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Zusammenfassung 

Mit Fokus auf das visuelle System von Fliegen behandle ich in meiner Dissertation die 

Identität und Funktion von Neuronen, welche zwei fundamentale Verarbeitungsschritte 

ausführen, die für das Überleben der meisten Tiere notwendig sind. Zum einen sind dies dem 

Farbensehen zugrunde liegende Neuronen und zum anderen solche, die essentiel für visuelles 

Gedächtnis sind. 

 Allgemein wird angenommen, dass Farbensehen auf Photorezeptoren mit 

Sensitivitäten für schmale Spektralbereiche aufbaut. Im Ommatidium von Drosophila 

exprimieren die sogenannten inneren Photorezeptoren verschiedene spektral schmalbandige 

Opsine. Im Gegensatz dazu haben die äußeren Photorezeptoren eine breitbandige spektrale 

Sensitivität und man nimmt an, dass diese ausschließlich achromatisches Sehen ermöglichen. 

Mit Hilfe von computergestützten Modellen und Verhaltensexperimenten zeige ich hier, dass 

die breitbandigen äußeren Photorezeptoren zum Farbensehen in Drosophila beitragen. Ein 

Modell mit opponenter Verarbeitung von Photorezeptorsignalen, welches das Opsin der 

äußeren Photorezeptoren beinhaltet, passt am besten zum spektralen 

Unterscheidungsverhalten von Fliegen. Um experimentell den Beitrag der einzelnen 

Photorezeptortypen zu ermitteln verwendete ich blinde Fliegen mit einem Defekt in der 

Phototransduktion (norpA-) und rettete die norpA Funktion gezielt in einzelnen oder 

verschiedenen Kombinationen von Photorezeptortypen mit Hilfe des GAL4/UAS 

Genexpressionssystems. Erstaunlicherweise können dichromatische Fliegen mit nur äußeren 

Photorezeptoren und einem weiteren Rezeptortyp Farben unterscheiden, was auf die Existenz 

eines spezifischen Vergleichs der Signale von äußeren und inneren Photorezeptoren hindeutet. 

Außerdem beeinträchtigt der Block von Interneuronen, welche postsynaptisch von den 

äußeren Photorezeptoren sind, spezifisch das Farbensehen aber nicht die 

Intensitätsunterscheidung. Diese Ergebnisse zeigen zum einen, dass die äußeren 

Photorezeptoren mit einer komplexen und breitbandigen spektralen Sensitivität zum 

Farbensehen beitragen und zum anderen, dass chromatische und achromatische neuronale 

Netzwerke in der Fliege gemeinsame Photorezeptoren teilen.  

Höher geordnete Gehirnbereiche integrieren sensorische Information verschiedener 

Modalitäten insbesondere visueller Natur und assoziieren deren neuronale Representation mit 

guten und schlechten Erfahrungen. Es ist jedoch unklar, wie unterschiedliche sensorische 

Gedächtnisse im Gehirn von Drosophila verarbeitet werden. Außerdem ist das neuronale 

Netzwerk, welches Farb- und Intensitätsgedächtnis zugrunde liegt völlig unbekannt. Um diese 
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Fragen zu beantworten etablierte ich appetitive und aversive Verhaltensassays für Drosophila. 

Diese erlauben die Gegenüberstellung von appetitivem und aversivem visuellen Gedächtnis 

unter Verwendung von neurogenetischen Methoden zur Netzwerkanalyse. Desweiteren sind 

die visuellen Verhaltensassays sehr ähnlich zu den verbreiteten olfaktorischen Lernsassays, da 

diese verstärkende Stimuli (Zuckerbelohnung und Elektroschockbestrafung), 

Konditionierungsablauf und Methoden zur Gedächtnismessung gemein haben. Dadurch wird 

ein direkter Vergleich der zellulären Grundlagen von visuellem und olfaktorischem 

Gedächtnis möglich. Ich fand, dass die gleichen Gruppen von Dopaminneuronen, welche den 

Pilzkörper innervieren, sowohl notwendig als auch ausreichend für die Bildung beider 

sensorischer Gedächtnisse sind. Außerdem ist die Expression des D1-ähnlichen 

Dopaminrezeptors (DopR) im Pilzkörper ausreichend um den Gedächtnisdefekt einer DopR 

Nullmutante (dumb-) zu retten. Diese Ergebnisse sowie die Notwendigkeit des Pilzkörpers für 

visuelles Gedächtnis in dem benutzen Assay deuten darauf hin, dass der Pilzkörper ein 

Konvergenzareal ist, in welchem Repräsentationen von verschiedenen sensorischen 

Modalitäten assoziativer Modulation unterliegen. 

 

Schlagwörter:  

Klassische Konditionierung, Lernen, Gedächtnis, Farbensehen, Retina, Photorezeptor, 

Lamina, Dopamin, Belohnung, Bestrafung, Pilzkörper 
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Summary 

Focusing at the fly visual system I am addressing the identity and function of neurons 

accomplishing two fundamental processing steps required for survival of most animals: 

neurons of peripheral circuits underlying colour vision as well neurons of higher order circuits 

underlying visual memory. 

Colour vision is commonly assumed to rely on photoreceptors tuned to narrow spectral 

ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors 

express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband 

spectral sensitivity and are thought to exclusively mediate achromatic vision. Using 

computational models and behavioural experiments, I here demonstrate that the broadband 

outer photoreceptors contribute to colour vision in Drosophila. A model of opponent 

processing that includes the opsin of the outer photoreceptors scores the best fit to wavelength 

discrimination behaviour of flies. To experimentally uncover the contribution of individual 

photoreceptor types, I used blind flies with disrupted phototransduction (norpA-) and rescued 

norpA function in genetically targeted photoreceptors and receptor combinations. 

Surprisingly, dichromatic flies with only broadband photoreceptors and one additional 

receptor type can discriminate different colours, indicating the existence of a specific output 

comparison of outer and inner photoreceptors. Furthermore, blocking interneurons 

postsynaptic to the outer photoreceptors specifically impairs colour but not intensity 

discrimination. These findings show that outer receptors with a complex and broad spectral 

sensitivity do contribute to colour vision and reveal that chromatic and achromatic circuits in 

the fly share common photoreceptors. 

Higher brain areas integrate sensory input from different modalities including vision 

and associate these neural representations with good or bad experiences. It is unclear, 

however, how distinct sensory memories are processed in the Drosophila brain. Furthermore, 

the neural circuit underlying colour/intensity memory in Drosophila remained so far 

unknown. In order to address these questions, I established appetitive and aversive visual 

learning assays for Drosophila. These allow contrasting appetitive and aversive visual 

memories using neurogenetic methods for circuit analysis. Furthermore, the visual assays are 

similar to the widely used olfactory learning assays and share reinforcing stimuli (sugar 

reward and electric shock punishment), conditioning regimes and methods for memory 

assessment. Thus, a direct comparison of the cellular requirements for visual and olfactory 

memories becomes feasible. I found that the same subsets of dopamine neurons innervating 
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the mushroom body are necessary and sufficient for formation of both sensory memories. 

Furthermore, expression of D1-like Dopamine Receptor (DopR) in the mushroom body is 

sufficient to restore the memory defect of a DopR null mutant (dumb-). These findings and the 

requirement of the mushroom body for visual memory in the used assay suggest that the 

mushroom body is a site of convergence, where representations of different sensory 

modalities may undergo associative modulation. 

 

Keywords:  

Classical Conditioning, Learning, Memory, Colour Vision, Retina, Photoreceptor, 

Lamina, Dopamine, Reinforcement, Mushroom Body 
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1. Introduction 

Visual systems in animals have evolved to allow processing of different parameters of visual 

stimuli, leading to diverse visual behaviours. Intensity differences can lead for example to 

simple phototactic behaviour (Lubbock, 1888) or the preference of a shape or an object (Liu 

et al., 2006). Stimuli that move across the retina can for example allow course control (Bahl et 

al., 2013) or identification of moving objects (Zhang et al., 2012). The spectral composition of 

light can be perceived as colour, allowing to discriminate an object of interest from others 

(Menzel and Backhaus, 1989), or can induce spectral specific behaviour (Gao et al., 2008). 

Colour vision, i.e. discrimination of spectrally different stimuli irrespective of their intensity 

(see also 1.2.1), is widespread throughout the animal kingdom and the underlying systems are 

diverse. It requires the existence of at least two photoreceptor types with different spectral 

sensitivities, whose responses must be compared (Rushton, 1972). Most mammals use two 

photoreceptor types for colour vision and are therefore dichromates (Kelber et al., 2003), 

while e.g. humans are trichromates based on their colour vision with three cone photoreceptor 

types (Gegenfurtner and Kiper, 2003). Invertebrates show a high diversity with e.g. honeybee 

Apis mellifera being trichromate (Menzel and Backhaus, 1989), monarch butterfly Papilio 

xuthus being tetrachromate (Koshitaka et al., 2008), and in some cases very complex systems 

like being found in mantis shrimp species with 12 types of photoreceptors of different spectral 

sensitivity (Cronin and Marshall, 1989). Colour information allows an animal to identify food 

sources like a flower with nectar or a fruit that stands out from the bland background 

vegetation. It also can allow an animal to avoid toxic prey/food like yellow jacket wasps or 

fly amanita with their warning pattern which signals the existence of a poisonous defensive 

mechanism. Furthermore, it may be useful to discriminate conspecifics from related species or 

to identify whether a conspecific is ready to mate. All these examples show that organisms 

derive extremely useful information from being able to discriminate colours and to associate 

them with important events.   

The first concepts in colour vision were mostly derived from human perception and 

psychophysics. Back in the 19th century, several models related human colour discrimination 

to underlying receptor responses and mechanisms (Von Helmholtz, 1866; Hering, 1878; 

Maxwell, 1860). Today, photoreceptor spectral sensitivities have been directly measured, 

retinal ganglion cells with spatial colour opponency mechanisms have been identified, and 

several neural mechanisms underlying colour coding from the retina to higher brain regions 

have been studied (Gegenfurtner and Kiper, 2003).  
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Many studies demonstrated the existence of colour vision in diverse animals (Kelber et 

al., 2003). Although, there was important work on honeybees (Daumer, 1956; Frisch, 1914; 

von Helversen, 1972; Menzel and Backhaus, 1989) (see also 1.2.2), most studies that went 

beyond this level were from mammals. In my thesis, I aimed at the questions how colours are 

processed and memorized in a less complex nervous system using the fruit fly Drosophila 

melanogaster. For the study of the neural mechanisms underlying the diverse processing of 

visual stimuli, the fruit fly Drosophila melanogaster with the broad spectrum of genetic 

techniques available, has been shown to be a powerful model organism (Borst, 2009) (see also 

1.4). The genetic manipulation of neural networks in the behaving animal allows drawing 

causal relationships between anatomy and function. To this extend, this is (yet) only possible 

in the fruit fly or the nematode Caenorhabditis elegans (Xu and Kim, 2011). Furthermore, in 

the last decades, the anatomical knowledge and the genetic accessibility to the visual system 

of the fly, has increased significantly (Fischbach and Dittrich, 1989; Morante and Desplan, 

2008; Takemura et al., 2013, 2008) (see also 1.1). That Drosophila can discriminate colours 

irrespective of their brightness has been shown in classical conditioning experiments (Menne 

and Spatz, 1977), though the neural mechanisms underlying this behaviour have so far been 

elusive (see also 1.2.3).  

This thesis is concerned with dissecting (1) the peripheral neural networks underlying 

true colour discrimination in Drosophila and (2) the neural networks allowing the fly to 

associate colours with sugar reward or electric shock punishment by combining behavioural 

analysis and genetic manipulation of neurons. Although the five photoreceptor types have 

been identified decades ago (Hardie, 1985), which of the five photoreceptor types contribute 

to colour vision has not been conclusively established (Bicker and Reichert, 1978; Fukushi, 

1994; Troje, 1993). To this regard, I focused on whether signals from the broadband 

photoreceptors and their postsynaptic neurons are used in Drosophila to derive information on 

the wavelength composition of a visual stimulus (1). Using the same behavioural assay, I also 

aimed at identifying neural circuits underlying colour/intensity memory formation (2). For 

that, I focused on the identification of reinforcement signalling neurons underlying visual 

memory in flies, which have so far been unknown. Due to the shared parameters of the here 

presented visual and previously used olfactory assays, this work furthermore allows a direct 

comparison of neural circuits underlying memories of both modalities.    

 The results presented in this thesis have recently been published or submitted to a 

scientific journal (Schnaitmann et al., 2013; Vogt and Schnaitmann et al., submitted). 
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1.1 The visual system of Drosophila 

1.1.1 The retina 

The compound eye of Drosophila melanogaster consists of ~750 ommatidia, each equipped 

with an optical apparatus, and eight photoreceptor cells named R1 to R8 which are 

surrounded by pigment cells (Figure 1A, B; reviewed in Hardie, 1985). R1–R6, which are 

positioned around R7/8 and are therefore called the ‘outer photoreceptors’, extend the full 

depth of the retina. In contrast, R7 and R8 are restricted to the upper and lower halves of each 

ommatidium, respectively (Figure 1B, C; reviewed in Hardie, 1985). Photons are absorbed by 

Rhodopsins (i.e. opsin protein + 3-hydroxy-11-cis-retinal as chromophore) at a specific 

layered structure of photoreceptor cells arranged at the central axis of an ommatidium (Vogt 

and Kirschfeld, 1984). In these so called rhabdomeres, a G-protein dependent signalling 

cascade is triggered by the absorption of light, leading to the opening of ion channels and 

subsequent membrane depolarization (see 1.1.2). 

 R1–R8 altogether cover a wide spectral sensitivity range (ca. 300 to 600 nm) with five 

different types of photoreceptors expressing different Rhosopsins (Figure 2). The ‘outer 

photoreceptors’ (R1–R6) express the ‘cyan’-sensitive Rhodopsin 1 and contain an additional 

UV–sensitizing pigment which renders those cells light-sensitive over a broad spectral range 

(Hardie, 1985; Salcedo et al., 1999) (Figure 2). R1–R6 of one ommatidium have slightly 

divergent optical axes and therefore sample different points in space. The R1–R6 

photoreceptors mediate motion detection as well as phototaxis (a behaviour in which the fly 

moves toward a light or chooses between two lights) while its role in colour discrimination is 

controversial (Bicker and Reichert, 1978; Fukushi, 1994; Troje, 1993) (see also 1.2.3). These 

cells project exclusively to the lamina, the first neuropil of the optic lobe. 

 The R7 and R8 ‘‘inner photoreceptors’’ contain four different types of rhodopsin 

(Rh3–Rh6) and terminate exclusively in the medulla, the second neuropil of the optic lobe 

(Figure 1C; Fischbach and Dittrich, 1989; Salcedo et al., 1999). Based on the combination of 

rhodopsins in R7/8, the photoreceptors can be differentiated into two main ommatidial classes 

(named pale (p) and yellow (y) after fluorescence characteristics) that are distributed 

stochastically in the main part of the retina. R7 photoreceptors express one of two UV-

sensitive opsins, Rh3 (p) (shorter wavelength) or Rh4 (y) (longer wavelength), whereas R8 

photoreceptors express either the ‘blue’-sensitive opsin Rh5 (p) or the ‘green’-sensitive opsin 

Rh6 (y) (Figure 1C; Rister et al., 2013). R7/8 are thought to mediate colour 
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Figure 1 – The retina of Drosophila melanogaster. (A) Three types of ommatidia are to be discerned: pale 

(violet), yellow (yellow), and DRA (pink), the latter constituting only a single row in the dorsal part of the eye. 

Pale and yellow ommatidia account for 30 % and 70 % of the ommatidia, respectively, and are randomly 

distributed in the retina (adapted from Wernet et al., 2007). (B) In the horizontal section of an ommatidium, one 

can see that the rhabdomeres of six outer photoreceptors R1–R6 surround an inner photoreceptor rhabdomere (at 

this depth R7). The eighth photoreceptor R8 is found below (more proximally than) R7 (adapted from Kumar 

and Ready, 1995). (C) R1–R6 all express Rh1 rhodopsin and terminate in the lamina. The R7 and R8 inner 

photoreceptors typically express one out of four different types of rhodopsin (Rh3–Rh6) and terminate 

exclusively in the medulla. DRA ommatidia represent an exception as in both R7 and R8 the short UV-sensitive 

opsin Rh3 is expressed. Pale R7 and R8 photoreceptors express the short UV-sensitive opsin Rh3 and the ‘blue’-

sensitive opsin Rh5, respectively. Long UV-sensitive opsin Rh4 and the ‘green’-sensitive opsin Rh6 are 

expressed in R7 and R8 of yellow type ommatidia, respectively. 

 

vision, as they express spectrally different rhodopsins, and were shown to contribute to 

phototaxis (Harris et al., 1976; Yamaguchi et al., 2010). A recent study showed evidence that 

R7/8 in addition feed into the motion vision circuit, probably via electrical synapses between 

R7/8 and R1–R6, the latter being absolutely required (Wardill et al., 2012). A third type of 

ommatidia is found in the dorsal part of the eye. In the two most dorsal ommatidial rows, R7 

and R8 both express Rh3. These ommatidia were shown to be specialized to detect the 

oscillation plane of polarized skylight (Labhart and Meyer, 1999). 
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Figure 2 – Normalized spectral sensitivities of the five different Rhodopsins in the Drosophila eye. In R1–

R6, Rh1 alone is maximally sensitive at 478 nm while an accessory pigment (UVAP) underlies their additional 

UV sensitivity. The maximal sensitivities of Rh3–6: 345 nm (Rh3), 375 nm (Rh4), 437 nm (Rh5), and 508 nm 

(Rh6) (adapted from Salcedo et al., 1999). 

 

1.1.2 Phototransduction in Drosophila 

Visual transduction is initiated by light-induced conversion of the 3-hydroxy-11-cis-retinal 

containing photopigment rhodopsin to metarhodopsin which then interacts with a 

heterotrimeric GTP-binding protein (G protein) (Figure 3). This heterotrimeric G protein (Gq) 

subsequently interacts with a phospholipase C (PLC; encoded by the gene norpA), which 

catalyses the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to inositol-1,3,5-

trisphosphate (IP3) and diacylglycerol (DAG) (Figure 3; Bloomquist et al., 1988; Devary et 

al., 1987; Lee et al., 1994; Scott et al., 1995). This step is critical for the phototransduction 

pathway, flies lacking functional norpA alleles being blind (Inoue et al., 1985). Activation of 

PLC leads to opening of cation influx channels trp, and trpl and thereby to the depolarisation 

of the photoreceptor cell (Figure 3; Hardie, 1991; Hardie and Minke, 1992; Ranganathan et 

al., 1991). A recent study suggested that excitation of Drosophila photoreceptors may be 

mediated by PLC’s dual action of phosphoinositide depletion and proton release (Huang et al., 

2010). The authors showed that following depletion of phosphoinositides, the light sensitive 

channels in Drosophila photoreceptors became remarkably sensitive to pH changes, that light 

+ UVAP 
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induces a rapid acidification in the microvilli, which is eliminated in mutants of PLC, and that 

TRPL channels are activated by acidification (Huang et al., 2010). Another recent study 

suggests that by cleaving PIP2, PLC generates rapid physical changes in the lipid bilayer that 

lead to contractions of the microvilli, and suggest that the resultant mechanical forces 

contribute to gating the light-sensitive channels (Hardie and Franze, 2012). 

Following the activation of the signalling cascade, the system must be reset to be able 

to respond to subsequent stimulation. Deactivation of the Drosophila photoreceptor response 

is quite rapid and occurs within about 100 ms of cessation of the light stimulus (Hardie, 1991; 

Ranganathan et al., 1991). After exposure to light, the chromophore in Drosophila 

photoreceptor cells does not dissociate from the opsin (Hardie, 1985). For regenerating 

rhodopsin, the metarhodopsin requires absorption of a second photon. To inactivate 

metarhodopsin, however, it is bound by arrestin arr2, which also contributes to long-term 

adaptation (Arshavsky, 2003). Ca2+/Calmodulin play an important role in response 

termination as they attenuate the activities of rhodopsin, PLC, and both groups of ion 

channels (Montell, 1999). Additionally, an eye specific Ca2+-dependent protein kinase C 

ePKC (coded by inaC) phosphorylates TRP channels, thereby causing inactivation (Popescu 

et al., 2006). ePKC is also required for adaptation over a wide range of light intensities 

(Hardie et al., 1993). 

 

 

 

Figure 3 – Phototransduction in Drosophila. The light-activated metarhodopsin catalyzes release of the Gq 

protein α subunit to activate PLC. PLC hydrolyzes PIP2 (red), leading to the production of IP3 and DAG. The 

depletion of PIP2 together with protons released by PIP2 hydrolysis were shown to potently activate the light-

sensitive channels. Ca2+-influx via TRP channels inhibits PLC (adapted from Hardie and Franze, 2012).  
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1.1.3 The optic lobe neuropil 

The Lamina: The lamina neuropil has been studied extensively on the light and electron 

microscopic level. It contains 15 cell types, i.e. three photoreceptor types (R1–R6, R7, R8), 

five monopolar cell types (L1–L5), three types of medulla cells (C2, C3, T1), and the wide 

field tangential and amacrine cells (Figure 4A; Fischbach and Dittrich, 1989; Takemura et al., 

2008). These cells are organized in so-called lamina cartridges, surrounded by glia cells 

(Figure 4B–C; Braitenberg, 1967). All monopolar cells and T1 project retinotopically to the 

medulla but arborize in different layers (Figure 4A; Fischbach and Dittrich, 1989; Takemura 

et al., 2008). 

R1–R6 photoreceptors with parallel optical axes sampling the same point in space 

converge in a single lamina cartridge. This wiring principle is called neuronal superposition 

(Braitenberg, 1967; Kirschfeld, 1967) and causes an improvement of the signal to noise ratio 

by a factor of √6 (Scholes, 1969). This is due to the increased photon catch without 

impairment of visual acuity or resolution (Land, 1997). 

The synaptic connections between the lamina cell types both at the level of the lamina 

and medulla are known. L1, L2, L3, and the amacrine cells (amc) receive input from R1–R6 

(Hardie, 1989; Pollack and Hofbauer, 1991). L2 innervates, and reciprocally receives input 

from L4 cells, of its own and adjacent cartridges (Meinertzhagen and O’neil, 1991). 

Furthermore, L2 feeds back to R1–R6 and is electrically coupled to L1 at the medulla level 

(Joesch et al., 2010; Meinertzhagen and O’neil, 1991). The terminal of L5 reciprocally 

connects to that of L1, thus being synaptic in the medulla despite lacking synapses in the 

lamina (Takemura et al., 2008). The amc provides the only lamina input to the second-order 

interneuron T1 and probably feeds back to R1–R6 (Meinertzhagen and O’neil, 1991). The 

centrifugal cells C2 and C3 have connections both with L1 and L2 in the medulla (Takemura 

et al., 2008). R7/8 bypass the cartridge though a recent study shows evidence for functional 

electric connections between R7/8 and R1–R6 (Wardill et al., 2012). 

Intracellular recordings from L1 and L2 revealed a strong high-pass filtering and an 

inversion of the signals in the lamina monopolar cells provided by R1–R6 (Järvilehto and 

Zettler, 1971; Straka and Ammermüller, 1991). Pharmacological studies identified histamine 

as the neurotransmitter of photoreceptors. Illumination of the photoreceptors causes a 

transient hyperpolarization of the lamina cells via the histamine receptor and chloride channel 

Ort (Hardie, 1989). 
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Figure 4 – Neuronal cell types of the lamina and anatomy of the lamina cartridge. (A) Anatomical 

reconstructions of retina and lamina cell types from Golgi stainings in Drosophila. The lamina contains five 

different lamina monopolar cell types (LMCs) L1–L5, which all project to the medulla. Furthermore, amacrine 

cells (amc), and centrifugal T1, Lamina widefield (Lawf), C2, and C3 are innervating the lamina neuropil. R1–

R6 project to the lamina, while R7/8 bypass the lamina and project directly to the medulla (from Fischbach and 

Dittrich, 1989). (B) Electron microscopical (modified from Stuart et al., 2007) and (C) schematic cross-section 

through a lamina cartridge. L1 and L2 are located in the center of the cartridge, forming many synaptic 

connections with R1–R6. L3, and amc processes also receive direct R1–R6 input. L4, L5 and T1 are second-

order interneurons. 

 

As previously described, information from R1–R6 is projected onto four different cell 

types, which might result in four retinotopically organized, parallel pathways. Functionally, 

L1 and L2 were shown to be required and sufficient for motion vision (Katsov and Clandinin, 

2008; Rister et al., 2007), L1 and L2 mediating the detection of ON-edges and OFF-edges, 

respectively (Joesch et al., 2010). This functional difference is reflected by their anatomical 

differences, L1 innervating a different layer in the medulla than L2. Also L2 but not L1 

contacts L4. As L4 cells are feeding back via two backward oriented collaterals onto L2 in 

adjacent cartridges, one can describe the L2/L4 network as a horizontal network of lateral 

connections (Braitenberg, 1970; Braitenberg and Debbage, 1974; Meinertzhagen and O’neil, 

A B
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1991; Strausfeld and Braitenberg, 1970). It is thought that such a network might mediate the 

detection of front-to-back motion (Takemura et al., 2011), though it was recently found that 

L4 is required for OFF motion processing in all cardinal directions (Meier et al., 2014). A 

function of L3 has only recently been identified. It is mediating a response to slow motion 

stimuli (Tuthill et al., 2013), and together with L1, it is required for dark-edge motion 

detection (Silies et al., 2013). Furthermore, it is speculated that L3 plays a role in colour 

vision, as it projects to cells in the medulla that are postsynaptic to R7/8 (Bausenwein et al., 

1992; Gao et al., 2008; Strausfeld and Lee, 1991). Consistently, L3 has significantly less 

synaptic connections with R1–R6 than L1 and L2 (Meinertzhagen and Sorra, 2001), and it is 

speculated to have a higher response threshold for light intensity (Anderson and Laughlin, 

2000), possibly in the range of R7/8. The function of L5 is still unknown, though its 

connection with L1 suggests a role in motion vision. The amc is thought to provide feedback 

to R1–R6 (Meinertzhagen and O’neil, 1991), suggesting that the amc/T1 pathway could be 

involved in lateral inhibition or adaptation (Järvilehto and Zettler, 1971). 

 

The Medulla: Similar to the lamina, the medulla neuropil exhibits a retinotopic, columnar 

organization. In addition to the terminals of lamina neurons, each medulla column contains 

about 60 different neurons (Fischbach and Dittrich, 1989; Takemura et al., 2013). Each 

column can be divided into ten layers, M1–M10 (Figure 5). There are 26 types of 

transmedullary (Tm) cells; 12 medulla intrinsic (Mi) neurons; 13 TmY cells; and 8 distal 

medulla (Dm) cells (Fischbach and Dittrich, 1989). Tm cells connect the medulla and the 

lobula neuropils, whereas TmY bifurcate in the chiasm between the medulla and the lobula 

plate, and thus connect the medulla to both these neuropils (Figure 5; Fischbach and Dittrich, 

1989). In addition to columnar neurons, many neurons in the medulla have been described, 

which extend their ramifications horizontally over different columns (Fischbach and Dittrich, 

1989; Takemura et al., 2013). A detailed description of the synaptic connections between the 

diverse medulla neurons based on reconstructions of electron mircoscopical data has been 

recently published (Takemura et al., 2013).  

The medulla is the first neuropil that might harbour a colour-coding neural circuit 

because it receives input from spectrally different channels (R7/8) and the lamina which 

conveys the R1–R6 signals. Many cell types have been identified in the Drosophila medulla 

that receive input from different photoreceptor types and thus are candidate colour-coding 

cells (Gao et al., 2008; Takemura et al., 2013). One can speculate that the Tm9 and Tm5 

neurons function as colour-opponent neurons by computing the synaptic input signals that are 
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provided by L3 and R7/R8 (see also 1.2.1). Recently, it was shown that a multi-columnar 

neuron called Dm8, which collects R7- and therefore UV input, is required for phototaxis 

towards UV (Gao et al., 2008).  

Based on anatomical studies of the medulla and lobula complex (Bausenwein et al., 

1992), two parallel motion detection pathways were proposed; the L1 pathway, involving L1, 

Mi1, and T4 cells, and the L2 pathway, involving L2, Tm1 and T5 cells. Using 2-

deoxyglucose labelling in flies perceiving motion stimuli, this model was supported (Buchner 

et al., 1984). Recently, two studies showed strong evidence for the existence of the proposed 

pathways (Maisak et al., 2013; Takemura et al., 2013). Mi1 and Tm3 were shown to be the 

input to four different T4 cell types with different dendritic orientations (Takemura et al., 

2013). The assumed receptive fields of the Tm3 and Mi1 input to a respective T4 cell were 

shown to be slightly shifted (Takemura et al., 2013). Thus, these cells are strong candidates 

for providing the input to an elementary motion detector (Hassenstein and Reichardt, 1956). 

That T4 and T5 cells are indeed motion selective has been shown in functional Ca2+-imaging 

experiments (Maisak et al., 2013). The four different types of T4 and T5 cells are 

 

 

Figure 5 – Columnar cell types in the fly visual 

ganglia. Each column in the medulla harbours about 

60 different neurons. A few columnar cell types are 

depicted on the left. Transmedulla neurons (Tm) 

connect the medulla with the lobula. Transmedulla 

neurons Y neurons connect medulla, lobula, and 

lobula plate. Mi neurons are medulla intrinsic and 

connect different medulla layers. Translobulaplate 

neurons (Tlp) connect lobula plate and lobula. T cells 

project from either the medulla or the lobula to the 

lobula plate, with their cell bodies located posterior to 

the lobula complex. (From Borst, 2009; modified 

from Fischbach and Dittrich, 1989). 
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directionally tuned to one of the four cardinal directions. Depending on their preferred 

direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. Additionally, T4 

and T5 functionally segregate with respect to contrast polarity: T4 cells selectively respond to 

moving brightness increments (ON edges), while T5 cells only respond to moving brightness 

decrements (OFF edges). Together, they provide a biologically plausible hardware for the 

sign-correct multiplication of positive and negative input signals (Egelhaaf and Borst, 1992; 

Eichner et al., 2011) 

 

The Lobula complex: The third order neuropil, the lobula complex, is divided into two parts, 

the lobula and the lobula plate. The lobula, which consists of six layers with many columnar 

and non-columnar cell types being identified in Golgi stainings (Fischbach and Dittrich, 

1989) or GAL4 line screen (Otsuna and Ito, 2006), has seen only little attention in functional 

studies so far (Mu et al., 2012; Zhang et al., 2013). It is suggested to contain both motion and 

colour sensitive neurons (Bausenwein et al., 1992; Buchner et al., 1984). In contrast, the 

lobula plate which has four layers has been extensively studied (Borst and Haag, 2002). Based 

on 2-deoxyglucose labelling in Drosophila, each layer is sensitive to a different motion 

direction of a moving stimulus (Bausenwein et al., 1992; Buchner et al., 1984; Maisak et al., 

2013). In the lobula plate, giant neurons, called ‘lobula plate tangential cells’ are found, 

spanning a large area or even the whole neuropil (Egelhaaf et al., 1989; Single and Borst, 

1998; Spalthoff et al., 2010). These cells have been identified and studied electro- and 

optophysiologically in many fly species including Drosophila, and were shown to be motion 

sensitive (Hausen, 1984; Joesch et al., 2010; Maisak et al., 2013). According to their 

sensitivity to horizontal or vertical motion stimuli, they can be grouped into various classes, 

such as the horizontal system (HS-cells) and the vertical system (VS-cells) (Krapp and 

Hengstenberg, 1996; Krapp et al., 1998; Wertz et al., 2009). The main input to these types of 

cells is transmitted via motion sensitive T4 and T5 cells (Maisak et al., 2013; Schnell et al., 

2012). 

 In the lobula and lobula plate, many columnar and non-columnar cell types project to 

diverse central brain regions or the contralateral optic lobe (Fischbach and Dittrich, 1989; 

Otsuna and Ito, 2006; Strausfeld, 1976). Lobula-specific visual projection neurons are 

associated with only three central brain regions: posteriorlateral protocerebrum, optic 

tubercle, and ventrolateral protocerebrum. Most of the pathways terminate in the ventrolateral 

protocerebrum. The projection patterns within this neuropil are significantly different between 

pathways and their terminals are confined within relatively small and discrete areas of the 
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central brain (Otsuna and Ito, 2006). For this reason, these subregions are comparable to the 

glomerular structure in the antennal lobe and are often referred to as optic foci or optic 

glomeruli (Mu et al., 2012; Otsuna and Ito, 2006; Strausfeld, 1976). 

 

 

1.2 Colour vision in insects 

1.2.1 Colour and brightness  

Two monochromatic visual stimuli can differ in their wavelength as well as in their intensity. 

If an animal has colour vision, it can tell apart such stimuli based on their spectral properties 

irrespective of their intensity. This intensity independence should however not be taken too 

literally. If for example the lights are so dim they can barely be detected or extremely bright, 

vision in most animals becomes achromatic (Kelber and Lind, 2010). Thus, colour vision is 

usually only independent over a certain range of intermediate intensities.  

The term ‘colour’ refers to the physiological sensation and perception of spectral 

properties of a visual stimulus, not to its physical wavelength composition. Colour vision 

provides information about surface reflectance, pigmentation and other material properties 

(Gegenfurtner and Kiper, 2003). It is therefore likely to be important for object classification 

and recognition. Two spectrally different stimuli can be perceived as the same ‘colour’, if they 

cause the same kind of excitation of the photoreceptors involved in colour vision. That is 

because the colour perceived is based on the ratio of excitation of the photoreceptor types, and 

if the ratio for two stimuli is the same, the perceived colour is same as well (Rushton, 1972). 

As a prerequisite for colour vision, the visual system of an organism must comprise at least 

two photoreceptor types with different spectral sensitivities whose output is put into relation 

by the neural network. That a single photoreceptor type is not sufficient for colour vision is 

stated by the principle of univariance (Rushton, 1972). To give one example: Let’s assume a 

monochromatic stimulus Sλ1 has a wavelength that is the same as the wavelength for which a 

photoreceptor has maximal sensitivity. For another stimulus Sλ2 with twice the intensity of 

Sλ1 and with a wavelength for which the photoreceptor has 50 % sensitivity, the photoreceptor 

will show the same response as to Sλ1. Thus, intensity and spectral wavelength cannot be 

discriminated with a single photoreceptor type. The building block of intensity invariant 

colour coding is the so called colour opponency, a neural mechanism in which the output of at 

least two photoreceptor types is compared by subtracting from each other (Figure 6; 

Gegenfurtner and Kiper, 2003). Colour opponent cells that receive antagonistic input from 
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two (or more) photoreceptor types, respectively, become excited by one photoreceptor type 

and inhibited by the other (Figure 6; Gegenfurtner and Kiper, 2003). This computation 

underlies the neural representation of spectral differences, such cell being able to code for the 

difference in excitation of two photoreceptor types and therefore for two wavelength ranges.  

 

 

             

Figure 6 – Colour opponency. (A) Spectral sensitivities of three putative Rhodopsins which are expressed in 

different photoreceptor types (‘blue’, ‘green’, ‘red’) in an animal. All photoreceptors respond to light over a 

broad wavelength range and cannot code for spectral information due to the principle of univariance (Rushton, 

1972). (B) Spectral information can only be gained by comparing the photoreceptor output of different 

photoreceptor types. Neural activity of a putative colour opponent cell which gets antagonistic input from the 

‘green’ and ‘red’ photoreceptor types is shown. This cell shows increased neural activity for short and medium 

wavelength stimuli and reduced activity for long wavelength stimuli, irrespective of the stimulus intensity.    

 

 

‘Brightness’ refers to the physiological sensation and perception of the intensity of a 

visual stimulus, not to its physical quantity. It is virtually the complementary information to 

‘colour’, and is based on the weighted sum of photoreceptor excitations (Gegenfurtner and 
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Kiper, 2003). In addition to brightness as an object property, such achromatic summation is 

used by the brain to process motion, form and texture (Osorio and Vorobyev, 2005).  

How to untangle colour and brightness in a behavioural experiment? Best would be to 

use stimuli that differ in wavelength but share the same subjective brightness for an animal. 

But the identification of such isoluminant stimuli in animals is difficult. Importantly, every 

visual subsystem underlying a specific visual behaviour may have a different sensitivity 

function (Harris et al., 1976; Heisenberg and Buchner, 1977). This becomes apparent if one 

compares the spectral sensitivity functions of the optomotor response and phototaxis of 

Drosophila, which clearly differ (Harris et al., 1976; Heisenberg and Buchner, 1977). 

Therefore, calibrating the intensities of visual stimuli using a specific visual behaviour and 

assuming these apply to another one as well may be problematic (Hernández de Salomon and 

Spatz, 1983). Also the method applied by von Helversen (von Helversen, 1972) in honeybees 

has to be critically reviewed, who determined isoluminant stimuli for each wavelength by 

adjusting the minimum intensity required to achieve a certain learning index. Though this 

approach determines isoluminance using the same task which is used for analysis of colour 

discrimination (associative conditioning), it has several pitfalls. First, it is only valid if the 

same photoreceptor types are both underlying intensity conditioning at intensity levels 

required to reach the learning index criterion and colour conditioning (usually higher 

intensities are used). Imagine for example a certain photoreceptor type is sensitive at low light 

intensities and sufficient for intensity conditioning, while other photoreceptor types are only 

sensitive at higher intensities (e.g. rods/cones in humans). The obtained isoluminance values 

would not reflect isoluminance under higher intensity levels. Second, if saliency does not only 

depend on intensity but also on the spectral properties of the stimulus, the obtained 

‘isoluminance’ values would be false. Another approach was used by Fukushi (Fukushi, 

1990), who calculated the subjective brightness of the different spectral stimuli used, based on 

the assumption that physiological responses from each receptor type are summed. He also 

weighed the outer photoreceptors R1–R6 by a factor of six because of the neural 

superposition (six cells feed into one lamina cartridge). Such calculations were not based on 

any behavioural data and a proof that subjective brightness can be calculated in such way has 

not been provided by the authors. 

 A potent approach to demonstrate intensity invariance of visual conditioning in 

particular, is to train animals with equal (or arbitrarily chosen) physical intensities. After 

training, intensities in nonreinforced tests have then to be varied over a broad range of 

intensities (Menne and Spatz, 1977 for Drosophila; Kelber and Pfaff, 1999 for the butterfly 
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Papilio aegeus; reviewed in Kelber et al., 2003). Such an approach, which is not based on any 

assumptions about the visual system, was also chosen in this study. 

 

1.2.2 Colour vision in honey bees 

In the following, I’ll give a brief overview of colour vision research in the honey bee Apis 

mellifera. That is because it became one of the model organisms for colour vision from which 

we gained a lot insight into the underlying mechanisms in animals and particularly in insects.  

Since Karl von Frisch’s experiments in 1914 (Frisch, 1914) in which he demonstrated 

that bees are able to discriminate a blue stimulus from a series of differently intense grey 

stimuli, colour vision has been extensively studied in the honey bee using psychophysical, 

and electrophysiological experiments. For its study, the conditionable foraging behaviour has 

been a major advantage and allowed fast and reliable colour discrimination analyses. Daumer 

showed in colour mixing experiments, that the bee possesses trichromatic colour vision, 

similar to humans (Daumer, 1956). Daumer measured the proportions of complementary 

monochromatic lights that are necessary to produce metameric (physically different but 

indistinguishable) light mixtures. Furthermore, he found that bees ignore intensity differences 

over a wide range (Daumer, 1956).  

 In 1972, von Helversen deduced a spectral threshold function (discussed in 1.2.1) as 

well as a spectral discrimination function (von Helversen, 1972). Based on previous results 

(Daumer, 1956), intensity differences were thought to be ignored by the animals and 

intensities were chosen above the threshold function. He found that bees are able to 

discriminate wavelengths best around 490 nm (separated by 4.5 nm), and second best around 

400 nm (separated by 7 nm) (Figure 7). 

 In animals, simultaneous colour contrast was first shown in the honey bee (Kühn, 

1927). This phenomenon was quantified in a later study in which bees perceived blue on a 

yellow background as more blue (more saturated) than on a grey background and more yellow 

on a blue background than on a grey background (Neumeyer, 1980). That bees also show 

colour constancy was shown in colour discrimination tasks in which the background 

illumination was changed between training and test (Werner et al., 1988). 

 Intracellular recordings revealed that the honeybee eye is equipped with three classes 

of spectral receptors, as it has been previously suggested by behavioural results. They exhibit 

peak sensitivity in the ultraviolet (344 nm), blue (436 nm), and green (544 nm) wavelength 

range (Autrum and Zwehl, 1964; Menzel and Blakers, 1976; Menzel et al., 1986). In contrast 
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to Drosophila, each ommatidium in the honey bee contains nine photoreceptors instead of 

eight. The two central R7-like cells exhibit differential opsin expression ranging from UV to 

green sensitive opsins. As the central R8 cell homolog, the peripheral photoreceptor cell 

homologs R1–R6 express the green-opsin (Jackowska et al., 2007).  

  

 

 

Figure 7 – Spectral discrimination function of the honey bee Apis mellifera. The function has two optima at 

about 400 nm and 490 nm, respectively (from von Helversen, 1972). 

 

 Performing intracellular recordings, Kien and Menzel (Kien and Menzel, 1977a, 

1977b) found many different classes of neurons (tonic and phasic, broadband, narrow-band, 

different receptive fields) in the bee's visual system by measuring the cells' responses to 

monochromatic lights at different intensities. While some of these cells were labelled, the 

anatomy of most of the recorded cell types remained unknown. A few more studies described 

neuronal cell types and their response characteristics (broadband, narrow-band, colour 

opponent) in the optic lobes and the central brain of honey bee (Hertel, 1980; Yang et al., 

2004) or bumblebee (Paulk et al., 2008, 2009a, 2009b). On the basis of two colour opponent 

types only, (type A: UV-/B+/G+ and UV+/B-/G-; type B: UV-/B+/G- and UV+/B-/G+), 

Backhaus (Backhaus, 1991) constructed a trichromatic colour opponent coding model that 

could explain the behavioural results obtained before (von Helversen, 1972).  
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 While a considerable amount of knowledge has been accumulated about the colour 

vision system of the honeybee, the underlying neuronal circuitry is not well understood. This 

is because many cell types have been identified in physiological recordings but their anatomy 

and connectivity remained unknown. Therefore, the questions of neural mechanisms leading 

to opponent coding and the behavioural relevance of these cells remain mostly unanswered. 

Also the difficulty of specific interference in the nervous system of the honey bee and 

subsequent behavioural or physiological analysis will make it difficult to answer these 

questions. At this level, the potent tools for neural circuit analysis in Drosophila may be of 

advantage to address these questions (reviewed in Borst, 2009). 

 

1.2.3 Colour vision in flies 

The fly’s visual system with five photoreceptor types that have different spectral sensitivities 

could theoretically allow fine colour discrimination over a broad range of wavelengths. 

Seminal behavioural studies aimed at the questions whether Drosophila possesses colour 

vision and which photoreceptor types are involved. Schuemperli found that at low light 

intensities, phototaxis solely depends on the photoreceptors R1–R6 while at higher light 

intensities, several photoreceptors contribute to phototaxis (Schümperli, 1973). By using 

mutants with defect photoreceptor types, Harris and colleagues showed that all photoreceptor 

types can contribute to phototaxis (Harris et al., 1976). A similar result was shown in a recent 

study that found that all photoreceptor types can contribute to spectral preference where flies 

choose between two spectrally different lights (Yamaguchi et al., 2010). This behaviour, 

which strongly depends on the intensity of the presented light stimuli, was shown to also 

depend on the spectral composition of light (Fischbach, 1979; Heisenberg and Buchner, 

1977). The authors presented a green stimulus on one side and added in a series of 

experiments an increasing intensity of UV light to both sides. Interestingly, while flies in 

general prefer the UV stimulus with higher intensity (Jacob et al., 1977), flies chose from a 

certain UV intensity level on the side with pure UV and not the side with UV and green 

(Fischbach, 1979; Heisenberg and Buchner, 1977). It was therefore concluded that the fly 

possesses a ‘UV-visible’ spectral discrimination (visible refers to the spectrum of light that is 

visble to humans). Furthermore, Fischbach could demonstrate in successive colour contrast 

experiments that for flies the UV preference is enhanced by previous exposure of the flies to 

‘visible’ light (Fischbach, 1979). These naïve preference behaviours which show 

characteristics of intensity independent spectral discrimination are termed wavelength-
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specific behaviour and to be discerned from ‘true’ colour vision (Kelber and Osorio, 2010). 

The latter refers to a behaviour which is modified by experience, i.e. the association of a 

colour stimulus with a positive or negative reinforcing stimulus, leading for example to 

preference or avoidance. One rationale for this distinction is that learning requires a neural 

representation of colour (Kelber and Osorio, 2010). Also in flies, several studies focused on 

true colour vision using visual conditioning (Bicker and Reichert, 1978; Hernández de 

Salomon and Spatz, 1983; Menne and Spatz, 1977; Tang and Guo, 2001). In the blowfly 

Lucilia cuprina, combined behavioural experiments with a theoretical study predicted that 

colour discrimination in the fly is mediated exclusively through R7/R8 (Troje, 1993). 

However, R1–R6 as an additional input channel was excluded solely because of its complex 

spectral sensitivity profile and not because the model predicted R1–R6 not to be required. In 

contrast, another study did not exclude a contribution of R1–R6 to colour discrimination 

(Fukushi, 1994). In generalization experiments, Lucilia cuprina was shown to discriminate 

between blue, green and yellow stimuli (UV was not tested), though the colour choices of the 

flies depended on the intensities of the stimuli in the training (Fukushi, 1994). The 

behavioural data was later on compared with different models containing different sets of 

photoreceptor types contributing to colour vision. Models including R1–R6 could explain the 

behavioural data as good as models without these receptors, leaving open the question about 

the contribution of R1–R6 (Fukushi, 1994). A study by Bicker and Reichert even implicated a 

role of R1–R6: using mutant flies with degenerated R1–R6 photoreceptors in a visual 

conditioning assay, the authors found that these flies exhibit a potential colour discrimination 

defect (Bicker and Reichert, 1978). Therefore, evidence is so far controversial, and the 

functional interaction between photoreceptors in colour discrimination in flies requires further 

analysis. 

 A spectral discrimination curve was calculated after a series of visual conditioning 

experiments in which a certain wavelength was tested against a set of different wavelengths 

(Hernández de Salomon and Spatz, 1983) (Figure 8). Flies showed best discriminability in the 

range of 430-450 nm and around 500 nm. Unfortunately, UV was not tested and no 

discriminability curve was shown for this region. It is important to mention that the authors 

tried to control brightness by selecting stimulus intensities of the diverse wavelengths that in 

spectral preference tests were equally preferred to a ‘white reference’ light. As been discussed 

before, this method to obtain isoluminant stimuli has to be critically viewed and the 

discriminability curve may partially be based on intensity differences (see 1.2.1). 
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Figure 8 – Spectral discrimination function of Drosophila melanogaster. Δλ is defined as the wavelength 

difference necessary for the flies to discriminate two stimuli (a criterion of 10 % was chosen). Best 

discriminability was found in the violet (λ = 420 nm) and in the blue-green range (λ = 495 nm) (from Hernández 

de Salomon and Spatz, 1983). 

 

Gao et al. (Gao et al., 2008) were the first to examine the role of second-order neurons 

in spectral preference. Using serial electron microscopy, the authors found that medulla 

neurons Tm5 and Tm9 receive direct synaptic input from R7 and R8, respectively, and 

indirect input from R1–R6 via L3. This anatomical finding qualifies them to function as 

colour-opponent neurons. Furthermore, the wide-field Dm8 amacrine cell was found to 

receive input from 13–16 UV-sensitive R7 and provides output to Tm5 (and Tm9). Using the 

GAL4/UAS system, cells postsynaptic to the photoreceptor cells were blocked and flies were 

tested in a UV/green spectral preference assay. The authors also tested the sufficiency of these 

neurons for this behaviour by rescuing the expression of a required histamine receptor in 

precisely these neurons of otherwise mutant flies. By these approaches, Dm8 was shown to be 

necessary and sufficient for flies to exhibit phototaxis toward ultraviolet instead of green 

light. In a recent study, it was found that the Tm5 subtype Tm5c receives excitatory 

glutamatergic input from Dm8 and that selectively inactivating Tm5c but not Tm5a or Tm5b 

abolishes naïve UV preference (Karuppudurai et al., 2014). Interestingly, as the Dm8 input to 

Tm5c is excitatory, R7 input to Dm8, and R7/R8 input to Tm5c are inhibitory via ort, there is 

so far no indication of antagonistic photoreceptor input to Tm5c. Moreover, whether Dm8 and 
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Tm5 neurons also contribute to intensity invariant colour discrimination requires further 

analysis. 

Altogether, knowledge about colour vision in flies is very sparse although this 

organism has been proven a fruitful model organism for the study of vision (Borst, 2009). 

 

 

1.3 Classical associative memory 

Learning and memory is an experience dependent behaviour that allows an organism to adapt 

to the environment and behave more appropriately if it encounters the same situation again. 

Memory can be either non-associative such as habituation or sensitization to a repeatedly 

occurring stimulus, or associative. Two forms of associative learning, namely operant 

(instrumental) and classical (pavlovian) conditioning, are to be discerned. In operant 

conditioning, an animal learns the contingency between its own behaviour and a stimulus in 

the environment. After operant learning, the frequency of its own actions is increased or 

decreased to receive or avoid the reinforcing stimuli (Skinner, 1938). By contrast, classical 

conditioning allows an animal to learn the contingency between multiple sensory stimuli in 

the environment (Pavlov, 1927). In this case, a contingent presentation of a sensory stimulus 

(conditioned stimulus CS) and a reinforcing stimulus (unconditioned stimulus US) allows an 

animal to predict the upcoming US by perceiving the CS alone. Therefore, animals that have 

formed memory alter their behavioural response to the CS. This adapted behaviour is called 

conditioned response (CR), which ranges from a simple monosynaptic reflex to a more 

complex behaviour such as an animal’s approach towards a stimulus source. 

 Since the 1970’s, the fruit fly Drosophila melanogaster has become a suitable model 

organism for studying learning and memory. While many learning paradigms have been 

developed for a variety of sensory modalities (reviewed in Kahsai and Zars, 2011), studies 

about classical conditioning in the fruit fly mostly focused on olfactory memory. That is 

mainly because it is such a robust behaviour which only requires simple technology to be 

assayed (Tempel et al., 1983; Tully and Quinn, 1985). Today, the neuronal circuits and the 

genes underlying olfactory memory have been identified to an impressive extent, allowing to 

draw a detailed model of this behaviour (reviewed in Heisenberg, 2003; Keene and Waddell, 

2007) (see also 1.3.1). The knowledge about the circuits, genes and cellular mechanisms 

underlying visual associative memory are in comparison much more limited (reviewed in 

Kahsai and Zars, 2011) (see also 1.3.2). Neither are the sensory visual circuits from the retina 
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level to the site of memory formation known, nor have the underlying reinforcement 

pathways been identified, as compared to olfactory memory.  

 What can be gained by studying visual memory (in addition to olfactory memory)? 

First of all, visual stimuli are of physical and not of chemical nature as odours or tastants. 

While odours with their single quality are perceived by many different receptors and 

processed in neural networks in which a specific odour is coded by a few neurons (reviewed 

in Heisenberg, 2003; Masse et al., 2009), visual stimuli have many qualities: spectral 

characteristics, motion direction, polarization, or pattern orientation, have to be extracted by 

neuronal circuits and often to be processed in a retinotopic manner (reviewed in Borst, 2009). 

The identification of the mechanisms underlying diverse visual memories and the comparison 

to memories of other sensory modalities, like olfactory memory, will finally allow a more 

comprehensive knowledge of associative memory. It will also reveal how brains deal with 

different sensory memories. One scenario is the processing in different dedicated circuits, 

which would probably require multiplying circuit motifs. A more economic scenario is the use 

of a shared memory circuit. 

 

1.3.1 Olfactory memory in Drosophila 

Soon after the discovery of mutations affecting diverse behaviours in Drosophila (Benzer, 

1967; Konopka and Benzer, 1971), the first mutants with impaired olfactory memory were 

identified (Dudai et al., 1976; Quinn et al., 1979). The combination of a simple and robust 

memory assay and the various possibilities of genetic intervention became a new field of 

research. The conditioning apparatus developed by Tully and Quinn (Tully and Quinn, 1985) 

in which electric shock is used as reinforcing stimulus is still widely used for the study of 

associative learning in flies. With little modification, it also allows appetitive conditioning 

with sugar reward (Schwaerzel et al., 2003). In addition, many learning paradigms focusing 

on other sensory modalities have been developed (see also. 1.3.1 for vision; Masek and Scott, 

2010 for taste; Gegear et al., 2008 for magnetic sense; Menda et al., 2011 for auditory sense), 

though I will focus mainly on olfactory memory at this chapter.   

Depending on the training procedure, olfactory memory lasts up to several hours or 

even days and consists of several distinct components like short-term-, mid-term-, 

anaesthesia-resistant-, and long-term-memory (Margulies et al., 2005; Tully et al., 1994). 
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Figure 9 – Neural circuit model underlying associative olfactory memory in Drosophila. (A–B) Olfactory 

receptor neurons (ORNs) convey odour information from the third antennal segments and maxillary palps (not 

shown) to the antennal lobe. Their fibers project according to their chemospecificities to one (or few) of 40 

glomeruli. The odour-induced combinatorial activation pattern is then relayed by uniglomerular projection  

neurons (PN) to the lateral horn and to premotor centers (box labelled ‘Motor output’), as well as to the 

mushroom body (MB) calyx. Output from the MB is conveyed to a variety of target regions including premotor 

areas. Odours are represented in the mushroom bodies by sets of Kenyon cells. A memory trace for the 

  

A 

B 
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association between odour and reinforcement is proposed to be localized within the Kenyon cells: (A) during 

training, when the activation of a pattern of Kenyon cells representing an odour occurs simultaneously with a 

modulatory reinforcement signal (labelled ‘Good!’ and ‘Bad!’; octopaminergic and dopaminergic neurons 

concerning reward and punishment), output from these activated Kenyon cells onto mushroom body output 

neurons is suggested to be strengthened. (B) This strengthened output is thought to mediate conditioned 

behaviour towards the odour when encountered during test, during which no reinforcer is present. Activated cells 

or synapses and motor programs are represented by filled symbols and bold lettering, respectively (adapted from 

Gerber et al., 2004a). 

 

These components can be genetically dissected. Mid-term memory and anaesthesia-resistant 

memory specifically require the genes amnesiac and radish, respectively. Conversely, short-

term memory requires the genes rutabaga, dunce and several others (Folkers et al., 1993; 

Isabel et al., 2004; Quinn et al., 1979; Tully and Quinn, 1985). Long-term memory differs 

from the other forms of memory as it is protein synthesis dependent and can be inhibited by 

the protein synthesis inhibitor drug cycloheximide (Tully et al., 1994). 

 The odour molecules are detected in the antennae, and conveyed to the primary 

olfactory centre, the antennal lobe. From there, the olfactory projection neurons transmit the 

processed olfactory information to the MB calyx and the lateral horn (Figure 9) (reviewed in 

Hallem et al., 2004; Masse et al., 2009). The MB is a paired structure composed of around 

2000 neurons that project along a ‘peduncle’ before projecting more anterior into three 

different directions, giving rise to the αβ, α’β’, and γ lobes (Aso et al., 2009). In this neuropil, 

the identity of odours is represented by the sparse activation pattern of its intrinsic neurons, 

the Kenyon cells (reviewed in Heisenberg, 2003; Masse et al., 2009). In addition to olfactory 

signals, aversive and appetitive reinforcement information in conveyed to the MB by 

dopamine and octopamine neurons (neurons with dopaminergic and octopaminergic 

phenotype, respectively) (Figure 9; Aso et al., 2010, 2012; Burke et al., 2012; Claridge-Chang 

et al., 2009; Liu et al., 2012; Schroll et al., 2006; Schwaerzel et al., 2003). 

That this prominent neuropil is required for olfactory memory, was shown already 

several years ago by analysing MB structural mutants (Heisenberg et al., 1985) and in 

ablation experiments (De Belle and Heisenberg, 1994). Since then, there have been several 

calcium imaging studies identifying memory traces in the MB (Akalal et al., 2010; Wang et 

al., 2008; Yu et al., 2006). Furthermore, Kenyon cell subsets of specific mushroom body lobes 

were transiently silenced and found to be specifically required for memory acquisition, 

consolidation, or retrieval (Dubnau et al., 2001; Krashes et al., 2007; Perisse et al., 2013). 

Moreover, rutabaga dependent memory traces were restored specifically in different 
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mushroom body lobes (Blum et al., 2009; McGuire et al., 2003; Zars et al., 2000). Currently, 

it is thought that immediate odour memories require the γ lobes (Krashes et al., 2007; Qin et 

al., 2012), while longer-lasting memory is consolidated in the ߚߙ lobes (Krashes et al., 2007). 

The latter probably involves interactions among the lobes as well as between ߚ′ߙ′ neurons 

and mushroom body-extrinsic neurons. Thus, all three mushroom body lobes are required for 

some aspect of olfactory memory. 

Altogether, the MB has been considered as the site of memory formation and storage. 

In the current model, the aminergic neurons are hypothesized to modulate output synapses of 

Kenyon cells to facilitate the activation of MB-output neurons by the learned odour (Figure 9) 

(reviewed in Gerber et al., 2004a; Heisenberg, 2003; Keene and Waddell, 2007).  

 

1.3.2 Visual memory in Drosophila 

For visual associative learning in Drosophila, several experimental approaches have been 

developed, involving the visual modalities colour, intensity and form (reviewed in Heisenberg 

et al., 2001; Waddell and Quinn, 2001).  

In pioneering studies, Menne and Spatz (Menne and Spatz, 1977), and Bicker and 

Reichert (Bicker and Reichert, 1978) showed that the fly can discriminate both colours and 

intensities of visual stimuli. Using the same assay, a spectral discrimination curve was 

described (Hernández de Salomon and Spatz, 1983). In another study, the genes dunce, 

rutabaga, amnesiac, and turnip, which are involved in olfactory memory, were also found to 

be required for colour/intensity memory in this assay, indicating similar processing of both 

memories (Folkers, 1982). For unknown reasons, colour/intensity memories have not been 

studied with this assay since. Even more astonishing, the neural circuit underlying 

colour/intensity memory is completely unknown.  

Associative learning of patterns in Drosophila has been investigated mainly with the 

flight simulator setup (reviewed in Heisenberg et al., 2001). In this paradigm, tethered flies 

associate visual stimuli with heat punishment. By means of this setup, it was shown that 

different visual pattern parameters like ‘elevation’, ‘contour orientation’, ‘size’, and ‘vertical 

compactness’ can be learned during conditioning (Ernst and Heisenberg, 1999). Similar to 

colour and olfactory memory, visual memory of patterns requires rutabaga function and the 

central complex was found to be the structure, comprising rutabaga-dependent memory traces 

(Liu et al., 2006; Pan et al., 2009). The large field neurons in the first layer (F1 neurons) and 
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fifth layer (F5 neurons) of the fan-shaped body were found to be responsible for memory of 

‘contour orientation’ and ‘elevation’, respectively (Liu et al., 2006). A memory trace was also 

identified in the R2/R4m neurons in the ellipsoid body which is involved in memory of all 

four pattern parameters (Pan et al., 2009). Similar to olfactory memory (Margulies et al., 

2005), visual pattern memory was found to comprise of several components (Xia et al., 1998). 

Gong et al. (Gong et al., 1998) described certain common molecular mechanisms underlying 

learning and memory in both tasks and concluded that the previous multi-phase model of 

visual memory requires different genes for specific memory components.  

While the mushroom bodies (MBs) are required for olfactory and gustatory memories 

(Heisenberg, 2003; Heisenberg et al., 1985; Masek and Scott, 2010), according to previous 

studies, they are not required for visual memory (Heisenberg et al., 1985; Tang and Guo, 

2001; Wolf et al., 1998; Zhang et al., 2007). However, other studies suggest that visual 

information is indeed processed in the MB (Barth and Heisenberg, 1997; Brembs and Wiener, 

2006; Liu et al., 1999; Van Swinderen, 2009). A difficulty in resolving these discrepancies 

results from the fact that these studies, especially when comparing stimuli with different 

physical nature (e.g. olfactory and visual), employed different behavioural tasks (e.g. flight 

orientation or binary choice by walking flies) and/or conditioning designs (Brembs and 

Plendl, 2008; Brembs and Wiener, 2006; Ofstad et al., 2011; Pitman et al., 2009). Thus, a 

more informative comparison might be obtained using comparable learning paradigms 

(Gerber et al., 2004b; Guo and Guo, 2005; Hori et al., 2006; Mota et al., 2011; Scherer et al., 

2003).  

Due to the lack of an appropriate behavioural paradigm that allows contrasting 

appetitive and aversive visual memory, reward and punishment processing for visual 

memories has not yet been addressed in Drosophila. Although Schwaerzel et al. (Schwaerzel 

et al., 2003) showed that dopamine and octopamine are necessary for aversive and appetitive 

olfactory conditioning, respectively, no study challenged the question whether these biogenic 

amines have the same function in visual associative learning. Pharmacological experiments in 

crickets support this analogy (Unoki et al., 2006) suggesting the same role of biogenic amines 

in visual memory in flies. 

Several studies focused on place memory in flies (reviewed in Zars, 2009), while only 

a few assays involve visual cues (Foucaud et al., 2010; Neuser et al., 2008; Ofstad et al., 

2011). In a spatial orientation memory task, in which flies have to remember the position of 

an object for several seconds after it has been removed from their environment, Neuser et al. 

(Neuser et al., 2008) showed that ring neurons of the ellipsoid body are necessary and their 



39 

 

plasticity is sufficient for a functional spatial orientation memory in flies. Furthermore, the 

protein kinase S6KII coded by ignorant is required in a distinct subset of ring neurons to 

display this memory. Ofstad et al. (Ofstad et al., 2011) used an assay that is similar to the 

Morris water-maze used for mice (Morris, 1984), in which the position of a non-heated ‘safe’ 

spot in relation to several visual cues has to be learned. Similar to the previously mentioned 

study, the authors identify neurons in the ellipsoid body to be required. 

 

1.4 The model organism Drosophila 

Drosophila melanogaster is one of the major model organisms in neuroscience. In 

comparison to other model organisms like mice, rat or monkey it has numerous advantages 

despite it’s rather far phylogenetic distance to human. Fruit flies are easy and inexpensive to 

cultivate. They have a high fecundity and short generation time. At room-temperature, it takes 

only about 10 days to develop from an egg to an adult fly (Ashburner, 1989). With a 

presumably simple brain (3–6 orders of magnitude fewer neurons as compared to mammals), 

the vast amount of transgenic techniques (Elliott and Brand, 2008; see also next paragraphs), 

and its riche repertoire of behaviours, a comprehensive understanding of the function of a 

nervous system from behaviour to underlying circuits and genes (reviewed in Borst and Euler, 

2011; Griffith, 2012; Sanes and Zipursky, 2010; Waddell and Quinn, 2001) can be achieved. 

Furthermore, despite the vast phylogenetic distance, Drosophila melanogaster shares many 

similarities in genes, neuronal circuits and behaviours with mammals (Adams et al., 2000; 

Hildebrand and Shepherd, 1997). Thus, the understanding of brain function in flies may 

reveal general mechanisms of nervous systems conserved among different species. 

Traditionally, genetic studies were performed by mutagenizing a large population of 

flies with the subsequent identification of mutants in a screen. The mutant screen can for 

example be a behavioural or an anatomical analysis. Nowadays, in addition to mutant screens, 

a more directed approach towards circuit analysis by ectopic expression of specific genes in 

specific cells is used, as been described in the following paragraphs. 

 

1.4.1 The GAL4/UAS system as a genetic tool for dissecting neuronal circuits 

The GAL4/UAS system (Figure 10) is currently the most widely used technique for targeted 

gene expression in Drosophila (Brand and Perrimon, 1993; reviewed in Elliott and Brand, 
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2008). It allows the expression of an effector gene under the temporal and spatial control of an 

endogenous or cloned enhancer sequence via a transcription factor from yeast (GAL4) and an 

upstream activating sequence (UAS) bound by GAL4 (Figure 10). 

The GAL4 element and the UAS effector element are kept in separate stocks. Many of the 

GAL4 driver and UAS effector stocks are available in huge public libraries (e.g. GETDB by 

the NP consortium or the Bloomington stock centre) or can easily be generated (Bachmann 

and Knust, 2008). The two components are combined in the F1 generation of a genetic cross 

of two selected lines. In such F1, the effector is only transcribed in those cells expressing the 

GAL4 protein. 

 

 

 

Figure 10 – The GAL4/UAS system for targeted gene expression. The transcription factor GAL4 is expressed 

in a spatially and temporally restricted pattern that is determined by the cloned or endogenous enhancer element. 

The GAL4 protein binds to its recognition site, the upstream activation sequence (UAS) and drives expression of 

an effector gene. 

 

 

 

1.4.2 GAL4 driver lines 

The driver line is a transgenic stock carrying the gene of the yeast transcriptional activator 

GAL4 in a P-element cassette in its genome (Brand and Perrimon, 1993). It is generated by 

germ-line transformation, with a preferential insertion of the construct in the 5’ upstream, 

non-protein coding region of a gene (Spradling et al., 1995). The GAL4 gene requires an 

enhancer element to be expressed and the P-element then functions as an ‘enhancer trap’, as it 
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reflects the activity of an endogenous enhancer. Alternatively, GAL4 can also be cloned 

downstream of the promoter/enhancer of a desired gene, yielding a similar expression. The 

transcription factor GAL4 has no known targets in Drosophila and can drive expression of 

any desired gene, if the latter is cloned downstream of a GAL4 binding site, the Upstream 

Activation Sequence (UAS). 

 

1.4.3 UAS effector lines 

In the following, I want to briefly describe a selection of effectors that are highly useful for 

neural circuit analysis, most of which were also used in this study. Of particular importance is 

the correlation of structure (anatomy) and function. By expressing a green fluorescent protein 

(GFP) as an effector, the expression pattern of a GAL4 driver line can be identified under the 

fluorescence or confocal microscope (Yeh et al., 1995). For functional analysis, several 

effectors have been reported which allow the inhibition or activation of neural activity. A 

potent inhibitor that blocks the synaptic transmission is the temperature sensitive, dominant-

negative allele of the shibire gene shits1 (Kitamoto, 2001). shibire is the coding gene of a 

Dynamin that is required for the endocytosis of synaptic vesicles (Koenig and Ikeda, 1983; 

Kosaka and Ikeda, 1983). At restrictive temperature, the synaptic vesicle pool of neurons 

expressing shits1 is depleted, causing the synaptic block (Delgado et al., 2000). At permissive 

temperature, neuronal activity is unaffected. Being reversible, this effector allows temporal 

control of neuronal activity i.e. to block the cells for a particular period (e.g. after 

development or only during a specific phase during the experiment). This effector has 

successfully been used to dissect the neuronal networks of diverse behaviours like olfactory 

memory (e.g. Krashes et al., 2007) and courtship (Kitamoto, 2002; Stockinger et al., 2005). 

Another neuronal inhibitor is the inward-rectified potassium channel Kir2.1 (Baines et al., 

2001). If overexpressed, it causes a hyperpolarisation and shunting inhibition of cells and 

thereby inhibits the generation of action potentials (Johns et al., 2001). A potent neuronal 

activator is the temperature sensitive TRPA1 channel (Hamada et al., 2008; Pulver et al., 

2009). Above 27 °C it opens and causes the influx of cations leading to a depolarisation of the 

cell. This effector therefore allows temporally controlled activation of neurons. Furthermore, 

in a mutant background of a particular gene, one can use the GAL4/UAS system to express 

the functional gene in specific sets of cells. This allows identifying those cells that are 

sufficient to rescue a particular mutant phenotype (e.g. rutabaga rescue: Blum et al., 2009; 

Liu et al., 2006). 
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1.4.4 Temporal control of GAL4 activity, expression pattern refinement and split-GAL4 

An elegant way to add temporal control to the GAL4/UAS system is the TARGET system 

(temporal and regional gene expression targeting). It employs a temperature sensitive variant 

of GAL80 (GAL80ts), an inhibitor of GAL4, being fused downstream of the tubulin promoter, 

driving ubiquitous expression of GAL80ts (McGuire et al., 2003). At 18 °C, the latter is active 

in all cells and prevents GAL4 from binding to the UAS. Above 30 °C, GAL80ts is inactive 

and transgene expression by GAL4 is not inhibited. By this means, developmental defects or 

lethality caused by the effectors can be circumvented. 

 To refine the expression pattern of a particular GAL4 line, a widely used approach is 

the use of GAL80 under the control of a genomic enhancer (enhancer trap) or a cloned 

promoter (Suster et al., 2004). Additional expression of GAL80 in a subset of GAL4 

expressing cells allows assessing whether a phenotype is caused by the manipulation of these. 

Compared to the two-component GAL4/UAS system which usually drives expression 

in at least a few dozen neurons (Jenett et al., 2012), intersectional strategies allow 

manipulation of very small sets of neurons. For example, the split-GAL4 approach restricts 

the expression of transgenes to the cells that express both DNA binding domain and 

transcription activating domain of GAL4 (Luan et al., 2006). Each domain, being under the 

control of a specific promoter, is fused to a heterodimerizing leucine zipper fragment so that 

the two domains bind tightly when expressed together in the same cell to become 

transcriptionally active. 

 

1.4.5 Limitations of the GAL4/UAS system 

Despite the numerous advantages of the GAL4/UAS system, it also has some limitations. 

First, a GAL4 line that labels the cells of interest is often not very specific and additional cells 

are labelled. To overcome this problem, different GAL4 lines with overlapping expression 

patterns can be tested, the pattern can be refined with a particular GAL80 line, or an 

intersectional strategy can be used. Second, transcription of the UAS effector gene is not 

always absent without a driver and appears to be insertion-dependent (Ito et al., 2003; Pfeiffer 

et al., 2010). This can be controlled by testing flies that only contain the UAS construct but 

not the GAL4 driver. Third, effector activity depends on the expression level of GAL4. Thus, 

different phenotypes may be observed when using several GAL4 lines that label cells of 

interest. 
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1.4.6 Other targeted gene expression systems 

In addition to the Gal4/UAS system, several other binary systems have been developed for 

use in Drosophila. These include the LexA system, which is based on the bacterial DNA-

binding protein LexA (Lai and Lee, 2006; Pfeiffer et al., 2010; Yagi et al., 2010) and the Q-

system based on the fungal transcription factor Q (Potter et al., 2010). They can be used in 

combination, allowing independent expression of several transgenes in a fly. Furthermore, a 

split-LexA system similar to the split-GAL4 system has been developed for refined transgene 

expression (Ting et al., 2011). This split-LexA system can be concatenated with the Gal4/UAS 

system to refine the expression patterns of existing GAL4 lines by expressing the DNA 

binding domain of LexA under control of UAS and a transcription activating domain under a 

selected promoter (Ting et al., 2011). 
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2. Materials and Methods 

2.1 Fly strains 

Peripheral neural circuits underlying colour discrimination: All flies were raised in standard 

cornmeal medium at 25 °C and 60 % relative humidity under a 12/12-hour light/dark cycle. 

The X chromosomes of all transgenic strains were replaced with that of wild-type Canton-S 

(w+). Flies were tested 2–6 days after eclosion. For norpA rescue experiments, correct 

genotypes (Table 1) of given crosses were selected before experiments. All rhodopsin GAL4 

drivers were kindly provided by Claude Desplan (Mollereau et al., 2000). For norpA 

restoration, UAS-norpA.K(1) was used (derived from Bloomington stock number 26267). To 

test requirement of Rh1, the null mutant ninaE8 with little photoreceptor degeneration was 

used (Kumar and Ready, 1995). To block the function of neuronal subsets in the lamina 

neuropil, the UAS-shits1 (Kitamoto, 2001) line was crossed to different driver lines: +; +; 

ortC2-GAL4 (Gao et al., 2008) (L1, L2, L3, Dm8), +;vGlut-dVP16AD/CyO; ortC2-

GAL4DBD/TM6B (Gao et al., 2008) (few L1, most Dm8), and R48A08-GAL4 (Tuthill et al., 

2013) (L1, L2, unknown medulla tangential cell type, unknown proximal medulla cell type; 

see http://flweb.janelia.org/ for expression pattern; Jenett et al., 2012). For anatomical 

analysis, the above driver lines were crossed to y w; UAS-mCD8::GFP/CyO. 

 Neural circuits underlying reinforcement signalling for visual memories: Flies were 

reared at 25 °C and 60 % relative humidity under a 12-12-hour light-dark cycle on a standard 

cornmeal-based food. As all transgenes were inserted into the w- mutant genome, the X 

chromosomes of strains were replaced with that of wild-type Canton-S (w+). I used F1 

progenies of crosses between females of genotypes UAS-dTrpA1 (Hamada et al., 2008), UAS-

shits (Kitamoto, 2001), UAS-mCD8::GFP (Lee and Luo, 2001), or WT-females and males of 

genotypes TH-GAL4 (Friggi-Grelin et al., 2003), DDC-GAL4 (Li et al., 2000), R58E02-GAL4 

(Liu et al., 2012), TDC2-GAL4 (Cole et al., 2005), MB247-GAL4 (Zars et al., 2000), or 

Canton-S males. The dumb2 null mutant was used to localize the cells that receive dopamine 

signals (Kim et al., 2007).  

To identify a role for specific dopamine neuron subsets (neuron subsets with 

dopaminergic phenotype), I utilized specific split-GAL4 lines. Split-GAL4 lines have high 

specificity in expression pattern, since here the DNA-binding domain (dbd) and the activation 

domain (AD) of the GAL4-protein are independently targeted by different promoters. In this 

way, the UAS transgene is only expressed where the expression patterns of the two enhancers  
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Table 1 – Genotypes used in the norpA rescue experiments. 

Description Genotype Figure 

negative control norpA7/Y; UAS-norpA/+ 16, 17A, 17B, 18A, 
18C, 20B, 21A, 21C   

rh1-GAL4 rescue norpA7, rh1-GAL4/Y; UAS-norpA/+  16, 19, 21A, 21C 

rh3-GAL4 rescue norpA7/Y; UAS-norpA/+; rh3-GAL4/+ 16 

rh4-GAL4 rescue norpA7/Y; UAS-norpA/rh4-GAL4  16, 19, 20B 

rh5-GAL4 rescue norpA7/Y; UAS-norpA/rh5-GAL4  16 

rh6-GAL4 rescue norpA7/Y; UAS-norpA/rh6-GAL4  16, 19 

rh1-, rh4-GAL4 rescue norpA7, rh1-GAL4/Y; UAS-norpA/rh4-
GAL4  

18B, 18C, 20A 

rh1-, rh6-GAL4 rescue norpA7, rh1-GAL4/Y; UAS-norpA/rh6-
GAL4  

18B, 18C 

rh4-, rh6-GAL4 rescue norpA7/Y; UAS-norpA/rh4-GAL4, rh6-
GAL4  

18B, 18C 

rh1-, rh4-, rh6-GAL4 rescue norpA7, rh1-GAL4/Y; UAS-norpA/rh4-
GAL4, rh6-GAL4  

18A, 18C 

rh1-, rh3-, rh5-GAL4 rescue rh1-GAL4, norpA7/Y; UAS-norpA/rh5-
GAL4; rh3-GAL4/+ 

18A 

rh3-, rh4-, rh5-, rh6-GAL4 rescue  norpA7/Y; UAS-norpA/rh5-GAL4, rh6-
GAL4; panR7-GAL4/+  

21A, 21C 

rh1-, rh3-, rh4-, rh5-, rh6-GAL4 
rescue 

rh1-GAL4,norpA7/Y; UAS-norpA/rh5-
GAL4, rh6-GAL4; panR7-GAL4/+  

17A, 17B, 21A, 21C 

 

intersect and therefore the functional GAL4-protein can be reconstituted (Luan et al., 2006; 

Pfeiffer et al., 2010). I used F1 progenies of crosses between females of genotypes UAS-shits 

(Kitamoto, 2001), UAS-mCD8::GFP (Lee and Luo, 1999), UAS-dTrpA1 (Hamada et al., 

2008) or WT-females and males of genotype MB504B, or Canton-S males. MB504B was 

generated using the vectors described in Pfeiffer et al., 2010 by inserting R52H03-p65ADZp 

into attp40 and TH-ZpGdbd into attP2. 
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As I was unable to distinguish genotype or sex in the behavioural videos, I sorted flies 

by genotype under CO2 anaesthesia at least two days prior to experiments. Hence, 2–4 day old 

flies were starved in moistened empty vials to approximately 20 % mortality (Schnaitmann et 

al., 2010). Behavioural experiments each used 30–40 mixed males and females under dim red 

light in a custom-made plastic box, containing a heating element on the bottom and a fan for 

air circulation. 

In temperature shift experiments flies were transferred into moistened empty vials 

while the temperature was adjusted from permissive (25 °C) to restrictive (33 °C) or vice 

versa. The test was performed 40–45 min after training. 

 

2.2 Behavioural assays 

Visual appetitive memory: Flies were trained and tested using a visual appetitive differential 

conditioning assay (Schnaitmann et al., 2010) with modifications (Figure 11A). For narrow-

spectral illumination, I constructed a stimulation module using computer-controlled high-

power LEDs with peak wavelengths 452 nm and 520 nm (Seoul Z-Power RGB LED) or 456 

nm and 520 nm (H-HP803NB, and H-HP803PG, 3W Hexagon Power LEDs, Roithner 

Lasertechnik) for blue and green stimulation, respectively. LEDs were housed in a base 144 

mm below the arena, which allowed homogeneous illumination of a filter paper as a screen. 

For separate illumination of each quadrant, the light paths of LEDs were separated by light-

tight walls in a cylinder with air ducts. ‘Bright’ and ‘dark’ blue and green stimuli were used as 

explained throughout the manuscript. The intensities were controlled by current and calibrated 

using a luminance meter BM-9 (Topcon Technohouse Corporation) or a PR-655 

SpectraScan® Spectroradiometer: Peripheral neural circuits underlying colour discrimination: 

0.483 W sr-1 m-2 (bright-blue), 0.048 W sr-1 m-2 (dark-blue), 0.216 W sr-1 m-2 (bright-green), 

and 0.022 W sr-1 m-2 (dark-green), 0.437 W sr-1 m-2 (Rh4-adapted bright-blue), 0.044 W sr-1  

m-2 (Rh4-adapted dark-blue), 0.874 W sr-1 m-2 (Rh4-adapted bright-green), 0.087 W sr-1 m-2 

(Rh4-adapted dark-green). Neural circuits underlying reinforcement signalling for visual 

memories: 0.34 W sr-1 m-2 (blue) and 0.15 W sr-1 m-2 (green). 

Before experiments, flies were starved at 25 °C to a mortality rate of 20–30 % 

(Schnaitmann et al., 2010). Flies received 4-cycle differential conditioning. Stimulation of the 

whole arena with one colour/intensity was paired with a sucrose reward (2 M) for 1 min, and 

after a 12-sec break in the dark the other colour/intensity was presented without reward. The 

cylindrical arena consisted of a Petri dish (Ø 92 mm, Sarstedt, Germany) on which flies could 



47 

 

freely move, a pipe wall, and a second Petri dish used for a lid (Figure 11A). The pipe’s 

smooth inner surface and the lid were coated with Fluon (Fluon® GP1, Whitford Plastics 

Ltd., UK) to ensure that flies stayed on the filter paper at the bottom of the arena. Reward 

presentation was switched by inverting the whole arena, tapping the flies gently to detach 

them from the Petri dish, and exchanging the dishes with sugar or water. In half of the 

experiments, the reward/no reward sequence was reversed to cancel any effect of order. In the 

test period, flies were given the choice between two stimuli, presented in two quadrants each.  

Conditioned response of the trained flies was recorded with CMOS cameras 

(FireflyMV, Point Grey Research Inc, CA) for 90 s. The learning index was based on two 

groups (50–100 flies each), which had been trained reciprocally in terms of the two visual 

stimuli used. Stimulus preference was determined by the distribution of flies in the arena. A 

pre-set macro for ImageJ (Rasband, W.S., U. S. National Institutes of Health, USA) was used 

to count the number of flies in each quadrant in every frame of the video recordings (90 

frames recorded at 1 Hz) (Schnaitmann et al., 2010). Flies touching a border between two 

quadrants were excluded. I calculated a preference index for green (PIG) for each time point 

by the difference between the number of flies on the green quadrants and the number on the 

blue quadrants, divided by the total number of flies counted. PIG was calculated in both 

reciprocal experiments [i.e., Green rewarded (G+ B− ) and Blue rewarded (G− B+ )]: 

 	

ܫீܲ ൌ
݊݁݁ݎܩ# െ ݁ݑ݈ܤ#

݈ܽݐ݋ܶ#
	

 

A Learning Index (LI) was calculated by subtracting PIG values of the two reciprocally 

trained groups and by dividing the resulting value by 2: 

 	

ܫܮ ൌ
ܫீܲ ሺܩ ൅ ܤ െሻ െ	ܲீܫ ሺܩ െ ൅ሻܤ

2
	

 

The LI was calculated for each frame of a recorded video and averaged over the entire 

test phase (1–90 s), yielding an LI that represented the average performance of the flies. For 

experiments with UAS-shits1, flies were trained and tested at 33 °C after preincubation at the 

restrictive temperature for 30 min. 
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Visual aversive memory: For aversive electric shock conditioning, I developed a new 

apparatus module containing an arena with a transparent shock grid (Figure 22E). The arena 

itself consisted of the transparent shock grid on the bottom, a plastic ring as a wall and a glass 

lid. The shock grid was a custom-made ITO-coated glass plate (9 x 9 cm; Diamond Coatings 

Ltd., UK). ITO is a conductive transparent substance. A grid was laser-etched onto the ITO 

glass in order to insulate the positive and negative electrodes (lanes in the grid were 1.6 mm 

spaced 0.1 mm apart, Lasermicronics GmbH, Germany). I applied alternating current. The 

two halves of the grid can be independently controlled. The plastic ring (wall) and the glass 

lid were coated with diluted Fluon (10 %; Fluon GP1, Whitford Plastics Ltd., UK) to prevent 

flies from walking on the lid and wall. Consequently flies were forced to stay on the shock 

grid on the bottom of the arena. A filter paper was clamped underneath the shock grid and 

served as a screen.  

 For aversive conditioning, one second of electric shock (AC 60 V) was applied 12 

times in 60 s during CS+ (CS paired with reinforcement) presentation. The consecutive CS+ 

and CS– presentations were interspersed with 12 s intervals without illumination 

(Schnaitmann et al., 2010). Training trials were repeated four times per experiment as for 

appetitive conditioning.  

The visual stimulation was the same as being used for appetitive conditioning. 

Hardware for delivering the electric shock was controlled by the same custom-made software 

used to control the LEDs. Conditioned response was analysed the same way as for appetitive 

conditioning. Four setups were run in parallel. 

 

Paired activation assay: I established a new behavioural protocol for reinforcement 

substitution for visual memories using dTrpA1 expression as in olfactory conditioning (Aso et 

al., 2010). Flies were 'trained' as for conditioning, but the conditioned visual stimulus was 

paired not with sugar or shock but with high temperature that leads to thermo-activation of 

dTRPA1-expressing neurons (Figure 24E). Precisely, flies were transferred from an apparatus 

at 24 °C to a corresponding setup at 31 °C five seconds before the onset of the CS.  

The two CS presentations in each training trial were intermitted by a 60 s interval at 24 

°C. After four training trials, flies were kept at 24 °C for 120 s before testing at 24 °C. Control 

flies not expressing dTrpA1 and wild-type flies did not show conditioned visual preference 

(Figure 24E–F). Significant memory in this assay is thus driven by appetitive or aversive 

reinforcement signals from thermo-activation. 
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Sugar preference and electric shock avoidance assays: Control responses to sugar and shock 

were measured as described previously (Schnaitmann et al., 2010). The arenas used for 

appetitive and aversive conditioning were backlit with IR-LEDs, and flies were given a choice 

between two halves of the arena, one with the US presented as in the training and one without 

US. Their behaviour was recorded for 60 s using the same video setup. A preference index 

was calculated by subtracting the numbers of flies on the US half from the numbers on the 

control half, divided by the total number of flies. 

 

2.3 Electrophysiology 

ERGs were measured as previously described (Garbers et al., 2012). Briefly, cold-

anesthetized flies were attached to a holder with nail polish, which was also used to prevent 

movement of head and legs. A recording and an indifferent (reference) glass microelectrode 

filled with 0.1 M KCl were placed just beneath the cornea of the stimulated eye and in the 

thorax, respectively. The signal recorded at room temperature was amplified using an Intronix 

2015f amplifier and digitally acquired using a NI PCI-6025E data acquisition board. Visual 

stimulation from the behavioural experiments (dark-blue or bright-green) was reproduced by 

using the same LEDs, intensities, and filter paper screen. Data Acquisition and stimulation 

were controlled with the Relacs toolbox (Benda et al., 2007). Using a modified closed-loop 

light clamp technique (Franceschini, 1979), WT and norpA-rescue flies were analysed for 

their spectral sensitivity ratio for blue and green LEDs. As an internal reference of the 

interleaved ERG (INTER ERG) (Garbers et al., 2012), I used the response to the blue LEDs 

set to the ‘dark’ intensity as in the behavioural experiments. Using an iteratively updated 

linear regression model, the intensity of the green LEDs were adjusted to the level that evoked 

the same ERG response as the blue reference LED. The ERG response was defined as the 

difference in the average signals 10 ms before stimulation onset and 10 ms before offset. The 

stimulation protocol consisted of a 100-ms green light followed by 500 ms of no stimulation 

before 100 ms of the blue reference light followed by 500 ms of no stimulation. An average 

response difference to the blue reference was calculated based on 5 cycles of the stimulation 

protocol and the measurement was repeated until the difference reached less than 4 % of the 

reference amplitude. At least eight measurements in two flies were done per genotype. 

Blue/green intensity ratios were calculated by normalizing the dark-green stimulus with the 

green LED intensity producing the same signal amplitude as the reference (dark-blue). 



50 

 

2.4 Immunohistochemistry 

Peripheral neural circuits underlying colour discrimination: The retina of flies was prepared in 

agarose sections. Heads were fixed in 4 % formaldehyde in PBT (PBS, 0.3 % Triton X-100), 

embedded in 7 % agarose (Biomol) and sectioned horizontally at 80 µm with a vibrating 

microtome (Leica VT 1000S). Agarose sections were bleached in 0.1 % NaBH4 for 30 

minutes to reduce auto-fluorescence of the red eye pigment, and subsequently, blocked with 3 

% normal goat serum for 30 min at room temperature. Preparations were incubated overnight 

at 4 °C with the antibodies against GFP (1:1000) and Rh6 (a gift from Claude Desplan; 

1:5000) in the blocking solution. After washing with PBT, slices were incubated overnight at 

4 °C with AlexaFluor-568 and 633-conjugated secondary antibodies in the blocking solution. 

Preparations were rinsed and mounted in Vectashield (Vector Laboratories).  

Neural circuits underlying reinforcement signalling for visual memories: Adult fly 

brains were dissected, fixed and stained using standard protocols (Aso et al., 2009). Synapsin 

antibody (Klagges et al., 1996) combined with Cy3-conjugated goat anti-mouse antibody 

were used to visualize the neuropil. Anti-GFP antibody was used to increase the intensity of 

the GFP signal (rabbit polyclonal to GFP (Invitrogen) with Alexa Fluor488-conjugated goat 

anti-rabbit as the secondary antibody).  

Confocal stacks were collected with Olympus FV-1000 microscope (Olympus). Image 

processing was performed with ImageJ (NIH). 

 

2.5 Modeling Wavelength Discrimination 

To compare spectral discrimination abilities, I calculated the contrast that two stimuli evoke at 

a hypothetical postreceptor neuronal stage (Vorobyev and Osorio, 1998). For two stimuli, let 

Δqi(λ) be the difference in excitation for receptor i at wavelength λ . Then for two receptor 

types 1 and 2 the signal contrast in a neuronal channel k that combines these two receptor 

signals opponently can be written as: 

 ∆S୩
ଶሺλሻ ൌ ቀ∆qଵሺλሻ	‐	∆qଶሺλሻቁ

ଶ
 (1) 

To predict discrimination for a visual system combining information from more than one 

opponent channel, I sum over the k respective mechanisms: 
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 ∆ܵଶሺߣሻ ൌ ෌ ௞ܵ௞ݓ
ଶ௡

௞ୀ଴
ሺߣሻ  (2)  

where wk is a vector of weights that scale the channels relative to each other. For the special 

case of wavelength discrimination, Δqi(λ) corresponds to the slope of the receptor spectral 

sensitivity of receptor i at wavelength λ. Calculating this relative discrimination at each 

wavelength λ yields an estimate of the spectral sensitivity function. I fitted this function to the 

data (Hernández de Salomon and Spatz, 1983) by adjusting w such that the resulting squared 

differences between the estimates and the data were minimized. Goodness of fit was 

calculated via the chi-squared statistic, treating the data as normally distributed. 

 

2.6 Statistics 

Statistical analyses were performed with the use of Prism (GraphPad Software). If groups did 

not violate the assumption of normal distribution one sample t-test were used to test 

difference from zero. Otherwise, non-parametric Wilcoxon Signed Rank Test was employed. 

P-values of both tests were Bonferroni corrected. For comparison of groups, which did not 

violate the assumption of normal distribution (Shapiro-Wilk test) and homogeneity of 

variance (Bartlett’s test), mean performance indices were compared with a one-way ANOVA 

followed by planned multiple pairwise comparisons (Bonferroni correction). Experiments 

with data that were significantly different from the assumptions above were analysed with 

non-parametric Kruskal–Wallis test followed by Dunn’s multiple pair-wise comparison. 

Where comparisons with multiple control groups gave distinct significance levels, only the 

most conservative result is shown.  
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3. Results 

3.1 Peripheral neural circuits underlying colour discrimination 

3.1.1 Behavioural assay for colour discrimination in Drosophila 

I previously developed a conditioning assay where flies associate one of two spectrally 

different visual stimuli with sugar reward, which allows to analyse visual stimulus 

discrimination in Drosophila (Schnaitmann et al., 2010). I set out to induce modifications that 

allow the use of various spectral stimuli that have a smaller wavelength range and a higher 

intensity than the ones produced by the RGB monitor being used before (Schnaitmann et al., 

2010). I here used conditioned stimuli generated by high-power light-emitting diodes (LEDs)  

 

 

Figure 11 – An improved setup for visual appetitive memory. (A) Visual stimulation of the behavioural setup 

in (Schnaitmann et al., 2010) was modified to use LEDs instead of LCD screen. A petri dish arena containing 

filter paper can be illuminated from below with blue and green LEDs. The arena is partitioned into four 

quadrants, each of which can be illuminated independently using a custom-engineered LED interface and 

software. (B) Emission spectra of blue and green LEDs used. (Modified from Schnaitmann et al., 2013). 
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with peak intensities at 452 nm (blue) and 520 nm (green), respectively (Figure 11A–B). 

Other colour stimuli can now easily be incorporated by simply exchanging the LEDs in the 

apparatus with LEDs of the many spectral variants available. While flies can discriminate 

high-intensity blue (bright-blue) and green (bright-green) in this assay, it is not clear whether 

discrimination is based on colour or intensity (Figure 12A). 

Conditioning with differential intensities of either blue or green (1:10 ratio) resulted in 

significant intensity discrimination (Figure 12A), raising the possibility that blue/green 

discrimination might be achromatic. 

To ensure that discrimination was based on colour, I introduced an intensity mismatch 

between training and test (Menne and Spatz, 1977): Flies were trained with low-intensity blue 

(dark-blue; 10 % of bright-blue) and bright-green, but were tested with bright-blue and bright-

green. Flies consistently exhibited conditioned approach towards the trained colour, despite 

the 10-fold intensity mismatch (Figure 12B). Similarly, discrimination was not impaired when 

flies were trained with bright-blue/dark-green and tested with bright-blue/bright-green (Figure 

12B). Finally, to assess response priority on colour and intensity cues (Bicker and Reichert, 

1978; Tang and Guo, 2001), flies were trained with dark-blue/bright-green and tested 

 

 

 

Figure 12 – Colour discrimination learning in Drosophila. (A–C) Conditioned stimuli, one of which is paired 

with a sugar reward, and test stimuli are depicted with three circles. (A) Wild-type flies show significant memory 

in the bright-blue/bright-green as well as in the intensity discrimination tasks (n = 9–18). (B) Flies choose the 

colour cues despite 10-fold intensity mismatch between training and test (n = 16–20). (C) Flies show significant 

colour learning despite the conflicting 10-fold intensity inversion between training and test (n = 15–16). Note 

that intensity learning would result in a negative learning index. Bars and error bars represent means and SEM, 

respectively (**p < 0.01; ***p < 0.001; ns: no significance). (Modified from Schnaitmann et al., 2013). 
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Figure 13 – Fits of models employing different combinations of colour opponent signals (gray curves) to 

wavelength discrimination in Drosophila (Hernández de Salomon and Spatz, 1983; Vorobyev and Osorio, 

1998). Goodness of fit is measured by root-mean-square error corrected for the number of degrees of freedom 

(RMSE). (A) Standard model with opponent combinations of inner photoreceptor signals. (B) The model with 

the inner photoreceptors including ‘‘interommatidial’’ opponency (i.e., Rh3-Rh4 and Rh5-Rh6) fits slightly 

better than the standard model. (C) A model including outer receptor signals achieves a substantially better fit. 

Note that this model has the same number of parameters as the model in (B). Data points and error bars represent 

means and SEM, respectively. See also Figure 14. (From Schnaitmann et al., 2013).  
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with bright-blue/dark-green, and vice versa (intensity inversion). This experimental design 

allows to assess whether flies use a conflicting colour or intensity cue (Bicker and Reichert, 

1978; Tang and Guo, 2001), as conditioned approach to the colour or intensity cue will result 

in a positive or negative learning index, respectively. Both combinations of the intensity 

inversion revealed choice priority on the colour cue, demonstrating that discrimination was 

based on spectral composition, not intensity (Figure 12C). 

 

3.1.2 Modelling suggests that R1–R6 contribute to colour discrimination 

To determine which photoreceptors feed into colour vision, I fitted a model of colour 

opponent processing to experimental results of wavelength discriminability in Drosophila 

(Hernández de Salomon and Spatz, 1983; Vorobyev and Osorio, 1998). The model predicts 

discrimination thresholds based on signals in colour opponent channels (Vorobyev and 

Osorio, 1998). Variants of the model that included signals from inner receptors gave poor fits 

to the behavioural data (Figure 13A–B), whereas goodness-of-fit was improved when 

including the outer photoreceptors (Figure 13C). The superior performance of models 

including the outer photoreceptors was mainly due to the increasing sensitivity slope of Rh1 

in the region around 500 nm, where wavelength discrimination is best (Figure 14). Thus, a 

contribution of the outer photoreceptors to colour vision is necessary to explain the published 

data on wavelength discrimination in Drosophila.  

 

3.1.3 Colour discrimination with restricted photoreceptor sets 

To experimentally identify the receptor types responsible for colour discrimination, I 

generated flies with restricted sets of functional photoreceptors. I used blind mutant flies 

(norpA7) that lack Phospholipase C and restored proper phototransduction by expressing 

norpA+ under UAS-control and by using different combinations of rhodopsin-GAL4 drivers 

(Inoue et al., 1985; Wernet et al., 2012). Specificity of GAL4 expression was verified using 

confocal microscopy (Figure 15). To determine functional rescue of photoreceptors, I 

recorded the electroretinogram (ERG) of mutant flies with single rh-GAL4 dependent norpA+ 

expression and control flies. I used the same LED stimulation as in the conditioning 

experiments (or UV LED for rh3-GAL4) and found that targeted norpA+ expression with all 

rh-GAL4 drivers restored light sensitivity (Figure 16). 
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Figure 14 – Slopes of spectral sensitivity curves of the five different Rhodopsins in the Drosophila eye 

(After Salcedo et al., 1999; modified from Schnaitmann et al., 2013) .  

 

 

 

Figure 15 – Expression patterns of the different rh-GAL4 drivers in the visual system. (A–J) Confocal 

microscopy of the optic lobe (A–E), and the retina (F–J). GAL4 expression patterns (mCD8::GFP, green) are 

validated using Rh6 immunostaining (magenta) as a reference. All drivers are verified to be specific for the 

target cells. Scale bars, 20 μm. (Modified from Schnaitmann et al., 2013). 
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Figure 16 – Targeted norpA+ expression restores photoreceptor light sensitivity in norpA7 mutant flies. 

ERG traces to dark-blue stimulation of norpA7 mutant flies with targeted expression of norpA+ using different 

rh-GAL4 drivers (n = 4–8 per genotype). For the mutant flies with rh3-GAL4 dependent norpA+ expression or 

without a driver, ERG traces in response to a UV LED (410 nm) or bright-blue are plotted, respectively. 

(Modified from Schnaitmann et al., 2013). 

 

 I targeted norpA+ expression to all types of photoreceptors combining four rh-GAL4 

drivers in the same norpA mutant animal (i.e. norpA7, rh1-GAL4/Y; rh5-GAL4, rh6-

GAL4/UAS-norpA; rh3+rh4-GAL4/+) and examined colour discrimination behaviour of these 

flies. They fully discriminated bright-blue/bright-green at the wild-type level (Figure 17A) 

and exhibited a positive learning index under intensity inversion, thus demonstrating true 

colour discrimination (Figure 17B). I next generated norpA mutant flies in which either all 

photoreceptors in pale (rh1-, rh3- and rh5-GAL4) or yellow (rh1-, rh4- and rh6-GAL4) 

ommatidia were functional, using targeted norpA+ expression. Interestingly, targeted norpA 

rescue in all photoreceptors of yellow, but not of pale ommatidia was fully sufficient for 

bright-blue/bright-green discrimination (Figure 18A). As the sugar preference of the flies with 

functional pale ommatidia was not impaired (data not shown), I conclude that pale ommatidia 

alone are not sufficient for the blue/green discrimination task (Figure 18A). They might, 

however, play a role for discrimination of other spectral stimulus pairs. 

To determine the minimal set of photoreceptors for blue/green discrimination, I 
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Figure 17 – Targeted norpA+ expression in all photoreceptors restores colour discrimination in norpA7 

mutant flies. (A) The targeted norpA+ expression in all photoreceptor types fully restores bright-blue/bright-

green discrimination learning of norpA7 mutant flies to the WT level, while norpA7 mutant flies containing the 

rescue construct without driver exhibit no significant discrimination (n = 9–17). (B) The choice of norpA7 mutant 

flies with targeted norpA+ expression in all photoreceptors is based on colour rather than intensity in the intensity 

inversion experiment (n = 12–20). Bars and error bars represent means and SEM, respectively (**p < 0.01; ***p 

< 0.001; ns: no significance). (Modified from Schnaitmann et al., 2013). 

 

generated norpA mutant flies with targeted norpA+ expression in the three pairwise 

photoreceptor combinations in yellow ommatidia (using rh1-/rh4-GAL4, rh4-/rh6-GAL4, or 

rh1-/rh6-GAL4). The norpA rescue with combinations of rh1-/rh4-GAL4 or rh4-/rh6-GAL4 

was sufficient to allow discrimination of bright-blue/bright-green (Figure 18B), whereas the 

norpA rescue with rh1-/rh6-GAL4 was not able to rescue the mutant phenotype (Figure 18B). 

The mutant flies with functional Rh4-/Rh6-expressing photoreceptor types did not show 

colour but intensity discrimination in the intensity inversion experiment (Figure 18C). 

Strikingly, the intensity inversion experiment revealed that both dichromatic flies with either 

functional Rh1-/Rh4-expressing or Rh4-/Rh6-expressing photoreceptor types allowed spectral 

discrimination of blue and green stimuli (Figure 18C). Importantly, the ERG experiments 

showed that the blue/green intensity ratio is within 10-fold in norpA rescue flies with rh1- or 

rh6-GAL4, assuring the successful intensity inversion with dark-blue and bright-green, and 

vice versa, at the neural level (Figure 19A). Due to the high blue/green sensitivity ratio of 

Rh4, the dark-blue might be brighter than the bright-green for the flies with functional Rh1-/ 
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Figure 18 – Minimal sets of photoreceptors for colour discrimination. (A) norpA rescue flies with functional 

yellow, but not pale ommatidia, significantly discriminate bright-blue and bright-green (n = 10–17). (B) Bright-

blue/bright-green discrimination of flies with pair-wise norpA rescue in yellow ommatidia. Rescue flies with 

rh1-/rh4- or rh4-/rh6-GAL4s show significant discrimination, while rescue flies with rh1-/rh6-GAL4 cannot 

discriminate the stimuli (n = 8–17). (C) norpA7 mutants with targeted norpA rescues in the intensity inversion 

task. Pair-wise norpA rescues with rh1-/rh4- or rh4-/rh6-GAL4 show significant colour preference rather than 
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intensity preference as the wild-type or 'yellow norpA rescue' flies. Flies with targeted norpA rescue with rh1-

/rh6-GAL4 significantly choose the intensity cue (n = 12–30). For WT and norpA7;UAS-norpA/+ in (A), and (C), 

the same data is plotted as in Figure 17. Bars and error bars represent means and SEM, respectively (*p < 0.05; 

**p < 0.01; ***p < 0.001; ns: no significance). (From Schnaitmann et al., 2013). 

 

Rh4-expressing photoreceptor types (Figure 19A), potentially confounding the interpretation 

of the result (Figure 18C). I therefore performed an intensity inversion experiment where the 

intensities of dark-blue and bright-green during training were matched for Rh4 according to 

the ERG measurements (Figure 19B). Flies with functional Rh1-/Rh4-expressing 

photoreceptor types still used the colour cue under this condition (Figure 20A). Flies without 

functional photoreceptor types or with functional Rh4-expressing photoreceptor types only 

did not show colour discrimination (Figure 20B), confirming that a neuronal comparison of  

 

 

 

Figure 19 – Intensity ratios of blue/green stimulations in norpA rescue flies with single rh-GAL4 driver. 

Intensities of blue and green LEDs required to elicit same-amplitude responses in the norpA rescue flies are 

measured using a modified light-clamp ERG technique (Garbers et al., 2012). Accordingly, the plotted 

blue/green stimulus intensity ratios are calculated for (A) the used RGB LEDs and (B) blue/green LEDs used in 

the experiments in Figure 20 (n = 4–8). Note that these values must be within 10-fold (between 0.1 and 10) for 

an intensity inversion experiment with a particular photoreceptor type. Bars and error bars represent means and 

standard deviation, respectively. (Modified from Schnaitmann et al., 2013). 
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multiple receptor outputs is required for colour vision. Altogether, these results challenge the 

assumption that R7/R8 provide the only input to colour vision in flies (Pichaud et al., 1999; 

Troje, 1993), and demonstrate that both outer and inner photoreceptors contribute to colour 

vision. The qualitative difference in discrimination behaviour exhibited by flies with either 

functional Rh1-/Rh4-expressing or Rh1-/Rh6-expressing photoreceptor types suggests 

differential computation underlying the signal integration of the outer photoreceptors and the 

different inner photoreceptor types (i.e. R7 and R8). 

 As norpA rescue in Rh4-/Rh6-expressing photoreceptor types resulted in successful 

colour discrimination (Figure 18C), I conclude that, R1–R6 photoreceptors are not required 

for blue-green discrimination under the tested conditions. To further substantiate this 

 

 

 

Figure 20 – Colour discrimination in flies with norpA rescues in Rh4- or Rh1-/Rh4-expressing 

photoreceptor types. (A) norpA7 rescue flies with rh1-, rh4-GAL4 discriminate colour in the intensity     

inversion experiment, where the green stimulus is adjusted according to the ERG such that Rh4-expressing 

receptors respond equally to the dark-blue and bright-green (n = 13). (B) No significant colour learning                

is observed in the intensity inversion experiment using norpA rescue with only rh4-GAL4 (n = 14–19). For WT, 

and norpA7;UAS-norpA/+ in (B), the same data is plotted as in Figure 17. Bars and error bars represent means 

and SEM, respectively (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no significance). (From Schnaitmann et al., 

2013). 
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Figure 21 – Rh1 is not necessary for blue-green discrimination under the tested conditions. (A) Flies with 

norpA rescue in all photoreceptors or all inner photoreceptors show significant bright-blue/bright-green 

discrimination, while flies with rescue in the outer photoreceptors only cannot discriminate these stimuli (n = 

11–20). (B) ninaE8 flies that lack functional outer photoreceptors show significant bright-blue/bright-green 

discrimination (n = 8–20). (C) The norpA-rescue in all photoreceptors or inner photoreceptors discriminate 

colour in the intensity inversion experiment, while the rescue in the outer photoreceptors failed (n = 11–21). (D) 

ninaE8 flies show significant discrimination in the intensity inversion experiment (n = 11–20). For WT, rh1-,3-, 

4-,5-,6-GAL4-norpA-rescue, and norpA7;UAS-norpA/+ in (A) and (C), the same data is plotted as in Figure 17. 

Bars and error bars represent means and SEM, respectively (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no 

significance). (From Schnaitmann et al., 2013). 
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result, I tested flies with norpA rescue in all inner photoreceptors or only outer photoreceptors 

(Figure 21) in the blue-green and intensity inversion tasks. Targeted norpA rescue in the inner 

photoreceptors resulted in significant blue-green discrimination, whereas norpA rescue 

in the outer photoreceptors did not yield significant discrimination (Figure 21A, C). I also 

tested ninaE8 mutants that lack rh1 expression and functional outer photoreceptors with 

minimal degeneration of these (Kumar and Ready, 1995). In both the standard blue-green task 

as well as in the intensity inversion task, these flies did not show blue-green discrimination 

different from the wild type control (Figure 21B, D). Thus, using the described stimuli and 

paradigms, all my so far described experiments suggest that R1–R6 are not necessary for 

blue-green discrimination.  

 

3.1.4 The blockade of lamina monopolar cells selectively impairs colour discrimination 

The outer photoreceptors, unlike the inner photoreceptors, terminate in the lamina neuropil 

(Figure 22A). The three lamina monopolar cells (LMCs; L1, L2 and L3) convey the outputs 

of the outer photoreceptors directly to different layers of the medulla, where visual 

information of inner and outer photoreceptors converges (Fischbach and Dittrich, 1989; 

Meinertzhagen and O’neil, 1991) (Figure 22A). To examine the role of L1–L3 in colour 

discrimination, I blocked the output of these LMCs using ortC2-GAL4 (Gao et al., 2008) and 

UAS-shits1 (Kitamoto, 2001). Strikingly, this blockade caused a severe impairment in bright-

blue/bright-green discrimination (Figure 22B). Intact intensity discrimination showed that 

appetitive visual memory and behavioural expression were not defective (Figure 22C). As 

ortC2-GAL4 additionally labels Dm8, amacrine cells in the medulla that receive R7 output 

(Gao et al., 2008) (Figure 22A), I examined a split-GAL4 driver vglut∩ortC2-GAL4 to express 

shits1 specifically in Dm8 neurons as well as in a small number of L1 neurons and glia-like 

cells (Gao et al., 2008). These flies did not show any impairment in the bright-blue/bright-

green discrimination (Figure 22D). Furthermore, I blocked LMCs with another GAL4 driver, 

R48A08-GAL4, that strongly labels L1 and L2, as well as two unknown cell types in the 

medulla (Tuthill et al., 2013). R48A08-GAL4/UAS-shits1 flies were severely impaired in 

discriminating bright blue and bright green, while their intensity discrimination was intact 

(Figures 22E–F). Thus, I conclude that the LMCs are selectively required for blue/green 

discrimination.  
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Figure 22 – Lamina monopolar cells are required for colour discrimination. (A) L1, L2, and L3 receive 

direct input from the outer photoreceptors R1–R6 and convey their signals to different layers in the medulla. 

Outputs of inner and outer receptors can converge in the medulla as well as in the downstream lobula complex. 

Cells labelled by the GAL4 drivers used in the blocking experiments are coloured with dark orange or light 

orange or red outline (Dm8, distal medulla cell type; Mt, medulla tangential cell type; Pm, proximal medulla cell 

type). (B) Blocking L1–L3 and Dm8 with UAS-shits1 and ortC2-GAL4 specifically impaired bright-blue/bright-

green discrimination (n = 13–18). (C) Intensity discrimination is not impaired with the same blockade (n = 15–

16). (D) Blocking Dm8 and a few L1 cells with the split-GAL4 driver vglut∩ortC2-GAL4 does not significantly 

impair bright-blue/bright-green discrimination (n = 12–19). (E) Bright-blue/bright-green discrimination is 

significantly impaired by blocking L1, L2, and two other cell types with R48A08-GAL4 (n = 8–13). (F) 

Intensity discrimination is not impaired with the same blockade (n = 17–23). Bars and error bars represent means 

and SEM, respectively (**p < 0.01; ***p < 0.001; ns, no significance). (From Schnaitmann et al., 2013). 
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3.2 Neural circuits underlying reinforcement signalling of visual memories 

3.2.1 A new behavioural assay for visual aversive memory 

I previously developed an appetitive visual learning assay (Figure 23A–B, Schnaitmann et al., 

2010). In this assay with modified visual stimulation, the visual stimuli (LEDs; Fig 23D) are 

projected from below through translucent sugar-soaked filter paper, the appetitive reinforcer 

used in olfactory conditioning. However, to contrast both appetitive and aversive visual 

memories a paradigm with a potent aversive reinforcer is required. While conditioning with 

formic acid yielded significant aversive visual memory in the assay (Schnaitmann et al., 

2010), neurogenetic analyses might be difficult due to the low signal to noise ratio of the flies’ 

performance. As electric shock is a widely used potent aversive reinforcer, also for olfactory 

conditioning (Quinn et al., 1974; Tully and Quinn, 1985), I aimed at integrating such 

stimulation into the assay. This would also allow optimal comparison of visual and olfactory 

memories, due to the shared reinforcement. The integration of electric shock appeared 

difficult, as a metal grid beneath the fly would prevent the same visual stimulation from 

below as in appetitive conditioning. I solved this problem by fabricating a shock grid from a 

transparent low-resistance material, indium tin-oxide (ITO; Figure 23B, C). An alternating 

electrode pattern was laser-etched into a thin layer of ITO on a glass plate (Figure 23E). Other 

parameters of the assay were replicated from the appetitive conditioning setup, except that the 

height of the arena was reduced so that flies could not escape the electric shock.  

To characterize shock punishment using the transparent grid, I subjected flies to visual 

conditioning with four training trials as for appetitive training. During one training trial, 

spectrally different stimuli (green/blue colour) were presented alternately for one minute each 

to the flies, one of them paired with electric shock (see Materials and Methods). This 

punishment proved a potent aversive reinforcement. Aversive visual memory was induced at a 

signal to noise ratio comparable to visual appetitive memory as well as visual memory in 

other paradigms (Figure 23F–G). Together with the previously developed appetitive memory 

assay, these behavioural paradigms allow me to compare the neural requirements of appetitive 

and aversive visual memory. As these assays share critical features with appetitive and 

aversive assays for olfactory conditioning (i.e. reinforcing stimuli and behavioural tasks), 

visual and olfactory memories can now also be optimally compared. 
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Figure 23 – A modular setup for the analysis of appetitive and aversive visual learning. (A–C) Experimental 

setups for appetitive and aversive visual learning. (B) Close up of critical components: exchangeable 

conditioning arenas for sugar reward (A) and electric shock punishment (C) share the same light source and 

video camera (B). (B) Appetitive conditioning setup: cylindrical Fluon-coated arena is closed at the top with 

opaque lid during training or transparent lid during test. An easily exchangeable Petri dish on the bottom is used 

to present sugar or water soaked filter paper during training and neutral filter paper during test. Filter paper is 

clamped in the dish by a plastic ring. Aversive conditioning setup: the circular arena consists of a transparent 

electric shock grid, removable Fluon-coated plastic ring and transparent lid. The cylinder on top isolates each 

setup from the others and creates a similar visual stimulation as in the appetitive setup. (D) Visual stimulus 

source with one blue and one green high power LED per quadrant. (E) The conditioning arena with the 

transparent electric shock grid and a magnification with visual stimulation and a fly. Electrode placement is 

indicated by + and – symbols. (F) Aversive memory comparable to appetitive memory is found when wildtype 

CS is trained four times with 60V electric shock (n = 18). (G) Green preference during test underlying data in 

(F). Flies prefer the green stimulus less when electric shock was paired with green (G+) in contrast to when 

paired with blue (G+) during training (n = 18). Bars and error bars represent mean and SEM, respectively (***p 

< 0.001). 
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3.2.2 Different sets of dopamine neurons are required for visual appetitive and aversive 

memory acquisition 

Given the importance of monoamine neurons in memory formation (Aso et al., 2012; Burke et 

al., 2012; Claridge-Chang et al., 2009; Liu et al., 2012; Schwaerzel et al., 2003; Sitaraman et 

al., 2012), I blocked distinct sets of aminergic neurons by expressing shits1 (Kitamoto, 2001) 

and assessed these neurons’ role in appetitive and aversive visual memories. To target these 

aminergic neurons, I chose TDC2-GAL4, TH-GAL4 and DDC-GAL4 driver lines that label 

different subsets of tyramine/octopamine and dopamine neurons (Cole et al., 2005; Friggi-

Grelin et al., 2003; Li et al., 2000). I found that the requirements of these neurons for 

appetitive and aversive visual memories are strikingly similar to those in olfactory memories. 

Blocking octopamine/tyramine neurons with TDC2-GAL4 did not cause a significant defect in 

sugar or shock memory (Figure 24A). In contrast, the blockade of a large fraction of 

dopamine neurons with TH-GAL4 selectively reduced aversive memory (Figure 24A, see 

Table 2 for controls). As in olfactory learning (Liu et al., 2012), the blockade with DDC-

GAL4 that labels different sets of dopamine and serotonin neurons substantially impaired 

appetitive memory, but not aversive memory (Figure 24A, see Table 2 for controls). 

I next analysed the temporal requirements for neurons labelled in TH-GAL4 and DDC-

GAL4 in the learning paradigm. I measured visual memories for 30-min retention and 

transiently blocked the neurons either during training (Figure 24B) when reinforcers were 

presented or during retrieval of the memory (Figure 24C). The blockade with DDC-GAL4 

during training severely impaired appetitive memory, whereas the same blockade after the 

training did not significantly affect memory (Figure 24D–E). Similarly, the neurons labelled 

in TH-GAL4 were required specifically during acquisition of aversive memory (Figure 24F–

G). These results suggest that the neurons differentially labelled with DDC-GAL4 and TH-

GAL4 mediate the formation of appetitive and aversive visual memories, likely acting as 

reinforcement signals. As specific subsets of dopamine neurons in TH-GAL4 and DDC-GAL4 

have been shown to signal sugar reward and shock punishment for olfactory memories (Aso 

et al., 2012; Burke et al., 2012; Claridge-Chang et al., 2009; Liu et al., 2012), I genetically 

dissected these populations further to identify the essential neurons for visual memories.  
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Figure 24 – Different dopamine neurons are required for appetitive and aversive memory acquisition. (A) 

Different aminergic neurons are continuously blocked with corresponding GAL4 drivers. The blockade with TH-

GAL4 and DDC-GAL4 selectively impairs aversive and appetitive memories, respectively. Blocking octopamine 

and tyramine neurons does not significantly impair memory (n = 8–61). (B–C) Scheme of the temperature shift 

to block the output of corresponding neurons during training (B) or test (C). (D–E) Output of DDC-GAL4 

labelled neurons is only necessary in appetitive training but dispensable during test (n = 13–38). (F–G) 

Similarly, output of TH-GAL4 labelled neurons is only necessary during aversive training but dispensable during 

test (n = 12–16). Memory of the experimental group is compared to the performance of the corresponding 

control group. Only the most conservative statistical result of multiple pairwise comparisons is stated. Bars and 

error bars represent mean and SEM, respectively (*p < 0.05; ***p < 0.001). 
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Genotype 
Sugar Response 

Mean +/- SEM 
Shock Response 

Mean +/- SEM 
p<0,05 

shi/+ - -0.429 +/- 0.056   

shi/TH - -0.189 +/- 0.019 * 

+/TH - -0.386 +/- 0.060   

shi/MB504B - -0.382 +/- 0.041   

+/MB504B - -0.385 +/- 0.051   

shi/+ 0.718 +/- 0.020 -   

shi/DDC 0.729 +/- 0.027 -   

+/DDC 0.725 +/- 0.017 -   

shi/+ 0.436 +/- 0.053 -   

shi/R58E02 0.544 +/- 0.033 -   

+/R58E02 0.563 +/- 0.036 -   

CS 0.547 +/- 0.041 -0.471 +/- 0.044   

dumb
2
 0.634 +/- 0.042 -0.289 +/- 0.031 * 

dumb
2
/MB247, dumb

2
 - -0.255 +/- 0.028 * 

+/MB247 - -0.452 +/- 0.067   

 

Table 2 – Sugar and shock responses of the lines with impaired visual memories. No significant defect in 

naïve sugar preference is detected among the experimental groups and the corresponding control groups (one-

way ANOVA, p > 0.05) (n = 8). No significant difference in naïve shock avoidance is detected among the 

experimental groups and the corresponding control groups (one-way ANOVA, p>0.05), except for shi/TH, dumb2 

and dumb2/MB247,dumb2 (one-way ANOVA, post-hoc pairwise comparisons, p<0.05) (n = 6–10). Consistent 

with a study by Lebestky et al. (Lebestky et al., 2009), I observed prolonged arousal after shocking these flies, 

and this hyperactivity rather than shock sensitivity is a likely cause of the reduced avoidance. Indeed, the DopR+ 

expression in the MB rescues visual memories, even though shock avoidance is still impaired. 

 

3.2.3 Dopamine neurons of PAM and PPL1 clusters projecting to the MB are necessary and 

sufficient for appetitive and aversive memories, respectively. 

 To functionally restrict the neurons in DDC-GAL4 and TH-GAL4 into smaller subsets, I 

selected two specific driver lines for dopamine neurons: MB504B and R58E02. R58E02-

GAL4 drives GAL4 expression in the PAM cluster neurons that signal reward for olfactory 
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memory (Figure 25A, C; Liu et al., 2012). This driver co-expresses with DDC-GAL4, but 

rarely with TH-GAL4, in the PAM cluster (Liu et al., 2012). MB504B is a split-GAL4 line 

labelling four individual dopamine neurons in the PPL1 cluster: MB-MP1, MB-MV1, MB-

V1, and the neuron that projects to the tip of the alpha lobe (Figure 25B). These neurons are a 

subset of TH-GAL4 and have been shown, using a less specific line, to induce aversive 

olfactory memory (Aso et al., 2012). I found that the blockade of these neurons with shits1 

indeed impaired the corresponding aversive or appetitive visual memories (Figure 25C-D). 

However, the different blocks of synaptic transmission did not significantly affect the 

reflexive choice of sugar and shock (Table 2), and the flies could discriminate the visual 

stimuli due to a significant bias in green preference during the test (data not shown). These 

results demonstrate that visual and olfactory memories share neuronal substrates for 

appetitive and aversive reinforcements. 

To examine whether the activity of these neurons directly drives memories, or carries a 

regulatory role, I exerted direct control over neuronal activity with R58E02-GAL4 and 

MB504B-GAL4 using a temperature-sensitive cation channel dTRPA1 (Hamada et al., 2008). I 

paired one of the visual stimuli with thermo-activation of GAL4-expressing neurons by 

raising ambient temperature to 31 °C and subsequently measured the flies’ colour preference 

(Figure 25E). Thermo-activation of the PAM and PPL1 cluster neurons with R58E02-GAL4 

and MB504B-GAL4 was sufficient to induce appetitive and aversive memories, respectively 

(Figure 25F–G). From these results I conclude that these different subsets of dopamine 

neurons supply appetitive and aversive reinforcement information for visual as well as 

olfactory memories. 

Consistent with results from the block of dopamine neurons, I found severe appetitive 

and aversive visual memory defects in the mutant for DopR (dumb2; Kim et al., 2007), a D1-

like dopamine receptor (Figure 25G, see Table 2 for controls). As both the PAM neurons in 

R58E02-GAL4 and the PPL1 neurons in MB504B-GAL4 terminate in the MBs (Figure 25A-

B), I hypothesized that their output is transmitted to MB intrinsic neurons, Kenyon cells 

(KCs) through DopR. To express DopR+ in the mutant background, I made use of the 

PiggyBac insertion mutant (dumb2) that contains UAS in at the first intron of the DopR gene 

allowing GAL4-dependent expression of the gene (Kim et al., 2007). Selective expression of 

DopR+ in the KCs using MB247-GAL4 significantly rescued the memory defect of the mutant 

(Figure 25H). Altogether, these results suggest that the same sets of dopamine neurons convey 

reward and punishment signals to the MBs to induce appetitive and aversive memories of the 

different sensory modalities. 
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Figure 25 – PAM and PPL1 dopamine neurons projecting to the MB are necessary and sufficient for 

appetitive and aversive memories, respectively. (A–B) Expression patterns of R58E02-GAL4 and MB504B-

GAL4 in the MB region (outlined) are visualized by mCD8::GFP (green) with neuropil counterstaining with 

synapsin antibody (magenta). Scale bar = 50 µm. (C–D) Blocking R58E02 (C) and MB504B (D) subsets of 

dopamine neurons impairs appetitive and aversive memories, respectively (n = 11–21). (E) Scheme of TrpA1 

activation used to substitute reinforcement stimuli. One visual stimulus is paired with temperature elevation (31 

°C) during training, leading to activation of dTrpA1-expressing neurons. (F–G) Thermo-activation with R58E02 

and MB504B induces appetitive and aversive visual memories, respectively (n = 6–18). (H) Expression of 

DopR+ in the MB restores both forms of visual memory of the dumb2 mutant (n = 8–16). Bars and error bars 

represent mean and SEM, respectively (*p < 0.05; ***p < 0.001). 
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4. Discussion 

4.1 Peripheral neural circuits underlying colour discrimination  

4.1.1 A new behavioural assay for colour discrimination in flies 

While innate phototactic choice has been employed to study spectral preference in 

Drosophila (Fischbach, 1979; Gao et al., 2008; Karuppudurai et al., 2014; Yamaguchi et al., 

2010), it is unknown whether this behaviour is related to ‘true’ colour vision (Menzel and 

Greggers, 1985). I therefore chose visual discrimination learning – a behavioural paradigm 

that allows to control intensity invariance (Bicker and Reichert, 1978; Kelber et al., 2003; 

Menne and Spatz, 1977; Tang and Guo, 2001). I successfully established a new behavioural 

assay that allows contrasting colour and intensity discrimination in Drosophila using a 

previously developed setup (Schnaitmann et al., 2010), which was further improved to allow 

narrow-band spectral stimulation with LEDs. When flipping the intensities of the colour 

stimuli between training and test up to one order of magnitude, flies still showed significant 

preference for the reinforced colour stimulus, indicating proper colour discrimination 

independent of intensity (Figure 12B–C). This is further supported by ERG recordings which 

served to control the response of the diverse photoreceptor cell types in the retina in response 

to the used stimulation (Figure 19).  

Colour discrimination in the here presented assay was restricted to blue/green stimuli. 

By exchanging the LEDs, the analysis of colour discrimination can be easily extended to the 

whole spectral range from UV to red light. Especially UV discrimination would be interesting 

to study, because flies have three photoreceptor types being sensitive in the UV (both R7s and 

R1–R6). These are excellent prerequisites for high acuity UV discrimination. Indeed, 

Hernández de Salomon and Spatz (Hernández de Salomon and Spatz, 1983) showed in their 

aversive visual conditioning assay that flies have second best colour discrimination around 

420 nm, though shorter UV discrimination was not tested. 

This assay has many similarities with the visual aversive learning paradigm developed 

by Menne and Spatz (Menne and Spatz, 1977), where coloured illumination of an arena was 

paired with vigorous shaking as aversive reinforcement. Similar to their setup, the entire arena 

was illuminated, and freely moving flies were handled as a group. Since Menne and Spatz 

also applied differential conditioning and a discrimination task, this paradigm was 

successfully used in studies of colour vision in Drosophila (Bicker and Reichert, 1978; 

Hernández de Salomon and Spatz, 1983; Menne and Spatz, 1977). For unknown reasons, 
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colour/intensity memories have not been studied using this assay since. Furthermore, the here 

presented study is since decades the only reported study about the neural mechanisms 

underlying ‘true’ colour vision in Drosophila. Thus, the newly developed behavioural assay 

has the potential to finally advance the neurogenetic analysis of colour vision in flies. 

  

4.1.2 Outer and inner photoreceptors contribute to colour discrimination 

Combining modelling with genetic manipulations and behavioural experiments, I 

identified the photoreceptor types for blue/green discrimination in Drosophila (Figures 14, 

19). Interestingly, I could find significant blue/green discrimination in transgenic flies with 

only yellow but not in flies with only pale ommatidia (Figure 19A). Therefore, Rh1, Rh4 

and/or Rh6, the latter two been found only in yellow ommatidia, must play a crucial role in 

blue/green discrimination. Indeed, norpA rescue flies with either dichromatic combination of 

Rh1-/Rh4- or Rh4-/Rh6-expressing photoreceptor types only were able to spectrally 

discriminate blue and green stimuli. In contrast, flies with functional Rh1-/Rh6-expressing 

photoreceptor types only were not able. The difference in discrimination abilities of flies with 

dichromatic norpA rescues in Rh1-/Rh4- or Rh1-/Rh6-expressing photoreceptor types 

suggests differential computation underlying the signal integration of the outer photoreceptors 

and the different inner photoreceptor types (i.e. R7 and R8). These results also point out that 

R7 (Rh4) is critical for blue/green discrimination and can be used either together with R1–R6 

(Rh1) or R8 (Rh6) (Figure 18C). Furthermore, these findings indicate that post-receptoral 

computations within the same optic cartridge underlie colour vision (Morante and Desplan, 

2008). In an optic cartridge all three photoreceptor types could thus feed into opponent 

mechanisms of downstream cells. Such columnar trichromacy may therefore be identified in 

future studies. 

While flies with only pale ommatidia were not able to discriminate blue and green, 

this ommatidium type (with Rh3 and Rh5 in R7 and R8, respectively) might however be 

involved in colour discrimination at presumably shorter wavelengths. Furthermore, Rh3 and 

Rh5 derived signals might be compared to signals from photoreceptors in yellow ommatidia 

(inter-cartridge comparison). Alternatively, pale ommatidia might not underlie colour vision 

but mediate a specific behaviour like e.g. innate phototaxis. Such functional specialization is 

found for DRA ommatidia in flies (Wernet et al., 2012) and ommatidia types in other insects 

like butterflies (Koshitaka et al., 2008). 
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These findings redress the longstanding hypothesis that solely narrow-band inner 

photoreceptors mediate colour vision (Pichaud et al., 1999; Troje, 1993). Sufficiency of the 

opsin pair Rh1-Rh4 for blue-green colour discrimination indicates that receptors with a 

complex and broad spectral sensitivity can provide information on the wavelength 

composition of a visual stimulus. Considering the sufficiency of inner photoreceptors for 

blue/green discrimination (Figure 19, 21), the role of the outer photoreceptors may be to 

create an additional opponency dimension for enhanced colour discrimination. This 

assumption is supported by the here presented computational model which revealed that the 

contribution of the outer photoreceptors to colour vision is necessary to explain the published 

data on wavelength discrimination in Drosophila (Figure 13). The outer photoreceptors have 

predominant functions in achromatic vision, such as motion detection (Heisenberg and 

Buchner, 1977; Yamaguchi et al., 2008). Yet, exploitation of the outer photoreceptor pathway 

for multiple visual functions is advantageous, in particular for animals with limited neuronal 

resources. The recently discovered contribution of Drosophila R7/R8 to motion detection 

further supports our hypothesis of photoreceptors being used for multiple computational tasks 

instead of single use (Wardill et al., 2012). In addition, several studies claimed the analogy 

that fly receptors R1–R6 serve a similar function as human rods, while fly receptors R7/R8 

are comparable to our cones (Pichaud et al., 1999; Sanes and Zipursky, 2010; Strausfeld and 

Lee, 1991). This no longer holds, since all these receptors are involved in colour 

discrimination and since all function similarly at elevated light intensities (Hardie, 1979). 

 

4.1.3 Post-receptoral mechanisms underlying colour vision 

The LMCs L1, L2, and L3, which relay R1–R6 information to different layers in the medulla 

(Fischbach and Dittrich, 1989), were found to be required for blue-green discrimination 

(Figure 22). However, this study did not test the requirement of individual cell types as the 

used GAL4 drivers labelled two or three different LMCs at the same time (Figure 22A). Thus, 

it remained unclear, which of those three cell types contribute to blue-green discrimination. 

Using recently reported specific driver lines for each LMC type, which have been recently 

reported, this question can now be addressed (Tuthill et al., 2013). L1, L2, and L3 all have 

previously been found to provide input to the motion detection system of the fly (Joesch et al., 

2010; Katsov and Clandinin, 2008; Rister et al., 2007; Silies et al., 2013). L1 and L2 are 

critically involved in splitting visual brightness information into ON and OFF components 

and provide input to motion sensitive T4 and T5 cells via several interneurons (Joesch et al., 
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2010; Maisak et al., 2013; Takemura et al., 2013). Additionally they connect to many more 

cell types in the medulla, some of which also receive input from R7 and R8 (Takemura et al., 

2013). Especially L3 has many synaptic connections with cells being also postsynaptic to R7 

and R8 (Gao et al., 2008; Takemura et al., 2013). Thus, all three are potentially contributing to 

colour discrimination and a neural separation of motion and colour processing is suggested to 

be implemented downstream of the LMCs. 

Neuronal comparison of differential receptor outputs may be through colour opponent 

mechanisms (Hertel, 1980; Kien and Menzel, 1977a; Paulk et al., 2008, 2009b; Yang et al., 

2004). Tm5 cells in the medulla neuropil are candidate colour opponent cells comparing Rh4 

with Rh1 or Rh6 signals, since they integrate the outputs R7, R8, and R1–R6 (the latter via 

LMCs; especially L3) (Gao et al., 2008). However, so far no antagonistic input to Tm5 has 

been identified. In contrast, R7, R8 and L3 are thought to directly or indirectly inhibit Tm5c. 

While R8 inhibits Tm5c directly, multiple inhibitory R7 signals are conveyed by 

glutamatergic Dm8 onto Tm5c, which expresses the excitatory glutamate receptor Clumsy 

(Karuppudurai et al., 2014). Analogous to R7/Dm8/Tm5c circuit, L3 gets inhibited by R1–R6, 

which presumably has glutamatergic input onto Tm5c (Kolodziejczyk et al., 2008). Therefore, 

if Tm5c shows colour opponency, the antagonistic input is presumably not mediated by Dm8 

or L3. Alternatively, the post-receptoral comparisons may take place further downstream in 

the optic neuropils (Menzel and Backhaus, 1989), though several studies in honeybees and 

bumblebees identified colour opponent neurons in the medulla (Hertel, 1980; Kien and 

Menzel, 1977a; Paulk et al., 2009b). Future behavioural and physiological studies may further 

elucidate this neuronal computation and may identify neurons with broadband, narrow-band, 

and colour opponent sensitivity as reported for honey bees and bumblebees (Hertel, 1980; 

Kien and Menzel, 1977a, 1977b; Paulk et al., 2009b; Yang et al., 2004). Furthermore, such 

studies might reveal whether colour opponent mechanisms in flies exist that are similar to 

mechanisms found in vertebrates. It is for example unclear whether insects possess spatial 

opponency mechanisms found in vertebrates which are amongst others required to compare 

the contrast of neighbouring colours at the same time (Solomon and Lennie, 2007). To date no 

receptive field with such spatial opponency is found in any recorded colour opponent cell of 

honeybees (Hertel, 1980; Kien and Menzel, 1977a). 
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4.1.4 A comparative view on the function of photoreceptor types in arthropod colour vision 

Crustacean and insect compound eyes share many similarities from which to draw 

information about the evolution of arthropod colour vision. Typically, their ommatidia 

harbour several photoreceptors with two, three or more different spectral sensitivities 

(Warrant and Nilsson, 2006). In decapod crustaceans, two anatomical types of photoreceptors 

are found. Similar to R1–R6 in Drosophila, seven long-wavelength sensitive short visual 

fibres from R1–R7 connect with second-order interneurons in the lamina, the monopolar 

ganglion cells, which convey visual information to the second optic neuropil, the medulla 

(Marshall et al., 1999). A single UV-sensitive receptor has a distal rhabdomere and a long 

visual fibre projecting to the medulla, analogous to R7 in flies (Marshall et al., 1999). 

Therefore, similar as in Drosophila, colour vision must rely on a comparison of both 

photoreceptor types. 

 The butterfly Papilio xuthus has compound eyes with three ommatidia types. In each 

type, nine photoreceptors that are divided into six spectral classes (ultraviolet, violet, blue, 

green, red, and broad-band) contribute to the rhabdomere (Koshitaka et al., 2008). 

Behavioural analyses have shown that Papilio xuthus uses the ultraviolet, blue, green, and red 

receptors for colour discrimination (Koshitaka et al., 2008). The ultraviolet and blue receptors 

are terminating in the medulla, whereas the green and red receptors are terminating in the 

lamina (Hamanaka et al., 2013). This might indicate that also in Papilio xuthus processing of 

wavelength information begins in the lamina.  

  Honeybees like all insects have six outer photoreceptors projecting to the lamina 

neuropil (Sommer and Wehner, 1975). They are long-wavelength sensitive and suggested to 

mediate achromatic vision like the detection of patterns, shape and motion (Osorio and 

Vorobyev, 2005), thus likely sharing the same function as in Drosophila (Heisenberg and 

Buchner, 1977; Yamaguchi et al., 2008; Zhou et al., 2012). In three types of ommatidia in 

bees, two UV photoreceptors, two blue photoreceptors or one of each contribute to the distal 

rhabdomere (Wakakuwa et al., 2005). Together with an additional long-wavelength sensitive 

receptor which is found at the basal rhabdomere, these receptors project to the medulla, 

similar as R7 and R8 in Drosophila (Sommer and Wehner, 1975). While colour vision in 

honeybees was found to depend on all three photoreceptor pigments, it is still unknown 

whether the outer and/or the basal photoreceptors mediate the long-wavelength input to the 

colour vision circuit (Backhaus, 1991; Menzel and Backhaus, 1989). Given that decapods, 
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butterflies and flies share the contribution of photoreceptors that terminate in the lamina to 

colour vision, it is likely that such feature is conserved and also to be found in the honeybee.  

 

4.2 Neural circuits underlying reinforcement signalling of visual  

memories 

4.2.1 High-throughput aversive visual conditioning 

Devising a transparent electric shock grid module made it possible to apply the same visual 

stimulation in aversive and appetitive conditioning assays. Except for the reduced height of 

the arena in the aversive assay and the reinforcing stimuli, the assays are the same. Having 

developed these two assays (this thesis; Schnaitmann et al., 2010) that yield comparable and 

highly significant memory performance, it now became possible contrasting both forms of 

visual memory and to genetically dissect the underlying neural circuits. As both reinforcing 

stimuli and behavioural tasks are the same in these visual and the frequently used olfactory 

conditioning assays, it now became possible to compare the circuits underlying olfactory and 

visual memory. Fully automated high-throughput data acquisition software was developed to 

control the presentation of electric shock and visual stimuli while making video recordings of 

flies’ behaviour (Figure 23). In the setup, memory performance is based on altered visual 

preference in walking flies, a task likely to be less demanding than the constant flight required 

for flight simulator learning. Flies tend to refuse to fly at elevated temperature that is required 

for the successful use of the temperature sensitive reversible synaptic inhibitor shits1 

(Kitamoto, 2001). This problem hindered the study of neural circuits underlying visual 

memory so far that can now be advanced. In the presented assay, behaviour at elevated 

temperature is not compromised. Thus, the setup presented here is a powerful alternative to 

the so far used flight simulator for studying visual memory. For a collaboration with Yoshinori 

Aso and Gerry Rubin (Janelia Farm Research Campus, HHMI, USA) I developed a setup 

incorporating 20 single aversive assays that can be run fully automated. This will facilitate 

behavioural examination of many genotypes and will allow the screening of MB extrinsic and 

intrinsic neurons as a follow up of the work presented here.  
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4.2.2 Associative memories of different modalities share mushroom body circuits 

I found that visual and olfactory memories share the same subsets of dopamine neurons that 

convey reinforcing signals (Figure 24–25). Such shared requirement of the transmitter system 

between visual and olfactory learning has been described in cockroaches (Mizunami et al., 

2009; Unoki et al., 2005, 2006). However the pharmacological manipulation used in the 

mentioned studies does not allow further circuit dissection. For electric shock reinforcement, 

identified neurons in the PPL1 cluster, such as MB-MP1, MB-MV1 and MB-V1, drive 

aversive memories in both visual and olfactory learning (Figure 25 D, G; Aso et al., 2010, 

2012; Claridge-Chang et al., 2009), while the MB-M3 neurons in the PAM cluster seem to be 

involved specifically in aversive olfactory memory (data not shown; Aso et al., 2010, 2012). 

Thus, overlapping sets of dopamine neurons appear to represent electric shock punishment in 

both visual and olfactory memory with olfactory aversive memory potentially recruiting a 

larger set. It was previously shown that the MB-M3 neurons induce aversive olfactory 

memory that increases stability of other memory components (Aso et al., 2012). Longer 

lasting olfactory memories may thus require the recruitment of additional dopamine neurons. 

Whether this holds true for visual memories as well requires future analysis. In appetitive 

conditioning, PAM cluster neurons play crucial roles in both olfactory and visual memories 

(Figs. 24–25, Burke et al., 2012; Liu et al., 2012). Which cell types in these clusters are 

involved and whether there is a cellular distinction between olfactory and visual memory 

requires further analysis at the single cell level. Most importantly, all these neurons convey 

dopamine signals to restricted subdomains of the MB. Consistently, dopamine receptor 

DopR1 is required and its expression in the MB is sufficient to restore visual memory (Figure 

25H). This receptor is therefore likely mediating the reinforcement signal input to the KCs. 

Though a requirement of octopamine neurons could not be found for visual memories, 

a recent study showed that sweet taste engages a distributed octopamine signal that reinforces 

olfactory short-term memory by signalling through dopamine neurons (Burke et al., 2012). 

Future analyses will reveal whether this pathway is shared as well for visual memories. That 

this could be the case is supported by studies in crickets which demonstrated an important 

role of octopamine in visual memory (Mizunami et al., 2009; Unoki et al., 2006). 

Recently, the requirement of MB output for visual memory acquisition and retrieval 

was found by my colleague K. Vogt, which is also consistent with olfactory conditioning, 

although recruited KC subsets are differentiated (Vogt and Schnaitmann et al., submitted;  
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Figure 26 – Suggested circuit model of visual memories. Visual and olfactory information is conveyed to 

partially overlapping sets of KCs (Vogt and Schnaitmann et al., submitted). Olfactory input to the calyx via 

projection neurons (PN) is well characterized, whereas the visual input to the MB has not been identified yet. 

Output of KCs, representing olfactory and visual information, is locally modulated by the different subsets of 

dopamine neurons (PAM, PPL1) to form appetitive and aversive memories. 

 

Dubnau et al., 2001; Krashes et al., 2007; McGuire et al., 2001; Schwaerzel et al., 2003). The 

identification of reinforcement signalling neurons that project to the MB (this thesis) and the 

necessity of the MB Kenyon cells (Vogt and Schnaitmann et al., submitted) together suggest 

that associative plasticity underlying visual memories is to be found in the MB (Figure 26). 

Moreover, these findings support the conclusion that coincidence mechanisms are similar for 

different forms of memories inside the MB (Gerber et al., 2004a; Heisenberg, 2003; Qin et al., 

2012). The feature of diverse sensory representations inside the MB may be conserved among 

insect species. In honeybees for example, different sensory modalities are represented in 

spatially segregated areas of the calyx (Ehmer and Gronenberg, 2002; Mobbs, 1982; 

Strausfeld, 2002). The MB might thus have evolved as a centre for multi modal associative 

modulation. Such centralization of similar brain functions spares the cost of maintaining 

similar circuit motifs in different brain areas and may be an evolutionary conserved design of 
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information processing. Such converging inputs of different stimuli into a multisensory area 

have even been described in humans (Beauchamp et al., 2008). 

 ‘Flight simulator’ visual learning was shown to require the central complex but not 

the MB (Liu et al., 2006; Pan et al., 2009; Wolf et al., 1998). Although this appears to 

contradict this study and the MB requirement for visual memory in the here used assay (Vogt 

and Schnaitmann et al., submitted), I note that there are important differences between the 

behavioural paradigms employed. Visual stimulation in ‘flight simulator’ experiments 

consisted mostly of patterns in the frontal visual field while in the here presented assay, colour 

stimuli were presented in the ventral visual field. Furthermore, heat punishment is opposed to 

sucrose reward and electric shock punishment. Moreover, mixed classical/operant 

conditioning of single flying flies is a highly different behavioural task compared to classical 

conditioning of walking flies en masse. Altogether, memory in the used assay sharing many 

similarities to olfactory conditioning is very different from memory in the previously used 

visual assay. Therefore, I suspect these differences being reflected in the distinct underlying 

neural substrates. 

While olfactory input to the MB via olfactory projection neurons is well described 

(Hallem et al., 2004; Masse et al., 2009), visual inputs to the MB in flies have not yet been 

reported. In other insects, direct connections between optic lobes and MBs have been found 

(Gronenberg and Hölldobler, 1999; Li and Strausfeld, 1997; Lin and Strausfeld, 2012; Mobbs, 

1982; Paulk et al., 2008; Schildberger, 1984). Also afferents originating in the protocerebrum 

of cockroaches were found to provide multi-modal input to the MB lobes (Li and Strausfeld, 

1997). Thus, the MB may also receive indirect visual input in Drosophila, possibly via the 

optic glomeruli (Otsuna and Ito, 2006). Future behavioural and physiological studies may 

identify these cells and increase our understanding how colour information is conveyed to the 

MB.  
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