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Abstract

Time-travel queries that couple temporal constraints with keyword queries
are useful in searching large-scale archives of time-evolving content such as
the web archives or wikis. Typical approaches for efficient evaluation of these
queries involve slicing either the entire collection [19] or individual index
lists [9] along the time-axis. Both these methods are not satisfactory since
they sacrifice compactness of index for processing efficiency making them
either too big or, otherwise, too slow.

We present a novel index organization scheme that shards each index list
with almost zero increase in index size but still minimizes the cost of reading
index entries during query processing. Based on the optimal sharding thus
obtained, we develop a practically efficient sharding that takes into account
the different costs of random and sequential accesses. Our algorithm merges
shards from the optimal solution to allow for a few extra sequential accesses
while gaining significantly by reducing the number of random accesses. We
empirically establish the effectiveness of our sharding scheme with experi-
ments over the revision history of the English Wikipedia between 2001-2005
(=~ 700 GB) and an archive of U.K. governmental web sites (= 400 GB). Our
results demonstrate the feasibility of faster time-travel query processing with
no space overhead.
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1 Introduction

Due to the ubiquitous access and ease of location using search engines, much
of the human-generated content is available electronically over the Web. This
content is constantly evolving with additions, deletions and modifications
occurring at very high rates [4, 11, 12, 18]. Search engines continuously
crawl and index the Web to keep up with its latest state.

There is a growing awareness, however, that this single-minded pursuit
for the latest state of the Web results in losing access to the history of con-
tent which could be important in a number of advanced applications. As
an answer to this, efforts such as the Internet Archive [3] and European
Archive [2] store regular crawls of large portions of the Web for retrospec-
tive analysis. Effective querying over these collections requires the use of
so-called time-travel queries that combine temporal constraints with stan-
dard keyword queries. These queries aim to return relevance ordered lists of
documents (or, more precisely, document versions) that were “alive” during
the specified time interval [9]. For example, on an archive of U.K. govern-
ment websites, one may pose a query such as inheritance tax @ [2000-2002]
to locate documents about inheritance taxation details prevalent during the
years 2000-2002. Note that the same query without a temporal constraint
would tend to generate results only about latest taxation details and not
necessarily from the required time.

Efficient evaluation of these time-travel queries over archives of large
collections (such as the Web) is a challenge that we address in this arti-
cle. Earlier efforts combined the ideas of index organization in temporal
databases with inverted indexes [6, 9, 19], which essentially meant that the
time-enriched inverted indexes are sliced along the time-axis (or partitioned
vertically). Each resulting partition of the index list contains index entries
of only those document versions that have a valid-time interval overlapping
with the time interval of the partition. Answering a time-travel query in such
a temporally sliced index involves choosing the correct -much smaller— index
partition (or partitions) to evaluate the query.
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Figure 1.1: Slicing vs. Sharding of a Index list

Though attractive, such an index organization suffers from an index-size
blowup incurred during the slicing process, since index entries whose valid-
time interval spans across the slicing boundary are replicated. While a careful
choice of the slicing boundaries can help to reduce the index blowup [9] in
order to achieve acceptable levels of efficiency, 2 to 3 times index size increase
is necessary.

1.1 Owur Approach

In this article, we rotate the “knife” of partitioning by 90° and propose to
shard —or horizontally partition— each index list along document identifiers,
instead of time (cf. Figure 1.1). An immediate benefit of this reoriented
partitioning is almost no increase in the overall index-size (as we show later,
only overhead is to maintain a small set of location pointers in each partition).
We develop a single-pass greedy algorithm that optimally shards the index
list, minimizing the number of index entries read during query processing.
In the resulting sharded index, query processing proceeds by first opening
all index list shards for each query term, and seeking to the right position in-
side each shard, and, next, sequentially scanning the shard from that position



—resulting in one random access followed by a sequential scan. As a random
access is at least as expensive as a sequential read (as in disk- and network-
based index storage), breaking the index list into too many shards actually
degrades performance, even if the abstract processing cost says otherwise.
Thus, the practical efficiency of the index organization is achieved only if
it is sensitive to the cost ratio of random accesses to sequential accesses.
We formulate an optimization framework for tuning the optimal sharding
that takes into account the I/O cost ratio of the storage infrastructure and
propose a heuristic to combine shards to gain practical runtime efficiency.
In summary, key contributions made in this article are:

1. A novel temporally sharded index organization for a time-enriched in-
verted index that overcomes the issue of index-size blowup.

2. An optimal greedy algorithm to shard the index list, so that no time-
travel query reads more than the required index entries, thus achieving
ideal query processing performance.

3. A framework that achieves practical runtime efficiency by tuning the
number of shards that each index list is split into, taking into account
the I/O cost ratio of the storage infrastructure. Note that the cost
of this is independent of the dynamics in the query workload, as it
depends only on the storage system parameters.

We performed extensive empirical evaluation on large-scale versioned docu-
ment collections using real-world keyword queries with temporal constraints
at varying granularities. Results of these experiments indicate that our
sharded temporal index has a negligible (= 1%) increase in index size, but
outperforms an optimized implementation of the previous best approach [9].

1.2 Organization

The remainder of this report is organized as follows: in Section 2, we briefly
present the data and time-travel query model that we use in this report, as
well as the time-travel inverted index [9] that we compare our work against.
Next, in Section 3, we describe in detail the idea of sharding the inverted
index and query processing over the resulting index organization. In Sec-
tion 4 and in Section 5 we present the details of our idealized sharding and
a sharding strategy sensitive to I/O cost ratio respectively. Details of our
experimental setup are in Section 7 and the key results are in Section 8.
Finally, we discuss previous related work in Section 9, before concluding in
Section 10.



2 Preliminaries

2.1 Data and Query Model

We operate on a collection D of versioned documents. Each document d has a
unique identifier id; and consists of a sequence of its versions, d = (d*, d?, .. ),
where every version consists of terms drawn from a vocabulary V. i.e., d* C V.
Furthermore, each document version has an associated valid-time interval
I(d") = [ begin(d'), end(d') ) that conveys when the document version d'
existed in the real world. We make the natural assumption that these valid-
time intervals for any two versions of the same document are disjoint, i.e.,

A document version that still exists when it is added to the archive is called
an active version and has end(d") = oo.

A time-travel query over D consists of a set of terms Q = {q1,..., ¢m}
and a time interval [bg, eg]. When evaluated, this query retrieves the set of
document versions that satisfy the keyword query @) and existed at any time
during the time interval [bg, eg]. When using the conjunctive boolean model
for keyword retrieval, we can write the result as:

R(QQlbg, eq]) =
{d"eD|VgeQ :qged ANId)Nbg, eq] #0} .

Queries for which by = eg holds, so that the query time interval collapses
into a single time point, will be referred to as time-point queries.

2.2 Index Organization

The index used for handling time-travel queries is based on the established in-
verted index [21], where each term in the vocabulary is associated with a list
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of entries called an index list. Each entry in the index list, (idg, I(d*), s), con-

sists of a document identifier idy, the valid-time interval, I(d") = [begin(d'), end(d")],
and a payload s. Based on the retrieval model employed, the payload can

be empty (for boolean retrieval), a scalar value (tf in the document version)

or even richer positional information in each version —the index organization
supports all these settings. When no confusion arises, we simply use begin(p)

and end(p) of an index entry p to refer to the valid-time interval boundaries

of the corresponding document version.

This index further supports partitioning of each index list into smaller
index lists. This partitioning can be done either along (i) the time-axis, i.e.,
have all index entries that overlap a contiguous segment of time together,
or (ii) the document-identifier dimension. In this work, we call the former
partitioning slicing and the latter sharding.

Index Slicing of [9]

In the time-travel indexing framework proposed by Berberich et al. [9], the
time-enriched inverted lists are sliced into several smaller sublists each span-
ning a specific subinterval of the time axis. As we already mentioned, every
entry whose valid-time interval spans the boundaries of more than one slice
is replicated in all the slices which overlap (cf. Figure 1.1). In their paper,
the authors also show that the optimal slicing (defined as the setting where
any time-travel query reads only those entries that qualify by their valid-
time interval) is impractical to achieve due to the resulting blowup (more
than 100x) in index size. As an alternative, they formulate an optimization
problem which takes as a user-given input, an upper bound x on the tolera-
ble index-size blowup, and outputs the best slicing satisfying this constraint.
The quality of the slicing is determined by the expected number of index
entries that are read for any time-travel query.

Another interesting aspect of the above framework is temporal coalescing,
a way of compressing index lists either in a lossy or non-lossy way. Temporal
coalescing merges temporally contiguous entries of the same document into
a single index entry, as long as the relative change in the payload s is within
a specified threshold e. Although this is somewhat orthogonal to the issue
of partitioning, the distribution of valid-time intervals of entries in the index
list could vary significantly after performing coalescing.



3 Temporal Index Sharding

The index sharding proposed in this report, on the other hand, distributes the
entries in an index list over disjoint subsets called shards, avoiding replication
completely (cf. Figure 1.1). Entries in a shard (and in the original list) are
ordered according to their begin times. For each shard we maintain an impact
list as an additional access structure for efficiently determining the entries
whose time segments overlap with a query time interval. This impact list
maintains, for every possible begin time of a query time interval, the position
in the shard of the earliest entry whose time segment contains the begin
time. In other words, the impact list maintains pairs of all possible query
begin times (key) and offsets (values) from the shard beginning. Given a
query time interval, it is sufficient to start scanning the shard at the position
(offset) stored in the impact list, instead of scanning the shard from the
beginning. The overall size of each impact list can be reduced by storing
only the distinct offset values rather than offsets for all possible query begin-
times. A straightforward binary search over the query begin-times gives the
correct offset location. For practical granularities of query begin-times such
as days, impact lists for the complete index (i.e., for all shards of all terms)
can be easily kept in memory.

Query processing follows the established term-at-a-time processing model
where index lists are read one after the other and scores of a document version
from different lists are merged in memory. For our sharded index, each query
term is processed in a sequence of open-skip-scan operations, one for each

shard:

1. Open — Open a shard for a query term.

2. Skip — Given the query begin time, lookup offset position from the
impact list of the shard and perform a seek to that position. In practice
we can combine the open and skip steps into an open-skip operation to
save an extra I/O operation.



3. Scan — Perform sequential reads from this position and terminate when
it is certain that rest of the entries do not overlap with the query time
interval. As we read the entries sequentially in begin-time order, we
can safely terminate when the begin-time of the next entry exceeds the
query end-time.

Observe that all the shards for a given term are accessed independently
of the temporal constraint in the time-travel query. For a sharded index,
merging results from every shard of a index list is not expensive since the
shards are disjoint; this is in contrast to the situation for temporally sliced
index lists, where entries replicated in different slices must be detected and
duplicates removed.



4 Idealized Index Sharding

As the entries in each shard are ordered according to their begin times, with
the help of the impact list we can easily avoid wasteful reading of entries
whose valid-time interval, I(d'), is before the query begin time. However,
this does not guarantee the elimination of all wasteful reads. Consider a
situation when two index entries p and ¢ contained in a shard such that p
completely subsumes ¢, i.e.,

begin(p) < begin(q) N end(p) > end(q).

Now, the queries with end(q) < bg < end(p) will wastefully read ¢g. This can
arbitrarily degrade performance if there are many such entries, for instance,
when there is an entry which spans long intervals.

We can avoid any wasteful reads of entries such that no pair of entries
from a shard form such a subsumption pattern. In other words, we require
that entries in a shard satisfy staircase property, defined as follows:

Definition 1 (Staircase Property). Given a shard g;, if we have
VD, q € gi,begin(p) < begin(q) = end(p) < end(q) ,
then we say the shard g; has the staircase property. 0

Clearly, it may be possible to shard a given index list in many different
ways so that the staircase property (cf. Figure 4.1) is satisfied. Since query

t ts
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Figure 4.1: Staircase property
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processing proceeds by open-skip operations for all shards of a term, it is
desirable to minimize the number of idealized shards. This can be cast into
an optimization problem where, given a set of time intervals (corresponding
to the valid-time intervals of index entries), minimize the number of shards.
Formally this is defined as follows:

Definition 2 (Idealized Sharding). Given a set of entries L, for a term v,
partition L, into a minimal set of shards G = {g1,...,9m}, g; C L, where:

ging;=10 Vgi,9; € G, i # ] (4.1)
Vg; € G : g; satisfies the staircase property. (4.3)
0

4.1 Optimal Algorithm

Algorithm 1 Idealized Sharding Algorithm
1: Input: L, sorted in increasing order of begin times
20 Gopr =0 // Idealized sharding
3:
: fori=1..]L,| do
// Tterate over all entries in the index list for v
if 39 € Gopi : g.end < end(L,[i]) then
create new shard g,,c,
Jnew-end =0
Gopt = Gopt U {gnew}
10:  end if
11: g, = argmin (end(L,[i]) — g.end)
g€ Gopt
12:  gp.end = end(Ly,[i]) // Update the end-time of the shard
13: g = g U{L,[7]} // Include the current entry into the shard
14:
15: end for
16:
17: Output: Gop is the idealized sharding.

Let each shard g; associated with an index list of begin-time sorted entries
have an end-time g;.end, defined as the latest end-time of all the entries in g;.

11



We employ the greedy algorithm given in Algorithm 1, in which we process
all entries of a list L, in increasing begin-time order. At each iteration, we
include an entry e into an existing shard if its inclusion does not violate the
staircase property of the shard. If there are multiple shards to which e can be
assigned, we assign it to the shard with the minimum gap, end(e) — g;.end. If
there are currently no shards to which e can be assigned, we start a new shard
with e in it. It turns out that the idealized sharding problem maps directly to
the problem of decomposing a set of points in a plane into minimum number
of ascending chains and essentially uses the same algorithm as in [20].

4.2 Proof of Optimality

We develop the proof for the optimality of Algorithm 1 by first proving a set
of three lemmas about key properties of the generated shards.

The first lemma states that the algorithm produces only shards that have
the staircase property.

Lemma 1 (Staircase Property). When Algorithm 1 terminates, every shard
created by the algorithm has the staircase property.

Proof. We show this by contradiction. Assume that there is one shard that
does not have the staircase property. This means that there are two entries
p and ¢ in this shard such that begin(p) < begin(q), but end(p) > end(q).
Since begin(p) < begin(q), p was added to the shard before q. But when p
was added, end time of the shard was set to end(p), so ¢ could not have been
be added to the same shard, which contradicts our assumption that p and ¢
are in the same shard. O]

For the next lemma, let the shards created by Algorithm 1 for a list L,
be numbered by their order of creation.

Lemma 2 (Temporal Subsumption of Entries). For every entry in a shard
gi (i > 1) there exists an entry in g;_1 which completely subsumes it.

Proof. Any entry e when added to g; equals the end of a shard when it is
added (line 7). At this stage it is subsumed by the entry ¢’ which forms the
end of g;_1. This is because €’ has an earlier begin time than e because of its
early addition. O]

We introduce the notion of a stalactite set of time intervals. A stalactite
set S consists of time intervals such that,

Vp, q € S, begin(p) < begin(q) = end(p) > end(q).

12



There may be many such stalactite sets that can be formed using entries
from a given index list, L,. Let us denote the stalactite set of maximum
cardinality as Syuz : Le.

Lemma 3 (Stalactite property). The number of shards created by Algo-
rithm 1 for a list L, is equal to |Spaz : Lyl

Proof. We prove the lemma using contradiction. Assume that the new entry
to be placed e, is not a part of [Syae @ Ly|. We also assume that its
addition creates a new shard gs,,,.|+1 which is more than the claimed |S;,q4]|
shards. Since the newly placed entries arrive in begin time sorted order,
begin(enew) is more than any of the previously placed entries. This means
that end(enew) < end(gs,..,|) for it to start a new shard gs,,,,|+1- Now
Lemma 2 says that there exists an entry in g|g,,,,| which subsumes e, making
e a part of a larger stalactite set of cardinality |Sy..| + 1 which is contrary
to initial assumption that 5,,., is the maximal stalactite set. O

Now, we can state and prove the optimality of the algorithm.
Theorem 1. Algorithm 1 creates an optimal sharding.

Proof. 1t follows from Lemma 1 that every element in S,,.. : L, has to
be a part of a new shards which lower bounds the number of shards to
|Spnaz : Ly|. Lemma 3, on the other hand, upper bounds the number of
shards to |Syae  Ly| which proves the optimality of Algorithm 1. O

Further, we show that the algorithm can be implemented efficiently, by
making use of the following property of the sharding at any stage during the
algorithm:

Lemma 4 (Descending End Times). If Algorithm 1 created a shard g; before
git1, then g;.end > g;y1.end.

Proof. We prove this property by induction over increasing number of entries
added.

1 = 1: For the first entry e; the property holds since there are no earlier
shards.

i — 1+ 1: Let there be n existing shards G = {g; - - - g, }. Depending on
the end time of the ¢ + 1th entry ,i.e., end(e;;1) we consider two cases:

If end(e;41) is less than all the existing shard ends (end(e;;1) < gx.end ,Ygi €
(), then e;;1 forms a new shard and the end of the shard is less than all the
existing ends. This proves the claim.

Due to the induction hypothesis, the end times of shards are sorted in
the descending order i.e., gi.end > go.end > --- > gy.end. If end(e;;;) is

13



greater than any of the shards, then by definition (line 6), it will have to be
assigned to the shard which minimizes the difference of their end times. It
is easy to see that this shard is the earliest shard which can accommodate
e;+1 since any other group will either violate the staircase property or have
a greater difference. This proves the claim. O]

Owing to such an ordering of shard ends, entries can be placed efficiently
via a binary search over the shard ends.

14



5 Cost-Aware Merging of
Shards

Depending on the distribution on valid-time intervals, the idealized sharding
introduced in the previous section might generate a large number of shards
requiring one open-seek operation, involving a random access, for each shard.
If the cost of such a random access is high and if the distribution of time
intervals gives rise to many idealized shards, query processing performance
can degrade. In such cases, it might actually be beneficial to relax the ideal-
ized sharding, and reduce the number of shards at the cost of allowing some
wasted reads.

In this section, we present an I/O cost-aware technique to selectively
merge idealized shards allowing for a controlled amount of wasted reads while
reducing the number of random accesses. We introduce a cost model which
limits sequential wasted reads due to merging of a set of idealized shards by
taking into consideration costs of random accesses and sequential reads of
the underlying index infrastructure.

5.1 Cost Model

Let the cost of a random access be C)., and that of a sequential read be C.
We allow for a penalty function for a set of idealized shards {g;} as P({g:})
and require it to be bounded by C,./Cj if the shards should be considered for
merging. We refer to this as the threshold criterion, i.e,

P({g}) < %

An example of such a penalty function is mean wasted reads, which is
defined as the number of wasted reads incurred during query processing,
averaged over all possible query begin time points. Under this penalty func-

15



tion, g; and g; can be merged when the mean wasted sequential reads in the
merged shard is less than the overhead incurred in an open-seek operation.
In other words, an open-seek operation to one merged shard accompanied by
a few sequential wasted reads is cheaper than two open-seek operations to
idealized shards without any wasted reads. As an example, if C,./Cs = 100,
then the wasted reading of less than 100 entries, that do not qualify by the
temporal constraint, on an average would be more beneficial than performing
a random access to an additional shard.

It turns out that due to the specific organization of time intervals in the
idealized shards, the total penalty, P({g;}), of merging a set of idealized
shards, {g;}, can be easily computed from the pairwise penalties of partic-
ipating idealized shards P(g;, g;)’s. Also note that P(g;,9;) = 0. Now, for
merging a set of idealized shards m = {g¢;, g;,-- -} the overall penalty P(m)
is given by

P(m) = Z P(first(m), gx)
gLEM

We retain the order in which idealized shards were created, i.e., shards
created early have a lower index. Thus first(m) denotes the shard which
was created first in m. This can be shown as follows:

For a pair of idealized shards (g;, g;) where ¢ < j, and for a given query
begin-time ¢, let the set of wasted entries read be w; ;(t). It is easy to see
from Lemma 2 that w;;(t) C w;x(t). Hence, for a set of idealized shards
91,92, , Gn the wy o ... () = wy,(t), which means that aggregation of mul-
tiple idealized shards depends on the idealized shard which is created first. As
an example, the penalty incurred due to merging idealized shards {7,10,3,12}
would be P(3,7) + P(3,10) + P(3,12).

Computing pairwise penalties: Consider a pair of entries p and g,
which belong to different idealized shards, where p is subsumed by ¢. A read
is said to be wasted for each query begin time point lying in the interval
lend(p), end(q)). The total cost of merging two shards g; and g; is the sum
of all wasted reads caused from all such pairs of subsumed entries. The
average penalty P(g;, g;) hence is the total cost of merging the pair of groups
divided by all possible query begin time points. Computing wasted reads at
each time point can be efficiently implemented by interleaving computation
of pairwise wasted reads within Algorithm 1.

16



5.2 Problem Statement

Given a set of idealized shards G, pairwise penalty values P(g;, g;) and a
threshold C,/Cs find a set of disjoint merged shards M of minimum cardi-
nality such that each of the merged shards respects the threshold criterion.
Disjoint merged shards require that no pair of merged shards have an
idealized shard in common. We formally define the optimization problem as

min |[M| s.t.
P(m)<C,/Cs, me M,

where m is a merged shard. Observe that the disjoint merging is encoded in
the objective function min|M|. We refer to the process as relaxed sharding.

5.3 Algorithm For Merging Optimal Groups

We present a heuristic algorithm which is shown to perform well in practice
in our experimental evaluation. As inputs we expect the set of the idealized
shards and the ratio C,./Cs. We retain the order in which idealized shards
were created, i.e., earlier created shards have a lower index.

The pseudo code for merging the idealized shards is presented in Algo-
rithm 2. Every iteration employs a two stage greedy process. The first stage
is an ascending choice phase in which it chooses all the unmerged/available
idealized shards in ascending order of their index until the threshold con-
straint is violated (lines 11 to 20).

The second stage is a greedy phase (lines 23 to 27) where the remaining
capacity is greedily chosen with smallest unmerged shard first (as in the
standard greedy approach to the knapsack problem).

17



Algorithm 2 Cost Aware Group Merging

1. Input: Gy and P(g;, g;)
22 M =0 // Merged shards

3.

4: for i =1..|G,p| do

5. Let g; € Gopt A\ g; ¢ M be next shard in order

6: create new shard r;

T r, =1; U {gz}

8  capacity = g—:

9:

10:  //ascending choice phase

11:  for j=i+1.|Gop| do

12: if (P(gi,9;) < capacity) A (g; ¢ M) then

13: capacity = capacity — P(g;, g;)

14: T :’I"ZU{gJ}

15: else

16: if (9; ¢ M) N (g; ¢ ;) then

17: break

18: end if

19: end if

20:  end for

21:

22:  // smallest size first

23:  while capacity > 0 do

24: Gmin = argmin  {P(g;,9)}
(9€Gopt)N(ggEM)

25: capacity = capacity — P(gi, Gmin)

26: r, =1r; U {gmm}

27:  end while

28: M=MU T

29: end for

30:

31: Qutput: M is the set of merged shards.

18



6 Dealing with Index Updates

After the initial index building, the archive may grow over time, so that
the index needs to be updated. This growth usually comes from a crawler
fetching new versions of documents already in the archive, or documents that
were unknown before. We therefore make the realistic assumption that the
vast majority of updates will either replace an existing active version (setting
its end time to the crawl time) or add a new active version (whose begin time
is the crawl time, and whose end time is 00), and assume that the begin time
of inserted versions is not smaller than begin times of any version already in
the index. Insertions of older versions will be a rare exception, for example
caused by merging our archive with another archive; in these cases, we resort
to recomputing the index.

We will now explain how the index is maintained under such an update
load, mainly by explaining to which (idealized or relaxed) shard a new version
is added. Note that the actual techniques for adding new index entries to
shards are the same used for updating standard inverted lists, for example
in-place updates or logarithmic merging; see [10] for a thorough discussion
of such techniques.

We first show how to update idealized shards. Let us assume for the
moment that there are no active versions in the index. We then sort the
versions to insert by their begin time and append them to the index by
applying Algorithm 1 with them as input, updating and extending the current
set of shards. Note that while running the algorithm, we update the (in-
memory) impact lists, which can be flushed to disk from time to time by a
background process. The resulting set of idealized shards is optimal as the
output of the algorithm is the same as if we ran it for all versions (those
already in the archive and those added to it) with an initially empty set of
shards. Notice that the algorithm consumes versions in ascending order of
their begin timestamps, and all begin timestamps in the archive are strictly
smaller than the begin timestamps of newly added versions.

Active versions make the process more complicated when they are re-
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placed by a newer version; otherwise, they are not touched by the update.
Consider an active version d' of a document d in shard g that is overwritten
by a newer version d“t! at time ¢, setting end(d") = t. If we just updated
end(d') and there was at least one other active version in the same shard, we
would incur a wasted read of d* for any query time greater than ¢. To avoid
this, we split shard g into two pieces: The first new shard gets all versions v
from g with begin(v) < begin(d'), the second new shard gets the remaining
versions. Since versions in shards are sorted by ascending begin timestamp,
this can usually be done by simply setting shard boundaries accordingly,
without actually moving index entries (which would only be necessary when
there are multiple versions with the same begin timestamp, which is very
unlikely if the begin time is set to the crawl time). We have to update the
impact lists of both new shards, which can be efficiently done on this in-
memory data structure. Since versions in the first new shard are unchanged,
no wasted reads occur by construction. In the second new shard, wasted
reads could only occur when querying for timestamps after end(d’). Since all
begin times of versions other than d’ are larger than begin(d’), the impact list
will point to an index entry after d* for these queries, avoiding wasted reads.
After having updated all end times of active versions that are overwritten, we
insert the versions replacing them using the algorithm for updating idealized
shards without active versions.

Note that this maintenance procedure can be applied either for batched
updates or after each (new or updated) version is read by the crawler.

Updating relaxed shards can be done as follows: When we initially con-
struct the relaxed shards, we store from which idealized shards they were
built. When we now insert a (new or updated) version into an idealized
shard, we insert it at the same time into its corresponding relaxed shard.
This may, of course, result in a set of relaxed shards where for some relaxed
shards our cost bound is violated (because the updates incurred too many
wasted reads). We therefore compute regularly, for each relaxed shard m,
its current aggregated penalty P(m), and recompute all relaxed shards when

the maximal or average aggregated penalty gets too large, for example when
it exceeds 2 - C,./Cs.
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7 Evaluation Framework

In this section, we present our experimental setup and the datasets that we
use to evaluate our approach in terms of query-processing performance and
space consumption.

7.1 Setup

We implemented the sharded index and all our algorithms using Java 1.6.
Additionally, we obtained the latest implementation of the sliced index from
its authors. All experiments were conducted on Dell PowerEdge M610 servers
with 2 Intel Xeon E5530 CPUs, 48 GB of main memory, a large iSCSI-
attached disk array, and Debian GNU/Linux (SMP Kernel 2.6.29.3.1) as
operating system. Experiments were conducted using the Java Hotspot 64-
Bit Server VM (build 11.2-b01).

7.2 Datasets

For our experiments we use the following two real-world datasets.

WIKI The English Wikipedia revision history [1], whose uncompressed raw
data amounts to 0.7 TBytes, contains the full editing history of the
English Wikipedia from January 2001 to December 2005. We indexed
all versions of encyclopedia articles excluding versions that were marked
as the result of a minor edit (e.g., the correction of spelling errors etc.).
This yielded a total of 1,517,524 documents with 15,079,829 versions
having a mean (u) of 9.94 versions per document at standard deviation
(o) of 46.08.

UKGOV This is a subset of the European Archive [2], containing weekly
crawls of eleven governmental websites from the U.K. We filtered out
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documents not belonging to MIME-types text/plain and text/html
to obtain a dataset that totals 0.4 TBytes. This dataset includes
685,678 documents with 17,297,548 versions (u = 25.23 and o = 28.38).

Note that the two datasets represent realistic classes of time-evolving doc-
ument collections. WIKI is an explicitly versioned document collection, for
which all its versions are known. UKGOV is an archive of the evolving Web,
for which, due to crawling, we have only incomplete knowledge about its ver-
sions. For ease of experimentation, we rounded timestamps in both datasets
to day granularity.

7.3 Index Management

Both the sliced and sharded indexes are stored on disk using flat files contain-
ing both the lexicon as well as the sliced or sharded index lists. At run time,
the lexicon and impact lists are read completely into main memory, and for
a given query the appropriate slices or shards are retrieved from the index
flat file on disk. For compression we employ 7-bit encoding [16]. Note that
such variable-byte encoding is complementary to other compression methods
like temporal coalescing [9]. We compare the following types of indexes in
our experimentation:

Sharded Indexes We consider idealized sharding (IS) and three cost-aware
relaxed sharding variants with relaxation parameters 10.0, 100.0 and
1000.0 referred to as RS-10, RS-100 and RS-1000. Recall that the
relaxation parameter reflects the I/O cost ratio introduced in Section 5.
The cost-aware metric is based on the penalty function, mean wasted
reads, for merging the idealized shards(IS).

Sliced Indexes We consider instances of the sliced index that are parti-
tioned following the space-bound approach [9]. The parameter s de-
notes the space restriction that models the maximum blowup in index
size relative to a non-partitioned index. For our experiments we con-
sider four variants of the space-bound approaches i.e., parameter values
for k = {1.5,2.0,2.5,3.0}. These variants are denoted subsequently in
the text as SB-1.5, SB-2.0, SB-2.5 and SB-3.0.

Naive Unpartitioned Index As a second competitor, we build an unpar-
titioned index with provision for impact lists over ordered begin times
referred to as RS-inf. This serves as a proof that our techniques are
effective not only because of the impact list construction and a global
begin time order.
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The average length of the index lists in our sharded index were 496,259 for
WIKI and 945,044 for UKGOV. Since sharding causes each index list to be
split into multiple shards we briefly look at the size distribution of the above
mentioned sharded indexes. For WIKI, idealized sharding (IS) resulted in
79.75 shards per index list (shards/list). This reduces to 32.5 shards/list for
RS-10 and further to 11.78 shards/list (RS-100) and 4.71 shards/list (RS-
1000). The shard sizes in IS varies from 2% - 8% of the entire index list
size, while for RS-10 its 7%-20% and 35%-50% for RS-1000. For UKGOV,
IS resulted in 17.86 shards/list. The number of shards/list reduce to 14.36
(RS-10), 9.9 (RS-100) and 4.76 (RS-1000). The shard sizes as a fraction of
the entire list vary from 1%-2% (IS) to 7%-8% (RS-10) and finally 4%-44%
(RS-1000).

We also evaluate the effect of temporal coalescing [9] on index size and
query processing. To this effect we build sharded and sliced indexes with
application of temporal coalescing using a parameter ¢ = 0.01. Other than
that, we use the same choice of parameters as in the experiments without
temporal coalescing.

7.4 Query Workloads and Execution

We compiled two dataset-specific query workloads by extracting frequent
queries from the AOL query logs, which were temporarily made available
during 2006. For the WIKI dataset we extracted 300 most frequent queries
which had a result click on the domain en.wikipedia.org and similarly for
UKGOV we compiled 50 queries which had result click on .gov.uk domains.
Both the sliced and sharded index structures are built for terms specific
to the query workload. Using these keyword queries, we generated a time-
travel query workload with 5 instances each for the following 4 different
temporal predicate granularities: day, month, year and queries spanning the
full lifetime of the respective document collection.

For query processing we employed conjunctive query semantics i.e., query
results contain documents that include all the query terms. We use wall-
clock times (in milliseconds) to measure the query processing performance
on warm caches using only a single core. Specifically, each query was executed
five times in succession and the average of the last four runs was taken for a
more stable and accurate runtime measurement.
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8 Experimental Results

8.1 Sharding vs Slicing

In the first set of experiments, we compare the performance of sharding and
slicing on different query granularities. In the plots presented, runtimes of
different variants of both sharded and sliced partitions are shown in millisec-
onds. Each plot corresponds to a given query granularity — day, month, year
or the full life time of the respective collection. C,/C; values of disks usu-
ally vary in the order of 100 and 1000. Since runtimes for both RS-100 and
RS-1000 show low variance throughout all experiments we chose RS-1000 as
a reasonable representative for sharding for this comparison.

SB-3.0 is optimized for short time interval queries, because of a higher
degree of partitioning, and as expected it performs better than any of its
other sliced counterparts (k = {1.5,2.0,2.5}) for day and month queries. In
case of WIKI, we see a low difference in query processing times between SB-
3.0 (10.63 ms) and RS-1000 (10.26 ms) in case of day queries (Figures 8.1(a)).
The difference is notable for month queries with RS-1000 exhibiting a 19.5%
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Figure 8.1: Wall-clock times for day queries
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Figure 8.2: Wall-clock times for month queries

improvement over SB-3.0 (Figure 8.2(a)). In UKGOV, RS-1000 takes 69.88
ms to process day queries which is almost 40% improvement over SB-3.0
which takes 117.9 ms (Figure 8.1(b)).

While SB-3.0 is efficient for short time interval queries, they understand-
ably perform worse for longer time intervals because of having to read a larger
number of replicated entries inflicted by a higher degree of partitioning. This
is shown in Figures 8.3(a), 8.4(a), 8.3(b) and 8.4(b) where smaller s valued
sliced indexes (k = {1.5,2.0,2.5}) perform better than SB-3.0. In case of
WIKI, comparing SB-1.5, which has the best runtimes for year queries and
full life time queries, with RS-1000 shows that the latter consistently outper-
forms in both cases. Query processing times drop by 22.2% (Figure 8.3(a))
for year queries and by 19% for full lifetime queries (Figure 8.4(a)). In UK-
GOV, there is an improvement of almost 29.9% or 279.26 ms(RS-1000 vs
SB-1.5) 8.3(b) for year queries. The full time queries are faster by 931 ms
or 21%(RS-1000 vs SB-1.5) as shown in Figure 8.4(a) and 8.4(b) which in
absolute terms seems to be a considerable difference.

8.2 Effect of Cost Aware Merging of Shards

The next set of experiments present the effectiveness of cost aware merging
of shards. Idealized sharding or IS might be characterized by a high number
of shards for certain distributions of document life times. Although query
processing on IS results in reading only the relevant entries intersecting with
the query time interval, they suffers from inefficiencies due to a large number
of random accesses. Especially for disks with C, >> (C, the open-seek
operation on idealized shards might result in considerable overheads.
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Figure 8.4: Wall-clock times for full-lifetime queries

In WIKI, we see a consistent improvement from IS to RS-1000. This
is because idealized sharding admits a fairly large number of shards in this
case and thus the 1/O costs are dominated by initial random accesses to
access these idealized shards. Improvements result from the reduction in the
number of shards due to careful merging of idealized shards as presented
before in Section 5. Although these reductions might not be significant for
queries with larger time intervals, but they reduce query processing time
by a sizable fraction for smaller interval queries — day queries improve by
62%(Figure 8.1(a)) and month queries by 35%(Figure 8.2(a)). Unlike WIKI,
UKGOV does not show any considerable difference in performance which is
due to the already low number of initial idealized shards. This indicates that
cost-aware merging can be applied as a self-organizing approach depending
on the distribution of initial shards.

RS-1000 however outperforms RS-inf by a fairly large margin in all query
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granularities excepting full-lifetime ones showing the effectiveness of careful
sharding of entries. The behavior for full lifetime queries is to be expected
because all entries in RS-inf become relevant for such kind of queries and
have to be subsequently read.

8.3 Index Sizes

As expected we observe that the size of sharded indexes remain the same as
the unsharded index. This is due to the fact that sharding divides the index
entries of the unpartitioned lists in a disjoint manner. On the contrary the
index entries in a sliced index are subject to replication across slices. The
size of the sliced index structures show a direct correlation with the input
parameter x as shown in Figure 8.5(a). As discussed before, k regulates
the upper bound to the index blowup. The higher the x the more efficient
is the performance of short time interval queries at the expense of a larger
index size. However, longer time interval queries are impacted by the higher
k valued indexes due to wasted amount of reads of replicated index entries.
Thus the sliced index has to be carefully tuned depending on the time interval
of the query workload trading off index size and query efficiency. This is not
the case with the sharded index where the tradeoff is between number of
random accesses and sequential reads, which are local tunable parameters
depending on physical characteristics of disks (where the index is stored)
irrespective of the query workload. From our experiments we observe that
the time taken to build a sharded index is roughly twice the time taken for
the standard unpartitioned inverted index. Since the sharded index building
process can be easily parallelized, one can efficiently build sharded indexes
using a distributed processing platform (e.g., Hadoop).

8.4 Effect of Coalescing

Our experimental results with temporal coalescing of index entries lead to
similar results as our experiments on the original, uncoalesced indexes. In-
dependent of the partitioning/sharding used, index size is much smaller than
with uncoalesced indexes—up to an order of magnitude for UKGOV and up
to a factor of 2 for Wikipedia—and indexes created with sharding are always
smaller than those with slicing (Figure 8.5). The runtime of all methods with
temporal coalescing is depicted in Figures 8.1(a) through 8.4(b). It is evident
that query performance improves with temporal coalescing, with longer time
interval queries gaining more than those with smaller time intervals as more
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Figure 8.5: Index sizes

entries need to be read. Sharding is still more efficient than slicing, espe-
cially with cost-aware merging, and achieves this advantage with indexes of

a smaller size.
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9 Related Work

Temporal information associated with documents has recently seen increas-
ing attention in information retrieval. One of the earliest known efforts in this
direction is by Anick and Flynn [7] who developed a framework for versioning
the complete index for historical queries. Recently, Alonso et al. [5] give an
overview of relevant research directions. The work on time-travel text search
by Berberich et al. [9] is closest to our work in this report. It introduced the
notion of time-travel queries, limiting its discussion to time-point queries. To
support this functionality efficiently, index lists from an inverted index are
temporally partitioned, in our terminology into slices, providing guarantees
on either the space used by the index or query performance. Index entries
whose valid-time interval overlaps with multiple of the determined tempo-
ral slices are judiciously replicated and put into multiple index lists, thus
increasing the overall size of the index. The work by Herscovici et al. [15] fo-
cuses on exploiting the redundancy commonly seen in versioned documents
to compress the inverted index. Similarly, He et al. [13, 14] consider the
problem of efficiently storing inverted indexes on disk using compression;
these are orthogonal to our work and could be combined with our sharding
techniques.

Research in temporal databases has taken a broader perspective beyond
text documents and targeted general class of time-annotated data. Index
structures tailored to such data like the Multi-Version B-Tree [8] or LHAM [17]
are related to our work, since they also, implicitly or explicitly, rely on a tem-
poral partitioning and replication of data. It is therefore conceivable to apply
our proposed techniques in conjunction with one of these index structures.
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10 Conclusion

This work presents a novel method of index organization based on sharding
for solving time-travel queries. Previous approaches traded off space and
efficiency of query processing resulting in an index size blowup. Also, there
was no single partitioning scheme for a given query time interval granularity.
Unlike those, we look at minimizing the I/O during query processing without
incurring any overhead in space and are independent of the query workload.
We also propose a cost model, which takes into account different 1/O costs
of the local storage media where the index is stored. The resulting sharding
balances sequential read costs and random access costs for efficient query
processing. We carried out extensive experiments and show that with no
space overhead we consistently perform better than the state-of-art sliced
indexes, upto a factor of 2.
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