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Redistribution of phase fluctuations in a periodically driven cuprate superconductor
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We study the thermally fluctuating state of a bilayer cuprate superconductor under the periodic action of a
staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered
phenomenon of light-enhanced coherence in YBa2Cu3O6+x , which was achieved by periodically driving infrared
active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin and
Fokker-Planck description of driven, coupled Josephson junctions, which represent two neighboring pairs of
layers and their two plasmons. In a toy model including only two junctions, we demonstrate that the external
driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via
the resonance of the high-energy plasmon. When extending the modeling to the full layers, we find that this
reduction becomes far more pronounced, with a striking suppression of the low-energy fluctuations, as visible
in the power spectrum. We also find that this effect acts on the in-plane fluctuations, which are reduced on long
length scales. All these findings provide a physical framework to describe light control in cuprates.
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I. INTRODUCTION

The understanding of high-Tc superconductivity in cuprates
is one of the central themes in condensed-matter physics.
While numerous questions about its mechanism and the phase
diagram of high-Tc materials remain, a partial consensus about
some of the equilibrium properties of high-Tc superconductors
has emerged (see, e.g., Ref. [1]). The copper oxide planes of
these materials are the primary location of the superconducting
phenomenon. These planes are weakly coupled in the third
direction by tunneling through an insulating layer. A phe-
nomenological description of coupled Josephson junctions is
often employed to describe the low-frequency electrodynamics
for fields perpendicular to the planes. This and similar effective
models, such as the XY model, are discussed in Refs. [2–11].

A number of recent experiments have explored the dynami-
cal properties of superconducting cuprates, either by analyzing
the excitation and relaxation of quasiparticles out and back
into the condensate [12–15], or by seeking to control the
collective properties of the condensate itself with light. This
second class of experiments, which involves nonlinear driving
of low-energy excitations such as Josephson plasmons and
phonons [16–19], elements of competing order melting, and
nonequilibrium phenomena, is what we study here.

In Refs. [18,19] an optical phonon mode of yttrium barium
copper oxide (YBCO) was driven resonantly, enhancing
interplane coherence and leading to the emergence of a
plasmon edge at temperatures exceeding 300 K, where no
signature of superconducting coherence on any time or length
scale is observed in equilibrium.

In this paper, we propose a mechanism to reduce phase
fluctuations in a layered superconductor, such as YBCO, by
driving. We work in an extended, anisotropic XY model, which
we drive out of equilibrium. We find that a substantial reduction
of the interlayer phase fluctuations can be achieved under
similar conditions as those explored experimentally. This does
not only constitute an intriguing scenario of dynamical control

in the solid state, it also provides a test for effective theories,
such as the XY model, far out of equilibrium.

This paper is organized as follows: In Sec. II we describe
how we represent an optically driven, layered superconductor
as an XY model with a driving term. In Sec. III we reduce
this model to just two neighboring Josephson junctions, which
provides a toy model that displays qualitatively the desired
effect of modified phase fluctuations. In Sec. IV, we consider

FIG. 1. (Color online) Simplified representation of the crystal
structure of YBCO. The copper oxide layers are shown as red and
blue, and some of the atoms in the insulating layers are shown. The
distortion of this structure, due to the motion of the apical oxygen
atoms of the infrared-active B1u mode, discussed in Ref. [18], is
driven periodically in time. This results in an external potential in the
CuO layers that is periodic in time and staggered in the c direction,
represented by the red and blue coloring, changing periodically in
time.
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the full three-dimensional system. In Sec. V we explore the
in-plane dynamics of this model, and in Sec. VI we conclude.

II. DRIVEN XY MODEL

In this section we develop our model of a driven super-
conductor. In the experiments reported in Refs. [18,19], the
optically driven phonon can be seen as a means to periodically
modulate the pairing field ψi , which is the order parameter
of the superconducting system (see, e.g., Ref. [20]). This
order parameter can be written as ψi = ∑

j,k w(j − i,k −
i)〈cj,↑ck,↓〉, where w(j,k) is the real space representation of
the pairing wave function, located at site i; cj,↑/↓ is the fermion
operator at site j . For a d-wave superconductor, w(j,k) has
the corresponding d-wave symmetry.

We consider a situation near the critical temperature Tc.
We assume that at this temperature the bosonic nature of
the condensate is not, or only partially, perturbed; that is,
we assume that order parameter fluctuations are dominant
in destroying superconducting coherence, rather than pair
breaking. We also assume that the fluctuations of the field
are dominated by thermal fluctuations, which leads us to
consider a classical field model, such as the XY model. We
approximate the field ψi in a phase-density representation
ψi = √

n0 + δni exp(iθi) and keep terms up to second order
in δni in the Hamiltonian. The equilibrium Hamiltonian is

H0 = −
∑
〈ij〉

Jij cos(θi − θj ) + Ec

2

∑
i

δn2
i . (1)

Here θi and δni are the phase and density fluctuations at site
i, respectively; Ec is the charging energy at each site, i.e.,
an inverse capacitance; and Jij are the tunneling constants
between nearest neighbors. There are three tunneling energies:
Along the c axis, the values are staggered. Js represents
the strong junctions and Jw the weak junctions. Within the
ab planes the tunneling energy is Jab. We note that the
Hamiltonian in Eq. (1) extends the standard XY model in
two ways. First, since we investigate dynamics, we added
the term Ec

2

∑
i δn

2
i , containing an additional energy scale Ec.

Second, the planes connected via Js are often treated as a single
layer. As we describe below, however, introducing the degrees
of freedom of these planes is crucial for the mechanism we
describe in this paper. We also note that the Lawrence-Doniach
model introduced in Ref. [10] gives rise to inductive coupling
between the layers. This type of coupling has been found
to be of particular importance to highly anisotropic cuprates,
such as bismuth strontium calcium copper oxide (BSCCO),
while for YBCO the Josephson couplings are the dominant
interaction (see Ref. [21]). The effect of inductive coupling
will be discussed elsewhere.

We model the external driving with the following term:

Hdr =
∑

i

Ai(t)δni. (2)

The driving potential is Ai(t) = (−1)z(i)A0 cos(ωmt), where
z(i) is the plane index to which the site i belongs. This
describes the effective staggered potential that the elec-
tron pairs experience due to the optical phonon distort-
ing the crystal (see Fig. 1). The equations of motion

TABLE I. Model parameters in kB × kelvin, h × THz, and meV.
All parameters are in energy units, represented by the symbol E in
the left column.

Js Jw Jab Ec A0 γ

E/kB (K) 20 0.2 100 6250 20–450 10
E/h (THz) 0.42 0.0042 2.1 130.7 0.42–9.4 0.2
E (meV) 1.7 0.017 8.6 539.1 1.7–38.8 0.9

are

θ̇i = Ec δni + Ai(t), (3)

δṅi = −
∑
j (i)

Jij sin(θi − θj ). (4)

The values of the parameters Js , Jw, and Ec are constrained by
the two plasmon frequencies of this system. To estimate them,
we consider two ab layers coupled by either Js or Jw. We
linearize sin(θi − θj ) → θi − θj and diagonalize the system,
which gives a gapped and an ungapped dispersion. The gapped
dispersion is ω2

k = 2Jw,sEc + JabEc(4 − 2 cos kx − 2 cos ky),
where k = (kx,ky) is the lattice momentum, with the lattice
constant set to unity. We therefore identify ωw ≡ √

2JwEc

and ωs ≡ √
2JsEc with the low- and high-energy plasmon

frequency, in the absence of damping. We choose them
to be ∼h × 1 THz and ∼h × 10 THz, respectively (see
Refs. [18,19]). The Kosterlitz-Thouless energy scale of the
system is given by Jab, which we choose to be Jab = kB ×
100 K. This gives a critical temperature near 100 K, as for
YBCO. The ratios Jab : Js : Jw are approximately of the order
of 103 : 102 : 1. This leads to the choice Jab = kB × 100 K,
Js = kB × 20 K, Jw = kB × 0.2 K, and Ec = kB × 6250 K.
For the magnitude of the driving potential, we choose a range of
values A0 ≈ 2–40 meV. These magnitudes of A0 are realistic
values, as we discuss elsewhere [22]. All the parameters of our
effective model are summarized in Table I.

In addition to the Hamiltonian dynamics, we take the
coupling to other degrees of freedom into account, such as
phonons. We model this by coupling the pairing field to a
thermal bath in a Langevin formalism. We extend Eq. (4) to

δṅi = −
∑
j (i)

Jij sin(θi − θj ) − γ δni + ξi(t), (5)

where we added a damping constant γ and a classical noise
term with 〈ξi(t1)ξj (t2)〉 = (2γ T /Ec)δij δ(t1 − t2), where T

is the temperature. In this paper we primarily discuss the
regime in which the temperature is below Tc. Therefore,
both plasmon modes are underdamped, and we choose γ =
0.2 THz. With this choice, the weak plasmon mode is visibly
broadened, while still being underdamped, as it should be
as the temperature approaches Tc, while the linewidth of the
strong mode is still fairly narrow.

III. TWO-OSCILLATOR TOY MODEL

To evidence the physical substance of our analysis, it is
helpful to first study the problem with a toy model that
exhibits only elementary features, nevertheless showing how
the driving term in Eq. (2) can lead to a reduction of the
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FIG. 2. (Color online) Time evolution of the variances of the
weak (red dashed line) and the strong (blue dashed line) junction
relative to their equilibrium value, �Vw ≡ Vw − Vw,th and �Vs ≡
Vs − Vs,th, respectively, as percent of their equilibrium values Vw,th

and Vs,th, respectively. Vw is also represented on the scale of an
effective temperature Teff on the right-hand side, based on Eq. (6). The
solid lines are the time evolution smoothed via Gaussian averaging
with a time scale of 1.8 ps.

phase fluctuations of the weak junction. First, we ignore the
spatial extent of the system in the ab planes. This reduces the
system to a one-dimensional system with staggered values of
tunneling, Js and Jw.

We then consider only two neighboring planes, which
means we consider three degrees of freedom, θi−1, θ1, and θi+1.
We assume that Ji,i+1 = Js and Ji−1,i = Jw, and we define
the phase differences θs ≡ θi+1 − θi and θw ≡ θi − θi−1. We
ignore the coupling to the layers i + 2 and i − 2.

A. Numerical solution

We integrate the Langevin equations describing these
three phases numerically (see Ref. [23]) and depict the time
evolution of the variances Vw(t) ≡ 〈sin2 θw(t)〉 − 〈sin θw(t)〉2

and Vs (t) ≡ 〈sin2 θs(t)〉 − 〈sin θs(t)〉2 in Fig. 2. Vw and Vs are a
measure of the interlayer phase fluctuations, and equally for the
current fluctuations, keeping in mind that the currents across
the Josephson junctions are ji ≡ 2Ji sin(θi) with i ∈ {w,s}.
We use the parameters of Table I and a driving frequency
of ωm = 2π × 10.4 THz, i.e., near the strong plasmon mode.
We use a temperature of T = 0.2 K. For this toy model, we
have to use a temperature that is of the order of Jw, or else
any phase coherence of the weak junction is suppressed. As
we demonstrate below for the full, bulk model, temperatures
of the order of Jab still give phase coherence of the weak
junctions. The driving amplitude A0 is set to zero for t < 5 ps,
and A0 = 5.2 meV after that.

We compare Vw(t) and Vs(t) to their equilibrium values,

Vw/s,th = 〈sin2(θw,s)〉eq = T

Jw,s

I1(Jw,s/T )

I0(Jw,s/T )
. (6)

These are obtained by taking the expectation value for the
equilibrium ensemble ρeq = exp ((Jw,s/T ) cos(θw,s)); I0(x)
and I1(x) are the modified Bessel functions of the first kind.
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FIG. 3. (Color online) Time-averaged variances of the weak
junction (top, red lines), V̄w , and the strong junction (bottom, blue
lines), V̄s , plotted against the driving frequency. Equilibrium states are
shown as dashed lines, and driven steady states as continuous lines.
We find a reduction of V̄w near the resonance of the strong junction,
where the strong junction acts as an amplifier of the external driving,
and a similar feature near ωw , due to direct driving of the weak
junction.

For the weak junction, we typically have T � Jw. In this limit
we have

Vw,th ≈ 1

2
− 1

16

J 2
w

T 2
(7)

as the first terms of a high-temperature expansion. As we see in
Fig. 2, both variances undergo a transient phase, during which
Vw is visibly reduced. After that, a steady state emerges, in
which the time average of Vw is smaller than in equilibrium.
It is this reduction of fluctuations that we are interested in,
and which is further enhanced in the bulk system discussed
below. We show the reduction of Vw and Vs in percent of the
equilibrium value, which for the weak junction is 1–2%. To
state that reduction in more physical terms, we use Eq. (6) as a
measure, and we translate Vw into an effective temperature
Teff . This gives a “temperature” reduction of 5%. As we
demonstrate below, the state that is created via driving is not a
thermal state, but rather a nonequilibrium state. Teff is purely
an alternative measure of Vw.

In Fig. 3 we show the time-averaged variances of the strong
and weak junction, of the steady state, V̄w,s ≡ 〈Vw,s(t)〉t ,
as a function of the driving frequency ωm. We observe a
suppression of the fluctuations of the weak junction for a
driving frequency near the high-energy plasmon frequency.
We conclude that this suppression is not directly induced by
the driving term in Eq. (2) operating on the weak junction, but
by driving the high-frequency mode near resonance, which in
turn suppresses the fluctuations of the low-frequency mode.
The high-frequency plasmon mode acts as an amplifier of the
driving term acting on the weak junction.

In addition to the feature near ωs , there is a similar feature
for driving frequencies near ωw. Here, V̄s is unaffected, and
the reduction is due to direct driving of the weak junctions.
We note, however, that the driving frequencies in Refs. [18,19]
are far away from the lower plasmon frequency, and we focus
on the phenomenon around 10 THz. The dependence of this
result on the driving amplitude A0 is discussed in Appendix A.
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FIG. 4. (Color online) (a) Power spectrum of the weak junction,
Sw(ω), in arbitrary units on a logarithmic scale. The blue line is the
thermal spectrum, and the red line is the spectrum of the driven steady
state. (b) Difference of the power spectrum of the driven state and
the equilibrium spectrum. We find that the low-frequency fluctuations
are reduced, whereas the fluctuations near the driving frequency are
enhanced. Therefore, driving leads to an up-conversion of spectral
weight.

In Fig. 4 we show the power spectrum of the cur-
rents in the weak junction for a driving frequency of
ωm = 2π × 10.4 THz, where the effect is maximum,
and for A0 = 5.2 meV. The power spectrum is de-
fined as Sw(ω) ≡ 〈jw(−ω)jw(ω)〉 − 〈jw(−ω)〉〈jw(ω)〉, where
jw(ω) = 1/

√
Ts

∫
dt ′ exp(−iωt ′)jw(t ′), with Ts being the

sampling time during the steady state. The power spectrum
is therefore the Fourier transform of the two-time correlation
function 〈jw(t1)jw(t2)〉, with times t1 and t2 in the sampling
time interval.

We find that the fluctuations are reduced at low frequencies,
which in equilibrium would correspond to a reduction of
temperature. At the driving frequency and multiples of it,
fluctuations are increased, resulting in a redistribution of phase
fluctuations in frequency space.

This redistribution can be understood as follows. The
integral over the power spectrum

∑
ω Sw(ω) is essentially the

time-averaged equal-time correlation of the current, i.e., V̄w.
This quantity, however, is nearly saturated for 1/2 at high
temperatures, as can be seen from Eq. (7). Therefore, the
total area under the power spectrum has essentially reached

its upper bound. Now, because the system is nonlinear, the
high-frequency modes near the driving frequency ωm will be
activated, and their weight in the power spectrum will increase.
As a result the spectral weight in the low-frequency regime
has to decrease. For this mechanism to occur, we therefore
need two ingredients: first, a nonlinear system, for which
the modes of different frequency interact, and second, high
temperatures and a quantity whose fluctuations saturate at
these temperatures. We indeed do not see this effect for a
harmonic oscillator, or for low temperatures.

B. Analytical solution

In this section we derive and discuss an analytical ex-
pression for the reduction of fluctuations, for a limit of the
two-oscillator toy model. The equations of motion for the
phase differences θs and θw, which we discussed in the previous
section, are

θ̈w = −ω2
w sin θw + (

ω2
s sin θs

)/
2 − γ θ̇w + ξw

+ 2A0[ωm sin(ωmt) − γ cos(ωmt)], (8)

θ̈s = −ω2
s sin θs + (

ω2
w sin θw

)/
2 − γ θ̇s + ξs

− 2A0[ωm sin(ωmt) − γ cos(ωmt)]. (9)

For the noise terms we assume 〈ξi(t1)ξj (t2)〉 =
4Ecγ T δij δ(t1 − t2), with i,j ∈ {w,s}. We now consider
the motion of the strong junction as an external drive on the
weak junction, see Sec. B1. We combine this contribution
and the external drive into an effective external driving term
F (t) = F0 sin(ωmt). Furthermore, for calculational simplicity,
we consider the overdamped limit:

θ̇w = −ω2
w

γ
sin θw + F (t)

γ
+ 1

γ
ξ (t), (10)

which is a driven, overdamped Josephson junction, coupled
to a thermal bath [24]. The corresponding Fokker-Planck (FP)
equation (see, e.g., Ref. [25]) for θw is

∂tρ = 2T Ec

γ
∂θθρ + ω2

w

γ
∂θ ( sin(θ )ρ) − F (t)

γ
∂θρ. (11)

For notational simplicity, we have dropped the subscript w;
ρ(θ,t) is the time-dependent probability distribution of θ ,
defined on (−π,π ]. As described in Sec. B2, we choose a
simple ansatz ρ = exp (f (θ,t)), with

f (θ,t) = Jw

T
([1 + ac(t)] cos(θ ) + as(t) sin(θ )) (12)

with two functions ac(t) and as(t), which solve a set of of linear
differential equations. As demonstrated in Fig. 10(a), this solu-
tion captures both the transient and the steady-state behavior.
For the transient time scale we obtain ttr = γ /(2T Ec), which
is indeed consistent with the numerical results. For V̄w we find

V̄w ≈ Vw,th − 1

32

J 2
w

T 2

F 2
0

γ 2ω2
m

, (13)

which indeed shows the reduction of fluctuations, com-
pared to Vw,th, Eq. (7). In Sec. B3 we give a systematic
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high-temperature expansion to fourth order in F0 and find

V̄w ≈ Vw,th − 1

32

J 2
w

T 2

F 2
0

γ 2ω2
m

+ 21

512

J 2
w

T 2

F 4
0

γ 4ω4
m

, (14)

again written for γωm � T Ec. Thus, in comparison to the
equilibrium expression, the variance is first reduced, reaches
a minimum at F 2

0 = (8/21)γ 2ω2
m, and then increases again. In

Fig. 10(b) we show Eq. (14) in comparison to the numerical so-
lution of the single oscillator model, Eq. (10), and the equilib-
rium value. We find that Eq. (14) captures the numerical result
well, and that the suppression of fluctuations is even stronger
than the analytical estimate. In Sec. B3 we find that a typical
reduction of Teff for optimal driving is between 5% and 10%.

IV. BULK SYSTEM

We next consider a more realistic model involving a
stack of bilayers, described by Eqs. (3) and (5). We use
a lattice with either 128 × 128 or 256 × 256 sites in the

ab plane, and 4 in the c direction. We define Vw(s)(t) ≡
(1/Nw(s))

∑
〈ij〉w(s)

〈sin2 θij (t)〉 − 〈sin θij (t)〉2, where the sum is
over all weak (strong) junctions, Nw(s) is the number of weak
(strong) junctions, and θij is the phase difference between sites
i and j . The time evolution of Vw and Vs is shown in Fig. 5(a).
In Fig. 5(b) we show the time average of the steady state
V̄w,s ≡ 〈Vw,s(t)〉t as a function of the driving frequency. The
behavior that emerges from the extended model is qualitatively
similar to the one described by the single bilayer model; see
Figs. 2 and 3. However, the magnitude of the reduction of
fluctuations is strongly enhanced. We note that the temperature
of this example is significantly higher, while the magnitude of
Vw is comparable to the toy model examples. This is due to the
energy scale Jab which is indeed the main effective tunneling
scale that the relative phase between two layers experiences.

To derive an effective single oscillator model for the
bulk model, we consider two neighboring pairs of sites,
with the phases θz,i , θz,i+1, θz+1,i , and θz+1,i+1, where z

is the layer index and i is the site index in the plane.
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FIG. 5. (Color online) (a) Time evolution of Vw(t) and Vs(t) of the bulk system for a driving frequency of ωm = 2π × 10.4 THz, a driving
amplitude of A0 = 4.3 meV, and a temperature of T = 100 K. The system is a 256 × 256 × 4 lattice. (b) V̄w of the bulk system, shown as a red,
continuous line, plotted against the driving frequency, for a driving amplitude of A0 = 4.3 meV, for a 256 × 256 × 4 system. For comparison,
we show the nondriven value as a dashed line. As a second comparison, we show V̄w of the toy model as a black continuous line, with a
temperature chosen such that the thermal magnitude of the bulk system is reproduced. We use a driving amplitude of A0 = 4.3 meV, which
is near the optimal driving amplitude for the toy model. We note that there is a large reduction of V̄w near the resonance of the large plasmon
frequency, and that the bulk system has a much stronger reduction than the toy model. Furthermore, the reduction due to direct driving of the
weak junctions around ωw is washed out due to the strong additional damping in the bulk. (c) Power spectrum of the total current. The system
is a 128 × 128 × 4 lattice at T = 100 K, with a driving amplitude A0 = 4.3 meV, and for a driving frequency of ωm = 7.9 THz, which is
near the minimum of V̄w . We again see a reduction of the low-frequency fluctuations when the system is driven. (d) Difference of the power
spectrum of the driven state and the equilibrium spectrum.
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The layers z and z + 1 are connected by weak junctions.
We go to the basis of phase differences across the weak
junctions, θw,j ≡ θz+1,j − θz,j with j ∈ {i,i + 1}, and the
total phases, �w,j ≡ (θz+1,j + θz,j )/2 with j ∈ {i,i + 1}. The
largest term in the Hamiltonian is the one that couples
the phases in the planes. We therefore consider H ≈
−Jab[cos(θz+1,j+1 − θz+1,j ) + cos(θz,j+1 − θz,j )]. We write
this expression in terms of θw,j and �w,j , and average out the
fields �w,j , resulting in a temperature-dependent prefactor.
The remaining term is proportional to cos ((θw,i − θw,i+1)/2).
We approximate this term via a mean-field decomposition
cos ((θw,i − θw,i+1)/2) ≈ cos ((θw,i)/2)〈cos ((θw,i+1)/2)〉 +
sin ((θw,i)/2)〈sin ((θw,i+1)/2)〉. The cos term is the effective
nonlinear oscillator contribution, whereas the sin term is
an effective driving term. After rescaling θw,i/2 → θw,i ,
we therefore end up with the same effective model as in
Eq. (10), where now both Jw = Jw,eff(T ) and F0 are effective,
temperature-dependent parameters. However, the variance of
the phase fluctuations is now

Vw,2(t) ≡ 〈sin2 (2θw(t))〉 − 〈sin (2θw(t))〉2 (15)

because of the field rescaling by 1/2. In equilibrium it is

Vw,2 = 4JwT I1(Jw/T ) − 12T 2I2(Jw/T )

J 2
wI0(Jw/T )

. (16)

We use this expression for Teff in Fig. 5(a). For large

temperatures this approaches Vw ≈ 1
2 − 1

768
J 4

w

T 4 . We can now
use the solution of the Fokker-Planck equation for a single
junction. As shown in Sec. B2, the time-averaged value of
Vw,2 in the driven steady state is

V̄w,2 ≈ 1

2
− J 4

w

768T 4
− 19J 4

w

768T 4

F 2
0

γ 2ω2
m + 4T 2E2

c

, (17)

which again shows a reduction due to driving. We can also use
the high-temperature expansion of the FP equation, described
in Sec. B3, and calculate V̄w,2. This indeed captures the
magnitude of the reduction of phase fluctuations in the bulk,
as shown in Fig. 12.

In Figs. 5(c) and 5(d) we show the power spectrum S(ω)
of the currents across a layer of weak junctions jw,tot(t) ≡∑

〈ij〉,w 2Jw sin θij , i.e., S(ω) = 〈jw,tot(−ω)jw,tot(ω)〉. Again

we see that the fluctuations of the low-frequency modes are
reduced due to driving, similar to the toy model.

V. IN-PLANE DYNAMICS

Finally, we study the in-plane behavior of the driven
bulk system. In Fig. 6 we show the fluctuations of the
current [jw(r,t) − j̄w(t)]2, normalized by 1/(2Jw)2, for a
single realization of the stochastic evolution of the system.
We find that the system undergoes periodic breathing during
a cycle. Furthermore, there are large regions, in which the
fluctuations are suppressed, with smaller regions interspersed,
in which the fluctuations are enhanced.

As described in the previous section, the magnitude of the
interlayer coherence V̄w is first suppressed, as a function of the
driving amplitude A0, then reaches a minimum before increas-
ing again; see Fig. 12. To illustrate how the in-plane current
fluctuations are affected by this, we depict [jw(r,t) − j̄w(t)]2 of
single realizations, for increasing driving amplitude in Fig. 7.
As is clearly visible, near the optimal driving amplitude the
fluctuations are strongly suppressed, interspersed with small
regions of increased fluctuations.

To study the in-plane behavior that was exemplified in
Figs. 6 and 7 quantitatively, we investigate how the current
correlations between different sites within each plane are
affected by driving. We define the current correlation function

G(r,t) ≡
∑

r0

〈(sin (θw(r0,t)) − sin (θw(r0 + r,t)))2〉
2N

. (18)

Here θw(r,t) refers to the phase difference across a weak
junction at the two-dimensional site location r = (x,y) and
at time t . The summation is over a single plane, with a
number of sites, N . In Appendix C, in particular in Fig. 13,
we show the time evolution of this correlation function.
Based on the time evolution of G(r,t) we define the time
average in the steady state Ḡ(r) ≡ 〈G(r,t)〉t . We depict this
quantity in Fig. 8, for two values of the driving amplitude,
in comparison to the equilibrium correlation function. We
find that the current fluctuations are visibly reduced due to
the driving, in particular on long scales. This would—in
equilibrium—correspond to a reduced temperature. However,

FIG. 6. (Color online) Current fluctuations in a plane of weak junctions, for a driving frequency of ωm = 8.3 THz, and for a driving
amplitude of A0 = 4.3 meV. On the left, we see a thermal state; on the right, we show a cycle during the steady state of the driven system.
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FIG. 7. (Color online) Current fluctuations in the steady state at
half a cycle, for three values of A0. The first panel is the same as in
Fig. 6 at half a cycle. A0 = 12.9 meV is near the optimal driving. At
A0 = 38.8 meV, the magnitude of V̄w has reached approximately its
equilibrium value again, as can be seen from Fig. 12.

we find that this asymptotic value is reached on a shorter scale,
which indicates that the correlation length of the driven state
is shorter. This is particularly visible for the driving amplitude
near the optimum. In equilibrium, the reduced correlation
length would correspond to a higher temperature. This again
demonstrates that the resulting driven state is a nonequilibrium
state, which cannot be captured by a single temperature on all
scales. This observation is consistent with the redistribution of
phase fluctuations visible in the power spectra. The long-range
modes behave as if the temperature has been reduced, whereas
on short scales the system appears to be heated up.

The above suggests a possible physical frame for pe-
riodically driven bilayer cuprates, which, in the limit of
preexisting pairs and of superconductivity being destroyed at
the weakly coupled interbilayer junction by thermal phase

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

G
(x

)

x

thermal
optimal driving

weak driving

FIG. 8. (Color online) We show the equilibrium in-plane correla-
tion function G(r) and the time-averaged correlation function Ḡ(r) of
the driven state, for two driving amplitudes. Weak driving corresponds
to A0 = 4.3 meV and optimal driving to A0 = 12.9 meV.

fluctuations, may explain how important elements of the
superconducting phase may persist or be reestablished above
Tc. Note that the response of the in-plane condensate is
important in more than one respect. First, it is possible that the
stabilization of the long-range phase coherence may provide
further stabilization for superconductivity at low frequency at
the expense of enhanced in-plane fluctuations on short ranges
and hence at higher frequency scales. Furthermore, although
this is not studied here, the interaction of this driven phase
with other coexisting or competing in-plane charge and spin
orders [26–28] may provide additional elements and prospects
for dynamical stabilization in this class of compounds.

VI. CONCLUSIONS

In summary, we have demonstrated that a reduction of
thermal phase fluctuations in a layered superconductor can
be achieved via external driving. We have developed an
extended, anisotropic XY model to describe the dynamics of
the pairing field, and a toy model that captures this effect.
To give an example for the magnitude of the reduction
in the bulk system, we again estimate the temperature Teff

of the equilibrium system that gives the same variance Vw as
the driven system. We consider the data shown in Fig. 12.
We use Eq. (16) to determine Jw,eff from the equilibrium value
of Vw ≈ 0.455, which gives Jw,eff ≈ 341 K. The reduction
of Vw to ≈0.385 for optimal driving would correspond to
an equilibrium temperature of Teff ≈ 60 K, compared to the
equilibrium temperature T = 100 K. This demonstrates the
remarkable reduction of fluctuations that is possible with
this mechanism. With regard to the experiments reported in
Refs. [18,19], we note that the driving frequency was ≈1.5 that
of the plasmon of the strong junctions. However, as is visible in
Fig. 5(b), the response of the weak junction occurs in a broad
frequency range above it, because of the amplifying effect
of the strong junction. Thus, the mechanism proposed here
can be a possible explanation and contributing factor for the
observations of Refs. [18,19]. As for future experiments, we
have demonstrated that the suppression of phase fluctuations of
the weak layers is most effective if the driving frequency is near
the plasmon of the strong junction layer. We thus propose to
use a material with an optical phonon mode near that plasmon
frequency.
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APPENDIX A: DEPENDENCE ON THE
DRIVING STRENGTH

To illustrate the dependence of V̄w and V̄s on the magni-
tude of the driving term A0, we show frequency scans for
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FIG. 9. (Color online) (a) Time-averaged variances V̄w and V̄s of
the steady state of the toy model for increasing driving strength A0.
(b) The time-averaged variance V̄w for the bulk system, as a function
of the driving frequency, for several values of A0.

different values of A0 in Fig. 9(a) for the toy model. For
computational simplicity, we choose the overdamped limit,
with γ = 2.1 THz. We also choose Jw = 0.25 K, Js = 25 K,
U = 5000 K, and T = 0.25 K. We observe that the reduction
of V̄w occurs over a large frequency range around the resonance
frequency of the strong junction. As A0 is increased, the
response of the strong junction increases in magnitude. For
small A0, the amplitude of 〈sin (θs(t))〉 is small, and the
response is that of a driven harmonic oscillator. As A0 is
increased the nonlinearity of the oscillator skews the response
of the oscillator, as visible in V̄s in Fig. 9. This response
can be understood by expanding sin(θs) in the equation of
motion, Eq. (9), to third order and using the solution of the
driven Duffing oscillator. The response of the weak junction
shows a reduction of the fluctuations, which increases for
increasing driving. As the driving is increased further, this
effect is reverted and V̄w is increased.

In Fig. 9(b) we show the analogous frequency scans for
the bulk system. We use the same parameters as above, with
a temperature of T = 200 K. We again see a minimum of V̄w

if the system is driven near the resonance of the high-energy

plasmon. However, as the driving amplitude A0 is increased,
this tendency is reverted, and V̄w increases again, similar to
the behavior of the toy model.

APPENDIX B: DRIVEN, OVERDAMPED
NONLINEAR OSCILLATOR

We elaborate on the analytical and numerical solutions of
the driven, overdamped Josephson junction. In Sec. B 1 we
derive the effective single oscillator approximation, Eq. (10),
from the two oscillator model in Eqs. (8) and (9). In Sec. B 2
we discuss the ansatz in Eq. (12) for the Fokker-Planck
equation, Eq. (11). In Sec. B 3 we discuss the high-temperature
expansion that gives the V̄w estimate in Eq. (14). The high-
temperature expansion is also used for the comparison shown
in Fig. 12.

1. Single-oscillator approximation

In this section we elaborate on the single-oscillator ap-
proximation, described by Eq. (10). We approximate the
strong junction as a driven harmonic oscillator and ignore
the coupling to the weak junction. In steady state, θs(t) is

θs(t) = A cos(ωmt) + B sin(ωmt) (B1)

with

A = 2A0
γω2

s(
ω2

m − ω2
s

)2 + γ 2ω2
m

, (B2)

B = 2A0
ωm

(
ω2

m − ω2
s + γ 2

)
(
ω2

m − ω2
s

)2 + γ 2ω2
m

. (B3)

The skewness of the response of the strong junction, which is
also visible in Fig. 9, is due to the nonlinearity of the oscillator.
It can be understood by expanding the sin θs to cubic order and
using the Duffing oscillator solution. For the weak junction,
we consider the overdamped limit, where we ignore the θ̈w

term:

θ̇w = −ω2
w

γ
sin θw + F (t)

γ
+ 1

γ
ξ (t) , (B4)

which is Eq. (10). We interpret θs(t) as an external driving
term, given by Eq. (B1), and linearize sin (θs(t)). The resulting
driving term for the weak junctions is F (t):

F (t) = Fc cos(ωmt) + Fs sin(ωmt), (B5)

where Fc = ω2
s A/2 − 2γA0 and Fs = ω2

s B/2 + 2ωmA0. We
write this as F (t) = F0 sin(ωmt + φ0), with F0 = √

F 2
c + F 2

s

and φ0 = arctan(Fc/Fs). We shift the time axis t → t −
φ0/ωm, and the resulting driving term is F (t) = F0 sin(ωmt).

2. Ansatz for the Fokker-Planck equation

In this section we discuss the approximate, analytical
solution of the Fokker-Planck equation, based on the ansatz
in Eq. (12). In equilibrium and without driving, the Fokker-
Planck equation, Eq. (11), is solved by

ρ0 = exp

(
Jw

T
cos(θ )

)
. (B6)
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To solve the driven case, we write ρ(t) as ρ = exp (f (θ,t))
and obtain

∂tf = 2Ec

γ
(T (∂θθf + (∂θf )2) + J (cos θ + sin θ∂θf ))

−F (t)∂θf/γ, (B7)

where f has to be periodic in θ and can therefore be
expanded in a Fourier series f = ∑

n exp(inθ )fn. For the
high-temperature and weak-driving regime, we limit this
expansion to the first harmonic, n = 1. We consider

f (θ,t) = Jw

T
([1 + ac(t)] cos(θ ) + as(t) sin(θ )). (B8)

With this, we ignore the higher-order harmonic terms in
Eq. (B7), in particular the terms ∼(∂θf )2 and ∼ sin θ∂θf . The
resulting equations of motion for as and ac are

ȧs = −2T Ec

γ
as + F0

γ
sin(ωmt), (B9)

ȧc = −2T Ec

γ
ac − F0

γ
sin(ωmt)as, (B10)

where we linearized Eq. (B9), with the assumption as,ac � 1.
With as,c(0) = 0, these are solved by

as(t) = C1 exp(−t/ttr ) − C1 cos(ωmt) + C2 sin(ωmt),

(B11)

ac(t) = exp(−t/ttr )[C3 + C4 cos(ωmt)] − C4/2

−C5 cos(2ωmt) + C6 sin(2ωmt), (B12)

with

C1 = F0γωm

γ 2ω2
m + 4T 2E2

c

, (B13)

C2 = 2F0T Ec

γ 2ω2
m + 4T 2E2

c

, (B14)

C3 = −F 2
0

4

1

γ 2ω2
m + T 2E2

c

, (B15)

C4 = F 2
0

1

γ 2ω2
m + 4T 2E2

c

, (B16)

C5 = F 2
0

4

γ 2ω2
m − 2T 2E2

c

γ 4ω4
m + 5γ 2ω2

mT 2E2
c + 4T 4E4

c

, (B17)

C6 = 3F 2
0

4

γωmT Ec

γ 4ω4
m + 5γ 2ω2

mT 2E2
c + 4T 4E4

c

, (B18)

where ttr is the transient time scale, ttr = γ /(2T Ec). This time
scale increases with increasing damping, as is typically the case
in the overdamped limit. We note that for small temperatures,
in particular for T Ec � γωm, the driving amplitude F0 has to
be compared to the energy scale γωm, while for T Ec � γωm,
it has to be compared to T Ec. This can already be read off
from, say, Eq. (B9). Since the derivative ȧs is ∼ωmas in the
driven state, there are two homogeneous terms to counter the
driving term. As a result, as will scale as ∼F0/(γωm) or as
∼F0/(T Ec), depending on which is the dominant energy scale.
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FIG. 10. (Color online) (a) Time evolution of Vw for the effective,
single-oscillator model, Eq. (10). The temperature is T = 1 K, the
damping γ = 2.1 THz, the driving frequency ωm = 10.4 THz, U is
5000 K, and F0/(γωm) = 0.3. The red line shows the numerical
solution, and the blue line the analytical solution in Eq. (B19).
(b) Time-averaged V̄w for the single-oscillator model, as a function
of the driving amplitude. The red lines are numerical results, and the
blue line is the analytical result in Eq. (14).

Vw(t) is given by

Vw(t) ≈ 1

2
− J 2

w

16T 2

[
1 + 2ac(t) + 3a2

s (t)
]

(B19)

within the high-temperature expansion, and up to second order
in F0. We note that as scales as first order in F0, and ac as
second order. This high-temperature expansion is in analogy
to Eq. (7). In Fig. 10(a) we compare Eq. (B19) to the numerical
solution. We find that both the transient behavior and the steady
state are captured by the analytical expression.

In the steady state, we have

〈
a2

s

〉 = −〈ac〉 = F 2
0

2

1

γ 2ω2
m + 4T 2E2

c

. (B20)

Therefore, the time-averaged value of Vw in the steady state is

V̄w ≈ 1

2
− J 2

w

16T 2
− J 2

w

32T 2

F 2
0

γ 2ω2
m + 4T 2E2

c

. (B21)

For γωm � T Ec this reduces to Eq. (13).
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As described in the discussion of the bulk system, we can
use a single oscillator for the bulk system as well. However,
we have to consider the variance of sin(2θ ), Vw,2(t), defined
in Eq. (15), rather than Vw. This is given by

Vw,2(t) ≈ 1

2
− J 2

w

768T 2

[
1 + 4ac(t) + 42a2

s (t)
]
. (B22)

The time-averaged value for the steady state is

V̄w,2 ≈ 1

2
− J 4

w

768T 4
− 19J 4

w

768T 4

F 2
0

γ 2ω2
m + 4T 2E2

c

. (B23)

3. High-temperature expansion

As a more systematic approach, we expand ρ as ρ (φ,t) =
1

2π

∑
k,n exp (ikφ + inωmt) ρk,n. The FP equation for ρk,n is

inωmρk,n = −2T Ec

γ
k2ρk,n + JwEc

γ
k(ρk−1,n − ρk+1,n)

− F0

2γ
k(ρk,n−1 − ρk,n+1). (B24)

We reduce ρk,n to a finite number of coefficients by taking
into account only k = −2, . . . ,2 and n = −2, . . . ,2, for the
analytical result for V̄w shown below and in Eq. (14), and
k = −8, . . . ,8 and n = −8, . . . ,8 for the numerical solution
depicted in Fig. 12.

We write out the case of k = −2, . . . ,2 and n = −2, . . . ,2.
Extending the range of these coefficients can be easily done by
analogy. We represent the coefficients ρk,n, with k = −2, . . . ,2
and n = −2, . . . ,2, as a single-column vector with the entries
ρ̃ ≡ (ρ2,2,ρ2,1,ρ2,0,ρ2,−1,ρ2,−2,ρ1,2, . . . ,ρ−2,−2). The Fokker-
Planck Eq. (B24) is then

iωmM0ρ̃ = −2T Ec

γ
M1ρ̃ + JwEc

γ
M2ρ̃ − F0

2γ
M3ρ̃ (B25)

with

M0 = K0 ⊗ 15, (B26)

M1 = 15 ⊗ K1, (B27)

M2 = 15 ⊗ K2, (B28)

M3 = K3 ⊗ K0, (B29)

and

K0 =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞
⎟⎟⎟⎠ , (B30)

K1 =

⎛
⎜⎜⎜⎝

4 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 4

⎞
⎟⎟⎟⎠ , (B31)

K2 =

⎛
⎜⎜⎜⎝

0 2 0 0 0
−1 0 1 0 0

0 0 0 0 0
0 0 1 0 −1
0 0 0 2 0

⎞
⎟⎟⎟⎠ , (B32)

K3 =

⎛
⎜⎜⎜⎝

0 1 0 0 0
−1 0 1 0 0

0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 0

⎞
⎟⎟⎟⎠ . (B33)

We solve this set of linear equations and evaluate Vw (t). We
expand to second order in 1/T and to fourth order in F0. This
gives Vw (t), from which we calculate the time-averaged value
V̄w to be

V̄w ≈ 1

2
− 1

16

J 2
w

T 2
− 1

32

J 2
w

T 2

F 2
0

γ 2ω2
m

f2(x)

+ 3

512

J 2
w

T 2

F 4
0

γ 4ω4
m

f4(x) (B34)

with

f2(x) = 1 + 144x2

1 + 68x2 + 256x4
, (B35)

f4(x) = 7 + 948x2 + 15 648x4 + 24 832x6

(1 + 64x2)(1 + 4x2)2(1 + 17x2 + 16x4)
, (B36)

and x ≡ T Ec/(γωm). For γωm � T Ec, i.e., x � 1, the
expression for V̄w simplifies to

V̄w ≈ 1

2
− 1

16

J 2
w

T 2
− 1

32

J 2
w

T 2

F 2
0

γ 2ω2
m

(B37)

+ 21

512

J 2
w

T 2

F 4
0

γ 4ω4
m

, (B38)

which is the same as Eq. (14). We also note that the
second-order term in F0 is the same as in Eq. (13). This
expression is minimized for F 2

0 = (8/21)γ 2ωm
2. The resulting

minimal value for V̄w is V̄w = 1/2 − (23/336)J 2
w/T 2. If we

formally equate this to 1/2 − J 2
w/(16T 2

eff), purely as a measure

0 0.5 1.0 1.5
x

0.9

0.95

1.0

T
e
ff
/T

FIG. 11. (Color online) Effective temperature as a function of x.
The dashed lines indicate the asymptotic values for x → 0 and x →
∞.
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FIG. 12. (Color online) We show V̄w as a function of the driving
amplitude A0, for the bulk system of 256 × 256 × 4 sites, at T =
100 K, at a driving frequency of ωm = 8.3 THz. Additionally, we
show the prediction of the effective model, calculated via the high-
temperature expansion of the FP equation described in Sec. B 3. The
result for the bulk simulation is shown as a continuous red line, with
the nondriven case as a dashed red line. The result for the effective
single-junction model is shown in blue. Jw,eff has been chosen so
that the equilibrium value of Vw is reproduced. F0 has been chosen
to be proportional to V0, with a proportionality coefficient such that
the minima match up. We indeed see that the large reduction of the
phase fluctuations is approximately captured by the effective single-
oscillator model.

of the reduction of the fluctuations, we obtain an effective
temperature of Teff/T = √

21/23 ≈ 0.96.
In the opposite limit of γωm � T Ec we have

V̄w ≈ 1

2
− 1

16

J 2
w

T 2
− 9

512

J 2
w

T 2

F 2
0

T 2E2
c

(B39)

+ 291

32 768

J 2
w

T 2

F 4
0

T 4E4
c

. (B40)

This is minimized for F 2
0 /(T 2E2

c ) = (192/97). The minimal
value of V̄w is V̄w = 1/2 − (221/3104)J 2

w/T 2, and the effec-
tive temperature is Teff/T = √

194/221 ≈ 0.94.
The full expression for V̄w in Eq. (B34) is minimized for

F 2
0 = 8

3

f2(x)

f4(x)
γ 2ω2

m. (B41)

FIG. 13. (Color online) Time evolution of the current correlation
function, defined in Eq. (18).

For this value of F0, V̄w is

V̄w ≈ 1

2
− 1

16

Jw
2

T 2
− 1

24

Jw
2

T 2

f2(x)2

f4(x)
. (B42)

We again formally equate this to 1/2 − J 2
w/(16T 2

eff) and obtain
the effective temperature

Teff

T
= 1√

1 + 2f2(x)/[3f4(x)]
. (B43)

This expression is shown in Fig. 11. We see that the two
asymptotic values derived above are indeed visible, for x = 0
and x → ∞, and that Teff/T assumes a minimum in between,
near ≈0.25. Here, Teff/T is ≈0.91.

APPENDIX C: IN-PLANE BEHAVIOR

In Eq. (18) we defined the in-plane current correlation
function G(r,t) to quantify the behavior we have seen in Figs. 6
and 7. The full time evolution for A0 = 50 K is shown in
Fig. 13. The driving is turned on at t = 0 ps. After a short
transient phase, the system settles into a steady state. We
note that the long-range limit of G(r,t) is Vw(t). We take the
time averages of G(r,t) in the steady state and depict them in
Fig. 8.
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