SUPPORTING INFORMATION

Total Syntheses of Amphidinolide X and Y

Alois Fürstner,* Egmont Kattnig, and Olivier Lepage
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
E-mail: fuerstner@mpi-muelheim.mpg.de

Complete Reference 44b: Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch, F.; Seger, M.; Schreiner, K.; Daeffler, R.; Osmani, A.; Bixel, D.; Loiseleur, O.; Cercus, J.; Stettler, H.; Schaer, K.; Gamboni, R.; Bach, A.; Chen, G.-P.; Chen, W.; Geng, P.; Lee, G. T.; Loeser, E.; McKenna, J.; Kinder, F. R., Jr.; Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Reel, N.; Repic, O.; Rogers, L.; Shieh, W.-C.; Wang, R.-M.; Waykole, L.; Xue, S.; Florence, G.; Paterson, I. Org. Process Res. Dev. 2004, 8, 113-121.

General. All reactions were carried out under Ar. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg}-$ anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}$, pyridine, DMF $\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, hexane, cyclohexane, toluene, benzene $(\mathrm{Na} / \mathrm{K})$. Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a DPX 300, AV 400, or DMX 600 spectrometer (Bruker) in the solvents indicated; chemical shifts (δ) are given in ppm relative to residual solvent peaks, coupling constants (J) in Hz. IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), (ESI) Finnigan MAT 95, accurate mass determination: Finnigan MAT 95, Bruker APEX III FT-ICR-MS (7 T magnet). Melting points: Büchi melting point apparatus (uncorrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Lancaster, Fluka, Aldrich) were used as received unless stated otherwise.

Preparation of the Common Tetrahydrofuran Segment

Compounds 10, 11, 12, 13 were prepared according to literature procedures. ${ }^{1}$
[(2S,3S)-3-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)oxiran-2-yl]methanol (14). L(+)Diethyl tartrate $(\mathrm{L}(+)-\mathrm{DET}, 312 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(359 \mathrm{mg}, 1.3 \mathrm{mmol})$ were added to a suspension of powdered $4 \AA$ molecular sieves $(100 \mathrm{mg} / \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at that temperature before a solution of anhydrous t - BuOOH in decane ($5 \mathrm{M}, 5.0 \mathrm{~mL}, 25.0 \mathrm{mmol}$) was added dropwise. After stirring for another 30 min at $-20^{\circ} \mathrm{C}$, a solution of allylic alcohol $13(4.3 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was added slowly via syringe and the resulting mixture was stirred for 18 h at $-20^{\circ} \mathrm{C}$. For workup, the reaction was quenched with a solution of citric acid $(2.0 \mathrm{~g})$ and $\mathrm{FeSO}_{4}(6.6 \mathrm{~g})$ in water $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted three times with tert-butyl methyl ether. The combined organic layers were treated with $30 \% \mathrm{NaOH}$ saturated with $\mathrm{NaCl}(50 \mathrm{~mL})$ and stirred vigorously for 30 min at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was again repeatedly extracted with tert-butyl methyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography of the residue (hexanes/ethyl acetate, $5 / 1$) provided epoxide 14 as a colorless oil ($4.4 \mathrm{~g}, 97 \%$). The enantiomeric excess ($\mathrm{ee}=83 \%$) was determined by HPLC by comparison with the racemate (250 mm Chiralcel OD-H, Ø 4.6 mm , n-heptane $/ 2$-propanol $=$ $90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, 3.2 \mathrm{MPa}, 298 \mathrm{~K}, \mathrm{UV}, 220 \mathrm{~nm}) .[\alpha]_{\mathrm{D}}^{20}=-16.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.66(4 \mathrm{H}, \mathrm{m}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \operatorname{ddd}, J=12.5,5.1,2.5$ $\mathrm{Hz}), 3.83(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{ddd}, J=12.5,6.9,4.5 \mathrm{~Hz})$, $3.13(1 \mathrm{H}, \mathrm{dt}, J=5.7,2.3 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dt}, J=4.5,2.5 \mathrm{~Hz}), 1.82(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}), 1.74$ $(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 1.07(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,133.7,129.8,127.8$, $61.8,60.9,58.7,53.9,35.0,27.0,19.3$. IR: 3433, 3071, 2957, 2930, 2857, 1472, 1428, 1111, 823, 739, $703 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (rel. intensity): 299 ([M- $\left.{ }^{\mathrm{tBu}}\right]^{+},<0.2$), 269 (32), 225 (9), 199 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right)$: 379.1705 , found $379.1701(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: C 70.74, H 7.92, found C 70.67, H 8.04.
tert-Butyl\{2-[(2S,3S)-3-ethynyloxiran-2-yl]ethoxy\}diphenylsilane (15). Oxalyl chloride $(2.3 \mathrm{~mL}, 25.9 \mathrm{mmol})$ was added dropwise to a solution of DMSO $(2.8 \mathrm{~mL}, 38.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. A solution of the epoxy alcohol $14(4.6 \mathrm{~g}, 13.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ was then introduced and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before it was treated with $\mathrm{Et}_{3} \mathrm{~N}(7.2 \mathrm{~mL}, 51.9 \mathrm{mmol})$ and allowed to warm to ambient temperature. After stirring for an additional hour, the reaction was quenched with brine $(60 \mathrm{~mL})$ and the organic layer was successively washed with sat. NaHCO_{3} (aq.), water, and brine. The organic layer

[^0]was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give the crude aldehyde (4.6 g), which was used without further purification.

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}(3.6 \mathrm{~g}, 26.0 \mathrm{mmol})$ was added to a solution of the aldehyde in $\mathrm{MeOH}(200 \mathrm{~mL})$, followed by the slow addition of dimethyl-1-diazo-2-oxopropyl phosphonate ($3.0 \mathrm{~g}, 15.6$ $\mathrm{mmol})^{2}$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 6 h at that temperature before it was brought to ambient temperature and stirred for additional 2 h . For work up, the mixture was diluted with tert-butyl methyl ether $(100 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The aqueous layer was repeatedly extracted with tert-butyl methyl ether and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. Flash chromatography (hexanes/ethyl acetate, 20/1) of the residue gave acetylene 15 as a colorless oil ($3.0 \mathrm{~g}, 67 \%$ over both steps). $[\alpha]_{\mathrm{D}}^{20}=+1.1\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .69-7.66(4 \mathrm{H}, \mathrm{m}), 7.46-7.37$ $(6 \mathrm{H}, \mathrm{m}), 3.82-3.78(2 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{dt}, J=5.7,2.1 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 2.33(1 \mathrm{H}$, d, $J=2.6 \mathrm{~Hz}$), 1.83-1.76 (2H, m), $1.07(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7$, 133.6, 129.9, 127.9, 80.7, 72.0, 60.5, 58.4, 45.3, 35.0, 27.0, 19.3. IR: 3288, 3071, 2957, 2931, 2858, 2126, 1472, 1428, 1112, 823, $703 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 293 ($\left[\mathrm{M}_{-}{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 53$), 263 (68), 249 (22), 237 (10), 225 (30), 221 (100). HRMS (CI): calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}\right)$: 351.1780, found $351.1779\left(\mathrm{MH}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C 75.38, H 7.48, found C 75.48, H 7.39.
tert-Butyl(diphenyl)\{2-[(2S,3S)-3-prop-1-ynyloxiran-2-yl]ethoxy\}silane (16). Solid LiHMDS ($1.8 \mathrm{~g}, 10.8 \mathrm{mmol}$) was added in portions over 5 min to a solution of compound 15 ($3.15 \mathrm{~g}, 9.0 \mathrm{mmol}$) in THF (230 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ before it was treated with $\mathrm{MeOTf}(1.2 \mathrm{~mL}, 10.8 \mathrm{mmol})$ and allowed to reach $-20^{\circ} \mathrm{C}$ over 1 h . The reaction was quenched at that temperature with sat. NaHCO_{3} (aq.) and poured into a mixture of tert-butyl methyl ether and aq. sat. NaHCO_{3}. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 20/1) to give product 16 as a colorless oil ($3.1 \mathrm{~g}, 95 \%$). $[\alpha]_{\mathrm{D}}^{20}=-2.0(\mathrm{c}$ $\left.=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .7 .70-7.66(4 \mathrm{H}, \mathrm{m}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}), 3.81-$ $3.78(2 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{dt}, J=5.7,2.2 \mathrm{~Hz}), 3.15-3.14(1 \mathrm{H}, \mathrm{m}), 1.86(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.79-$ $1.75(2 \mathrm{H}, \mathrm{m}), 1.07(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,133.7,129.8,127.8,80.5$, $76.2,60.6,58.5,45.2,35.1,27.0,19.3,3.8$. IR: 3071, 2957, 2930, 2857, 2244, 1472, 1428, 1112, $823,702 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 307 ([M- $\left.{ }^{\mathrm{t}}{ }^{\mathrm{Bu}}\right]^{+}$, 100). HRMS (CI): calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}\right): 365.1937$, found $365.1938\left(\mathrm{MH}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C} 75.78, \mathrm{H}$ 7.74, found C 75.69, H 7.62 .

[^1](3S,4R)-1-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-methylnona-4,5-dien-3-ol (17) and Isomer
18. A solution of $\mathrm{Fe}(\mathrm{acac})_{3}(120 \mathrm{mg}, 0.34 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added to a solution of propargyl epoxide $16(2.5 \mathrm{~g}, 6.9 \mathrm{mmol})$ in toluene (280 mL) at $-5^{\circ} \mathrm{C}$. The resulting mixture was stirred for 5 min at $-5^{\circ} \mathrm{C}$ before a solution of propylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{M}, 4.5 \mathrm{~mL}, 8.9 \mathrm{mmol})$ was added via syringe over a period of 10 min , causing a color change from bright red to black during the addition. After stirring for 5 min at $-5^{\circ} \mathrm{C}$, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and diluted with tert-butyl methyl ether. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 25/1) to give an inseparable syn/anti $=8: 1$ mixture of allenols 17 and 18 as a pale yellow oil $(1.7 \mathrm{~g}, 62 \%) .[\alpha]_{\mathrm{D}}^{20}=-10.8(\mathrm{c}=1.2$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .70-7.67(4 \mathrm{H}, \mathrm{m}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{o}, \mathrm{J}=$ $2.8 \mathrm{~Hz}), 4.43-4.40(1 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dt}, J=10.4,5.7 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{dt}, J=10.4,6.0 \mathrm{~Hz})$, $2.70(1 \mathrm{H}, \mathrm{bs}), 1.96-1.91(2 \mathrm{H}, \mathrm{m}), 1.81(2 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}), 1.67(3 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 1.44(2 \mathrm{H}$, h, $J=7.4 \mathrm{~Hz}$), $1.06(9 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$. (Minor isomer 18: $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz})$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,135.7,133.5,129.9,127.9,102.8,94.9,69.3,62.4$, $39.4,36.3,27.0,20.9,19.3,19.2,13.9$. IR: 3435, 3071, 2958, 2931, 2858, 1964, 1472, 1428, 1112, 823, $702 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 351 ([M- $\left.{ }^{\text {t }} \mathrm{Bu}\right]^{+}, 5$), 333 (10), 229 (12), 211 (9), 199 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right)$: 431.2382 , found $431.2385(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$: C 76.42, H 8.88, found C 76.26, H 8.98.
tert-Butyl \{2-[(2S,5R)-5-methyl-5-propyl-2,5-dihydrofuran-2-yl]ethoxy\}diphenyl silane (19) and Isomer epi-19. $\mathrm{AgNO}_{3}(750 \mathrm{mg}, 4.4 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(800 \mathrm{mg}, 8.0 \mathrm{mmol})$ were added to a solution of the allenols $\mathbf{1 7}$ and $\mathbf{1 8}(1.6 \mathrm{~g}, 4.0 \mathrm{mmol})$ in acetone/water ($4 / 1,110$ mL). The reaction mixture was stirred for 15 h in the dark before it was diluted with water (30 mL). The acetone was removed under reduced pressure, the remaining aqueous phase was repeatedly extracted with tert-butyl methyl ether, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash chromatography of the residue (hexanes/ethyl acetate, $30 / 1$) provided an inseparable mixture of dihydrofurans 19 and epi-19 as a colorless oil ($1.5 \mathrm{~g}, 90 \%$, d.r. $=8: 1, \mathrm{NMR}) .[\alpha]_{\mathrm{D}}^{20}=+30.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta .7 .82-7.78(4 \mathrm{H}, \mathrm{m}), 7.24-7.22(6 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{dd}, J=6.0,1.3 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{dd}, J=6.0$, $2.4 \mathrm{~Hz}), 5.03-4.99(1 \mathrm{H}, \mathrm{m}), 3.97-3.85(2 \mathrm{H}, \mathrm{m}), 1.92-1.77(2 \mathrm{H}, \mathrm{m}), 1.57-1.22(5 \mathrm{H}, \mathrm{m}), 1.23$ $(3 \mathrm{H}, \mathrm{s}), 1.18(9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$. (minor diastereomer epi-19: 5.37 (dd, $J=6.0$, $2.3 \mathrm{~Hz})$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,136.0,134.50,134.0,129.9,129.5,83.1$, $82.0,61.7,44.2,40.1,27.2,26.6,19.5,18.4,14.9$. IR: 3071, 2959, 2931, 2858, 1472, 1428, 1112, $823,702 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 408 ($\left[\mathrm{M}^{+}\right], 0.7$), 351 (31), 199 (82), 183 (19), 154 (22) 135 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right)$: 431.2382, found $431.2380(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$: C 76.42, H 8.88, found C 76.28, H 8.94.
(2S,3S,4R,5R)-4-Bromo-2-(2-\{[tert-butyl(diphenyl)silyl]oxy\}ethyl)-5-methyl-5-propyl-tetrahydrofuran-3-yl formate (20) and its isomer epi-20. NBS ($1.9 \mathrm{~g}, 10.4 \mathrm{mmol}$) was added in portions to a solution of dihydrofurans 19 and epi-19 ($1.45 \mathrm{~g}, 3.7 \mathrm{mmol}$) in DMF/water $(15 / 1,38 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$. After stirring for 6 h in the dark at $-5^{\circ} \mathrm{C}$, the reaction was diluted with water $(100 \mathrm{~mL})$, the aqueous phase was repeatedly extracted with pentane, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 50/1). The diastereoisomers generated in the iron catalyzed allenol formation were separated at this stage yielding the (19R)-configured ${ }^{\S}$ bromoformate $20(1.1 \mathrm{~g}, 58 \%)$ and the diastereomeric (19S)bromoformate epi-20 (140 mg, 7\%) as pale yellow oils. Analytical and spectroscopic data of (19R)-20: $[\alpha]_{\mathrm{D}}^{20}=-1.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(1 \mathrm{H}, \mathrm{s}), 7.69-$ $7.65(4 \mathrm{H}, \mathrm{m}), 7.44-7.35(6 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{dt}, J=4.5,0.8 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dt}, J=9.4,4.8 \mathrm{~Hz})$, $4.09(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 3.85-3.75(2 \mathrm{H}, \mathrm{m}), 2.09-2.01(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{ddt}, J=14.0,9.0$, $5.2 \mathrm{~Hz}), 1.73-1.32(5 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,135.7,133.9,129.7,127.8,84.3,83.8,77.3,60.6,59.1,42.4,37.7$, 27.0, 23.2, 19.4, 17.6, 14.6. IR: 3071, 2959, 2931, 2858, 1733, 1472, 1428, 1159, 1112, 823, $702 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 477 and 475 ([M- $\left.{ }^{\mathrm{B}} \mathrm{Bu}\right]^{+}, 7$), 431 (45) and 429 (43), 349 (68), 255 (98), 227 (37), 199 (96), 183 (31), 151 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 555.1542 , found $555.1545(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{4} \mathrm{Si}: \mathrm{C}$ 60.78, H 6.99, Br 14.98, Si 5.26, found C 60.83, H 6.85, Br 14.87, Si 5.30.
(2S,3S,4R,5S)-4-bromo-2-(2-((tert-butyl(diphenyl)silyl)oxy)ethyl)-5-methyl-5-
 propyltetrahydrofuran-3-yl formate (epi-20). $[\alpha]_{\mathrm{D}}^{20}=-5.5(\mathrm{c}$ $\left.=1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(1 \mathrm{H}, \mathrm{s})$, $7.68-7.65(4 \mathrm{H}, \mathrm{m}), 7.44-7.35(6 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{dt}, J=6.4,0.8$ $\mathrm{Hz}), 4.13(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{ddd}, J=9.0,6.5,4.0$ $\mathrm{Hz}), 3.84-3.73(2 \mathrm{H}, \mathrm{m}), 2.05-1.96(1 \mathrm{H}, \mathrm{m}), 1.84(1 \mathrm{H}, \mathrm{ddt}, J=13.9,9.1,5.1 \mathrm{~Hz}), 1.70-1.35$ $(5 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.9, 135.7, 133.9, 129.7, 127.7, 83.5, 83.3, 76.4, 60.4, 56.9, 41.5, 37.6, 27.0, 25.7, 19.4, 17.3, 14.6. IR: $3071,2959,2932,2858,1735,1472,1428,1162,1112,823,703 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 477 and 475 ($\left[\mathrm{M}^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 13$), 431 (46) and 429 (46), 349 (65), 255 (99), 227 (38), 199 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 555.1542, found $555.1546(\mathrm{M}+\mathrm{Na})$.
(2S,3R,5R)-2-(2-\{[tert-Butyl(diphenyl)silyl]oxy\}ethyl)-5-methyl-5-propyltetrahydro-
furan-3-ol (22). (TMS) $)_{3} \mathrm{SiH}(850 \mu \mathrm{~L}, 2.76 \mathrm{mmol})$ and $\mathrm{AIBN}(30 \mathrm{mg}, 0.18 \mathrm{mmol})$ were added to a solution of bromoformate (19R)-20 ($980 \mathrm{mg}, 1.84 \mathrm{mmol}$) in toluene $(90 \mathrm{~mL})$ and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . The solution was allowed to reach ambient temperature before the solvent was evaporated. The residue was dissolved in MeOH (100

[^2]mL). Aq. sat. NaHCO_{3} (ca. 12 mL) was added dropwise and the reaction mixture was stirred for 2 h before it was diluted with water $(25 \mathrm{~mL})$. A standard extractive work up with tertbutyl methyl ether followed by flash chromatography (hexanes/ethyl acetate, $8 / 1$) of the crude product provided the title compound as a colorless oil ($705 \mathrm{mg}, 90 \%$). $[\alpha]_{\mathrm{D}}^{20}=-18.1$ ($\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .70-7.67(4 \mathrm{H}, \mathrm{m}), 7.47-7.38(6 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{q}, J=$ $7.5 \mathrm{~Hz}), 3.84(2 \mathrm{H}, \mathrm{dd}, J=7.1,4.1 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.1,4.7 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{bs})$, $2.24(1 \mathrm{H}, \mathrm{dd}, J=12.4,8.1 \mathrm{~Hz}), 1.90-1.73(3 \mathrm{H}, \mathrm{m}), 1.48-1.33(4 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}$, s), $0.92(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,133.1,130.0,128.0,82.8$, 81.8, 76.6, 62.3, 45.4, 44.9, 36.8, 27.6, 27.0, 19.2, 17.9, 14.8. IR: 3438, 3071, 2959, 2932, 1613, 1513, 1428, 1249, 1111, 1087, 1038, 822, $703 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 369 ($\left[\mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}$, 9), 351 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right)$: 449.2488, found $449.2493(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$: C 73.19, H 8.98, found C 72.98, H 9.06.
tert-Butyl(2-\{(2S,3R,5R)-3-[(4-methoxybenzyl)oxy]-5-methyl-5-propyltetrahydro-furan-2-yl\}ethoxy)diphenylsilane (23). p-Methoxybenzyl trichloroacetimidate ($800 \mathrm{mg}, 2.81$ mmol) and PPTS ($29 \mathrm{mg}, 0.12 \mathrm{mmol}$) were added over 5 min to a solution of compound 22 ($200 \mathrm{mg}, 0.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane $\left(1 / 2,6.0 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 48 h before it was filtered through a pad of Celite. The filtrate was evaporated and the residue was purified by flash chromatography (hexanes/ethyl acetate, 40/1) to give the title compound as a colorless oil (196 mg, 76\%). $[\alpha]_{\mathrm{D}}^{20}=-19.9$ ($\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .7 .70-7.67(4 \mathrm{H}, \mathrm{m}), 7.43-7.34(6 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}$, d, $J=8.6 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz})$, $4.11(1 \mathrm{H}, \mathrm{dt}, J=7.2,5.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.81-3.76(3 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{dd}, J=13.1,7.3 \mathrm{~Hz})$, $1.88-1.74(3 \mathrm{H}, \mathrm{m}), 1.46-1.27(4 \mathrm{H}, \mathrm{m}), 1.28(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,135.8,134.2,130.7,129.6,129.2,127.7,114.0,84.2,82.8$, $79.6,71.3,61.3,55.4,45.5,42.7,37.9,27.0,26.4,19.3,18.0,14.8$. IR: 3070, 2958, 2931, 1613, 1428, 1112, 1086, 1038, $702 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 489 ([M- $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 0.3$), 351 (6), 199 (4), 121 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 569.3063, found $569.3064(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}$: C 74.68, H 8.48, found C 74.53, H 8.42.

2-\{(2S,3R,5R)-3-[(4-Methoxybenzyl)oxy]-5-methyl-5-propyltetrahydrofuran-2-yl\}-
ethanol (24). A solution of TBAF in THF ($1 \mathrm{M}, 990 \mu \mathrm{~L}, 0.99 \mathrm{mmol}$) was added dropwise to a solution of compound 23 ($180 \mathrm{mg}, 0.33 \mathrm{mmol}$) in THF (9.5 mL). After stirring for 3 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with tert-butyl methyl ether and water. The aqueous layer was extracted with tert-butyl methyl ether and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. Flash chromatography (hexanes/ethyl acetate, 2/1) of the residue provided the title alcohol as a colorless oil (98 mg , $97 \%) .[\alpha]_{\mathrm{D}}^{20}=-37.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz})$, $6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{ddd}, J$ $=8.0,5.7,4.7 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.80-3.74(3 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{bs}), 2.04(1 \mathrm{H}, \mathrm{dd}, J=12.9,7.6$ $\mathrm{Hz}), 1.90-1.71(2 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{dd}, J=12.9,5.1 \mathrm{~Hz}), 1.50-1.28(3 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{s}), 0.91$
(3H, t, J = 7.2 Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,130.2,129.4,114.1,83.7,83.5$, $82.3,71.7,61.6,55.4,45.3,42.6,36.3,26.5,18.0,14.7$. IR: $3444,2959,2933,1613,1514$, 1249, 1173, 1084, 1036, $821 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 308 ($\left[\mathrm{M}^{+}\right], 6$), 137 (7), 121 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na}\right)$: 331.1885, found $331.1884(\mathrm{M}+\mathrm{Na})$.
(2R,4R,5S)-5-(2-Iodoethyl)-4-[(4-methoxybenzyl)oxy]-2-methyl-2-propyltetrahydro-
furan (25). $\mathrm{PPh}_{3}(98 \mathrm{mg}, 0.38 \mathrm{mmol})$ and imidazole ($31 \mathrm{mg}, 0.50 \mathrm{mmol}$) were added to a solution of compound $24(77 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(3 / 1,2.6 \mathrm{~mL})$. After stirring for 5 min , a solution of iodine ($95 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(3 / 1,0.65 \mathrm{~mL})$ was added dropwise and the resulting mixture was stirred for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, diluted with tert-butyl methyl ether and water, the aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 25/1) to give iodide 25 as a colorless oil ($96 \mathrm{mg}, 92 \%$). $[\alpha]_{\mathrm{D}}^{20}=-34.7$ $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dt}, J=8.3,4.6 \mathrm{~Hz}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{dt}, J=7.5,4.6 \mathrm{~Hz}), 3.26-3.15(2 \mathrm{H}, \mathrm{m}), 2.16-1.94(3 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{dd}, J=$ $13.1,4.2 \mathrm{~Hz}), 1.47-1.26(4 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,130.4,129.3,114.1,83.3,83.2,82.2,71.5,55.5,45.4,42.7,39.4,26.5,18.0$, 14.8, 1.9. IR: 2958, 2932, 2870, 1613, 1513, 1249, 1173, 1037, $821 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 418 ([M $\left.\left.{ }^{+}\right], 7\right), 375$ (5), 233 (4), 137 (4), 121 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{IO}_{3}+\mathrm{Na}\right): 441.0903$, found $441.0899(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{IO}_{3}$: C $51.68, \mathrm{H}$ 6.51, found C 51.64, H 6.43 .

Building Blocks A and C

(2S,3R)-3-Methyl-1-(2-methyl-1,3-dioxolan-2-yl)pent-4-yn-2-ol (30). PPh_{3} ($50 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ was added to a solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred until a clear solution had formed. Mesylate 29 ($855 \mathrm{mg}, 5.77$ $\mathrm{mmol})$ was then added followed by aldehyde $28(500 \mathrm{mg}, 3.84 \mathrm{mmol}){ }^{3}$ A solution of $\mathrm{Et}_{2} \mathrm{Zn}$ in hexane ($1 \mathrm{M}, 11.5 \mathrm{~mL}, 11.5 \mathrm{mmol}$) was added dropwise over 10 min at $-78^{\circ} \mathrm{C}$. After stirring at that temperature for 10 min , the solution was stirred for 16 h at $-20^{\circ} \mathrm{C}$. For work up, an aq. sat. solution of NaHCO_{3} was slowly added (gas evolution!) and the product was extracted with tert-butyl methyl ether. The combined organic phases were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ EtOAc, $4: 1+2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford a $4.5: 1$ mixture of the anticonfigured alcohol 30 and its syn-configured isomer 31 ($460 \mathrm{mg}, 65 \%$). These isomers can be

[^3]separated by flash chromatography (hexanes/EtOAc, 10:1 $+2 \% \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ hexanes/EtOAc, 4:1 $\left.+2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$. The enantiomeric excess of anti-30 (ee $=94 \%$) was determined by HPLC by comparison of both enantiomers (250 mm Chiralpak AD, n-heptane $/ 2$-propanol $=99 / 1,0.5$ $\mathrm{mL} / \mathrm{min}, 0.7 \mathrm{mPa}, \mathrm{RI}, \mathrm{E}=32$). Analytical and spectroscopic data of anti-30: $[\alpha]_{\mathrm{D}}^{20}=+2.1^{\circ}(\mathrm{c}$ $=1.1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.00-3.95(1 \mathrm{H}, \mathrm{m}), 3.40-3.26(5 \mathrm{H}, \mathrm{m}), 2.59-2.53$ $(1 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=9.6,14.5 \mathrm{~Hz}), 1.95(1 \mathrm{H}, \mathrm{dd}, J=2.3,14.5 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{d}, J=2.5$ $\mathrm{Hz}), 1.31(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.21(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 110.4,86.0,70.5$, 70.1, 64.6, 64.2, 42.3, 32.8, 24.2, 16.1. IR: 3515, 3290, 2983, 2887, 2112, 1379, 1257, 1220, 1156, 1109, 1042, 983, 949, $822 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 169 ([M-CH3] ${ }^{+}, 4$), 87 (100), 43 (46). HRMS (ESI): calcd. for $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{Na}\right)$: 207.0997, found $207.0997(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: C 65.19, H 8.75, found C 65.08, H 8.71.

2-\{(2S,3R)-2-[(4-Methoxybenzyl)oxy]-3-methylpent-4-ynyl\}-2-methyl-1,3-dioxolane (32). $\mathrm{NaH}(391 \mathrm{mg}, 16.3 \mathrm{mmol})$ was added to a solution of alcohol $30(1.00 \mathrm{~g}, 5.43 \mathrm{mmol})$ in DMF $(54 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at that temperature before p-methoxybenzyl chloride ($1.58 \mathrm{~mL}, 10.9 \mathrm{mmol}$) was added followed by tetra- n-butylammonium iodide (199 $\mathrm{mg}, 0.543 \mathrm{mmol})$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and for 16 h at room temperature. For work up, the reaction was carefully quenched with brine (H_{2} evolution!) and the mixture was repeatedly extracted with tert-butyl methyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1 $+2 \% \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ hexanes/EtOAc, $4: 1+2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford protected alcohol 32 as a colorless syrup $(1.55 \mathrm{~g}, 94 \%)$. $[\alpha]_{\mathrm{D}}^{20}=-5.4^{\circ}(\mathrm{c}=0.85$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.37$ $(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 3.78-3.74(1 \mathrm{H}, \mathrm{m}), 3.63-3.53(4 \mathrm{H}, \mathrm{m}), 2.90-$ $2.86(1 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=3.5,14.6 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{dd}, J=7.2,14.6 \mathrm{~Hz}), 1.89(3 \mathrm{H}, \mathrm{d}, J=$ $2.5 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.7$, 131.1, 129.5, 114.0, 109.6, 86.5, $78.0,71.2,70.2,64.5,64.4,54.8,40.2,29.9,25.0,15.3$. IR: 3289, 2982, 2882, 2111, 1613, $1514,1249,1052,821 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 304 ([M $\left.\mathrm{M}^{+}\right], 1$), 121 (100), 115 (19), 87 (23), 43 (13). HRMS (ESI): calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{Na}\right)$: 327.1572 , found $327.1578(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$: C 71.03, H 7.95, found C 70.89, H 7.86.

2-\{(2S,3R)-2-[(4-Methoxybenzyl)oxy]-3-methylhex-4-ynyl\}-2-methyl-1,3-dioxolane (33). LiHMDS ($2.00 \mathrm{~g}, 11.9 \mathrm{mmol}$) was added to a solution of alkyne $32(1.21 \mathrm{~g}, 3.98 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at that temperature and for 30 min at $-20^{\circ} \mathrm{C}$. The mixture was cooled to $-78^{\circ} \mathrm{C}$ before $\mathrm{MeI}(1.24 \mathrm{~mL}, 19.9 \mathrm{mmol})$ was introduced, and stirring was continued for 16 h at $-20^{\circ} \mathrm{C} \rightarrow 5^{\circ} \mathrm{C}$. An aq. sat. solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added, the aqueous layer was extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $15: 1+2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford alkyne 33 as a colorless syrup $(1.20 \mathrm{~g}, 95 \%) .[\alpha]_{\mathrm{D}}^{20}=-12.1^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}), 3.82-$
$3.78(1 \mathrm{H}, \mathrm{m}), 3.64-3.54(4 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 2.96-2.93(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=3.0,14.5$ $\mathrm{Hz}), 2.11(1 \mathrm{H}, \mathrm{dd}, J=7.3,14.5 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 1.50(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0$ Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.6,131.5,129.5,113.9,109.8,81.6,78.5,77.1,71.1$, 64.4, 64.3, 54.7, 40.2, 30.1, 25.0, 15.6, 3.4. IR: 3306, 2980, 2881, 1613, 1514, 1249, 1052, $822 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (rel. intensity): 318 ($\left[\mathrm{M}^{+}\right], 0.4$), 121 (100), 87 (15). HRMS (ESI): calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na}\right): 341.1729$, found $341.1726(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$: C 71.67, H 8.23, found C 71.48, H 8.20.

2-\{(2S,3R,4E)-5-Iodo-2-[(4-methoxybenzyl)oxy]-3-methylhex-4-enyl\}-2-methyl-1,3-

 dioxolane (34). A solution of alkyne $33(294 \mathrm{mg}, 0.923 \mathrm{mmol})$ in benzene $(18 \mathrm{~mL})$ was added to $\mathrm{Cp}_{2} \mathrm{ZrHCl}(595 \mathrm{mg}, 2.31 \mathrm{mmol})$ under Ar. The mixture was stirred for 4 h at $50^{\circ} \mathrm{C}$ and then cooled to ambient temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, cooled to $-15^{\circ} \mathrm{C}$ and treated with a saturated solution of I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the purple color persisted. At that point, a sat. aq. solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was immediately added. A standard extractive work up followed by flash chromatography of the crude product (hexanes/EtOAc, 20:1 $+2 \% \mathrm{Et}_{3} \mathrm{~N}$ \rightarrow hexanes/EtOAc, 6:1 $+2 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded vinyl iodide 34 as a colorless syrup ($251 \mathrm{mg}, 61$ \%). $[\alpha]_{\mathrm{D}}^{20}=+19.0^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.27(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $6.80(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{dd}, J=1.4,9.9 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{d}$, $J=11.2 \mathrm{~Hz}), 3.52-3.33(4 \mathrm{H}, \mathrm{m}), 3.32(3 \mathrm{H}, \mathrm{s}), 2.72-2.67(1 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz})$, $1.97(1 \mathrm{H}, \mathrm{dd}, J=4.9,14.8 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{dd}, J=5.6,14.8 \mathrm{~Hz}), 1.30(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.7,143.7,131.5,129.7,114.1,109.4,94.6,78.4$, $71.3,64.6,64.4,54.8,41.1,40.2,28.3,24.9,16.7$. IR: 2958, 2877, 1612, 1514, 1248, 1038, $821 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 431 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 0.2$), 121 (100), 87 (18). HRMS (ESI): calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{I}+\mathrm{Na}\right): 469.0852$, found $469.0849(\mathrm{M}+\mathrm{Na})$.(2S,3R,4E)-5-Iodo-3-methyl-1-(2-methyl-1,3-dioxolan-2-yl)hex-4-en-2-ol (39). An aq. phosphate buffer solution ($\mathrm{pH} 7,3 \mathrm{~mL}$) was added to a solution of alcohol $34(287 \mathrm{mg}, 0.643$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. DDQ ($584 \mathrm{mg}, 2.57 \mathrm{mmol}$) was then introduced at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h at ambient temperature. $\mathrm{H}_{2} \mathrm{O}$ was added, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 15:1 $+1 \% \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ hexanes/EtOAc, $4: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford alcohol 39 as a colorless syrup ($187 \mathrm{mg}, 89 \%$). $[\alpha]_{\mathrm{D}}^{20}=+32.0^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.50(1 \mathrm{H}, \mathrm{qd}, J=1.5,9.9 \mathrm{~Hz})$, $3.77(1 \mathrm{H}, \mathrm{dd}, J=3.7,10.3 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{s}), 3.39-3.32(4 \mathrm{H}, \mathrm{m}), 2.24-2.18(1 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}$, d, $J=1.5 \mathrm{~Hz}), 1.75(1 \mathrm{H}, \mathrm{dd}, J=10.3,14.5 \mathrm{~Hz}), 1.58(1 \mathrm{H}, \mathrm{dd}, J=1.6,14.5 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{s})$, $1.01(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 143.4,110.4,94.0,70.9,64.6,64.1$, 43.3, 41.8, 27.9, 24.2, 16.9. IR: 3520, 2979, 2882, $1634,1378,1040 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 311 ([M-CH3] ${ }^{+}, 2$), 131 (16), 87 (100), 43 (35). HRMS (ESI): calcd. for $\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{I}+\mathrm{Na}\right)$: 349.0277 , found $349.0274(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{I}: \mathrm{C} 40.51, \mathrm{H}$ 5.87, found C 40.63, H 5.95.

Methyl (2E,4S)-4-methyl-6-[(triisopropylsilyl)oxy]hex-2-enoate (36). DBU (573 $\mu \mathrm{L}, 3.83$ $\mathrm{mmol})$ and methyl diethylphosphonoacetate ($804 \mu \mathrm{~L}, 4.38 \mathrm{mmol}$) were added to a suspension of flame dried $\mathrm{LiCl}(186 \mathrm{mg}, 4.38 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(36 \mathrm{~mL})$. Aldehyde $35(943 \mathrm{mg}, 3.65$ $\mathrm{mmol})^{4}$ in $\mathrm{CH}_{3} \mathrm{CN}(36 \mathrm{~mL})$ was added and the mixture was stirred for 16 h at ambient temperature. A standard extractive work up followed by flash chromatography of the crude product (hexanes/EtOAc, 15:1) furnished ester 36 as a colorless syrup ($1.08 \mathrm{~g}, 94 \%$). $[\alpha]_{\mathrm{D}}^{20}=$ $+39.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(1 \mathrm{H}, \mathrm{dd}, J=7.8,15.7 \mathrm{~Hz}), 5.79$ $(1 \mathrm{H}, \mathrm{dd}, J=1.1,15.7 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{td}, J=1.8,6.3 \mathrm{~Hz}), 2.60-2.51(1 \mathrm{H}, \mathrm{m})$, $1.64-1.53(2 \mathrm{H}, \mathrm{m}), 1.09-1.00(24 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,154.8,119.4$, 61.1, 51.5, 39.1, 33.2, 19.4, 18.1, 12.1. IR: 2944, 2867, 1729, 1657, 1463, 1107, 883, 681 $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): 299 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+},<0.07$), 271 ($\left[\mathrm{M}-{ }^{\mathrm{I}}{ }^{\mathrm{Pr}}\right]^{+}, 100$), 145 (25), 133 (13), 117 (14), 109 (17), 89 (10), 81 (29), 75 (17). HRMS (ESI): calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right)$: 337.2175, found $337.2177(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C 64.92 , H 10.90 , found C 64.99, H 10.93.

Methyl (2E,4S)-6-hydroxy-4-methylhex-2-enoate (37). A solution of compound 36 (400 $\mathrm{mg}, 1.27 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL})$ was placed in a plastic bottle. Excess HF pyridine (1.00 mL) was added and the mixture was stirred for 90 min at ambient temperature. For work up, aq. sat. NaHCO_{3} was introduced and the mixture was extracted with tert-butyl methyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (pentanes/tert-butyl methyl ether, 1:1) to afford the title alcohol 37 as a colorless syrup ($202 \mathrm{mg}, 100 \%$). $[\alpha]_{\mathrm{D}}^{20}=+45.0^{\circ}(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(1 \mathrm{H}, \mathrm{dd}, J=8.0,15.7 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=1.2$, $15.7 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.62-3.56(2 \mathrm{H}, \mathrm{m}), 2.51-2.44(1 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{s}), 1.59(2 \mathrm{H}, \mathrm{q}, J=$ $6.7 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,154.3,119.6,60.4$, 51.5, 38.6, 33.2, 19.4. IR: 3430, 2955, 1725, 1656, 1436, 1275. MS (EI) m / z (rel. intensity): $158\left(\left[\mathrm{M}^{+}\right], 10\right), 127$ (71), 81 (100), 55 (64), 41 (75). HRMS (ESI): calcd. for $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}\right)$: 158.0943, found 158.0944 (M). Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$: C 60.74 , H 8.92, found C $60.83, \mathrm{H}$ 9.06 .
(3S,4E)-6-Methoxy-3-methyl-6-oxohex-4-enoic acid (38). Oxalyl chloride (150 $\mu \mathrm{L}, 1.72$ $\mathrm{mmol})$ was added to a solution of DMSO $(184 \mu \mathrm{~L}, 2.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. A solution of alcohol $37(136 \mathrm{mg}, 0.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(483 \mu \mathrm{~L}, 3.44 \mathrm{mmol})$ was then introduced and the mixture was stirred for 1 h at ambient temperature. The reaction was quenched with brine, the aqueous layer was extracted with tert-butyl methyl ether, the combined organic phases were evaporated, and the residue was re-dissolved in tert-butyl methyl ether. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give the crude aldehyde which was used without any further purification.

[^4]2-Methylbut-2-ene (2.00 mL) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(306 \mathrm{mg}, 2.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3.4 \mathrm{~mL})$ were added to a solution of this aldehyde ($134 \mathrm{mg}, 0.86 \mathrm{mmol}$) in $t-\mathrm{BuOH}(15 \mathrm{~mL})$ at ambient temperature. $\mathrm{NaClO}_{2}(231 \mathrm{mg}, 2.58 \mathrm{mmol})$ was introduced and the mixture was stirred for 2 h. The solvent was evaporated and the residue was dissolved in EtOAc. $\mathrm{H}_{2} \mathrm{O}$ was added, the mixture was acidified with 2 m HCl until pH 5 was reached, and the resulting mixture was repeatedly extracted EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:1 \rightarrow EtOAc) to afford carboxylic acid 38 as a colorless syrup ($136 \mathrm{mg}, 92 \%$ over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=+24.8^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(1 \mathrm{H}, \mathrm{dd}, J=7.2,15.8$ $\mathrm{Hz}), 5.85(1 \mathrm{H}, \mathrm{dd}, J=1.4,15.8 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 2.90-2.83(1 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{dd}, J=7.0$, $15.8 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{dd}, J=7.3,15.8 \mathrm{~Hz}), 1.15(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.1,167.1,151.8,120.4,51.7,40.0,32.8,19.2$. IR: 3100, 2967, 2674, 1723, 1657, 1278. MS (EI) m/z (rel. intensity): 172 ([M $\left.{ }^{+}\right], 2$), 154 (44), 140 (50), 122 (100), 95 (59), 94 (56), 71 (58), 67 (58), 41 (58). HRMS (ESI): calcd. for $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{Na}\right)$: 195.0633, found $195.0634(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$: C 55.81, H 7.02, found C 55.74, 7.12.

Total Synthesis of Amphidinolide X

Ester 40. $\mathrm{Et}_{3} \mathrm{~N}(180 \mu \mathrm{~L}, 1.29 \mathrm{mmol})$ was added to a solution of carboxylic acid $38(74 \mathrm{mg}$, 0.432 mmol) in toluene (4 mL). 2,4,6-Trichlorobenzoyl chloride ($68 \mu \mathrm{~L}, 0.432 \mathrm{mmol}$) was introduced and the resulting mixture was stirred for 1 h at ambient temperature. A solution of alcohol $39(128 \mathrm{mg}, 0.392 \mathrm{mmol})$ and DMAP ($48 \mathrm{mg}, 0.392 \mathrm{mmol}$) in toluene (4 mL) was added and the reaction mixture was allowed to stir for 1 h . Evaporation of the solvent followed by flash chromatography of the residue (hexanes/EtOAc, $4: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) provided ester $\mathbf{4 0}$ as a colorless syrup ($200 \mathrm{mg}, 96 \%$). $[\alpha]_{\mathrm{D}}^{20}=+17.4^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.1,15.7 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{dd}, J=1.5,9.9 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{dd}, J=1.4$, $15.7 \mathrm{~Hz}), 5.26-5.22(1 \mathrm{H}, \mathrm{m}), 3.59-3.45(4 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 2.69-2.62(1 \mathrm{H}, \mathrm{m}), 2.50-2.44$ $(1 \mathrm{H}, \mathrm{m}), 2.18(3 \mathrm{H}, \mathrm{d}, 1.5 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{dd}, J=7.0,15.5 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{dd}, J=7.2,15.5 \mathrm{~Hz})$, $1.93(1 \mathrm{H}, \mathrm{dd}, J=7.9,14.8 \mathrm{~Hz}), 1.72(1 \mathrm{H}, \mathrm{dd}, J=3.2,14.8 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{d}, J=$ $6.8 \mathrm{~Hz}), 0.79(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 170.9,166.6,152.3,142.1$, $120.5,109.0,95.7,72.5,64.6,64.5,51.0,41.3,40.5,40.1,33.1,28.0,24.4,19.0,16.3$. IR: 2968, 1727, 1657, 1273, 1173, 1041, 987. MS (EI) m / z (rel. intensity): 480 ([M $\left.{ }^{+}\right], 0.03$), 87 (100), 43 (15). HRMS (ESI): calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{I}+\mathrm{Na}\right)$: 503.0907, found $503.0907(\mathrm{M}+\mathrm{Na})$.

Compound 41. A solution of tert-BuLi in pentane ($1.7 \mathrm{M}, 438 \mu \mathrm{~L}, 0.744 \mathrm{mmol}$) was added to a mixture of $\mathrm{Et}_{2} \mathrm{O}(577 \mu \mathrm{~L})$ and THF $(577 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ before a solution of alkyl iodide 25 ($52 \mathrm{mg}, 0.124 \mathrm{mmol}$) in THF (3.47 mL) was added dropwise (additional $577 \mu \mathrm{~L}$ of THF were used to rinse the flask). The mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before $9-\mathrm{MeO}-9-\mathrm{BBN}$ $(126 \mu \mathrm{~L}, 0.744 \mathrm{mmol})$ was introduced causing an immediate color change from yellow to
colorless. The mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and for 1 h at ambient temperature. An aq. solution of $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 248 \mu \mathrm{~L}, 0.744 \mathrm{mmol})$ was added followed by a solution of the vinyl iodide $40(60 \mathrm{mg}, 0.124 \mathrm{mmol})$ in DMF (3.47 mL) (additional $577 \mu \mathrm{~L}$ of DMF were used to rinse the flask). A solution of (dppf) $\mathrm{PdCl}_{2}(4.5 \mathrm{mg}, 0.0062 \mathrm{mmol})$ and $\mathrm{AsPh}_{3}(3.8 \mathrm{mg}$, $0.012 \mathrm{mmol})$ in DMF $(500 \mu \mathrm{~L})$ was then added and the mixture was stirred for 2 h at ambient temperature. The mixture was diluted with hexanes/EtOAc $\left(4: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ before it was filtered through a pad of silica (hexanes/EtOAc, $4: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$ was used to rinse the silica pad). The combined filtrates were successively washed with sat. aq. NaHCO_{3}, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $15: 1+1 \% \mathrm{Et}_{3} \mathrm{~N} \rightarrow$ hexanes/EtOAc, $6: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound 41 as a colorless syrup ($59 \mathrm{mg}, 74 \%$). $[\alpha]_{\mathrm{D}}^{20}=-13.5^{\circ}(\mathrm{c}$ $=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=7.1$, $15.8 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{dd}, J=1.4,15.8 \mathrm{~Hz}), 5.45-5.41(1 \mathrm{H}, \mathrm{m}), 5.27$ $(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{td}, J=5.0$, 7.4 Hz), 3.70-3.49 ($5 \mathrm{H}, \mathrm{m}$), $3.42(3 \mathrm{H}, \mathrm{s}), 3.34(3 \mathrm{H}, \mathrm{s}), 2.75-2.67(2 \mathrm{H}, \mathrm{m}), 2.33-2.23(1 \mathrm{H}, \mathrm{m})$, 2.23-2.16 ($2 \mathrm{H}, \mathrm{m}$), 2.12-2.03 ($2 \mathrm{H}, \mathrm{m}$), $1.90(1 \mathrm{H}, \mathrm{dd}, J=2.4,14.9 \mathrm{~Hz}), 1.82-1.70(4 \mathrm{H}, \mathrm{m})$, $1.65(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.51-1.33(4 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 171.0$, $166.6,159.8,152.5,137.0,131.2,129.4,126.0,120.4,114.2,109.3,84.5,82.4,82.2,73.5$, $71.5,64.61,64.58,54.9,51.0,45.7,43.2,41.0,40.8,37.4,36.5,33.9,33.2,26.4,24.6,19.0$, 18.2, 16.9, 16.6, 14.9. IR: 2960, 2870, 1727, 1514, 1249, 1172, 1036. MS (EI) m/z (rel. intensity): 644 ([M $\left.\left.{ }^{+}\right], 0.4\right), 140$ (39), 122 (11), 121 (100), 87 (68). HRMS (ESI): calcd. for $\left(\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{9}+\mathrm{Na}\right): 667.3822$, found $667.3819(\mathrm{M}+\mathrm{Na})$.

Compound 42a. Dry LiI was added to a solution of ester $41(33 \mathrm{mg}, 0.051 \mathrm{mmol})$ in pyridine $(2 \mathrm{~mL})$ and the resulting mixture was stirred for 30 h at $125^{\circ} \mathrm{C}$. The mixture was cooled to $0^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $\mathrm{HCl}(2 \mathrm{M}, 12 \mathrm{~mL})$. The aqueous phase was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was rapidly passed through silica (hexanes/EtOAc, $1: 1+1 \% \mathrm{HOAc}$). The crude acid 42 thus formed was used in the next step without further purification.

42a
$\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to a solution of crude 42 in HOAc (1 mL) and the resulting mixture was stirred for 15 min at $65^{\circ} \mathrm{C}$. After cooling to ambient temperature, the mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous phase was repeatedly extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 4:1 + $1 \% \mathrm{HOAc}$) to afford carboxylic acid 42a as a colorless syrup (16 mg , 53% over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{dd}, J=$
$7.1,15.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{dd}, J=1.3,15.7 \mathrm{~Hz}), 5.25-5.22(1 \mathrm{H}, \mathrm{m})$, $4.99(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dt}, J=$ $6.9,5.2 \mathrm{~Hz})$, , $3.80(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{dt}, J=7.1,4.8 \mathrm{~Hz}), 2.87-2.79(1 \mathrm{H}, \mathrm{m}), 2.72-2.62(1 \mathrm{H}$, $\mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{dd}, J=7.6,16.6 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=5.3,16.6 \mathrm{~Hz}), 2.36(2 \mathrm{H}, \mathrm{dd}, J=1.2,7.0$ $\mathrm{Hz}), 2.13-1.96(3 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=4.2,13.0 \mathrm{~Hz}), 1.63-1.42(4 \mathrm{H}, \mathrm{m}), 1.59$ $(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.38-1.26(2 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=$ $5.5 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.9,171.2,169.8,159.4$, $154.1,137.4,130.5,129.4,124.9,120.1,114.0,83.6,83.2,81.9,73.8,71.4,55.4,45.6,45.2$, $42.6,40.8,35.9,35.6,33.3,33.0,30.4,26.3,19.0,18.0,17.1,16.5,14.8$. IR: 2961, 1723, 1699, 1514, 1248, 1171, 1036. MS (EI) m/z (rel. intensity): 428 (3), 140 (22), 122 (12), 121 (100), 43 (14). HRMS (ESI): calcd. for $\left(\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{8}+\mathrm{Na}\right): 609.3403$, found $609.3407(\mathrm{M}+\mathrm{Na})$.

Seco-Acid 43. An aqueous phosphate buffer solution ($\mathrm{pH} 7,1 \mathrm{~mL}$) was added to a solution of acid 42a ($15 \mathrm{mg}, 0.026 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. DDQ ($23 \mathrm{mg}, 0.102 \mathrm{mmol}$) was introduced at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 5 h at ambient temperature. $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 4:1 + $1 \% \mathrm{HOAc} \rightarrow$ hexanes/EtOAc, 2:1 $+1 \% \mathrm{HOAc}$) to afford carboxylic acid 43 as a colorless syrup ($10 \mathrm{mg}, 84 \%$). $[\alpha]_{\mathrm{D}}^{20}=-19.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(1 \mathrm{H}, \mathrm{dd}, J=7.5,15.7 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{dd}, J=1.2,15.7 \mathrm{~Hz}), 5.26-5.20$ $(1 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{td}, J=5.1,7.4 \mathrm{~Hz}), 3.80-3.75(1 \mathrm{H}, \mathrm{m}), 2.88-2.77$ $(1 \mathrm{H}, \mathrm{m}), 2.70-2.50(3 \mathrm{H}, \mathrm{m}), 2.43-2.31(2 \mathrm{H}, \mathrm{m}), 2.17-2.03(4 \mathrm{H}, \mathrm{m}), 2.12(3 \mathrm{H}, \mathrm{s}), 1.75-1.25$ $(7 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.2$ $\mathrm{Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0,169.4,154.9,137.1$, $125.2,120.3,83.7,83.0,73.8,46.2,45.8,45.5,41.1,36.0,35.7,33.5,32.3,30.4,26.9,19.3$, 18.0, 17.5, 16.4, 14.7. IR: 3427, 2964, 1718, 1656, 1451, 1379, 1264, 1162, 1081, 988. MS (EI) m / z (rel. intensity): 466 ([M $\left.{ }^{+}\right], 1$), 308 (14), 156 (67), 107 (26), 95 (33), 84 (31), 71 (40), 55 (25), 43 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{7}+\mathrm{Na}\right)$: 489.2828, found 489.2827 ($\mathrm{M}+\mathrm{Na}$).

Amphidinolide \mathbf{X} (1). $\mathrm{Et}_{3} \mathrm{~N}(11 \mu \mathrm{~L}, 0.081 \mathrm{mmol})$ and 2,4,6-trichlorobenzoyl chloride ($3.8 \mu \mathrm{~L}$, 0.024 mmol) were added to a solution of hydroxy acid $43(7.5 \mathrm{mg}, 0.016 \mathrm{mmol})$ in THF (2 mL). The mixture was stirred for 1 h at room temperature before most of the THF was removed under a flow of Ar. The residue was diluted with toluene (5 mL) and the resulting solution was added over 2 h via syringe pump to a solution of DMAP ($39 \mathrm{mg}, 0.322 \mathrm{mmol}$) in toluene (20 mL) at ambient temperature. Once the addition was complete, the mixture was stirred for an additional 2 h . For work up, the solvent was evaporated and the remaining syrup was purified by flash chromatography (hexanes/EtOAc, 10:1 \rightarrow 6:1) to afford amphidinolide X 1 as a colorless syrup $(4.5 \mathrm{mg}, 62 \%) .[\alpha]_{\mathrm{D}}^{17}=-25.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $^{2}:[\alpha]_{\mathrm{D}}^{17}=-12^{\circ}(\mathrm{c}$ $\left.=1.0, \mathrm{CHCl}_{3}\right)$]. ${ }^{1} \mathrm{H}$ NMR: see Table 1. ${ }^{13} \mathrm{C}$ NMR: see Table 2. IR: 2963, 1721, 1451, 1262, $1185,1079 \mathrm{~cm}^{-1}$.

For copies of pertinent NMR spectra of this series, see the Supporting Information to: Lepage, O.; Kattnig, E.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 15970.

Table 1: Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of authentic 1 with that of the synthetic sample ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$). Numbering scheme as shown in the insert.

Position	Natural 1, δ (multiplicity, \boldsymbol{J} in Hz)	Synthetic 1, δ (multiplicity, J in Hz)	$\Delta \delta$
2	5.79 (d, 15.8)	5.79 (d, 15.8)	± 0
3	7.12 (dd, 7.2, 15.8)	7.12 (dd, 7.2, 15.8)	± 0
4	2.79 (m)	2.78 (m)	-0.01
5	2.58 (dd, 3.7, 13.4)	2.58 (dd, 3.6, 13.4)	± 0
	2.41 (dd, 6.3, 13.4)	2.41 (dd, 6.4, 13.4)	± 0
7	2.14 (s)	2.14 (s)	± 0
9	2.69 (dd, 6.0, 16.5)	2.69 (dd, 6.0, 16.5)	± 0
	2.57 (dd, 8.2, 16.5)	2.58 (dd, 7.2, 16.5)	+0.01
10	5.21 (m)	5.20 (m)	-0.01
11	2.69 (m)	2.69 (m)	± 0
12	4.95 (d, 10.3)	4.96 (d, 10.3)	+0.01
14	2.18 (m)	2.17 (m)	-0.01
	2.11 (br. t, 9.4)	2.12 (m)	+0.01
15	1.95 (tt, 2.9, 13.4)	1.95 (tt, 3.2, 13.5)	± 0
	1.54 (m)	1.54 (m)	± 0
16	3.97 (dt, 11.1, 3.6)	3.97 (dt, 11.3, 3.6)	± 0
17	5.19 (m)	5.21 (m)	+0.02
18	2.16 (m)	2.18 (m)	+0.02
	1.75 (dd, 2.4, 13.8)	1.75 (dd, 2.5, 13.9)	± 0
20	1.50 (m)	1.51 (m)	+0.01
21	1.34 (m)	1.35 (m)	+0.01
22	0.92 (t, 7.4)	0.93 (t, 7.3)	+0.01
23	1.14 (d, 6.8)	1.15 (d, 6.9)	+0.01
24	0.92 (d, 6.8)	0.93 (d, 6.9)	+0.01
25	1.55 (s)	1.55 (s)	± 0
26	1.30 (s)	1.30 (s)	± 0

Table 2: Comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum of authentic 1 with that of the synthetic sample ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$). Numbering scheme as shown in the insert to Table 1.

Position	Natural 1	Synthetic $\mathbf{1}$	$\Delta \delta$
$\mathbf{1}$	165.7	165.8	+0.1
$\mathbf{2}$	120.2	120.4	+0.2
$\mathbf{3}$	153.2	153.2	± 0.0
$\mathbf{4}$	33.1	33.2	+0.1
$\mathbf{5}$	41.4	41.6	+0.2
$\mathbf{6}$	170.7	170.8	+0.1
$\mathbf{7}$	30.4	30.5	+0.1
$\mathbf{8}$	205.5	205.4	-0.1
$\mathbf{9}$	47.1	47.3	+0.2
$\mathbf{1 0}$	74.2	74.4	+0.2
$\mathbf{1 1}$	35.5	35.7	+0.2
$\mathbf{1 2}$	126.0	126.1	+0.1
$\mathbf{1 3}$	135.5	135.6	+0.1
$\mathbf{1 4}$	35.3	35.5	+0.2
$\mathbf{1 5}$	30.4	30.5	+0.1
$\mathbf{1 6}$	80.5	80.6	+0.1
$\mathbf{1 7}$	78.4	78.6	+0.2
$\mathbf{1 8}$	43.5	43.7	+0.2
$\mathbf{1 9}$	82.9	83.0	+0.1
$\mathbf{2 0}$	44.2	44.4	+0.2
$\mathbf{2 1}$	17.8	17.9	+0.1
$\mathbf{2 2}$	14.6	14.7	+0.1
$\mathbf{2 3}$	17.5	17.7	+0.2
$\mathbf{2 4}$	18.1	18.2	+0.1
$\mathbf{2 5}$	15.4	15.5	+0.1
$\mathbf{2 6}$	24.5	24.7	+0.2

$\begin{array}{llll}\text { sr23015 } & 10 \quad 1 & \text { /disk2/topspin } 1 \text { epage } \\ \text { LPO-LA- } 360-03\end{array}$

1pola360 $11 \quad 1$ /disk2/topspin lepage
LPO-LA-360-02

19-epi-Amphidinolide X

(2S,3R,5S)-2-(2-((tert-Butyl(diphenyl)silyl)oxy)ethyl)-5-methyl-5-propyltetrahydrofuran-

3-ol (epi-22). (TMS) ${ }_{3} \mathrm{SiH}(91 \mu \mathrm{~L}, 0,297 \mathrm{mmol})$ and AIBN (3.2 $\mathrm{mg}, 0.020 \mathrm{mmol}$) were added to a solution of bromoformate epi-20 ($105 \mathrm{mg}, 0.197 \mathrm{mmol}$) in toluene (10 mL) and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . The solution was allowed to reach ambient temperature before the solvent was evaporated. The residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. Aq. sat. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 2 h before it was diluted with water (2 mL). A standard extractive work up with tert-butyl methyl ether followed by flash chromatography (hexanes/ethyl acetate, $8 / 1$) of the crude product provided the title compound as a colorless oil $(73 \mathrm{mg}$, $87 \%) .[\alpha]_{\mathrm{D}}^{20}=-13.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .70-7.66(4 \mathrm{H}, \mathrm{m})$, 7.47-7.38 ($6 \mathrm{H}, \mathrm{m}$), $4.12(1 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}), 3.84-3.81(2 \mathrm{H}, \mathrm{m}), 3.73(1 \mathrm{H}, \mathrm{ddd}, J=4.4,7.5$, $8.4 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{bs}), 2.11(1 \mathrm{H}, \mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}), 1.92-1.73(3 \mathrm{H}, \mathrm{m}), 1.65-1.30(4 \mathrm{H}, \mathrm{m})$, $1.21(3 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 135.7, $132.9,130.1,128.0,83.5,81.6,76.2,62.4,45.1,44.9,37.1,28.2,26.9,19.2,17.9,14.8$. IR: 3435, 3071, 2959, 2932, 1589, 1472, 1428, 1112, 1086, , 738, $702 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 369 ([M-Bu] ${ }^{+}$, 10), 351 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right)$: 449.2488, found $449.2491(\mathrm{M}+\mathrm{Na})$.
tert-Butyl(2-((2S,3R,5S)-3-((4-methoxybenzyl)oxy)-5-methyl-5-propyltetrahydrofuran-2-
 yl)ethoxy)diphenylsilane (epi-23). p-Methoxybenzyl trichloroacetimidate ($232 \mathrm{mg}, 0.820 \mathrm{mmol}$) and PPTS (10 mg , 0.041 mmol) were added over 5 min to a solution of alcohol epi-22 ($70 \mathrm{mg}, 0.164 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane ($1 / 2,1.8$ mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 48 h before it was filtered through a pad of Celite. The filtrate was evaporated and the residue was purified by flash chromatography (hexanes/ethyl acetate, 40/1) to give the title compound as a colorless oil ($48 \mathrm{mg}, 54 \%$). $[\alpha]_{\mathrm{D}}^{20}=-17.9\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .70-7.67$ $(4 \mathrm{H}, \mathrm{m}), 7.43-7.34(6 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J$ $=11.4 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dt}, J=7.3,5.3 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.84-3.75$ $(3 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.91-1.76(3 \mathrm{H}, \mathrm{m}), 1.67-1.23(4 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.05$ $(9 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,135.8,134.2,130.7$, 129.6, 129.2, 127.7, 113.9, 84.0, 82.5, 79.5, 71.4, 61.2, 55.4, 43.6, 43.1, 38.1, 27.7, 22.8, 19.4, 18.0, 14.8. IR: 2958, 2932, 1613, 1428, 1111, 1084, 1037, $702 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 489 ([M- $\left.\left.{ }^{\mathrm{B}} \mathrm{Bu}\right]^{+}, 0.3\right), 351$ (5), 199 (4), 121 (100). HRMS (CI): calcd. for $\left(\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}\right): 547.3241$, found 547.3244

2-\{(2S,3R,5S)-3-((4-methoxybenzyl)oxy)-5-methyl-5-propyltetrahydrofuran-2-yl)ethanol (epi-24) A solution of TBAF in THF ($1 \mathrm{M}, 192 \mu \mathrm{~L}, 0.192 \mathrm{mmol}$) was added dropwise to a

PMBO solution of compound epi-23 ($35 \mathrm{mg}, 64.0 \mu \mathrm{~mol}$) in THF ($185 \mu \mathrm{~L}$). After stirring for 3 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(500 \mu \mathrm{~L})$ and diluted with tert-butyl methyl ether $(1.0 \mathrm{~mL})$. The aqueous layer was extracted with tert-butyl methyl ether and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. Flash chromatography (hexanes/ethyl acetate, $2 / 1$) of the residue provided alcohol epi-24 as a colorless oil ($19 \mathrm{mg}, 96 \%$). $[\alpha]_{\mathrm{D}}^{20}=$ $-43.5\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{ddd}, J=7.6,6.6$, $4.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=13.7,6.5), 3.81(3 \mathrm{H}, \mathrm{s}), 3.76-3.73(2 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{bs}), 1.99(1 \mathrm{H}$, dd, $J=12.6,7.4 \mathrm{~Hz}), 1.92-1.26(8 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,129.5,130.1,114.1,83.3,83.1,82.6,71.9,61.6,55.4,43.8,42.9,36.4$, $27.7,17.9,14.7$. IR: $3444,2959,2933,1613,1514,1249,1173,1084,1036,821 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): $308\left(\mathrm{M}^{+}, 7\right), 137(8), 121$ (100). HRMS (EI): calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}\right)$: 308.1988, found $308.1987\left(\mathrm{M}^{+}\right)$.
(2S,4R,5S)-5-(2-iodoethyl)-4-((4-methoxybenzyl)oxy)-2-methyl-2-propyltetrahydrofuran (epi-25). $\mathrm{PPh}_{3}(24 \mathrm{mg}, 92 \mu \mathrm{~mol})$ and imidazole ($8 \mathrm{mg}, 123 \mu \mathrm{~mol}$) were added to a solution of
 alcohol epi-24 (19 mg, $61 \mu \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(3 / 1,640 \mu \mathrm{~L})$. After stirring for 5 min , a solution of iodine ($24 \mathrm{mg}, 92 \mu \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(3 / 1,160 \mu \mathrm{~L})$ was added dropwise and the resulting mixture was stirred for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(500 \mu \mathrm{~L})$ and diluted with tert-butyl methyl ether $(750 \mu \mathrm{~L})$. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $25 / 1)$ to give epi-25 as a colorless oil (23 mg, 89\%). $[\alpha]_{\mathrm{D}}^{20}=-32.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.4$ $\mathrm{Hz}), 4.38(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{ddd}, J=8.0,5.9,4.1 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{dd}$, $J=12.8,5.9 \mathrm{~Hz}), 3.27-3.15(2 \mathrm{H}, \mathrm{m}), 2.19-1.86(3 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}), 1.67-$ $1.26(4 \mathrm{H}, \mathrm{m}), 1.17(3 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5$, $130.3,129.3,114.0,82.9,82.8,82.2,71.6,55.5,43.6,43.2,39.4,27.7,18.0,14.8,2.0$. IR: 2958, 2932, 2870, 1613, 1513, 1249, 1173, 1037, $821 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 418 $\left(\mathrm{M}^{+}, 8\right), 375$ (6), 233 (5), 137 (4), 121 (100). HRMS (ESI): calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{IO}_{3}+\mathrm{Na}\right)$: 441.0903, found $441.0903(\mathrm{M}+\mathrm{Na})$.

Compound 44. A solution of tert- BuLi in pentane ($1.7 \mathrm{M}, 177 \mu \mathrm{~L}, 0.301 \mathrm{mmol}$) was added to a mixture of $\mathrm{Et}_{2} \mathrm{O}(233 \mu \mathrm{~L})$ and THF $(233 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ before a solution of alkyl iodide epi$25(21 \mathrm{mg}, 50.2 \mu \mathrm{~mol})$ in THF (1.4 mL) was added dropwise (additional $233 \mu \mathrm{~L}$ of THF were used to rinse the flask). The mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before $9-\mathrm{MeO}-9-\mathrm{BBN}$ (51 $\mu \mathrm{L}, 0.301 \mathrm{mmol}$) was introduced causing an immediate color change from yellow to colorless.

The mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and for 1 h at ambient temperature. An aq. solution of $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 100 \mu \mathrm{~L}, 0.301 \mathrm{mmol})$ was added, followed by a solution of vinyl iodide $40(24 \mathrm{mg}, 50.2 \mu \mathrm{~mol})$ in DMF $(1.4 \mathrm{~mL})$ (additional $230 \mu \mathrm{~L}$ of DMF were used to rinse the flask). A solution of (dppf) $\mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ and $\mathrm{AsPh}_{3}(1.5 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ in DMF $(200 \mu \mathrm{~L})$ was then added and the mixture was stirred for 2 h at ambient temperature. The mixture was diluted with hexanes/EtOAc $\left(4 / 1+1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ before it was filtered through a pad of silica (hexanes/EtOAc, $4 / 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$ was used to rinse the pad). The combined filtrates were successively washed with sat. aq. NaHCO_{3}, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 15/1 $+1 \%$
 $\mathrm{Et}_{3} \mathrm{~N}$ to hexanes/EtOAc, $6 / 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound 44 as a colorless oil ($14 \mathrm{mg}, 43 \%$). $[\alpha]_{\mathrm{D}}^{20}=$ $-10.9(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.24(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=7.1,15.7$ $\mathrm{Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{dd}, J=1.3$, $15.7 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{ddd}, J=8.3,4.3,2.5 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dt}, J=7.6,5.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dt}, J=7.3,5.3 \mathrm{~Hz})$, 3.68-3.49 ($4 \mathrm{H}, \mathrm{m}$), $3.42(3 \mathrm{H}, \mathrm{s}), 3.34(3 \mathrm{H}, \mathrm{s}), 2.78-2.66(2 \mathrm{H}, \mathrm{m}), 2.37-2.29(1 \mathrm{H}, \mathrm{m}), 2.25-2.16$ $(2 \mathrm{H}, \mathrm{m}), 2.12-2.03(2 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{dd}, J=2.4,15.0 \mathrm{~Hz}), 1.87-1.71(4 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{d}, J$ $=1.1 \mathrm{~Hz}), 1.51-1.33(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 171.0,166.6,159.8$, $152.5,137.0,131.2,129.4,126.0,120.4,114.2,109.3,84.2,82.3,82.1,73.5,71.7,64.62$, $64.59,54.9,51.0,43.8,40.9,40.8,37.4,36.5,34.1,33.2,27.8,24.6,19.0,18.2,16.9,16.6$, 15.0 (one overlapping signal).

Compound 45a. Dry LiI was added to a solution of ester $44(13 \mathrm{mg}, 20 \mu \mathrm{~mol})$ in pyridine
 $(780 \mu \mathrm{~L})$ and the resulting mixture was stirred for 30 h at $125^{\circ} \mathrm{C}$. The mixture was then cooled to $0^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{~mL})$ and washed with $\mathrm{HCl}(2 \mathrm{M}, 4 \mathrm{~mL})$. The aqueous phase was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was rapidly passed through silica (hexanes/EtOAc, $1 / 1+1 \%$ HOAc) and the crude acid 45 thus formed was used in the next step without further purification.
$\mathrm{H}_{2} \mathrm{O}(400 \mu \mathrm{~L})$ was added to a solution of crude acid 45 in $\mathrm{HOAc}(400 \mu \mathrm{~L})$ and the resulting mixture was stirred for 15 min at $65^{\circ} \mathrm{C}$. After cooling to ambient temperature, the mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous phase was repeatedly extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $4 / 1+1 \% \mathrm{HOAc}$) to afford carboxylic acid 45a as a colorless oil ($6.5 \mathrm{mg}, 57 \%$ over 2 steps $) .[\alpha]_{\mathrm{D}}^{20}=-15.7$ ($\mathrm{c}=1.0$,
$\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=15.7,7.0$ $\mathrm{Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 5.25-5.20(1 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}, J=$ $9.5 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.92-3.76(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s})$, $2.85-2.79(1 \mathrm{H}, \mathrm{m}), 2.70-2.59(1 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{dd}, J=16.4,7.5 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{dd}, J=16.7$, $5.6 \mathrm{~Hz}), 2.47-2.34(2 \mathrm{H}, \mathrm{m}), 2.16-1.86(4 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.72-1.51(4 \mathrm{H}, \mathrm{m}), 1.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=0.9 \mathrm{~Hz}), 1.42-1.24(2 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.94-0.91(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.0,171.2,169.8,159.4,153.7,137.3,130.4,129.4,124.8$, $120.2,114.0,83.1,82.8,82.1,73.9,71.7,55.4,47.0,43.4,43.2,41.1,36.0,35.6,33.3,32.9$, $30.5,27.3,19.0,17.9,17.4,16.4,14.8$.

19-epi-Amphidinolide \mathbf{X} (47). An aqueous phosphate buffer solution ($\mathrm{pH} 7,330 \mu \mathrm{~L}$) was added to a solution of acid 45a ($5 \mathrm{mg}, 8.5 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(330 \mu \mathrm{~L})$. DDQ ($8 \mathrm{mg}, 34 \mu \mathrm{~mol}$) was introduced at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 15 h at ambient temperature. $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was dissolved in hexanes/ethyl acetate, $4 / 1+1 \%$ acetic acid and filtered through a pad of silica (hexanes/ethyl acetate, $4 / 1+$ 1% acetic acid was used to rinse the pad) to give crude seco-acid 46 as pale yellow oil which was used without any further purification in the final macrolactonisation.
$\mathrm{Et}_{3} \mathrm{~N}(4.5 \mu \mathrm{~L}, 32 \mu \mathrm{~mol})$ and 2,4,6-trichlorobenzoyl chloride ($2.0 \mu \mathrm{~L}, 13 \mu \mathrm{~mol}$) were added to a solution of crude seco-acid 46 in THF $(860 \mu \mathrm{~L})$. The mixture was stirred for 1 h at room temperature before most of the THF was removed under a flow of Ar. The residue was diluted with toluene (2.2 mL) and the resulting solution was added via syringe pump over 2 h to a solution of DMAP ($16 \mathrm{mg}, 130 \mu \mathrm{~mol}$) in toluene $(8.6 \mathrm{~mL})$ at ambient temperature. Once the addition was complete, the mixture was stirred for an additional 2 h . For work up, the solvent was evaporated and the remaining syrup was purified by flash chromatography (hexanes/EtOAc, 10:1) to afford 19-amphidinolide X 47 as a colorless oil ($1.5 \mathrm{mg}, 39 \%$ over 2 steps). $[\alpha]_{\mathrm{D}}^{17}=-17^{\circ}\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 150 MHz) see Table 3.

Table 3: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ of 19-epi-amphidinolide X (47).

19-epi-Amphidinolide X (47)

position	${ }^{1} \mathrm{H}$ NMR δ (multiplicity, J in Hz)	${ }^{13} \mathrm{C}$ NMR (8)
1		165.7
2	5.79 (dd, 1.3, 15.8)	120.4
3	7.11 (dd, 7.5, 15.8)	153.2
4	2.77 (m)	33.2
5	$2.58 \text { (dd, 3.5, 13.1) }$	41.7
	2.41 (dd, 6.5, 13.4)	
7	2.15 (s)	170.8
9	2.69 (dd, 16.2, 5.8)	30.4
	2.58 (dd, 16.5, 7.1)	
10	5.21 (m)	205.3
11	2.69 (m)	47.2
12	4.96 (d, 10.2)	74.4
14	2.19 (m)	35.7
	2.11 (m)	
15	1.97 (tt, 3.2, 13.3)	126.0
	1.55 (m)	
16	3.93 (dt, 10.5, 4.2)	135.6
17	5.21 (m)	35.4
18	2.11 (m)	30.9
	1.90 (dd, 3.4, 13.7)	
20	1.61 (m)	80.7
21	1.32 (m)	78.8
22	0.92 (t, 7.3)	41.9
23	1.15 (d, 6.9)	82.9
24	0.92 (d, 6.8)	44.2
25	1.55 (s)	18.0
26	1.25 (s)	14.9

喜

kat-ka-117-01

Amphidinolide Y: Preparation of the Building Blocks

Methyl (2S)-3-((4-methoxybenzyl)oxy)-2-methylpropanoate (49). p-Methoxybenzyl

 trichloroacetimidate ($23.4 \mathrm{~g}, 83 \mathrm{mmol}$) and PPTS ($1.5 \mathrm{~g}, 5.9 \mathrm{mmol}$) were added to a solution of (2S)-methyl 3-hydroxy-2-methylpropionate $48(7.0 \mathrm{~g}, 59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$. After stirring for 17 h at ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The organic layer was successively washed with aq. sat. NaHCO_{3}, water, and brine, before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated and the residue purified by flash chromatography (hexanes/ethyl acetate, 25/1) to provide product 49 as a colorless oil ($11.8 \mathrm{~g}, 84 \%$). $[\alpha]_{\mathrm{D}}^{20}=+8.7\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=9.2,7.2 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.0 \mathrm{~Hz}), 2.77(1 \mathrm{H}$, h, $J=7.1 \mathrm{~Hz}$), $1.17(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,159.4,130.5$, $129.3,113.9,72.9,71.8,55.4,51.8,40.4,14.2$. IR: $1739,1612,1586,1514,1248,1091 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 238 (M^{+}, 12), 137 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}\right): 261.1097$, found $261.1097(\mathrm{M}+\mathrm{Na})$.
(2S)-3-((4-Methoxybenzyl)oxy)-2-methylpropanal (50). A solution of DIBAL-H in
 solution of ester $49(14.3 \mathrm{~g}, 60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(430 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 2 h at that temperature, the reaction was quenched by pouring the cold solution into an aq. potassium-sodium tartrate solution ($1 \mathrm{M}, 500 \mathrm{~mL}$). The resulting mixture was stirred vigorously at ambient temperature until phase separation occurred. The aqueous phase was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 60/1) to provide aldehyde 50 ($9.8 \mathrm{~g}, 78 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=+14.8\left(\mathrm{c}=1.85, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(1 \mathrm{H}, \mathrm{d}, J=$ $1.6 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3,58(2 \mathrm{H}, \mathrm{dd}, J=9.4$, $6.7 \mathrm{~Hz}), 3.53(2 \mathrm{H}, J=\mathrm{dd}, 9.4,5.3 \mathrm{~Hz}), 2.61-2.53(1 \mathrm{H}, \mathrm{m}), 1.05(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,159.5,130.1,129.4,114.0,73.1,70.0,55.4,46.9,10.9$. IR: 2724, $1724,1612,1586,1514,1248,1095 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 208 ($\mathrm{M}^{+}, 11$), 137 (76), 121 (100). HRMS ($\mathrm{EI}(\mathrm{DE})$): calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: 208.1099, found 208.1100 (M).

1-((((2R)-4,4-Dibromo-2-methylbut-3-enyl)oxy)methyl)-4-methoxybenzene. $\mathrm{PPh}_{3}(33 \mathrm{~g}$,

$125 \mathrm{mmol})$ was added in portions to a stirred solution of $\mathrm{CBr}_{4}(21 \mathrm{~g}, 63$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 1 h at $0^{\circ} \mathrm{C}$, the brown suspension was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $50(8.7 \mathrm{~g}, 42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added dropwise over 30 min . After stirring had been continued for an additional hour at $-78^{\circ} \mathrm{C}$, the reaction was quenched
by pouring the cold solution into vigorously stirred hexanes (700 mL). The precipitates were filtered off, the filtrate was evaporated and the residue purified by flash chromatography (hexanes/ethyl acetate, 60/1) to give the title compound as a colorless oil ($13.6 \mathrm{~g}, 90 \%$). $[\alpha]_{\mathrm{D}}^{20}$ $=-7.3\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 4.48-4.41(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.39-3.31(2 \mathrm{H}, \mathrm{m})$, 2.82-2.72 ($1 \mathrm{H}, \mathrm{m}$), $1.05(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,141.4$, $130.5,129.3,114.0,88.9,72.9,72.8,55.4,38.9,16.0$. IR: 1612, $1586,1514,1248,1095 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 366, 364, and $362\left(\mathrm{M}^{+}, 2,4,2\right), 136$ (16), 121 (100). HRMS ($\mathrm{EI}(\mathrm{DE})$): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$: 361.9517, found $361.9522(\mathrm{M})$.
1-Methoxy-4-((((2R)-2-methylpent-3-ynyl)oxy)methyl)benzene (52). ${ }^{5}$ A solution of n-BuLi
 in hexanes ($1.65 \mathrm{M}, 46 \mathrm{~mL}$) was added dropwise over 15 min to a solution of 1-((((2R)-4,4-dibromo-2-methylbut-3-enyl)oxy)methyl)-4methoxybenzene $(13.2 \mathrm{~g}, 36 \mathrm{mmol})$ in THF $(300 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The temperature was then allowed to raise to $-20^{\circ} \mathrm{C}$ and stirring was continued for 1 h at this temperature. The reaction was again cooled to $-78^{\circ} \mathrm{C}$ before MeI ($6.8 \mathrm{~mL}, 109 \mathrm{mmol}$) was added dropwise over 5 min . The mixture was allowed to reach ambient temperature and was stirred for 15 h before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 60/1) to provide product 52 as a colorless oil (7.2 g , $91 \%) .[\alpha]_{\mathrm{D}}^{20}=+2.2\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 3.81(3 \mathrm{H}$, s), $3.46(1 \mathrm{H}, \mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{dd}, J=9.1,7.5 \mathrm{~Hz}), 2.72-2.62(1 \mathrm{H}, \mathrm{m}), 1.77(3 \mathrm{H}$, d, $J=2.4 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,130.7,129.4$, 113.9, 81.4, 76.6, 74.3, 72.8, 55.4, 26.9, 18.3, 3.7. IR: 1612, 1586, 1513, 1248, $1092 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): $218\left(\mathrm{M}^{+}, 2\right), 203$ (9), 176 (19), 135 (10), 121 (100). HRMS (EI(DE)): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}: 218.1307$, found 218.1310 (M).
((1E,3R)-4-((4-Methoxybenzyl)oxy)-1,3-dimethylbut-1-enyl)(dimethyl)phenyl-silane (55). A solution of freshly prepared $\mathrm{LiSiMe}_{2} \mathrm{Ph}$ in THF $(0.36 \mathrm{M}, 157$
 $\mathrm{mL}, 56 \mathrm{mmol})^{6}$ was added to $\mathrm{CuCN}(2.5 \mathrm{~g}, 28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at this temperature, the dark red solution was cooled to $-78^{\circ} \mathrm{C}$ before a solution of alkyne $52(4.1 \mathrm{~g}, 19 \mathrm{mmol})$ in THF (20 mL) was added dropwise over 5 min . The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ before it was allowed to reach $0^{\circ} \mathrm{C}$ and stirred for another 15 min at this temperature. After quenching with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$, the organic layer was successively washed with water and brine,

[^5]dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated and the residue purified by flash chromatography (hexanes/ethyl acetate, 25/1) to provide vinylsilane 55 as a colorless oil (6.1 $\mathrm{g}, 92 \%) .[\alpha]_{\mathrm{D}}^{20}=-12.8\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .50-7.48(2 \mathrm{H}, \mathrm{m})$, $7.35-7.31(3 \mathrm{H}, \mathrm{m}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=8,8$, $1,7 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=9.1,6.4 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=9.1,7.2$ $\mathrm{Hz}), 2.99-2.88(1 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.32(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,144.2,138.9,134.5,134.1,131.0,129.2,128.9,127.8$, 113.9, 74.9, 72.7, 55.4, 33.4, 17.5, 15.1, -3.2, -3.2. IR: 2957, 1427, 1247, $1110 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): $354\left(\mathrm{M}^{+}, 1\right), 202$ (12), 161 (6), 135 (22), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}\right)$: 377.1907 , found $377.1909(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$: C 74.53, H 8.53, found C 74.42, H 8.50.
(2R,3E)-4-(Dimethyl(phenyl)silyl)-2-methylpent-3-en-1-ol (56). DDQ (4.6 g, 20 mmol)

was added in portions to a solution of vinylsilane $55(6.0 \mathrm{~g}, 16.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ buffer $(10 / 1,140 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then allowed to reach ambient temperature and stirring was continued for 1 h . After the reaction had been quenched with aq. sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, the aqueous phase was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give an inseparable mixture of crude alcohol 56 and p-methoxybenzaldehyde. A solution of this residue in $\mathrm{MeOH}(125 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was reacted with $\mathrm{NaBH}_{4}(0.70,18.5 \mathrm{mmol})$ to reduce the aldehyde by-product. After the mixture had been stirred for 1 h at ambient temperature, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (50 $\mathrm{mL})$. MeOH was removed under reduced pressure and the residue diluted with water and tertbutyl methyl ether. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 10/1) to provide pure alcohol 56 as a colorless oil $(3.6 \mathrm{~g}, 92 \%) .[\alpha]_{\mathrm{D}}^{20}=+20.9\left(\mathrm{c}=1.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.50-7.48(2 \mathrm{H}, \mathrm{m}), 7.36-7.33(3 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{dq}, J=9.1,1.7 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=10.4$, $6.1 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=10.47 .8 \mathrm{~Hz}), 2.91-2.80(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.38(1 \mathrm{H}$, bs), $0.97(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.34(6 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4$, 138.5, 137.0, 134.0, 129.0, 127.9, 67.7, 35.8, 16.7, 15.4, -3.3. IR: 3341, 3068, 1618, 1428, $1248 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 219 ([M-Me] ${ }^{+}, 27$), 203 (6), 177 (26), 157 (20), 135 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSiNa}\right)$: 257.1332, found $257.1334(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}$ C 71.73, H 9.46, found C 71.87, H 9.54.
(2R,3E)-4-(Dimethyl(phenyl)silyl)-2-methylpent-3-enal (57). Dess-Martin periodinane (3.3
 g, 7.7 mmol$)^{7}$ was added to a solution of alcohol $56(1.2 \mathrm{~g}, 5.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 4 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 / 1,45$

[^6]mL), and stirring was continued for 10 min at $0^{\circ} \mathrm{C}$. The organic layer was successively washed with aq. sat. NaHCO_{3}, water, and brine, before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated to a volume of ca. 10 mL before it was rapidly filtered through a short pad of silica. Concentration of the filtrate provided the sensitive aldehyde 57 as a colorless oil ($1.1 \mathrm{~g}, 92 \%$). $[\alpha]_{\mathrm{D}}^{20}=-140.8\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $9.25(1 \mathrm{H}, \mathrm{d} J=1.6 \mathrm{~Hz}), 7.48-7.45(2 \mathrm{H}, \mathrm{m}), 7.24-7.19(3 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{dq}, J=8.5,1,7 \mathrm{~Hz})$, $3.13-3.05(1 \mathrm{H}, \mathrm{m}), 1.55(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.27(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 199.1,140.4,137.9,136.8,134.3,129.5,128.2,46.9,15.7,13.7,-3.5$, 3.5. IR: 2808, 2710, 1723, 1610, 1428, $1249 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): $232\left(\mathrm{M}^{+}, 2\right.$), 217 (16), 177 (5), 155 (15), 135 (100). HRMS (EI(FE)): calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}\right):$ 232.1283, found 232.1279 (M). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}$: $\mathrm{C} 72.36, \mathrm{H} 8.67$, found C 72.30, H 8.62.

Methyl (2R)-3-((tert-butyl(diphenyl)silyl)oxy)-2-methylpropanoate (58). TBDPSCl (23.8

$\mathrm{g}, 87 \mathrm{mmol}$) was added to a solution of ($2 R$)-methyl 3-hydroxy-2methylpropionate ent-48 ($8.5 \mathrm{~g}, 72 \mathrm{mmol}$), imidazole ($7.4 \mathrm{~g}, 108$ $\mathrm{mmol})$, and DMAP ($0.4 \mathrm{~g}, 3.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{~mL})$. After stirring for 16 h at ambient temperature, the reaction mixture was quenched with water, and the organic layer was successively washed with water and brine before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 60/1) to provide ester 58 as a colorless oil (23.1 g , 90%). $[\alpha]_{\mathrm{D}}^{20}=-17.8\left(\mathrm{c}=1.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.64(4 \mathrm{H}, \mathrm{m})$, $7.45-7.36(6 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=9.8,5.8 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s})$, $2.72(1 \mathrm{H}, \mathrm{h}, J=7.0 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 175.5,135.7,133.7,129.8,127.8,66.1,51.7,42.6,26.9,19.4,13.6$. IR: 3071, 2932, 1742, 1472, 1428, 1199, $1112 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 325 ([M-OMe] ${ }^{+}, 4$), 299 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right): 379.1700$, found $379.1698(\mathrm{M}+\mathrm{Na})$.
(2R)-3-((tert-Butyl(diphenyl)silyl)oxy)-2-methylpropanal (59). A solution of DIBAL-H in
 hexanes ($1 \mathrm{~m}, 69 \mathrm{~mL}, 69 \mathrm{mmol}$) was added dropwise over 15 min to a solution of ester $58(21.8 \mathrm{~g}, 61 \mathrm{mmol})$ in hexanes $(430 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 2 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by pouring the cold solution into an aq. potassium-sodium tartrate solution ($1 \mathrm{M}, 550 \mathrm{ml}$). The resulting mixture was vigorously stirred at ambient temperature until phase separation occurred. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, $60 / 1$) to provide aldehyde 59 as a colorless oil (15.7 g, $79 \%) .[\alpha]_{\mathrm{D}}^{20}=-21.5\left(\mathrm{c}=1.44, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .9 .77(1 \mathrm{H}, \mathrm{d}, J=1.6$ $\mathrm{Hz}), 7.66-7.64(4 \mathrm{H}, \mathrm{m}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=10.35 .1 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=$ $10.3,6.3 \mathrm{~Hz}), 2.61-2.53(1 \mathrm{H}, \mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.05(9 \mathrm{H}, \mathrm{s}).) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.5,135.7,133.4,130.0,127.9,64.3,49.0,26.9,19.4,10.5$. IR: 3071, 2932, 2714, 1737, 1472, 1428, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 269 (83), 239 (82), 199
(25), 191 (70), 183 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right)$: 349.1594, found 349.1593 (M+Na).

Methyl (2E,4S)-2-(acetyloxy)-5-((tert-butyl(diphenyl)silyl)oxy)-4-methylpent-2-enoate

(61). LiHMDS ($6.8 \mathrm{~g}, 40 \mathrm{mmol}$) was added to a solution of methyl 2-(acetyloxy)-2-(dimethoxyphosphoryl)acetate $\mathbf{6 0}$ (9.7 g, 40 $\mathrm{mmol})^{8}$ in THF $(145 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at that temperature, a solution of aldehyde $59(11.0 \mathrm{~g}, 34 \mathrm{mmol})$ in THF (25 mL) was added dropwise over 10 min . Stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$ before the mixture was allowed to reach ambient temperature and stirred for additional 2 h . The reaction was then quenched with water and the aqueous phase was repeatedly extracted with tert-butyl methyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the residue was purified by flash chromatography to give methyl enoate $\mathbf{6 1}$ as a colorless oil (13.5 g, $91 \%, E / Z=6 / 1) .[\alpha]_{D}^{20}=+22.0\left(\mathrm{c}=1.46, \mathrm{CHCl}_{3}\right) . E$-isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.66-7.63 (4H, m), 7.44-7-35 ($6 \mathrm{H}, \mathrm{m}$), $5.85(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.63-3.48(3 \mathrm{H}$, m), $2.19(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.04(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.7, $162.5,137.3,136.8,135.7,133.7,129.8,127.8,68.0,52.2,34.3,27.0,20.6,19.4,17.1$. IR: 3071, 2932, 1762, 1733, 1662, 1472, 1428, 1229, $1112 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 409 ([M-OMe] ${ }^{+}, 3$), 383 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}\right)$: 463.1911, found $463.1907(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$: C 68.15, H 7.32, found C 67.96, H 7.28.

Z-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, characteristic signals only): $\delta 6.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0$ Hz), $3.77(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,162.5$, $137.3,136.8,135.8,134.3,129.8,127.8,67.3,52.5,34.3,27.0,20.5,19.4,17.1$.

Methyl (4S)-5-((tert-butyl(diphenyl)silyl)oxy)-4-methyl-2-oxopentanoate (62). NaOMe

$(1.5 \mathrm{~g}, 28 \mathrm{mmol})$ was added to a solution of compound $\mathbf{6 1}$ (10.2 $\mathrm{g}, 23 \mathrm{mmol})$ in $\mathrm{MeOH}(230 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. After the mixture had been stirred for 6 h at this temperature, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and the resulting mixture was allowed to reach ambient temperature. MeOH was removed under reduced pressure and the aqueous phase was repeatedly extracted with tert-butyl methyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acatate, 30/1) to provide ketoester $\mathbf{6 2}$ as a colorless oil ($7.9 \mathrm{~g}, 86 \%$). $[\alpha]_{\mathrm{D}}^{20}=-10.1\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63$ $(4 \mathrm{H}, \mathrm{m}), 7.45-7.36(6 \mathrm{H}, \mathrm{m}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=10.0,5.1 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=$ $10.0,7.0 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=17.1,5.8 \mathrm{~Hz}), 2.67$, $(1 \mathrm{H}, \mathrm{dd}, J=17.1,7.6 \mathrm{~Hz}), 2.42-2.30(1 \mathrm{H}$, m), $1.05(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.9, 161.7, 135.7,

[^7]133.7, 129.8, 127.8, 68.3, 53.0, 43.4, 32.1, 27.0, 19.4, 16.8. IR: 3071, 2932, 1754, 1731, 1472, 1428, 1263, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 341 (53), 313 (20), 281 (6), 235 (15), 213 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 421.1806, found $421.1803(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$: C 69.24, H 7.51, found C 69.26, H 7.46.

Methyl (2S,4S)-5-((tert-butyl(diphenyl)silyl)oxy)-2-hydroxy-4-methylpentanoate (63).

Ketoester $62(7.5 \mathrm{~g}, 18.8 \mathrm{mmol})$ was solubilized under Ar in an autoclave (200 mL) in degassed $\mathrm{MeOH}(94 \mathrm{~mL})$. $\left[\mathrm{Et}_{2} \mathrm{NH}_{2}\right]\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}((S) \text {-binap })_{2}\right](400 \mathrm{mg}, 0.24 \mathrm{mmol})^{9}$ and a stock solution of HCl in $\mathrm{MeOH}(14 \mathrm{mM}, 1.3 \mathrm{~mL}, 18 \mu \mathrm{~mol})$ were added. The autoclave was purged four times with hydrogen before the mixture was hydrogenated for 2.5 h under 20 bar hydrogen pressure at ambient temperature. The reaction mixture was filtered through a pad of Celite (rinsed with hexanes/ethyl acetate, $4 / 1$), the combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/ethyl acetate, 10/1) to provide hydroxyester 63 as a colorless oil ($\mathrm{dr} \geq 23 / 1,6.9 \mathrm{~g}, 92 \%$). $[\alpha]_{\mathrm{D}}^{20}=-6.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .7 .69-7.67(4 \mathrm{H}, \mathrm{m}), 7.46-7.37(6 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=9.2,1.3$ $\mathrm{Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.54-3.52(2 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{s}), 2.07-1.96(1 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{ddd}, J=14.0$, $10.0,4.7 \mathrm{~Hz}), 1.64(1 \mathrm{H}, \mathrm{ddd}, J=13.9,8.9,3.3 \mathrm{~Hz}), 1.07(9 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1$ 135.7, 133.7, 129.7, 127.8 69.3, 69.2, 52.6 38.8, 32.8 27.0, 19.4, 16.4. IR: 3496, 3071, 2931, 1738, 1472, 1428, 1218, 1112, $1086 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 311 (1), 283 (7), 265 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 423.1962, found $423.1958(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C} 68.96$, H 8.05 , found C 68.91, H 7.94; minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, characteristic signal): $\delta 3.79$ (3H, s).

Analysis of the Mosher esters derived from compound 63: $\Delta \delta^{\text {SR }}$ values in ppm from ${ }^{1} \mathrm{H}$ (and ${ }^{13} \mathrm{C}$) NMR spectra of the MTPA esters.

Methyl (2S,4S)-5-((tert-butyl(diphenyl)silyl)oxy)-2-((4-methoxybenzyl)oxy)-4-methyl-
 pentanoate (64). $\mathrm{BF}_{3} \mathrm{OEt}_{2}(6.9 \mu \mathrm{~L}, 55 \mu \mathrm{~mol})$ was added dropwise to a solution of hydroxyester $\mathbf{6 3}(8.8 \mathrm{~g}, 21.8 \mathrm{mmol})$ and p-methoxybenzyl trichloroacetimidate $(8.6 \mathrm{~g}, 32.8 \mathrm{mmol})$ in

[^8]$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{H}_{12}(1 / 2,70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, causing the immediate formation of a white precipitate. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was filtered through a pad of Celite, the filtrate was evaporated and the residue purified by flash chromatography (hexanes/ethyl acetate, $30 / 1$) to give product 64 as a colorless oil ($9.6 \mathrm{~g}, 84 \%$). $[\alpha]_{\mathrm{D}}^{20}=-33.6(\mathrm{c}=1.04$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.63(4 \mathrm{H}, \mathrm{m}), 7.44-7.34(6 \mathrm{H}, \mathrm{m}), 7.24(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}), 3.99$ ($1 \mathrm{H}, \mathrm{dd}, J=9.7,3.7 \mathrm{~Hz}$), $3.80(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=9.9,5.4 \mathrm{~Hz}), 3.45(1 \mathrm{H}$, dd, $J=9.9,5.9 \mathrm{~Hz}), 1.97-1.87(2 \mathrm{H}, \mathrm{m}), 1.55-1.48(1 \mathrm{H}, \mathrm{m}), 1.04(9 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz})$.). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ. 174.0, 159.5, 135.8, 134.0, 129.9, 129.7, 129.7, 127.7, $113.9,76.1,72.0,69.1,55.4,52.0,36.7,32.3,27.0,19.5,16.2$. IR: 3071, 2932, 1751, 1737, 1613, 1514, 1471, 1428, 1249, 1201, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 463 ($\left[\mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}$, 0.4), 213 (2), 199 (4), 183 (2), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}\right)$: 543.2537, found $543.2537(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}$: C 71.50, H 7.74, found C 71.44, H 7.65; minor diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, characteristic signal) $\delta 0.97$ $(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$.
(2S,4S)-5-((tert-butyl(diphenyl)silyl)oxy)-N-methoxy-2-((4-methoxybenzyl)oxy)-N,4-
 dimethylpentanamide (65). $\mathrm{LiOH}(0.94 \mathrm{~g}, 40.6 \mathrm{mmol})$ was added to a solution of ester $64(8.1 \mathrm{~g}, 15.6 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF} /$ water $(4 / 1 / 1,155 \mathrm{~mL})$. After the mixture had been stirred for 24 h at ambient temperature, the reaction was quenched with aq. $\mathrm{HCl}(2 \mathrm{~m}, 35$ mL) and the aqueous layer was repeatedly extracted with tert-butyl methyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the resulting crude acid was used in the next step without further purification.

The crude acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and the resulting mixture was cooled to $0^{\circ} \mathrm{C}$ before $\operatorname{EtN}(i \operatorname{Pr})_{2}(3.3 \mathrm{~mL}, 18.7 \mathrm{mmol}), \mathrm{N}, \mathrm{O}$-dimethylhydroxylamin-hydrochloride (1.8 g , 18.7 mmol), DCC ($3.4 \mathrm{~g}, 16.4 \mathrm{mmol}$), and DMAP ($95 \mathrm{mg}, 0.78 \mathrm{mmol}$) were added successively. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and for another 14 h at ambient temperature. The precipitates formed were filtered off before the reaction was quenched with water. The aqueous phase was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 4/1) to give amide 65 as a colorless oil (7.4 g, 86% over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=-37.9\left(\mathrm{c}=1.09, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-$ $7.64(4 \mathrm{H}, \mathrm{m}), 7.44-7.35(6 \mathrm{H}, \mathrm{m}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.62(1 \mathrm{H}$, d, $J=11.5 \mathrm{~Hz}), 4.32-4.29(1 \mathrm{H}, \mathrm{m}), 4.27(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.59-3.55(1 \mathrm{H}, \mathrm{m})$, $3.57(3 \mathrm{H}, \mathrm{s}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.2 \mathrm{~Hz}), 3.20(3 \mathrm{H}, \mathrm{s}), 2.03-1.95(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{ddd}, J$ $=13.9,10.0,4.0 \mathrm{~Hz}), 1.45,(1 \mathrm{H}, \mathrm{ddd}, J=13.9,9.8,3.0 \mathrm{~Hz}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .174 .1,159.4,135.7,134.0,130.1,129.8,129.6,127.7$, $113.8,73.4,71.1,69.3,61.3,55.4,35.9,32.6,32.4,27.0,19.4,16.1$. IR: 3070, 2932, 1677, $1612,1513,1389,1428,1112,999 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 492 ([M- $\left.{ }^{\mathrm{B}} \mathrm{Bu}\right]^{+}, 2$), 413
(5), 275 (14), 199 (9), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}\right)$: 572.2803, found $572.2800(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{Si}$: C $69.91, \mathrm{H} 7.88$, N 2.55 , found C 69.79, H 7.69, N 2.45.
(3S,5S)-6-((tert-butyl(diphenyl)silyl)oxy)-3-((4-methoxybenzyl)oxy)-5-methyl-hexan-2one (66). A solution of MeMgBr^{2} in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{M}, 11.8 \mathrm{~mL}, 35.4 \mathrm{mmol})$ was added dropwise
 over 10 min to a solution of amide $65(6.5 \mathrm{~g}, 11.8 \mathrm{mmol})$ in THF $(45 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 1 h at $0^{\circ} \mathrm{C}$, the reaction was carefully quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the aqueous phase was repeatedly extracted with tert-butyl methyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the residue purified by flash chromatography to provide methylketone $\mathbf{6 6}$ as a colorless oil $(5.4 \mathrm{~g}, 91 \%) .[\alpha]_{\mathrm{D}}^{20}=$ $-36.2\left(\mathrm{c}=1.42, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(4 \mathrm{H}, \mathrm{m}), 7.44-7.34(6 \mathrm{H}$, m), $7.22(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.49,(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{d}$, $J=11.3 \mathrm{~Hz}), 3.81-3.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=$ $9.9,5.9 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 1.99-1.88(1 \mathrm{H}, \mathrm{m}), 1.81(1 \mathrm{H}, \mathrm{ddd}, J=13.9,10.0,4.2 \mathrm{~Hz}), 1.33(1 \mathrm{H}$, ddd, $J=13.9,9.5,3.7 \mathrm{~Hz}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{d} J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.2,159.5,135.8,134.0,129.9,129.8,129.7,127.7,114.0,83.2,72.3,69.1,55.4$, 35.8, 32.3, 27.0, 25.2, 19.5, 16.3. IR: 3071, 2932, 1714, 1612, 1514, 1471, 1428, 1249, 1112 $\mathrm{cm}^{-1} . \mathrm{MS}$ (EI) m / z (rel. intensity): 447 ([M- $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 0.1$), 199 (6), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right)$: 527.2588, found $527.2587(\mathrm{M}+\mathrm{Na})$.). Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$: C 73.77, H 7.99, found C 73.62, H 7.86.

ppm

kat-kb-231-01

䦲

kat-kb-257-01

Amphidinolide Y: Elaboration of the Western Domain

Aldol products 68 and 69. A solution of ketone $66(2.22 \mathrm{~g}, 4.40 \mathrm{mmol})$ in toluene (6.5 mL)
 was added dropwise to a solution of $\mathrm{Et}_{2} \mathrm{BOTf}(0.93 \mathrm{~g}, 4.26$ $\mathrm{mmol})$ and $\operatorname{EtN}(\mathrm{iPr})_{2}(0.75 \mathrm{~mL}, 4.33 \mathrm{mmol})$ in toluene (13 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 90 min at that temperature (formation of white precipitates) before it was cooled to $-90^{\circ} \mathrm{C}$. A solution of aldehyde $57(0.85 \mathrm{~g}$, 3.67 mmol) in toluene (6.5 mL) was then added dropwise over 30 min , and stirring was continued for 90 min once the addition was complete. The reaction was quenched with $\mathrm{MeOH} / \mathrm{pH} 7$ buffer ($1 / 1,10 \mathrm{~mL}$), the mixture was allowed to reach $0^{\circ} \mathrm{C}$ and treated dropwise with $\mathrm{MeOH} / 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2 / 1,6.5 \mathrm{~mL})$. Stirring was continued for 30 min at $0^{\circ} \mathrm{C}$ before the mixture was partitioned between water (15 mL) and tert-butyl methyl ether (10 mL). The aqueous phase was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetates, $15 / 1$ to $10 / 1$) to give an inseparable mixture of the aldol products 68 and 69 as a colorless oil ($2.27 \mathrm{~g}, 84 \%$, d.r. $=4: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta .7 .65-7.63(4 \mathrm{H}, \mathrm{m}), 7.48-7.28(11 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{dd}, J=9.3,1.7 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz})$, 3.97-3.93 ($1 \mathrm{H}, \mathrm{m}$), 3.83-3.77 ($1 \mathrm{H}, \mathrm{m}$), $3.79(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=9.9,5.7 \mathrm{~Hz}), 3.45(1 \mathrm{H}$, dd, $J=9.9,6.1 \mathrm{~Hz}), 2.75-2.51(3 \mathrm{H}, \mathrm{m}), 1.96-1.88(1 \mathrm{H}, \mathrm{m}), 1.80-1.73(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J$ $=1.6 \mathrm{~Hz}), 1.56(1 \mathrm{H}, \mathrm{bs}), 1.36-1.29(1 \mathrm{H}, \mathrm{m}), 1.04(9 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.86(3 \mathrm{H}$, d, $J=6.7 \mathrm{~Hz}), 0.33(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.0,159.6,142.3,138.6,136.5$, 135.8, 134.0, 134.0, 129.8, 129.7, 129.6, 129.0, 127.9, 127.7, 114.0, 83.0, 72.3, 71.2, 69.0, $55.4,41.6,38.2,35.8,32.4,27.0,19.5,16.7,16.3,15.4,-3.2$ IR: 3519, 3069, 2931, 1711, $1613,1514,1471,1428,1249,1111 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z: 775\left([\mathrm{M}+\mathrm{K}]^{+}\right), 759\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}+\mathrm{Na}\right)$: 759.3871 , found $759.3872(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}$: C 73.32, H 8.20, found C 73.18, H 8.16; characteristic signals of the minor diastereoisomer 69: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.61-5.57(1 \mathrm{H}, \mathrm{m}), 0.31(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 1.4 Hz).

Analysis of the Mosher esters derived from aldol 68: $\Delta \delta^{\mathrm{SR}}$ values in ppm from ${ }^{1} \mathrm{H}$ (and ${ }^{13} \mathrm{C}$) NMR spectra of MTPA esters.

Compounds 70 and 71. TESCl ($0.85 \mathrm{~mL}, 5.05 \mathrm{mmol}$) was added dropwise to a solution of
 alcohols 68 and $69(2.48 \mathrm{~g}, 3.36 \mathrm{mmol})$ and imidazole (0.46 $\mathrm{g}, 6.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ and additional 30 min at ambient temperature, the reaction was quenched with water. The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evapoated. The residue was purified by flash chromatography (hexanes/ethyl acetates, 25/1) to give products 70 and 71 as a colorless oil ($2.59 \mathrm{~g}, 91 \%$, d.r. $=$ 4:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.62(4 \mathrm{H}, \mathrm{m}), 7.48-7.27(11 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{dd}, J=9.1,1.7 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz})$, 4.27-4.22 ($1 \mathrm{H}, \mathrm{m}$), $4.18(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.79-3.74(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{dd}, J$ $=9.8,5.3 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.3 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=17.7,7.4 \mathrm{~Hz}), 2.79-2.59(1 \mathrm{H}$, m), $2.36(1 \mathrm{H}, \mathrm{dd}, J=17.7,4.7 \mathrm{~Hz}), 1.95-1.86(1 \mathrm{H}, \mathrm{m}), 1.77-1.64(1 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{d}, J=1.7$ $\mathrm{Hz}), 1.35-1.25(1 \mathrm{H}, \mathrm{m}), 1.03(9 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.93(9 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 0.86$ $(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.59(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}), 0.29(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $212.6,159.5,143.0,135.8,135.2,134.0,129.9,129.8,129.7,128.9,127.8,127.7,114.0,83.3$, $72.1,70.7,69.1,55.4,41.9,38.3,35.8,32.5,27.0,19.5,16.3,16.0,15.3,7.1,5.3,-3.2,-3.3$ (2 overlapping signals). IR: $3069,2933,1716,1613,1514,1462,1428,1249,1111 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m/z: $889\left([\mathrm{M}+\mathrm{K}]^{+}\right), 873\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{O}_{5} \mathrm{Si}_{3}+\mathrm{Na}\right)$: 873.4736, found $873.4739(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{O}_{5} \mathrm{Si}_{3}$: C 71.95, H 8.76, found C 72.08, H 8.73; characteristic signals of the minor diastereomer 71: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.72-5.69(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 0.30(3 \mathrm{H}, \mathrm{s})$.

Compound 72 and Isomers. A solution of MeMgBr in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M}, 6.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was
 added dropwise over 10 min to a solution of ketones 70 and and $71(2.57 \mathrm{~g}, 3.02 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 45 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the mixture was allowed to reach ambient temperature. The organic phase was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetates, 25/1) to give an inseparable mixture of 72 together with two other diastereoisomers as a colorless oil $(2.51 \mathrm{~g}, 96 \%$, d.r. $=$ 15:2.6:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.67-7.64 ($4 \mathrm{H}, \mathrm{m}$), $7.49-7.25(11 \mathrm{H}, \mathrm{m}), 7.22(2 \mathrm{H}, \mathrm{d}$,
$J=8.7 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz})$, $4.54(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.11-4.02(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=9.7,5.5 \mathrm{~Hz}), 3.41$ ($1 \mathrm{H}, \mathrm{dd}, J=9.7,7.2 \mathrm{~Hz}$), 3.33-3.30 ($1 \mathrm{H}, \mathrm{m}$), 2.87-2.79 ($1 \mathrm{H}, \mathrm{m}$), 1.98-1-89 ($1 \mathrm{H}, \mathrm{m}$), $1.79(1 \mathrm{H}$, dd, $J=14.4,10.5 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.59-1.11(4 \mathrm{H}, \mathrm{m}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s})$, $1.01-0.97(12 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.69(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}), 0.27(6 \mathrm{H}, \mathrm{d}, J=5.0$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,143.5,138.4,135.8,135.6,134.2,133.9,131.7$, 129.6, 129.4, 129.0, 127.8, 127.7, 113.8, 84.8, 75.9, 74.6, 73.3, 69.9, 55.4, 41.5, 39.3, 36.4, $34.3,33.1,22.9,19.5,16.6,15.5,13.4,7.1,5.6,-3.3,-3.4$. IR: $3504,3069,2934,1613,1514$, 1428, 1248, $1112 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 395 (9), 347 (2), 273 (13), 213 (8), 135 (13), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Si}_{3}+\mathrm{Na}\right)$: 889.5049, found 889.5051 $(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Sii}_{3}$: C 72.00, H 9.06, found C 71.86, H 8.97.
minor diastereoisomer, $(\mathrm{dr}=15 / \mathbf{2 . 6} / 1):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, characteristic signals): δ $5.92(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 0.32(6 \mathrm{H}, \mathrm{s})$.
minor diastereoisomer, $(\mathrm{dr}=15 / 2.6 / 1):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, characteristic signals) δ $5.88(1 \mathrm{H}, \mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 0.31(6 \mathrm{H}, \mathrm{s})$.

Compound 75. TESOTf ($0.97 \mathrm{~mL}, 4.27 \mathrm{mmol}$) was added dropwise to a solution of alcohol
 72 (and the inseparable isomers) ($2.47 \mathrm{~g}, 2.85 \mathrm{mmol}$) and 2,6-lutidine ($0.66 \mathrm{~mL}, 5.69 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at that temperature and for an additional hour at $0^{\circ} \mathrm{C}$, the reaction was quenched with water. The organic phase was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetates, 60/1) to give protected alcohol 75 as a colorless oil $(2.58 \mathrm{~g}, 92 \%$, d.r. $=15: 2.6: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.65(4 \mathrm{H}, \mathrm{m}), 7.50-7.29$ $(11 \mathrm{H}, \mathrm{m}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.6 \mathrm{~Hz})$, $4.77(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.04-4.01(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.61$ $(1 \mathrm{H}, \mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=9.7,5.8 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=9.7,6.5 \mathrm{~Hz}), 2.82-$ $2.74(1 \mathrm{H}, \mathrm{m}) 1.97-1.92(2 \mathrm{H}, \mathrm{m}), 1.73-1.64(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 1.40-1.09(2 \mathrm{H}$, $\mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.99-0.86(24 \mathrm{H}, \mathrm{m}), 0.69-0.55(12 \mathrm{H}, \mathrm{m}), 0.30(6 \mathrm{H}, \mathrm{d}, J=1.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,143.9,138.8,135.8,134.2,134.1,134.0,132.1$, $129.6,129.0,128.9,127.8,127.7,113.7,82.4,78.3,73.5,71.9,70.1,55.4,42.3,39.6,34.5$, $33.2,27.0,25.6,19.5,16.9,15.4,15.2,7.6,7.4,7.3,5.7,-3.1,-3.4$. IR: 3069, 2955, 1614, 1514, 1428, 1247, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 655 (2), 519 (4), 347 (58), 189 (5), 135 (18), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{58} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{4}+\mathrm{Na}\right)$: 1003.5914, found $1003.5916(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{58} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{4}$: C 70.96, H 9.45, found C 70.87, H 9.41; characteristic signals of the minor diastereoisomers (overlapping): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.96-5.93(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{s}), 0.31(6 \mathrm{H}, \mathrm{s})$.

Compound 75a. DDQ ($0.89 \mathrm{~g}, 3.91 \mathrm{mmol}$) was added in portions to a solution of compound

 $75(2.56 \mathrm{~g}, 2.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ buffer $(1 / 1,50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ before it was quenched with aq. sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ and water (30 mL). The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetates, 100/1) to give alcohol 75 a as a colorless oil $(2.06 \mathrm{~g}, 92 \%$, d.r. $=$ 15:2.6:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .7 .70-7.67(4 \mathrm{H}, \mathrm{m}), 7.50-7.30(11 \mathrm{H}, \mathrm{m}), 5.63(1 \mathrm{H}$, dd, $J=8.8,1.7 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=8.6,3.3 \mathrm{~Hz}), 3.61-3.48(3 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=4.1$, $1.4 \mathrm{~Hz}), 2.90-2.79(1 \mathrm{H}, \mathrm{m}), 2.00-1.92(1 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{dd}, J=14.8,9.8 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{d}, J$ $=1.7 \mathrm{~Hz}), 1.46-1.24(3 \mathrm{H}, \mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.06(9 \mathrm{H}, \mathrm{s}), 1.01-0.83(24 \mathrm{H}, \mathrm{m}), 0.73-0.53(12 \mathrm{H}$, $\mathrm{m}), 0.33(6 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2$, 138.6, 135.8, 135.2, $134.3,134.0,129.5,129.0,127.8,127.7,77.4,73.4,71.3,70.2,42.1,39.6,34.4,32.9,27.0$, $24.2,19.5,16.6,15.6,13.9,7.5,7.2,7.1,5.5,-3.2,-3.6$. IR: 3510, 2957, 1613, 1428, 1247, $1112 \mathrm{~cm}^{-1}$. MS (ESIpos) m/z: 883 ([M+Na] $]^{+}$. Anal. calcd. for $\mathrm{C}_{50} \mathrm{H}_{84} \mathrm{O}_{4} \mathrm{Si}_{4}: \mathrm{C} 69.70, \mathrm{H} 9.83$, found C 69.78, H 9.81; characteristic signals of the minor diastereoisomers (overlapping): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{d}, J=1.7$ $\mathrm{Hz}), 1.18(3 \mathrm{H}, \mathrm{s}), 0.32(6 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz})$.

Compound 76. Dess-Martin periodinane ($1.51 \mathrm{~g}, 3.57 \mathrm{mmol}$) was added to a solution of
 alcohol $75 \mathrm{a}(2.05 \mathrm{~g}, 2.38 \mathrm{mmol})$ and pyridine $(0.96 \mathrm{~mL}, 11.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ and for additional 4 h at ambient temperature, the reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 / 1,15 \mathrm{~mL})$, and stirring was continued for 10 min . The organic phase was then successively washed with aq. sat. NaHCO_{3}, water, and brine, before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography to give ketone 76 as a colorless oil $(1.91 \mathrm{~g}, 93 \%$, d.r. $=15: 2.6: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $\quad 7.68-7.64(4 \mathrm{H}$, m), 7.49-7.29 (11H, m), $5.67(1 \mathrm{H}, \mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}), 3.90-3.86(1 \mathrm{H}, \mathrm{m}), 3.51(2 \mathrm{H}, \mathrm{d}, J=5.6$ $\mathrm{Hz}), 2.89-2.73(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=17.4,4.5 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=17.4,8.8 \mathrm{~Hz}), 2.30-$ $2.23(1 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.57(1 \mathrm{H}, \mathrm{dd}, J=14.1$, $3.1 \mathrm{~Hz}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.00-0.83(24 \mathrm{H}, \mathrm{m}), 0.71-0.53(12 \mathrm{H}, \mathrm{m}), 0.31(6 \mathrm{H}, \mathrm{d}, J=$ 3.3 Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta .212 .4,144.0,139.2,136.1,135.2,134.5,134.5$, 130.1, 129.3, 128.2, 128.1, 81.5, 71.5, 69.1, 44.4, 41.2, 39.4, 32.0, 27.3, 27.2, 19.7, 17.3, 15.6, 14.8, 7.7, 7.5, 7.4, 5.8, -3.0, -3.3. IR: 2956, 1719, 1615, 1428, 1246, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 801 ([M- $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 0.6$), 655 (14), 523 (7), 441 (7), 391 (6), 347 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{50} \mathrm{H}_{82} \mathrm{O}_{4} \mathrm{Si}_{4}+\mathrm{Na}\right)$: 881.5182, found $881.5180(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{50} \mathrm{H}_{82} \mathrm{O}_{4} \mathrm{Si}_{4}:$ C 69.87 , H 9.62, found C $69.75, \mathrm{H} 9.55$; characteristic signals of the minor
diastereoisomers (overlapping): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 5.88(1 \mathrm{H}, \mathrm{d}, J=9.0,1.7 \mathrm{~Hz})$, 3.73-3.69 ($1 \mathrm{H}, \mathrm{m}$), $1.66(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{s}), 0.30(6 \mathrm{H}, \mathrm{s})$.

Compound 77. CSA ($98 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added to a solution of ketone $76(1.45 \mathrm{~g}, 1.69$

$\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(5 / 1,21 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was
stirred for 6 h at $0^{\circ} \mathrm{C}$ before it was quenched with water $(5 \mathrm{~mL})$.
The resulting mixture was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, $40 / 1+1 \% \mathrm{NEt}_{3}$) to give the diastereomerically pure compound $77(440 \mathrm{mg})$ as well as a separate fraction containing all other diastereomers (266 mg , together 65%).

This fraction containing the other diastereomers was dissolved in $\mathrm{MeOH}(3.5 \mathrm{~mL})$ and a catalytic amount of PPTS ($4.2 \mathrm{mg}, 16.7 \mu \mathrm{~mol}$) was added. The mixture was stirred for 1 h before it was filtered through a pad of silica and the filtrate was evaporated. The residue was again subjected to flash chromatography to give a second crop of compound $77(105 \mathrm{mg})$ Overall yield of 77: 50%. $[\alpha]_{\mathrm{D}}^{20}=-24.5\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $7.72-7.69(4 \mathrm{H}, \mathrm{m}), 7.56-7.32(11 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.7 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{q}, J=7.9$ $\mathrm{Hz}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=9.7,5,5 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{dd}, J=9.7,7.7 \mathrm{~Hz}), 3.19(3 \mathrm{H}, \mathrm{s}), 2.72-2.63(1 \mathrm{H}$, $\mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{bs}), 2.13-2.02(1 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{dd}, J=15.2,3.0 \mathrm{~Hz}), 1.90(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $1.73(1 \mathrm{H}, \mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}$, d, $J=6.7 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.34(6 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta .145 .5,139.5,136.2,134.6,134.1,133.5,130.2,129.3,128.2,128.2,110.3,82.6$, $81.8,71.0,49.0,44.6,39.5,33.3,31.7,27.2,23.1,19.6,18.1,16.8,15.2,-2.8,-3.2$. IR: 3458 , 2958, 1620, 1428, 1247, $1112 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity):): 587 ([M- $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}, 2$), 555 (28), 441 (20), 423 (28), 371 (14), 339 (10), 293 (32), 213 (25), 199 (31), 185 (46), 135 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2}+\mathrm{Na}\right)$: 667.3609 , found $667.3606(\mathrm{M}+\mathrm{Na})$. Anal. calcd. for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2}$: C 72.62, H 8.75, found C 72.68, H 8.71.

Compound 78. NIS ($1.03 \mathrm{~g}, 4.57 \mathrm{mmol}$) was added in portions to a solution of vinylsilane 77
 ($590 \mathrm{mg}, 0.92 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(11.4 \mathrm{~mL})$ and the resulting mixture was stirred in the dark for 5 h at $0^{\circ} \mathrm{C}$ before it was filtered through a pad of basic alumina. Hexanes/ethyl acetate (10/1) was used to rinse the alumina pad and the combined filtrates were evaporated. The residue was used without further purification in the next step.

The residue was solubilized in THF (10 mL), cooled to $0^{\circ} \mathrm{C}$, and treated with a solution of TBAF in THF ($1 \mathrm{M}, 2.75 \mathrm{~mL}, 2.75 \mathrm{mmol}$). After stirring for 90 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with water (3 mL) and the aqueous phase was repeatedly extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes, ethyl acetate, $2 / 1+1 \% \mathrm{NEt}_{3}$) to
give diol 78 as a colorless oil ($262 \mathrm{mg}, 72 \%$ over 2 steps $) .[\alpha]_{\mathrm{D}}^{20}=+5.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 6.09(1 \mathrm{H}, \mathrm{dd}, J=9.7,1.5 \mathrm{~Hz}$), $3.94(1 \mathrm{H}$, ddd, $J=9.8,7.8,6.3$ $\mathrm{Hz}), 3.60-3.54(1 \mathrm{H}, \mathrm{m}), 3.34-3.23(2 \mathrm{H}, \mathrm{m}), 3.22(3 \mathrm{H}, \mathrm{s}), 2.47-2.39(2 \mathrm{H}, \mathrm{m}), 2.39(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $1.5 \mathrm{~Hz}), 2.05-1.95(1 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{dd}, J=15.5,4.4 \mathrm{~Hz}), 1.89-1.80(2 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{dd}$, $J=15.5,5.3 \mathrm{~Hz}), 1.38(3 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 145.2, 110.6, 93.9, 82.3, 81.4, 70.0, 49.0, 44.6, 42.4, 34.3, 30.6, 28.3, $22.9,18.9,16.8$. IR: 3347, 2958, 1638, 1066, $1019 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 367 ([M-OMe] ${ }^{+}, 1$), 325 (3), 265 (5), 208 (13), 203 (2), 171 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{IO}_{4}+\mathrm{Na}\right): 421.0846$, found $421.0844(\mathrm{M}+\mathrm{Na})$.

Characteristic and strong NOE's observed in compound 78

Compounds 78a,b. $\mathrm{TMSCl}(410 \mu \mathrm{~L}, 3.20 \mathrm{mmol})$ was added dropwise to a solution of diol 78

78a

78b ($255 \mathrm{mg}, 0.640 \mathrm{mmol}$) and imidazole ($305 \mathrm{mg}, 4.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.4 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 3 h at ambient temperature before it was quenched with water (2 mL).

The organic phase was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes, ethyl acetate, $10 / 1+1 \% \mathrm{NEt}_{3}$) to give diprotected alcohol 78a ($288 \mathrm{mg}, 83 \%$) and a second fraction containing the monoprotected alcohol $\mathbf{7 8 b}(32 \mathrm{mg}, 11 \%)$ as colorless oils each. Compound 78a: $[\alpha]_{\mathrm{D}}^{20}=-7.7\left(\mathrm{c}=1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 6.00(1 \mathrm{H}, \mathrm{dd}, J=9.8$, 1.5 Hz), 3.82 , (1 H , ddd, $J=10.2,7.7,5.8 \mathrm{~Hz}$), $3.43(1 \mathrm{H}, \mathrm{dd}, J=9.6,5.1 \mathrm{~Hz}$), $3.21(1 \mathrm{H}, \mathrm{dd}, J$ $=9.6,7.5 \mathrm{~Hz}), 3.06(3 \mathrm{H}, \mathrm{s}), 2.34-2.29(1 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 1.84-1.76(2 \mathrm{H}, \mathrm{m})$, $1.68(1 \mathrm{H}, \mathrm{dd}, J=12.5,10.2 \mathrm{~Hz}), 1.60(1 \mathrm{H}, \mathrm{dd}, J=14.8,4.8 \mathrm{~Hz}), 1.39(1 \mathrm{H}, \mathrm{dd}, J=14.87 .4$ $\mathrm{Hz}), 1.27(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.80(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.05(9 \mathrm{H}, \mathrm{s}), 0.00(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 145.4,111.3,93.7,85.5,81.5,69.3,48.6,44.1,42.3,32.8$, 32.0, 28.3, 22.6, 17.6, 16.9, 2.5, -0.2. IR: 2957, 2875, 1638, 1250, 1143, $1019 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): $542\left(\mathrm{M}^{+},<0.6\right), 347$ (21), 329 (13), 303 (8), 277 (31), 257 (8), 225 (14), 208 (66), 143 (100) HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{IO}_{4} \mathrm{Si}_{2}+\mathrm{Na}\right)$: 565.1637, found
$565.1638(\mathrm{M}+\mathrm{Na})$. Compound 78b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 5.99(1 \mathrm{H}, \mathrm{dd}, J=9.8,1.5$ $\mathrm{Hz}), 3.90(1 \mathrm{H}$, ddd, $J=10.4,7.7,5.6 \mathrm{~Hz}), 3.38-3.33(1 \mathrm{H}), 3.23-3.17(1 \mathrm{H}, \mathrm{m}), 3.10(3 \mathrm{H}, \mathrm{s})$, $2.72(1 \mathrm{H}, \mathrm{bs}), 2.40-2.32(1 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 1.96-1.88(1 \mathrm{H}, \mathrm{m}), 1.84(1 \mathrm{H}, \mathrm{dd}, J$ $=12.5,5.6 \mathrm{~Hz}), 1.71(1 \mathrm{H}, \mathrm{dd}, J=12.5,10.4 \mathrm{~Hz}), 1.67(1 \mathrm{H}, \mathrm{dd}, J=15.1,6.7 \mathrm{~Hz}), 1.52(1 \mathrm{H}$, dd, $J=15.1,4.4 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.07$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 144.8,110.8,94.2,86.1,82.4,70.2,48.6,43.4,42.0$, 34.8, 32.3, 28.3, 22.3, 18.8, 16.8, 2.4.

Compound 81. DMSO ($196 \mu \mathrm{~L}, 2.76 \mathrm{mmol}$) was added dropwise to a solution of oxalyl
 chloride $(121 \mu \mathrm{~L}, 1.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 10 min at this temperature, a solution of compound 78a ($250 \mathrm{mg}, 0.461 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added dropwise and stirring was continued for 1 h at that temperature. The reaction mixture was subsequently treated with $\mathrm{NEt}_{3}(770 \mu \mathrm{~L}, 5.53 \mathrm{mmol})$ and stirred for 15 min at $-78^{\circ} \mathrm{C}$ before it was allowed to reach $0^{\circ} \mathrm{C}$. Stirring was continued for another 15 min at $0^{\circ} \mathrm{C}$ before the reaction was quenched with brine $(1.0 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic phase was washed twice with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give crude aldehyde 80 as a pale yellow oil, which was used without further purification in the next step.

LiHMDS ($116 \mathrm{mg}, 0.692 \mathrm{mmol}$) was added to a solution of methyl diethylphosphonoacetate $(145 \mathrm{mg}, 0.692 \mathrm{mmol})$ in THF $(2.1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at that temperature, a solution of crude aldehyde $\mathbf{8 0}$ in THF (2.5 mL) was added dropwise over 10 min. Stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$ and for another 30 min at $0^{\circ} \mathrm{C}$ before the reaction was quenched with water (1 mL) and the mixture was diluted with tert-butyl methyl ether (5 mL). The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $40 / 1+1 \% \mathrm{NEt}_{3}$) to provide ester $\mathbf{8 1}(190 \mathrm{mg}, 76 \%$ over 2 steps) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=+0.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta .6 .98(1 \mathrm{H}, \mathrm{dd}, J=$ $15.8,7.3 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{dd}, J=9.7,1.5 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{dd}, J=15.8,1.3 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{ddd}, J$ $=10.4,7.3,5.6 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.16(3 \mathrm{H}, \mathrm{s}), 2.70-2.60(1 \mathrm{H}, \mathrm{m}), 2.46-2.39(1 \mathrm{H}, \mathrm{m}), 2.38$ $(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 1.89(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.6 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{dd}, J=14.9,6.3 \mathrm{~Hz}), 1.79-1.73$ $(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.15(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 167.8,156.9,145.1,118.7,110.7,93.8,85.6,81.7,51.7,48.7$, $43.9,41.9,35.9,32.7,28.3,22.6,20.4,16.9,2.5$. IR: 2960, 2875, $1725,1251 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 524 ($\mathrm{M}^{+}, 0.7$), 493 (5), 397 (3), 329 (62), 297 (11), 259 (50), 239 (9), 208 (64), 143 (100) HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{IO}_{5} \mathrm{Si}+\mathrm{Na}\right)$: 547.1347, found 547.1350 $(\mathrm{M}+\mathrm{Na})$.

Compound 82. A solution of tert- BuLi in pentane ($2.1 \mathrm{M}, 320 \mu \mathrm{~L}, 0.674 \mathrm{mmol}$) was added to a mixture of $\mathrm{Et}_{2} \mathrm{O}(140 \mu \mathrm{~L})$ and THF $(140 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ before a solution of alkyl iodide $25(47 \mathrm{mg}$, 0.112 mmol) in THF ($920 \mu \mathrm{~L}$) was added dropwise. After the mixture has been stirred for 5 \min at $-78^{\circ} \mathrm{C}, 9-\mathrm{MeO}-9-\mathrm{BBN}(93 \mu \mathrm{~L}, 0.674 \mathrm{mmol})$ was added dropwise causing an immediate color change from bright yellow to colorless. The reaction mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before it was allowed to reach ambient temperature. Stirring was continued for another 1 h at this temperature (formation of white precipitates were observed). Aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 225 \mu \mathrm{~L}$, $0.674 \mathrm{mmol})$ and a solution of vinyl iodide $\mathbf{8 1}(61 \mathrm{mg}, 0.112 \mathrm{mmol})$ in DMF $(920 \mu \mathrm{~L})$ were then successively added, followed by a solution of $\mathrm{AsPh}_{3}(3.4 \mathrm{mg}, 11.2 \mu \mathrm{~mol})$ and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(4.1 \mathrm{mg}, 5.6 \mu \mathrm{~mol})$ in DMF $(180 \mu \mathrm{~L})$. The reaction mixture was stirred for 90 min at ambient temperature before it was diluted with hexanes/ethyl acetate ($10 / 1,2.5 \mathrm{~mL}$) and filtered through a pad of basic alumina (hexanes/ethyl acetate, $10 / 1$ was used to rinse the pad). The combined filtrates were successively washed with aq. sat. NaHCO_{3}, water, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $20 / 1+1 \% \mathrm{NEt}_{3}$) to give compound 82 ($61 \mathrm{mg}, 79 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-35.4\left(\mathrm{c}=1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.25(2 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.3 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{dd}, J=$ $15.8,1.3 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{dd}, J=9.3,1.1 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=11.2$ $\mathrm{Hz})$, 3.97-3.85 ($2 \mathrm{H}, \mathrm{m}$), $3.79(3 \mathrm{H}, \mathrm{s}), 3.76-3.72(1 \mathrm{H}, \mathrm{m}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.15(3 \mathrm{H}, \mathrm{s}), 2.69-2.60$ $(1 \mathrm{H}, \mathrm{m}), 2.51-2.36(1 \mathrm{H}, \mathrm{m}), 2.12-1.94(2 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}, \mathrm{dd}, J=13.1,7.3 \mathrm{~Hz}), 1.87(1 \mathrm{H}, \mathrm{dd}$, $J=12.5,5.5 \mathrm{~Hz}), 1.84-1.71(4 \mathrm{H}, \mathrm{m}), 1.64-1.29(6 \mathrm{H}, \mathrm{m}), 1.61(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{s})$, $1.26(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.15$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 167.8,159.7,157.1,135.1,131.3,129.7,128.5$, $118.6,114.2,110.5,85.7,84.7,82.9,82.6,82.5,71.7,55.8,51.6,48.7,45.9,43.6,43.1,38.6$, $36.4,36.0,34.0,32.7,26.5,22.8,20.3,18.4,17.4,16.7,15.0,2.5$. IR: 2958, 2872, 1725, 1655, $1613,1514,1251 \mathrm{~cm}^{-1}$. MS (EI) m/z (rel. intensity): 657 ([M-OMe] ${ }^{+}, 1$), 567 (1), 535 (4), 329 (36), 297 (11), 259 (5), 239 (9), 207 (6), 143 (57), 121 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{IO}_{8} \mathrm{Si}+\mathrm{Na}\right): 711.4263$, found $711.4265(\mathrm{M}+\mathrm{Na})$.

Compound 83. DDQ ($16 \mathrm{mg}, 69.7 \mu \mathrm{~mol}$) was added in portions to a vigorously stirred

solution of compound $82(24 \mathrm{mg}, 34.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ buffer $(1 / 1,3.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred 1 h at $0^{\circ} \mathrm{C}$ and for 6 h at ambient temperature. During this time more DDQ ($24 \mathrm{mg}, 104 \mu \mathrm{~mol}$) was added in portions to achieve complete conversion. The reaction was then quenched with water $(2.5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The aqueous phase was
repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer were washed with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $15 / 1+1 \% \mathrm{NEt}_{3} \rightarrow 6 / 1+1 \% \mathrm{NEt}_{3}$) to give compound $83(10 \mathrm{mg}, 51 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-29.3\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.00(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.2 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{dd}, J=15.8,1.2 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{dd}, J=$ $9.2,1.1 \mathrm{~Hz}), 4.07-4.01(1 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{ddd}, J=10.2,8.2,5.6 \mathrm{~Hz}), 3.73-3.68(1 \mathrm{H}, \mathrm{m}), 3.68$ $(3 \mathrm{H}, \mathrm{s}), 3.14(3 \mathrm{H}, \mathrm{s}), 2.68-2.61(1 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 2.39-2.33(1 \mathrm{H}, \mathrm{m}), 2.18-$ $2.05(2 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=13.0,7.3 \mathrm{~Hz}), 1.94(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.6 \mathrm{~Hz}), 1.84-1.72(3 \mathrm{H}$, $\mathrm{m}), 1.68-1.52(3 \mathrm{H}, \mathrm{m}), 1.6(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.45-1.29(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s})$, $1.07(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.15(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta .168 .0,157.3,134.7,129.2,118.5,110.7,85.7,84.8,82.8,82.6$, 76.7, 51.7, 48.6, 46.0, 45.7, 44.2, 39.5, 36.3, 35.8, 32.7, 32.3, 27.1, 22.7, 20.4, 18.4, 17.4, 16.4, 15.0, 2.8. IR: $3429,2958,2872,1725,1654,1251 \mathrm{~cm}^{-1}$. MS (EI) m / z (rel. intensity): 537 ([M-OMe] ${ }^{+}, 2$), 446 (8), 329 (59), 297 (17), 259 (11), 252 (11), 239 (13), 207 (9), 179 (8), 143 (100). HRMS (ESIpos): calcd. for $\left(\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{IO}_{7} \mathrm{Si}+\mathrm{Na}\right)$: 591.3687, found 591.3685 $(\mathrm{M}+\mathrm{Na})$.

Amphidinolide \mathbf{Y} (2). A solution of $\mathrm{LiOH}(11.4 \mathrm{mg}, 47.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(360 \mu \mathrm{~L})$ was
 added to a solution of methylester $83(9 \mathrm{mg}, 15.8 \mu \mathrm{~mol})$ in THF/water ($1 / 1,180 \mu \mathrm{~L}$). After stirring for 17 h at ambient temperature, the mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with tert-butyl methyl ether (2 mL) before being quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mu \mathrm{~L})$. The aqueous solution was rapidly extracted with tert-butyl methyl ether (several times). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. $\mathrm{NEt}_{3}(6.6 \mu \mathrm{~L}, 47.5 \mu \mathrm{~mol})$ were added before the filtrate was evaporated. The corresponding triethylamonium salt $\mathbf{8 4}$ of the seco-acid was immediately used in the next step without further purification.

2,4,6-Trichlorobenzoyl chloride ($3.7 \mu \mathrm{~L}, 23.7 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{8 4}$ and $\mathrm{NEt}_{3}(11 \mu \mathrm{~L}, 79.0 \mu \mathrm{~mol})$. The reaction mixture was stirred for 1 h at ambient temperature before it was filtered through a short pad of Celite which was prewashed with copious amounts of dry THF. The patch was rinsed with excess THF before most of the solvent was removed under a flow of Argon. The residue was diluted with toluene (4.5 mL) and the resulting solution was added dropwise over 2 h (via syringe pump) to a solution of DMAP $(38.6 \mathrm{mg}, 316 \mu \mathrm{~mol})$ in toluene (20.3 mL) at ambient temperature. After complete addition stirring was continued for 2 h . The reaction mixture was neutralized with aq. sat. NaHCO_{3} (3 mL) and the organic layer washed twice with brine before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was filtered through a pad of silica (hexanes/ethyl acetate, $10 / 1+1 \%$ NEt_{3}) to remove the DMAP and the crude macrocycle 85 was used in the next step without further purification.

The crude compound 85 was dissolved in $\mathrm{HOAc} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1 / 1,240 \mu \mathrm{~L})$ and the resulting solution was stirred for 4 h at ambient temperature. The reaction was diluted with tert-butyl methyl ether $(500 \mu \mathrm{~L})$ and quenched with aq. sat. NaHCO_{3}. The aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 4/1) to give amphidinolide $\mathrm{Y}(2)$ as a colorless oil ($4 \mathrm{mg}, 56 \%$ over 3 steps $) .[\alpha]_{\mathrm{D}}^{17}=-28.0^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)\left[\right.$ lit.: $\left.[\alpha]_{\mathrm{D}}^{17}=-33^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ see Table $4 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ see Table 5.

Table 4: Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of natural $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ and synthetic amphidinolide $\mathrm{Y}(\mathbf{2})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

position	natural 2 (multiplicity, J in Hz)	synthetic 2 (multiplicity, J in Hz)	$\Delta \delta$
$\mathbf{2}$	$5.78(\mathrm{~d}, 15.6)$	$5.78(\mathrm{~d}, 15.7)$	0
$\mathbf{3}$	$6.59(\mathrm{dd}, 15.6,9.5)$	$6.60(\mathrm{dd}, 15.7,9.4)$	0.01
$\mathbf{4}$	$3.06(\mathrm{~m})$	$3.06(\mathrm{~m})$	0
$\mathbf{5 a}$	$2.94(\mathrm{dd}, 17.8,11.5)$	$2.94(\mathrm{dd}, 17.6,11.4)$	0
$\mathbf{5 b}$	$2.38(\mathrm{dd}, 17.8,2.1)$	$2.37(\mathrm{dd}, 17.6,2.2)$	-0.01
$\mathbf{8 a}$	$1.97(\mathrm{~d}, 14.5)$	$1.97(\mathrm{~d}, 14.3)$	0
$\mathbf{8 b}$	$1.76(\mathrm{dd}, 14.5,9.0)$	$1.76(\mathrm{dd}, 14.3,9.0)$	0
$\mathbf{9}$	$3.11(\mathrm{t}, 9.0)$	$3.11(\mathrm{t}, 9.0)$	
$\mathbf{1 0}$	$2.25(\mathrm{~m})$	$2.26(\mathrm{~m})$	0.01
$\mathbf{1 1}$	$4.86(\mathrm{~m})$	$4.87(\mathrm{~m})$	0.01
$\mathbf{1 3}$	$2.13(\mathrm{~m})$	$2.13(\mathrm{~m})$	0
$\mathbf{1 4 a}$	$1.86(\mathrm{~m})$	$1.85(\mathrm{~m})$	-0.01
$\mathbf{1 4 b}$	$1.48(\mathrm{~m})$	$1.48(\mathrm{~m})$	0
$\mathbf{1 5}$	$3.92(\mathrm{dt}, 11.0,4.1)$	$3.92(\mathrm{dt}, 7.0,4.1)$	0
$\mathbf{1 6}$	$4.87(\mathrm{~m})$	$4.87(\mathrm{~m})$	0
$\mathbf{1 7 a}$	$2.10(\mathrm{dd}, 14.3,7.4)$	$2.11(\mathrm{dd}, 13.8,7.4)$	0.01
$\mathbf{1 7 b}$	$1.76(\mathrm{dd}, 14.3,2.4)$	$1.77(\mathrm{dd}, 14.2,2.5)$	0.01
$\mathbf{1 9}$	$1.47(\mathrm{~m})$	$1.48(\mathrm{~m})$	0.01
$\mathbf{2 0}$	$1.32(\mathrm{~m})$	$1.31(\mathrm{~m})$	-0.01
$\mathbf{2 1}$	$0.91(\mathrm{t}, 7.0)$	$0.91(\mathrm{t}, 7.2)$	0
$\mathbf{2 2}$	$1.10(\mathrm{~d}, 6.7)$	$1.10(\mathrm{~d}, 6.8)$	0
$\mathbf{2 3}$	$1.35(\mathrm{~s})$	$1.36(\mathrm{~s})$	0.01
$\mathbf{2 4}$	$0.87(\mathrm{~d}, 6.5)$	$0.87(\mathrm{~d}, 6.7)$	0
$\mathbf{2 5}$	$1.70(\mathrm{brs})$	$1.70(\mathrm{brs})$	0
$\mathbf{2 6}$	$1.23(\mathrm{~s})$	$1.24(\mathrm{~s})$	0.01

Table 5: Comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum of natural ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$) and synthetic $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ amphidinolide Y ; numbering scheme as shown in the insert in Table 4.

position	natural $\mathbf{Y}(\boldsymbol{\delta})$	synthetic $\mathbf{Y}(\mathbf{\delta})$	$\Delta \delta$
$\mathbf{1}$	165.81	165.93	0.12
$\mathbf{2}$	120.05	120.17	0.12
$\mathbf{3}$	153.56	153.72	0.16
$\mathbf{4}$	32.07	32.24	0.17
$\mathbf{5}$	42.60	42.74	0.12
$\mathbf{6}$	211.09	211.23	0.14
$\mathbf{7}$	77.26	77.38	0.12
$\mathbf{8}$	44.94	45.08	0.14
$\mathbf{9}$	71.01	71.14	0.13
$\mathbf{1 0}$	39.23	39.38	0.15
$\mathbf{1 1}$	128.61	128.74	0.13
$\mathbf{1 2}$	138.21	138.37	0.16
$\mathbf{1 3}$	34.74	34.90	0.16
$\mathbf{1 4}$	33.97	34.08	0.11
$\mathbf{1 5}$	79.99	80.11	0.12
$\mathbf{1 6}$	78.67	78.82	0.15
$\mathbf{1 7}$	42.67	42.81	0.14
$\mathbf{1 8}$	82.96	83.09	0.13
$\mathbf{1 9}$	44.85	45.00	0.15
$\mathbf{2 0}$	17.82	17.99	0.17
$\mathbf{2 1}$	14.55	14.73	0.18
$\mathbf{2 2}$	19.89	20.07	0.18
$\mathbf{2 3}$	26.58	26.75	0.17
$\mathbf{2 4}$	16.84	17.00	0.16
$\mathbf{2 5}$	17.51	17.66	0.15
$\mathbf{2 6}$	25.74	25.91	0.17

kat-kb-032-01

มำ

kat-kb-261-01
§

kat-kb-261-01

吾

$10-\varepsilon ટ \varepsilon-\theta y-1 \nabla>$

-

[^0]: ${ }^{1}$ Narco, K.; Baltas, M.; Gorrichon, L. Tetrahedron 1999, 55, 14013.

[^1]: ${ }^{2}$ (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.

[^2]: ${ }^{\text {§ }}$ Amphidinolide X numbering

[^3]: ${ }^{3}$ Langer, P.; Freifeld, I. Synlett 2001, 523-525.

[^4]: ${ }^{4}$ Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410.

[^5]: ${ }^{5}$ The enantiomer is described in: Organ, M. G.; Wang, J. J. Org. Chem. 2003, 68, 5568.
 ${ }^{6}$ Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc. Perkin Trans. 1 1981, 2527.

[^6]: ${ }^{7}$ Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Org. Synth. 2000, 77, 141.

[^7]: ${ }^{8}$ (a) Nakamura, E. Tetrahedron Lett. 1981, 22, 663. (b) Schmidt, U.; Langner, J.; Kirschbaum, B.; Braun, C. Synthesis 1994, 11, 1138.

[^8]: ${ }^{9}$ King, S. A.; Keller, J. Org. Synth. 2005, 81, 178.

