm{mg}, 70 \%$). $[\alpha]_{D}^{20}=-313\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.83(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=11.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=11.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.82-2.71 (m, 1H), $1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=201.3,140.0,137.2,136.1,132.7,132.1,129.41,129.38$, 127.4, 49.6, 30.9, 20.6; IR (neat): $\tilde{v}=3020,296,2929,2874,1672,1595,1482,1456,1443$, 1428, 1375, 1357, 1312, 1279, 1123, 1106, 782, $751 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 172$ (100), 157 (54), 143 (28), 129 (73), 115 (26), 102 (16), 77 (17); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$: 172.08881; found: 172.08904 .

5 Barry, J.; Kagan, H.-B.; Snatzke, G. Tetrahedron 1971, 27, 4737-4748.

Container 180316 - Datei_070524_180316.spc \quad| 24.05.2007 |
| :--- |
| 18:03:55 |

Date	24.05.2007 16:17
File name	AIS-CE-308-01_2,3 mg in 1 mL DCM_20 ${ }^{\circ} \mathrm{C}$
Model	J-810
Serial No.	B048760750
Band width	1 nm
Response	1 sec
Sensitivity	Standard
Measurement range	$450-240 \mathrm{~nm}$
Data pitch	1 nm
Scanning speed	$50 \mathrm{~nm} / \mathrm{min}$
Accumulation	5
Temperature	20.07 C
Sample name	
Operator	Aissa christophe
Comment	

$-$

$\begin{array}{r}32.127 \\ -\quad 29.413 \\ \hline\end{array}$

0916093

E_{6} I

7crob̄ar pprou!' 'uuporbogs fuprw

[^0]: 1 Kang, E. J.; Cho, E. J.; Ji, M. K.; Young, E. Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J.-S.; Kim, H.-J.; Lee, S.-G.; Lah, M. S.; Lee, E. J. Org. Chem. 2005, 70, 6321-6329.

[^1]: 2 Phosphonium bromide and t-BuOK were mixed in THF at ambient temperature and the resulting mixture was refluxed for 2 h to give a suspension of the required ylide.

[^2]: 3 Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6303-6307.

[^3]: 4 Crich, D.; Gastaldi, S. New. J. Chem. 2000, 24, 249-250.

