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More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage
as new promising tools to image calcium dynamics and neuronal activity in living tissues
and designated cell types in vivo. From a variety of initial designs two have emerged as
promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-
based sensors and single fluorophore sensors of the GCaMP family. Recent efforts
in structural analysis, engineering and screening have broken important performance
thresholds in the latest generation for both classes. While these improvements have
made GECIs a powerful means to perform physiology in living animals, a number of other
aspects of sensor function deserve attention. These aspects include indicator linearity,
toxicity and slow response kinetics. Furthermore creating high performance sensors with
optically more favorable emission in red or infrared wavelengths as well as new stably or
conditionally GECI-expressing animal lines are on the wish list. When the remaining issues
are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an
initial promise into a fully matured technology.
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INTRODUCTION
Genetically encoded calcium indicators (GECIs) have come of
age. Since the first demonstration of FRET (Förster Reso-
nance Energy Transfer)-based prototypical sensors such as the
Cameleons (Miyawaki et al., 1997, 1999) and the first single flu-
orophore calcium sensors (Baird et al., 1999), these two major
classes have evolved high performance variants in which sig-
nal strength was optimized in iterative steps of improvements
and validation. Among FRET based sensors Cameleons, which
exploit the interaction of Calmodulin with the binding pep-
tide M13 as a calcium sensing mechanism, saw several rounds
of improvements of their signal strength (Nagai et al., 2004;
Horikawa et al., 2010). Troponin C has been used as a more bio-
compatible alternative to Calmodulin in FRET sensors (Heim
and Griesbeck, 2004). These sensors also underwent several
rounds of engineering (Mank et al., 2006, 2008). Among sin-
gle fluorophore sensors GCaMP type sensors (Nakai et al., 2001)
became the most popular class, chosen from several initial archi-
tectures. Variants with ever increasing sensitivity to neuronal
activity were generated (Ohkura et al., 2005, 2012a; Tian et al.,
2009; Akerboom et al., 2012), as were blue and red emitting
color variants (Zhao et al., 2011; Akerboom et al., 2012; Ohkura
et al., 2012b). Finally, large scale mutagenesis and screening
approaches have resulted in GECIs that match or even exceed
the in vivo sensitivity of the synthetic calcium dye OGB-1,
often referred to as a standard against which response prop-
erties of new GECIs were compared to (Chen et al., 2013;
Thestrup et al., 2014).

Genetically encoded calcium indicators finally made it possible
to label specific types of neurons in vivo and even allowed targeting
to subcellular compartments and repeated imaging of identified
neurons over long periods of time. For several small genetically
tractable organisms with strong body walls or cuticulae such as

in Caenorhabditis elegans or Drosophila, which made access and
loading of dyes from the outside challenging, expression of GECIs
was the only feasible way to image neuronal activity. In many
aspects imaging of GECIs has thus become a well-established
technology that enables experiments that previously were not
possible.

What is the ideal GECI for imaging neuronal physiology? Obvi-
ously this will depend on the experimental situation and the
neuronal cell types to be imaged. Nevertheless, a number of gen-
eral criteria may be derived that a GECI should strive to include in
the ideal case. (i) It should be bright enough to identify expressing
cells even at rest, allow an estimate of the amount of indicator
expressed in a given cell after gene transfer, and possibly reveal
fine details of its architecture. (ii) It should be readily expressed
at sufficient levels by the standard methods for gene transfer and
transgenesis. (iii) It should exhibit a linear relationship between
the changes in free calcium and the fluorescence change of the
indicator. (iv) For reporting neuronal activity it should be sensi-
tive enough to faithfully report small calcium elevations due to
firing of single action potentials (APs) in single trials in vivo, ide-
ally at lower magnification and faster scanning rate to sample large
numbers of neurons. (v) It should not perturb cells that express the
indicator by buffering of physiological calcium or other unwanted
biological side effects. (vi) It should minimize artifacts due to
specimen movement, photobleaching, or other perturbing causes.
(vii) Finally, it should have sufficiently fast binding kinetics to
accurately follow calcium fluctuations, if it is used as a reporter of
neuronal activity.

In view of these criteria we will discuss some of the current
issues in quantifying neuronal signals with GECIs and point to
some further desirable improvements to finally turn imaging of
GECIs it into a mature, fully fledged technology for the study of
neuronal function.
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QUANTIFYING NEURONAL ACTIVITY WITH GECIs – DEALING
WITH NON-LINEARITY
The biochemical and optical properties of the latest generation of
GECIs rival and in some aspects even surpass those of synthetic
calcium indicators (Chen et al., 2013; Table 1). It is now possi-
ble to detect the somatic calcium influx associated with individual
APs with high reliability in vivo. Even calcium signals following
synaptic activation can now be monitored chronically in live ani-
mals (Chen et al., 2013). Yet, in one point most GECIs are clearly
inferior to their synthetic counterparts: linearity with respect to
the actual calcium concentration. Indicator non-linearity renders
the direct deduction of absolute changes in calcium from the rel-
ative changes in fluorescence challenging. Robust quantification
with the commonly used calibration methods is only possible
in the ‘linear’ regime of a calcium indicator (Grynkiewicz et al.,
1985; Neher, 1995; Maravall et al., 2000; Yasuda et al., 2004), well
below its Kd value (Figure 1A). Only in this range the fluores-
cence intensity (or fluorescence ratio) change �F/F or �R/R of
the indicator is approximately proportional to the cellular Ca2+
concentration ([Ca2+]i). Most synthetic indicators with linear
response curves (Hill coefficient ∼1) show a simple saturation
function of ΔF/F or ΔR/R vs. [Ca2+]. The saturation fluores-
cence Fmax in response to [Ca2+] > > Kd is used together with
the indicator fluorescence Fmin at zero [Ca2+] to calibrate the
fluorescence response:

[Ca2+] = [(F−Fmin)/(Fmax−F)]∗Kd or

[Ca2+] = [(R − Rmin)/(Rmax − R)]∗Kd (1)

However, if the Hill coefficient of the binding curve diverges
strongly from 1 the assumptions underlying Eq. 1 are violated
(Figure 1A).

Owing to four cooperative calcium-binding sites in most
GECIs, response curves frequently are highly non-linear. For
example, Hill coefficients of recent GCaMP5 or six variants range
from 2.5 to 4 (Akerboom et al., 2012; Chen et al., 2013), as do those
of many FRET-based Cameleons (Horikawa et al., 2010; Table 1).
Quantification of [Ca2+]i using the linear approximation (Eq. 1)
is therefore impossible (Figure 1A). This will affect the ability to
infer calcium transients from fluorescence data. Even if the non-
linearity is taken into account computationally (Akerboom et al.,
2012; Lütcke et al., 2013a), the sub-linearity in the low-calcium
regime of the indicator is still of particular concern. The resting
calcium concentration of a cell can vary depending on cell type,
cell health, and exogenous ion concentrations (Schiller et al., 1995;
Helmchen et al., 1996; Maravall et al., 2000). In the sub-linear
regime of the indicator these differences will lead only to minor
changes in resting fluorescence. The latest generation of GCaMP
type single fluorophore sensors reached their exceptional signal
to noise ratio (SNR) to a large degree thanks to a combination
of increasing maximum brightness at saturation and decreasing
the resting brightness F0. Improving sensors by reducing F0, how-
ever, makes it more challenging to quantify differences in resting
calcium because the resulting minor fluctuations in resting flu-
orescence can essentially not be distinguished from variations in
indicator expression level.

An additional complication for the quantitative use of GECIs
is that it is not clear if the non-linear relation of F or R and
calcium is constant, especially considering the variable expres-
sion levels over time and between subjects. The result is that
the same absolute change in calcium may lead to highly vari-
able changes in fluorescence depending on the actual resting
calcium concentration (Figure 1A). As a result of this variabil-
ity, establishing a ‘ground truth’ of single AP-evoked fluorescence
in order to infer spike rate and timing from the fluorescence
data is challenging: since it is unclear from which resting cal-
cium level single AP transients are arising, generalizing a single
waveform of this unitary event to an entire population of cells
can be problematic. Of course, when the indicator affinity is
high enough so that the calcium changes of interest largely fall
in the linear range of the indicator, reliable spike inference should
be possible. Careful in situ calibrations of indicator fluorescence
change vs. simultaneously measured cellular activity under real-
istic indicator expression levels and imaging conditions need to
be performed in order to deduce reliable spike timings from
non-linear GECI data. In these cases one should consider if
more linear ratiometric GECIs would provide a better quantifi-
able alternative. To increase the accuracy of methods for calcium
measurement and AP inference, reducing calcium-binding sites
as performed with recent ratiometric “Twitch” calcium sensors
(Thestrup et al., 2014) should be a design goal for other future
GECI developments.

BUFFERING AND EXPRESSION LEVEL
All calcium indicators act as calcium buffers. Therefore, expression
of any type of GECI will inadvertently change the spatio-temporal
dynamics of this ubiquitous secondary messenger. The degree to
which an exogenous buffer affects cellular free calcium ([Ca2+]i)
is well understood and largely depends on three main factors:
its mobility, affinity (including binding rates), and concentration
(Zhou and Neher, 1993; Neher, 1995; Helmchen et al., 1996).

If one aims at monitoring neuronal activity, i.e., calcium signals
associated with APs or synaptic activation, one can either choose
to minimize the effect of exogenous buffer on endogenous cal-
cium signaling by minimizing the indicator concentration, or to
maximize the SNR of the readout of calcium activity by finding
the indicator concentration that yields optimal SNR.

Under ideal (i.e., photon shot noise limited) conditions, the
measure of confidence that one can attribute to a change in fluo-
rescence given the intrinsic variability in the measurement due to
the Poisson statistics of light detection (i.e., the SNR), is directly
proportional to the indicator’s signal change over baseline fluores-
cence (i.e., ΔF or ΔR) and to the square root of the baseline
fluorescence signal (Yasuda et al., 2004; Göbel and Helmchen,
2007):

SNR = �F/F1/2
0 (2)

In the case of ratiometric indicators, the relative shot noise compo-
nents of donor and emission fluorescence add so that for the same
relative change in fluorescence ratio from a comparable baseline
fluorescence level the SNR is worse than for single fluorophore
GECIs that require only one noise-affected measurement. How-
ever, since FRET indicators are typically much brighter at rest this
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FIGURE 1 | Dealing with non-linearity and buffering. (A) Relative
fluorescence changes of two hypothetical calcium indicators with similar
affinity but different cooperativity (OGB-like: red trace, Hill slope
(K hill) = 1, GECI-like: green trace K hill = 3) in response to varying
calcium concentrations. The black line shows the commonly used linear
calibration function (Eq. 1). Only for small changes in Ca2+ – well below
the indicator K d – this function describes the fluorescence response of
the more linear indicator (red trace) well. Even though the non-linear
indicator (green trace) responds approximately linear at intermediate Ca2+
levels around the K d, the linear calibration function is left-shifted and
therefore prominently underestimates the actual Ca2+ concentration from
the measured fluorescence. Note that the same absolute change in Ca2+
starting from different resting calcium levels will lead to very different
fluorescence changes of the non-linear indicator (green triangles) whereas
the linear indicator responds with comparable changes (red triangles).
(B) Hypothetical relation between added exogenous buffer capacity (i.e.,
increasing indicator concentrations) and signal-to-noise ratio (SNR; Göbel

and Helmchen, 2007). Shown are different endogenous buffer capacities
corresponding roughly to the range of reported values for pyramidal and
subclasses of inhibitory neurons (red: κe = 50; green κe = 100; blue
κe = 200; assumed resting [Ca2+]i 50 nM). Two hypothetical indicators
with different affinities similar to reported in vitro values for GCaMP3 and
GCaMP6s are shown [bold lines: K d = 660 nM, faded lines
K d = 140 nM; true in vivo K d of genetically encoded calcium indicators
(GECIs) may vary]. Note that SNR optimal indicator concentrations would
be reached at ∼25–50 μM. Here, ‘balanced loading’ is achieved where
endogenous and exogenous buffer capacities are equal. Dashed vertical
lines indicate four reported in situ indicator concentrations using different
gene delivery methods and expression times for the GECI GCamP3:
Emx1-Cre:Ai38 mice, 5.4 μM (Zariwala et al., 2012); hippocampal slice
culture after single-cell electroporation, 15 μM (Huber et al., 2012); primary
visual cortex after 4 weeks of viral (AAV) infection, 72 μM (Zariwala et al.,
2012); 7 weeks after AAV infection in vibrissal motor cortex (Huber et al.,
2012), 130 μM.

disadvantage is largely compensated (but see Wilt et al., 2013).
Increasing the concentration of a calcium indicator increases F
and thereby improves SNR because more fluorescent molecules
become available. Yet, a larger buffer concentration will also lead
to a smaller fluorescence change: When the indicator is trying to
bind more calcium than is entering the cell while at the same time
competing with endogenous calcium buffers, the number of indi-
cator molecules changing their emission from the baseline level
decreases. The amplitude (ΔF orΔR) and decay time constant
(τ) of the calcium-dependent fluorescence change depend on the
summed buffer capacity of the exogenous and endogenous buffers
(Göbel and Helmchen, 2007):

ΔF ∝ F0/(1 + κendo + κdye) (3)

τ ∝ 1 + κendo + κdye (4)

where κendo represents the buffer capacity of the endogenous
buffers (fixed or mobile) and κdye represents the exogenous buffer
capacity of the added calcium dye. The buffer capacity (or ‘binding
ratio’) is the constant describing the fixed ratio between changes in
free [Ca2+] and buffer-bound [CaB] calcium, which can be related
to the effective dissociation constant (Kd) and concentration [B]tot

of the respective buffer (Zhou and Neher, 1993; Neher, 1995):

(κdye) = Δ[caB]/Δ[Ca2+]i = (Kd
∗[B]tot)/(Kd + [Ca2+])2 (5)

What would be the optimal indicator concentration (or GECI
expression level) to maximize SNR? F0 is proportional to κdye and
by substitution in Eq. 2 one yields (Borst and Helmchen, 1998;
Göbel and Helmchen, 2007):

SNR = ΔF/F1/2
0 ∝ κdye/[(1 + κendo + κdye)

∗κdye
1/2]

= κ
1/2
dye/(1 + κendo + κdye) (6)

It follows that maximal SNR is achieved under ‘balanced
loading’ conditions where the endogenous and exogenous buffer
capacities are equal (κendo = κdye; Borst and Helmchen, 1998;
Göbel and Helmchen, 2007). Figure 1B shows this relation
for various concentrations of two hypothetical GECIs at several
endogenous buffer capacities that are similar to reported val-
ues for excitatory and inhibitory neurons. Also indicated are the
approximated concentrations of the GECI GCaMP3 under dif-
ferent expression conditions. Note that for excitatory neurons
(κendo∼30–100; Helmchen et al., 1996; Maravall et al., 2000), con-
centrations of 25–50 μM would already yield near maximal SNR.
For some classes of inhibitory neurons with high calcium bind-
ing ratio, ‘balanced loading’ would be reached at much higher
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expression level (e.g., κendo ∼285 in somatostatin positive bitufted
interneurons in L2/3 of somatosensory cortex (Kaiser et al., 2001).
Of course, without knowing the exact in situ values of all parame-
ters (most notably the effective Kd , resting calcium concentrations
and κendo), the actual optimal indicator concentration remains
unknown. Complementing direct measurements of absolute indi-
cator concentrations using purified protein as reference standard
(Huber et al., 2012; Zariwala et al., 2012), the most relevant param-
eters for SNR-optimal ‘balanced loading’ – κendo and κdye – in
various cell types could be experimentally obtained. By monitor-
ing the amplitude and decay time of a step calcium signal with
a calibrated second calcium indicator of different emission wave-
length at different concentrations one could back-extrapolate to
the apparent endogenous buffer capacity (κapp = κendo + κdye)
from the decreases in �F and τ (Eqs 3 and 4; Zhou and Neher,
1993; Neher, 1995; Helmchen et al., 1996; Matthews et al., 2013).
If one would perform these experiments in cells acutely expressing
the GECI (κapp = κendo + κdye) and compared these to control
cells without the GECI (κapp = κendo) the buffer capacity added
by overexpression of the GECI could be deduced and optimized.
Of course, this would only be meaningful if the cell would not
adjust its endogenous buffers in response to GECI expression in
order to maintain buffer homeostasis – which in itself would be
a highly relevant finding pointing toward potentially unwanted
off-target effects of GECI expression. However, recent studies on
gene expression profiling in mice globally expressing the FRET
sensor TN-XXL (Direnberger et al., 2012) do not point in that
direction. Nevertheless, more studies on the amount of buffer-
ing introduced into different neurons by various types of GECIs
and gene transfer protocols would be highly desirable, especially
when directly related to expression-correlated off-target effects
of GECIs (see below). However, even with these data at hand,
tailoring expression of GECIs toward SNR-optimal levels is dif-
ficult, especially when acute methods of gene transfer (e.g., viral
transduction or electroporation) are used. Nevertheless, careful
titration of the amount virus injected or DNA electroporated
together with optimization of promoters, enhancers, or suppres-
sors of expression should be considered to prevent unnecessary
overexpression.

INDICATOR KINETICS
It had been noticed early on that the response kinetics of GECIs
were slower than that of synthetic calcium dyes. Early proto-
typical Cameleon-1 had a measured on-rate kon of about 106

M−1 s−1 compared to essentially diffusion-limited on-rates of
108 M−1 s−1 for fura-2 or fluo-3 (Kao and Tsien, 1988; Miyawaki
et al., 1997; Naraghi, 1997). Accordingly, koff numbers were also
slower, with a value of 13 s−1 reported for the medium affinity
Cameleon-1 (Miyawaki et al., 1997). Delayed kinetics compared
to synthetic dyes were subsequently confirmed for other types
of GECIs based on Cam-M13 or Troponin C, albeit at varying
extent (Nakai et al., 2001; Pologruto et al., 2004; Tay et al., 2007;
Horikawa et al., 2010). Engineering faster GECIs has been chal-
lenging, as on- and off rates, affinities and maximal fluorescence
change are tightly linked to one another (Kd = koff /kon), and
it is often not feasible to optimize one parameter without losing
advantageous features of the other parameters. Engineering thus

mostly focused either on calcium chelating residues within the
EF-hand loops or on the binding interface of calmodulin with
its binding peptide. For most types of mutagenesis an expected
reciprocal relationship was found between calcium affinity and
kinetics (Miyawaki et al., 1997; Mank et al., 2006; Horikawa et al.,
2010; Chen et al., 2013; Sun et al., 2013; Thestrup et al., 2014).
Will it be possible to engineer GECIs in which both on- and
off-rates are enhanced to obtain high affinity rapid kinetics sen-
sors comparable to dyes such as OGB-1? Some mutations in the
interface between Calmodulin and its binding peptide allowed to
generate G-CaMP type sensors with faster kinetics, only slightly
altered affinity, but smaller maximal fluorescence change (Chen
et al., 2013; Sun et al., 2013). Thus, hydrophobic interactions of
Calmodulin with the peptide were identified as one rate-limiting
step within these sensors. Other studies on Troponin C-based
FRET sensors identified slow events close to the EF-hands as
rate-limiting for dissociation, while addition of the donor and
acceptor GFPs had no further negative effects on kinetics (Geiger
et al., 2012). More detailed structural studies on the causes of
slow intramolecular dynamics within GECIs appear necessary
to finally break the apparent trade-off between sensitivity and
speed.

Neurons in the mammalian CNS exhibit a wide range of fir-
ing rates, from sparse activity below 0.1 Hz (e.g., L2/3 cells in
the barrel cortex, Kerr et al., 2005) to rates approaching 1 kHz
(e.g., mossy fiber input to the cerebellum, Rancz et al., 2007).
Even the latest generation of GECIs shows a fluorescence impulse
response that rises and decays with time constants more than
100 times slower than the average inter-spike interval of the
fastest neurons (Table 1). During high frequency activity this
inevitably leads to overlapping fluorescence responses to indi-
vidual APs. Once the cumulative fluorescence reaches indicator
saturation level, information about the underlying neuronal activ-
ity is lost. Furthermore, experiments correlating neuronal activity
with episodic sensory stimulation or behavioral events can suffer
from response ‘bleed-through’: responses from previous episodes
evoke activity that leads to fluorescence changes that are still
present during the onset of the next episode, even though the
underlying spike rate may have already decayed to baseline lev-
els (Figure 2C). In these cases, raw fluorescence changes cannot
be used for quantification of neuronal firing. Faster indicators
lead to less response superposition and therefore allow simpler
separation of individual activity events, thereby, for example,
allowing shorter inter-trial intervals. However, for as long as
cumulative fluorescence changes are not approaching full indi-
cator saturation levels, the underlying spiking activity of synthetic
indicators can often be resolved surprisingly well using non-linear
methods of spike inference (Vogelstein et al., 2009; Grewe et al.,
2010; Lütcke et al., 2013a). It remains to be established how
well these methods perform with non-linear GECIs of the lat-
est generation. The accuracy of spike inference methods depends
on the actual spike rate, indicator speed, sampling rate, and
all factors that affect the SNR of the measurement (see above).
The complex interdependence of these factors has been exten-
sively described elsewhere (Lütcke et al., 2013a; Wilt et al., 2013).
These studies showed that faster is not always better: Depend-
ing on the frequency of expected responses, sparse sub-saturating
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FIGURE 2 | Ratiometric imaging of neuronal activity in an awake mouse

using theTwitch-2B calcium indicator. Two-photon imaging of layer II/III
excitatory neurons, conditionally expressing Twitch-2B (CAG promoter,
double-floxed inverted open reading frame, 28 days after transduction by
AAV1) together with Cre-recombinase (CamKII promoter, AAV1), in V1 of an
awake head-restrained mouse on a treadmill (see, e.g., Keller et al., 2012).
Imaging frames were acquired at 30 Hz on a custom build two-photon
microscope and corrected for movement artifacts (Guizar-Sicairos et al.,
2008). (A) Frame-averaged image of donor fluorescence (467–499 nm).
Region of interest (ROI’s; white) were manually drawn for 15 active neurons.
(B) Idem, but for acceptor fluorescence (519–549 nm). (C) Neuropil-
subtracted (Kerlin et al., 2010) change in donor (cyan) and acceptor (yellow)
fluorescence (�F /F ) for each ROI, referenced against a 60 s moving-average.

Black traces display the change in ratio of the donor and acceptor
fluorescence (�R/R) over its 60 s moving-average. Time-series were
smoothed using a 0.5 s moving average window. Vertical lines indicate onsets
of visual stimuli, which were full-contrast sinusoidal moving gratings (spatial
frequency: 0.045 cycle/degree; Speed: 1.5 cycle/s) or plaids (overlays of two
orthogonal gratings; color of lines matches the legend above), presented on a
gamma-corrected monitor at a distance of 20 cm. Stimulus presentation
lasted 4.5 s, interleaved by a gray screen of equal brightness for 5.5 s. The red
box over ROI 13 indicates an example of response bleed-through into the next
stimulus episode. Running speed of the animal ranged from 0 to 16 cm/s
(dark blue trace below). Image displacement (before correction) did not
exceed 12 and 13 pixels on the x and y axes, respectively (green lines below).
Data adapted from Thestrup et al. (2014).

activity will be detected with higher SNR using a slower indicator.
Since imaging involves sampling at a fixed rate, more samples
are collected for a fluorescence step response in the case of a
slow indicator, increasing detection SNR by the square root of
the number of samples acquired and preventing undersampling
of short events. It is therefore non-trivial to decide – keep-
ing all other indicator properties constant – what would be the
optimal kinetics of an indicator. One needs to consider both
the expected rates of activity and the sampling rate of available

imaging hardware. Computational models as provided by Lütcke
et al. (2013a) should ideally be consulted to make an informed
decision.

RATIOING VERSUS SINGLE CHANNEL RECORDING
The two major classes of GECIs operate in different read-out
modes. While single GFP-based sensors are imaged using a
single channel for recording fluorescence, FRET-based indicators
are ratiometric and require splitting the emitted light into two
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channels that are recorded separately and the ratio of the two
emission channel intensities taken as a measure of calcium con-
centrations. An example of a ratiometric in vivo recording can be
seen in Figure 2. The indicator Twitch-2B was expressed in mouse
primary visual cortex and ratiometric imaging of the activities of a
group of neurons performed in awake mice. Both types of proce-
dures have distinct advantages and disadvantages. Recording with
a single channel is simpler and allows collecting all photons emit-
ted from a probe, without any loss from emission filters or beam
splitters. Such probes also occupy less bandwidth of the spectral
range, allowing more multiplexing and co-labeling of neuronal cell
types with different colors. Ratiometric, FRET based probes use
two fluorescent proteins as fluorophores, and therefore occupy a
larger area of spectral bandwidth for a given sensor. Ratioing has,
however, a number of advantages if quantification of neuronal
activity is desired. The ratio formed between the two channels
is, in principle, independent of expression levels. Thus, hetero-
geneities in indicator expression levels between cells, as occur with
AAV-mediated gene delivery into the brain (Aschauer et al., 2014)
and other gene delivery methods, can be more easily addressed. As
indicator expression levels directly affect both amplitudes and time
constants of calcium signals (see, e.g., Helmchen et al., 1996), it
may be necessary to correct for these differences. Direct acceptor
excitation is an unambiguous way to read out indicator expres-
sion levels independent of the calcium concentration. It may also
facilitate the definition of regions of interest because it will not
display increased signal intensity for more active cells. During
long-term imaging over months, fluctuations in excitation light
intensity, changes of indicator expression levels or changes in opti-
cal path length due to tissue growth may also occur, which could be
addressed by ratioing. As long noted, ratiometric imaging is ben-
eficial when movement artifacts are a concern, such as in moving
preparations or awake animals, because correlated artifacts affect-
ing both channels in the same way are effectively canceled out due
to the processing. Ratiometric imaging also corrects for further
changes in optical path length resulting from vasoconstriction and
-dilation. These vascular artifacts are often correlated with neu-
ronal activity and are therefore of particular concern (Shen et al.,
2012). While movement-related artifacts could also be addressed
by simple co-expression of a second, preferably red fluorescent
protein together with the GFP-based sensors, truly ratiometric
FRET probes have the advantage that the resting ratio of the indi-
cator can be used to directly quantify the resting calcium level. This
is especially of interest for some classes of inhibitory neurons that
fire APs at high rate under ‘resting’ conditions (Klausberger and
Somogyi, 2008; see also Thestrup et al., 2014). Thus, the choice of
indicator and read-out mode will depend on the type of experi-
ment and the available expression systems and promoters to drive
expression.

SEGMENTATION
The main objective of calcium imaging experiments is to monitor
neuronal activity via variations in fluorescence. Having performed
the experiment, the next step is to make sense of the fluorescence
data. Traditional methods involve hand-picking a region of inter-
est (ROI) in the anatomy and finding the fluorescence time-series
within this ROI. This method can easily be implemented when

sparse labeling makes it straight forward to manually segment the
anatomical ROI and is particularly useful in experiments where
the experimenter knows what particular ROIs are of interest in
order to answer questions such as: Is this specific neuron active in
my experiment?

In certain cases though, it is more appropriate to use an auto-
mated method to select ROIs, in particular when seeking an
unbiased, large-throughput way of processing the data. These
methods can be said to fall roughly into two categories, those that
use anatomical information and those that use functional data for
the segmentation. We briefly discuss both below.

Anatomical segmentation methods greatly rely on the specimen
being imaged and the labeling of the tissue. Issues such as whether
the calcium indicator is expressed in the nucleus or the cytoplasm,
whether the labeling is dense or sparse and whether neurons are
morphologically similar or vary widely in shape and size all enter
the design of the particular algorithm. In regions where the mor-
phology of the anatomy is homogenous, algorithms can be quite
effective. Figure 3A shows an example from the optic tectum of
a larval zebrafish expressing GCaMP5G under the pan-neuronal
promoter elavl3. The neurons have their cytoplasm labeled, are
densely packed and of similar size. In order to perform automated
segmentation, the anatomical image is spatially filtered with a fil-
ter whose width is in the order of the diameter d of a typical
neuron, for example a Gaussian filter with standard deviation d.
This removes local spatial inhomogeneities and emphasizes the
important features that will be used for segmentation. In this case
these are the bright cytoplasms, which can be used to identify
boundaries between cells and the dark nuclei which can be used
to identify the centers of the cells (Figure 3B, left). One may then
perform a watershed algorithm on this image that will identify
the “ridges” in this image, namely the bright cytoplasms. This will
segment the image into ROIs, many of which will be individual
cells (Figure 3B, right). By placing constraints on the morphology
of these ROIs, such as a lower and upper limit on their size it is
possible to ensure that most of the ROIs that are kept are actual
neurons. The fluorescence time-series for all the ROIs can then be
extracted using these ROIs as masks. Figure 3C shows this pro-
cess for the 627 automatically segmented neurons in Figure 3B.
These algorithms are not perfect. As can be observed in Figure 3B,
right, they will fail to identify bona-fide neurons and will identify
ROIs that are not actual neurons (akin to type II and type I sta-
tistical errors, respectively). By placing further constraints, errors
can be minimized, but simple algorithms like the ones described
are able to correctly identify a large fraction of neurons within
seconds. These methods have been used (Akerboom et al., 2012;
Panier et al., 2013) to identify 1000s of neurons in the brain of
larval zebrafish. The expression of calcium indicators can also
be restricted to the nucleus using a nuclear localization sequence
(NLS). This will remove labeling in neuropil and will generally
make it easier to segment the signals, simply by identifying parti-
cles in the anatomical image (Prevedel et al., 2014). Alternatively,
adding a spectrally separated nuclear co-label, for instance by co-
expression of a red protein, would help greatly with morphological
segmentation for the same reasons.

A second class of algorithms involves functional segmentation.
This idea relies on the fact that pixels that belong to the same
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FIGURE 3 | Segmentation and whole-brain imaging. (A) Head of a
7-day-old larval zebrafish that was embedded in agarose and was presented
with a visual stimulus: a dot moving at constant speed from left to right of its
visual field and then back to the left. The red square shows the area that was
imaged at 7.5 Hz in the medial optic tectum. Scale bar = 250 μm.
(B) Anatomical image of the region imaged, generated by summing all the
frames acquired in one plane (left). The image can then be automatically
segmented using the methods described in the text (right). In this case 627
neurons were identified. Scale bar = 50 μm. (C) Raster plot of the responses
of the 627 automatically segmented neurons in (B). (D) The method of
computing the correlation of the fluorescence time-series of a pixel with its
eight neighboring pixels is shown. This image can be used as a basis for

determining functionally active cells by determining a threshold (following a
shuffling-control) followed by segmentation. (E) How similar is activity during
behavior across different animals? This question was addressed by imaging
the whole brain of 13 behaving larval zebrafish discretized in over
500 × 800 × 400 voxels and then morphing the brains onto a reference brain
(Portugues et al., 2014). Functionally active units were segmented using
correlation-based methods described in the text. For every active voxel, how
far on average must one look in other brains to find a similarly active voxel,
i.e., one displaying similar activity patterns? The figure shows that in regions
such as the ventral hindbrain neuropil, the cerebellum and certain retinal
ganglion cell arborization fields, the answer is surprisingly less than 1 μm. Ro,
rostral; L, left; R, right; C, caudal; scale bar = 50 μm.

neuron will have highly correlated fluorescence time-series. Nat-
urally, if a neuron is not active, the time-series of the pixels that
comprise it will involve mainly independent noisy fluctuations that
will exhibit low correlation. These algorithms will therefore iden-
tify contiguous regions that are active in a correlated way. Explicitly
the algorithms work as follows. For every pixel one can compute
the correlation of its time-series with the sum of the time-series of
its eight closest neighbors (in the case of 2D segmentation). This
can be repeated for every pixel in the image, such that the result is
an anatomical image of correlation values. In Figure 3D we per-
form this analysis for the same dataset as Figures 3B,C. This image
can then be further processed in one of two ways (potentially fol-
lowing spatial filtering). The easiest way is to perform a threshold
operation (set a threshold and set to 0 all the pixels with values
below the threshold) and then identify particles within the thresh-
olded image. In this case the threshold can be set either by hand,
or more rigorously, by performing a shuffling control, comparing
the distributions of the un-shuffled and the shuffled correlations
and using the correlation value that implements a certain con-
fidence interval of choice (i.e., this correlation value is 20 times
more common in the un-shuffled versus the shuffled data).

Alternatively, the correlation image can be used to determine
the seeds of a region-growing algorithm. The first step is to look
for local maxima in the correlation image. The highest maxi-
mum is then used as a seed of the first ROI, and neighboring
pixels are added to the ROI if their correlation with the already
existing pixels in the ROI exceeds a threshold, which should ide-
ally be determined by again performing a shuffled control. This
process is repeated until no more pixels are aggregated and then
one proceeds to the second highest maximum, which becomes
the seed of the second ROI. It is once more possible to place
constraints on the size and shape of these ROIs to ensure that
certain requirements are met, for example, that they have the
morphology of neurons. This method will only produce active
ROIs, as opposed to the anatomical segmentation mentioned
before, and has been recently used in (Portugues et al., 2014) to
automatically identify 3D ROIs throughout the brains or larval
zebrafish.

In the case of the dataset shown in Figures 3A–D, this
method would not work particularly well to identify individual
neurons, because many contiguous neurons are active and would
be clumped into the same ROI. On the other hand, using this
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algorithm will identify activity in regions which are not mor-
phologically different from their anatomical surrounding, such
as neuropil.

No single method is superior to the others and which one
should be implemented depends on many factors, such as the bio-
logical questions that need to be answered, the specific expression
pattern of the indicator or the signal to noise of the measurement.
These are by no means the only algorithms possible. Functional
segmentation can be performed using maximum DF/F instead of
correlation with neighboring pixels as a measure of activity and
then centering ROIs that are the size and shape of typical neurons
on the spatial locations of maxima that exceed a threshold (Ahrens
et al., 2012), methods involving independent component analysis
have been developed (Mukamel et al., 2009), and of course it is
always possible to mix and match.

CHRONIC IMAGING
Neuronal circuits adapt in response to sensory experience, mature
during development and change due to disease processes in time
scales which vary from milliseconds to months. While fast events
are easily captured with electrophysiology techniques and imag-
ing of synthetic calcium dyes, events that extended more than
a few hours in time were up to now hard or impossible to
follow due to technical limitations. Long term imaging of struc-
tural changes within the nervous system (see e.g., Grutzendler
et al., 2002; Trachtenberg et al., 2002) have been performed rou-
tinely using anatomic labeling with fluorescent protein variants,
but these studies lacked a physiology component. GECIs were
soon identified as a suitable means to follow activity of iden-
tified groups of neurons in repeated sessions over long periods
(for review see Aramuni and Griesbeck, 2013; Lütcke et al.,
2013b). After the first demonstration of chronic imaging of sen-
sory induced activity in mouse visual cortex over weeks (Mank
et al., 2008) a number of studies have extended the paradigm to
other brain areas and increased the intervals between imaging
sessions up to a month or longer (Tian et al., 2009; Ander-
mann et al., 2010; Dombeck et al., 2010; Minderer et al., 2012).
By now, numerous high-end applications reveal new insights
into reconfiguration of network properties as a consequence
of learning and plasticity. Huber et al. (2012) followed pop-
ulations of neurons in motor cortex over weeks while mice
learned a new object detection task. They reported strength-
ening of the task representation at the level of the population,
which was stable despite of the dynamics at the single neu-
ron level. In another study (Margolis et al., 2012) populations
of neurons in barrel cortex were followed over time after sen-
sory deprivation, demonstrating the power of chronic long term
calcium imaging to monitor response dynamics within individ-
ual neurons and across whole populations of neurons as they
undergo plasticity. Exciting recent papers describe re-organization
of population activity in motor cortex after standardized learn-
ing of a somatosensory task (Masamizu et al., 2014). With
the advent of GECIs with exquisite sensitivities and established
biocompatibility it is expected that a plethora of new stud-
ies on long term physiology will provide new insights into
long standing questions, e.g., on how the brain manages to
balance between stable representations and adaptation due to

sensory experience, on how it couples sensory input to behav-
ioral output, on how it fine-tunes circuitry during development,
how it uses population coding to represent, store and retrieve
information of the outside world, and finally also on how patho-
logic change and circuit dysfunction in the brain is causally
manifested.

WHOLE-BRAIN IMAGING
The dream of a systems’ neuroscientist is to be able to record
the spiking activity (the membrane potential would even be more
preferable) of all the neurons in a brain while the animal is actively
engaged in a behavior. Recent studies now show that this is a very
real possibility, at least in certain model organisms.

The nematode C. elegans and the larval zebrafish are trans-
parent organisms, small enough so that a large fraction of their
nervous system fits within the field of view of an objective.
They have cells that on average range from 3 to 10 microns
in diameter, although C. elegans have 302 and zebrafish in the
order of 150,000. Traditional approaches involving point scanning
microscopy required several presentations of the same experimen-
tal paradigm per plane in order to determine the calcium response
properties of the cells in the imaging plane. However, the signal
to noise properties of the latest GECIs (Akerboom et al., 2012;
Chen et al., 2013; Thestrup et al., 2014) allows the unambiguous
determination of neuronal activity from single trials. This reduces
the imaging time by three- to ten-fold, allowing the imaging of
a whole brain in the order of 4–10 h, with x, y, and z resolu-
tion of ∼1 micron. When dealing with robust behaviors, such
as the optokinetic reflex, this can be used to obtain functional
maps with single-cell resolution of neuronal activity through-
out a single brain and create whole-brain anatomical maps of
both stimulus and motor related activity (Portugues et al., 2014).
In many instances the neuronal activity shows correlation values
with these variables exceeding 0.7. These neuronal networks are
sparse, with around 5% of the brain showing consistent activity,
yet highly stereotyped across individuals, often within the extent
of a single cell body (Figure 3E). These experiments revealed
some more surprising features, such as spatial gradients of tem-
poral activation along neuropil regions in both the hindbrain
and retinal ganglion cell arborization fields, highly asymmetric
activity mostly in the left habenula, and a small number of indi-
vidual cells in the optic tectum which, despite receiving direct
retinal input only from the contralateral eye, displayed binocular
responses.

Scanning microscopy nevertheless has its limitations. The
activity during single trial learning, for example, cannot be
observed in every imaging plane. The nuclear targeting of calcium
indicators and the implementation of more recently developed
volumetric imaging techniques such as fast z-scanning with piezos
(Göbel et al., 2007), electrically tunable lenses (Grewe et al., 2011),
acousto-optic deflectors (Grewe et al., 2010), light-sheet imag-
ing (Ahrens et al., 2013; Panier et al., 2013), temporal focusing
of sculpted light (Schrödel et al., 2013), and light-field imaging
(Prevedel et al., 2014) have opened the door to the possibility of
monitoring whole-brain activity with an improved temporal res-
olution: 1 brain every 0.5 s as opposed to every several hours,
at the expense of slightly reduced spatial resolution. Although
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certain technical difficulties still need to be overcome, it is clear
that the calcium indicators now available are contributing to turn
the dream into a reality.

OFF-TARGET EFFECTS OF GECIs
A major problem for previous GECIs has been that SNR-optimal
indicator concentrations often could not be reached without
leading to obvious signs of deterioration of cell health or com-
promises on indicator function. Indeed, already early versions of
Cameleons showed sensor inactivation or formation of aggregates
when expressed in transgenic mice (Hasan et al., 2004; Nagai et al.,
2004). Contemporary viral or non-viral expression methods (e.g.,
in utero electroporation) lead to high and often steadily increasing
chronic expression levels. By comparing the fluorescence of puri-
fied protein with the fluorescence of GECI-expressing cells, the
actual indicator concentration has been determined under various
conditions for GCaMP2 and GCaMP3 (Hires et al., 2008; Huber
et al., 2012; Zariwala et al., 2012). Expression levels that are likely
to exceed SNR-optimal concentrations have been achieved after
7 weeks of viral transduction of cortical neurons with GCaMP3
(Huber et al., 2012; Figure 1B). This high expression level led to
breakdown of nuclear exclusion of the indicator in a consider-
able number of cells, a phenomenon that is known to correlate
with clear signs of changed cellular response properties. A vari-
able degree of nuclear filling has been observed for essentially all
indicator classes, with the Troponin-based TN-XXL showing the
smallest tendency for nuclear accumulation (Tian et al., 2009).
Also in the case of GCaMP5 and GCaMP6, long-term high-level
expression led to a large number of cells with affected nuclear
exclusion and atypical cellular responsiveness (Tian et al., 2009;
Akerboom et al., 2012; Chen et al., 2013). Overexpression using
AAVs at the viral titers available at public virus repositories led
to a steadily increasing fraction of ‘filled’ cells in mouse visual
cortex that correlated with aberrant cellular tuning responses
(Figure 4A). Further comparative research into the biocompat-
ibility of various GECIs at different expression levels is clearly
warranted.

Either by means of changed expression strategies or serendipi-
tous improvement of indicator properties, general cytotoxicity of
the GCaMP family of indicators appears to have been reduced
over time. Constitutive expression of GCaMP2 in mice led to
unwanted phenotypes like cardiac hypertrophy (Tallini et al.,
2006), whereas similar effects have not been noted for later con-
ditional or neuron-specific GCaMP2, GCaMP3, and GCaMP5
transgenic mouse lines (Chen et al., 2012; Zariwala et al., 2012;
Gee et al., 2014). While GCaMPs were readily expressed in trans-
genic flies and fish, currently available mouse lines for GCaMP3,
however, still suffer from relatively low expression levels, that
so far have prevented their widespread use in the community.
Early versions of Troponin C based sensors could be expressed
functionally and stably in transgenic mice at high levels (Heim
et al., 2007), but their lower signal strength made them unsuitable
for a number of high end applications. Healthy animal models
constitutively or conditionally expressing an SNR-optimal concen-
tration of a high performance GECI would be desirable. The first
generation of publicly available mouse lines expressing GCaMP6
(GCaMP6s, GCaMP6f under the Thy1-promoter) has just been

released (Dana et al., 2014). GECIs now have reached a state of
maturity that makes waiting for the ‘next-best’ version less tempt-
ing. Given suitable expression levels and patterns, we expect
that mouse lines like these will become widely popular in the
future.

Stably or conditionally expressing animal models greatly sim-
plify imaging by rendering invasive acute transfection methods
unnecessary and by improving the repeatability of experiments.
Probably even more importantly, they ameliorate issues result-
ing from the unavoidable ramping up of expression after viral
transduction that render long-term chronic imaging of the same
cell-populations problematic. Chronic imaging of stably express-
ing neuronal populations is indispensable, though, to study
experience-dependent plasticity on the single cell level. Changes
in intracellular calcium determine the sign and amplitude of
synaptic plasticity (Shouval et al., 2002). GECI overexpression
has therefore always been suspected to affect neuronal plastic-
ity. While plastic changes during learning have now repeatedly
been observed using chronic GECI expression over weeks (Huber
et al., 2012; Masamizu et al., 2014) and months (Margolis et al.,
2012), the observed experience-dependent changes could in prin-
ciple also have occurred in associated, untransfected upstream
circuits. However, experiments on hippocampal slice culture that
expressed GCaMP3 at moderate levels have shown that early
phase long-term potentiation (LTP) is indistinguishable from
non-expressing control (Huber et al., 2012; Figure 4B). Still it
is necessary that further experiments compare the achievable
levels of in vitro synaptic plasticity between expressing and non-
expressing cells in brain slices from the very animals, brain
regions, cell types, and expression levels used for the chronic
experiments – ideally accompanied by estimates of added buffer
capacity and put in relation to adverse phenomena like nuclear
filling.

REASONS FOR RED
The most recent optimization efforts in the field of GECI engi-
neering are centered on expanding the spectral palette of high-
performance GECIs. While indicators emitting in the blue range
of the visible spectrum have been developed as well (Zhao et al.,
2011), most work so far focused on the development of viable
probes emitting in the red (Ohkura et al., 2012b; Akerboom et al.,
2013; Wu et al., 2013). The reason for this is that red indica-
tors would have desirable properties that go beyond the most
obvious advantage of being able to spectrally multiplex different
cellular populations expressing GECIs of different color. Current
generation GECIs have their single photon excitation maximum
around 440–480 nm. This, however, poses a problem if one tries
to use these optogenetic sensors together with optogenetic actua-
tors like Channelrhodopsin-2 (ChR2; Akerboom et al., 2013; Wu
et al., 2013). While two-photon laser scanning microscopy can be
used to largely prevent co-excitation of ChR2 (Zhang and Oertner,
2006), single photon activation of ChR2 inadvertently strongly
excites most GECIs due to excitation spectral overlap. This not
only affects the functional fluorescence readout but may also lead
to unnecessary photobleaching and damage. Red proteins usu-
ally require green excitation light (550–560 nm), which renders
cross-excitation less critical but not entirely unproblematic: ChR2
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FIGURE 4 | Biocompatibility and off-target effects of GECIs. (A) Long-term
high-level expression of a GECI (GCaMP6s) leads to breakdown of nuclear
exclusion of the indicator. The number of ‘filled’ cells is a function of time after
viral transduction (middle panel). Cells with ‘filled’ nucleus show atypical
functional responses (right panel): neurons in primary visual cortex with

‘filled’ nuclei lose their orientation selectivity in response to moving grating
stimulation. (B) GCaMP3 expression at moderate levels (∼15 μM) in CA1
neurons in rat hippocampal slice culture does not affect the early phase of
long-term potentiation (LTP) in the short run. [Figures reproduced from Huber
et al. (2012) and Chen et al. (2013) with permission (pending)].

can still be effectively excited by intense green light given suitable
expression levels (Zhang and Oertner, 2006). A further benefit
of red GECIs would be that they would allow imaging deeper
with less excitation power. Light scattering is strongly wavelength-
dependent. The shorter the wavelength, the higher the probability
of photons straying off-course from their ballistic path. As a very
coarse approximation, both excitation and emission light (in both
the single and two-photon excitation regime) could travel roughly
twice as far without being scattered due to refractive index mis-
matches in brain tissue if excitation and emission light would be
shifted 100 nm to the red in comparison to commonly used ‘green’
probes (Helmchen and Denk, 2005). Further red-shifted probes
may even allow for near infrared intravital imaging of Ca2+ signals
through skin and bone. In addition to increased depth penetration,
red-shifted excitation in both single- and two-photon imaging
modes leads to a reduction in the background signal resulting
from the excitation of autofluorescence, thereby increasing SNR.
If the overall GECI fluorescence is low, activity-dependent changes
in autofluorescence (e.g., of flavoprotein oxidation) can become a
major source of signal contamination. Intrinsic changes in flavo-
protein fluorescence are widely used to map cortical responses to
sensory stimuli (Shibuki et al., 2003; Michael et al., 2014). The
sign of the signal change as well as excitation and emission wave-
lengths of flavoprotein autofluorescence overlap with those of

‘green’ GECIs. Red GECIs would therefore be especially helpful
for wide-field single photon imaging where the source of the flu-
orescent signal cannot be confirmed spatially. So far, however,
red single fluorophore GECIs like R-GECO and RCaMP have not
reached the same performance as their green counterparts and
still suffer from low SNR, strong photobleaching and even pho-
toswitching artifacts that have so far prevented their wide-spread
use (Yamada and Mikoshiba, 2012; Akerboom et al., 2013; Wu
et al., 2013). An alternative might be red-shifted FRET indica-
tors based on new engineered bright green or yellow (as donors)
and orange or red fluorescent proteins (as acceptors; Tsutsui et al.,
2008; Lam et al., 2012; Shaner et al., 2013). Incorporation into
current designs such as “Twitch” indicators will require some sub-
stantial re-engineering of the indicators, but further increases in
brightness, a better separation of donor and acceptor emission
channels and the overall red-shift promise a significant boost in
sensitivity of these sensors.

CONCLUSION
Genetically encoded calcium indicators have come a long way since
the presentations of the initial designs. Cycles of iterative improve-
ments, biophysical, and structural analysis and testing have led
to variants with ever increasing signal strength. Recent engineer-
ing efforts have also aimed at both lowering calcium buffering by
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the sensors and improving linearity of responses. Finally, large-
scale mutagenesis and screening approaches have resulted in high
performance variants in both FRET-based and GCaMP indicator
families. In particular, these latter efforts provide a viable example
for improving some of the other genetically encoded sensors that
neuroscience is interested in, for example sensors of membrane
potential. With the remaining issues clarified, as pointed out in
this article, imaging of GECIs will finally become a tremendously
valuable and mature set of tools for analyzing neuronal circuits
and their plasticity and pathology.
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