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X-exome sequencing of 405 unresolved families identifies seven
novel intellectual disability genes
H Hu1,41, SA Haas2,41, J Chelly3,4, H Van Esch5, M Raynaud6,7,8, APM de Brouwer9, S Weinert10,11, G Froyen12,13, SGM Frints14,15,
F Laumonnier6,7, T Zemojtel2, MI Love2, H Richard2, A-K Emde2, M Bienek1, C Jensen1, M Hambrock1, U Fischer1, C Langnick10,
M Feldkamp10, W Wissink-Lindhout9, N Lebrun3,4, L Castelnau3,4, J Rucci3,4, R Montjean3,4, O Dorseuil3,4, P Billuart3,4, T Stuhlmann10,11,
M Shaw16,17, MA Corbett16,17, A Gardner16,17, S Willis-Owen16,18, C Tan16, KL Friend19, S Belet12,13, KEP van Roozendaal14,15,
M Jimenez-Pocquet8, M-P Moizard6,7,8, N Ronce6,7,8, R Sun2, S O’Keeffe2, R Chenna2, A van Bömmel2, J Göke2, A Hackett20, M Field20,
L Christie20, J Boyle20, E Haan16,19, J Nelson21, G Turner20, G Baynam21,22,23,24, G Gillessen-Kaesbach25, U Müller26,27, D Steinberger26,27,
B Budny28, M Badura-Stronka29, A Latos-Bieleńska29, LB Ousager30, P Wieacker31, G Rodríguez Criado32, M-L Bondeson33, G Annerén33,
A Dufke34, M Cohen35, L Van Maldergem36, C Vincent-Delorme37, B Echenne38, B Simon-Bouy39, T Kleefstra9, M Willemsen9, J-P Fryns5,
K Devriendt5, R Ullmann1,42, M Vingron2, K Wrogemann1,40, TF Wienker1, A Tzschach1, H van Bokhoven9, J Gecz16,17, TJ Jentsch10,11,
W Chen1,10, H-H Ropers1 and VM Kalscheuer1

X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of
100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained
unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families
with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males
were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger
sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic
variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%)
carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense
variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious
variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions
as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4− /− mice or after
mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in
cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a
cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
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INTRODUCTION
Intellectual disability (ID), which affects 1–2% of the general
population, is characterized by significant sub-average cognitive
functioning, commonly defined by an IQ of lower than 70, and
deficits in adaptive behavior, such as social and daily-living skills
with an onset before 18 years of age. Most severe forms have a
single genetic cause, and males are more often affected than
females. Therefore, for many years, research has focused on the
molecular elucidation of X-linked forms of ID which are thought to
account for 10–12% of all males with ID.1 Until 2007, mutations in
XLID genes known at that time had been detected in 42% of the
Fragile X-negative families studied.2 Afterwards, a large-scale,
comprehensive Sanger sequencing study was performed to
identify the missing genes and mutations in a cohort of 208
families.3 This study was complemented by high-resolution array
CGH profiling on the same set of families4 and by further genetic
and functional evidence for some of the unique missense
variants.5–7 However, in excess of 50% XLID families remained
without plausible gene defects further indicating genetic hetero-
geneity of XLID. Since then, several novel XLID genes have been
reported in the medical literature, including HUWE1 [MIM
300697],8SLC9A6 [MIM 300231],9PCDH19 [MIM 300460],10RAB39B
[MIM 300774],11HDAC8 [MIM 300269],12HCFC1 [MIM 300019],13

CCDC22 [MIM 300859],14,15USP9X [MIM 300072],6PIGA [MIM
311770],16WDR45 [MIM 300526],17KDM6A [MIM 300128],18BCAP31
[MIM 300398],19ZC4H2 [MIM 300897],20KIAA2022 [MIM 300524]21

and MID2 [MIM 300204].22

In this study, we aimed to (i) identify the molecular causes of
XLID in a large group of unresolved families, (ii) define the number
of XLID genes that can be identified by performing targeted
sequencing of all X chromosome-specific exons, (iii) gain knowl-
edge about ID-related pathways and networks and (iv) estimate the
proportion of families with XLID that can be solved using X-exome
sequencing. For this, we initially focused on 248 families collected
by the EUROMRX consortium and associated groups that remained
unresolved by pre-screening for mutations in selected known XLID
genes and by array CGH. In follow-up work we investigated an
additional cohort of 157 similarly pre-screened families. We took
advantage of next-generation sequencing (NGS) technology to
substantially improve the coverage of X-chromosomal coding
sequences compared with previous studies. We identified likely
pathogenic variants in a range of previously established XLID genes
as well as several novel and candidate XLID genes.

SUBJECTS AND METHODS
Subjects
All index cases had a normal karyotype, were negative for FMR1 repeat
expansion, and in most of these large indels had been excluded using
array CGH. The study was approved by all institutional review boards of the
participating institutions, and written informed consent was obtained from
all participants or their legal guardians.

Methods
For each family, DNA from one affected male was used for constructing a
sequencing library using the Illumina Genomic DNA Single End Sample Prep
kit (Illumina, San Diego, CA, USA). Enrichment of the X-chromosomal exome
was then performed for each library using the Agilent SureSelect Human X
Chromosome Kit (Agilent, Santa Clara, CA, USA), which contains 47 657 RNA
baits for 7591 exons of 745 genes of the human X chromosome. Single-end
deep sequencing was performed on the Illumina Genome Analyzer GAIIx
(Illumina, San Diego, CA, USA). Read length was 76 nucleotides. For a subset
of families of the second cohort, we performed droplet-based multiplex PCR
(7367 amplicons, 757 genes, 1.54Mb) similarly to the previously described
study.23 Paired-end deep sequencing was performed on the HiSeq2000
platform (ATLAS, Berlin, Germay). A scheme outlining the variant discovery
workflow is presented in Supplementary Figure 1.
Reads were extracted from qseq-files provided by the Illumina

GAII system (Illumina). Reads containing ambiguous base calls were not

considered for further analysis. The remaining reads were subsequently
mapped to the human reference genome (hg18 without random
fragments) with RazerS24 (parameters: -mcl 25 -pa -m 1 -dr 0 -i 93 -s
110101111001100010111 -t 4 -lm) tolerating up to 5 bp differences to the
reference sequence per read. Only unique best matches were kept,
whereas all remaining reads and those containing indels were subjected to
a split mapping procedure of single end reads (SplazerS version 1.0,25

parameters: -m 1 -pa -i 95 -sm 23 -s 111001110011100111 -t 2 -maxG
50000) to detect short insertions (⩽30 bp) and larger deletions (o50 kb).
For detecting large insertions/deletions by analyzing changes in depth of
coverage along the targeted regions we used ExomeCopy.26 We
performed a quality-based clipping of reads after mapping but before
calling variants to minimize the number of false-positive calls. Starting
from each end of a read with a sliding window of 10 bp we trimmed the
read until we observed a window with all 10 phred base quality values
410. If there was a variant within 3 bp distance to the clipped region then
the trimming was expanded up to this potential sequencing error. For both
mapping procedures (RazerS+SplazerS) the calling of a variant required at
least three reads with different mapping coordinates to exclude potential
amplification artifacts. Single-nucleotide polymorphisms (SNPs) and short
indels (⩽5 bp) were called with snpStore (parameters: -reb 0 -fc 10 -m 1
-mmp -mc 3 -oa -mp 1 -th 0.85 -mmq 10 -hr 0.001 -re -pws 1000),
performing a realignment of the clipped mapped reads whenever at least
three indel-containing reads were observed within close proximity. For an
indel to be called no more than 75% of the spanning reads were allowed
to contradict it. For single base variants we used the Maq consensus
statistics27 integrated into the snpStore code. Larger deletions and small
insertions were identified by examining the split mapping results for
potential breakpoint positions. In case of multiple such positions implying
varying indel lengths within a 20-bp range such candidate calls were
assumed to be unreliable and were therefore discarded. To detect
potential retrocopies, the boundaries of split read mappings were
compared with known exon boundaries allowing a tolerance of ± 5 bp.
When both split ends coincided with exon boundaries these exons were
defined as being part of a retrocopy event. Completeness of the retrocopy
was defined by the highest fraction of exons per transcript for which exon-
spanning reads were detected. One example is shown in Supplementary
Figure 2. In a parallel approach, we processed the sequencing reads using
an alternative software, Medical Resequencing Analysis Pipeline (MERAP),
for mapping, variant calling, and annotation.28 Here, the mapping was
performed using SOAP2.2029 allowing at most two mismatches. For the
calling of single-nucleotide variants (SNVs) and indels a minimum of four
reads and a more stringent Phred-like quality score of ⩾ 20 were required.
Finally, only those variants called by both approaches were kept to yield
high-confidence candidate variants.
For in silico prioritization of variants, we integrated the following features:

(a) gene/transcript annotations (downloaded from UCSC Genome Browser,
hg19); (b) known sequence variants from the following data sources:
dbSNP, 1000 Genomes project, 200 Danish exomes,30 NHLBI Exome
Sequencing Project (ESP6500, version without indels). Base exchanges
were considered as 'known' (with exception of SNVs observed as only
heterozygous in ESP6500 and 1000 Genomes project) if position and type
of the nucleotide were identical to entries in the reference databases. We
did not use a cutoff based on minor allele frequency. In case of short indels,
a tolerance in positional matching was applied based on repetitiveness of
the deleted/inserted sequence in the SNV flanking sequence; (c) variants
detected in the screen performed by Tarpey et al.3 were located in
transcripts derived from ENSEMBL version 54. We defined the amino-acid
coordinate shared by most transcripts of a gene as reference, which is
sometimes different from the one annotated by Tarpey et al.3 Conversion of
coordinates was successful for 1647 variants; (d) evolutionary conservation
across 44 vertebrate species;31 (e) splice site detection for defining potential
cryptic splice sites (software NNSplice; cutoff 0.9 (ref. 32)); (f) potential
functional impact: PolyPhen2,33 SIFT34 and (g) Human Gene Mutation
Database (HGMD): known variants with Pubmed entries were treated as
potentially disease causing if they were listed in HGMD Professional and
annotated in maximally one reference SNV database.
We thus defined a prioritization score (PS) based on basic, computa-

tionally tractable criteria like type of variant or evolutionary conservation.
Polyphen2/SIFT produces a categorical output (benign/tolerated, possibly
damaging/low confidence, probably damaging/damaging), which was
assigned to ordinal variables 1, 2 or 3. Numbers are decreasing with
decreasing functional impact, missing values are scored nil. Whenever only
one of the methods scored 40, the zero score was set to 1 to avoid
underestimation of the functional impact. PhyloP values were rounded
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down to decimal numbers, values 45 were set to PHY= 5, for values o2
PHY= 1, for values o0 PHY= 0. Since deletions/insertions are usually not
scored by PolyPhen2/SIFT, we defined the following adhoc weighting
scheme: non-sense/frameshift: TYPE = 20 (maximal PS), deletions (450 bp):
TYPE= 9 (similar to maximal impact prediction by PolyPhen2 and SIFT),
duplications, in-frame deletions, potential splice site variants: TYPE = 3. The
score for a change identified in a gene known to have a role in XLID before
this study was set to 3. PS = PP2 * Sift+PHY+TYPE+XLID; if PS420, PS = 20.
We also used CADD (Combined Annotation-Dependent Depletion)35 as

an additional tool for annotating and interpreting SNVs as well as small
indels (see Supplementary Figure 3 for comparison of the scores).

Analysis of human CLCN4 SNVs in Xenopus oocytes
CLCN4 SNVs were introduced into human CLCN4 (NM_001830.3; Gene ID:
118) cDNA cloned into pTLN and pCIneo36 by recombinant PCR. We
assessed the expression level and stability of wild-type and mutants with p.
Gly78Ser, p.Leu221Val, p.Val536Met or p.Gly731Arg substitutions by
western blot analysis of lysates from transiently transfected cells using
standard methods. Xenopus laevis oocytes were injected with 23 ng cRNA,
which was transcribed with the mMessage Machine kit (Ambion, Thermo
Fisher Scientific Inc., Waltham, MA, USA) from pTLN.37 After 3 days
incubation at 17 °C, currents were measured at room temperature using
standard two-electrode voltage clamp employing TurboTEC amplifiers (npi
electronic, Tamm, Germany) and pClamp10.2 software (Molecular Devices,
Sunnyvale, CA, USA). Oocytes were superfused with modified ND96 saline
(96mM NaCl, 2 mM K-gluconate, 1.8mM Ca-gluconate, 1mM Mg-gluconate,
5mM HEPES pH 7.5) and clamped in 20-mV steps to voltages between − 100
and +80mV. The holding potential was − 30mV.

Morphological studies of mouse hippocampal neurons
Mouse embryos were dissected at embryonic day 16.5 (E16.5), tissue was
dissociated by trypsin as well as by mechanical treatment, and primary
cultures of hippocampal neurons were established at 37 °C by plating on
coated-glass coverslips (poly-L-Lysine and Laminin) at a density of 100 000
per 16mm Petri dish. Neurons were differentiated for 18 days in vitro (18
DIV) using Neurobasal/B27 medium and antibiotics (Mycozap, Lonza, Basel,
Switzerland), replacing half of the media each third day for maintenance
according to standard procedures.38,39 Short-hairpin RNA (shRNA) design
was made by targeting the 3′UTR of each specific gene using Promega
shRNA designer tools (Promega BioSciences, San Luis Obispo, CA, USA) or
informations based on The RNAi Consortium (TCR) shRNA Library. A control
shRNA-producing plasmid was used in control experiments as previously
described.40 Three independent shRNA-producing and GFP-expressing
plasmids, based on pSystrike vector (Promega), were produced for each
gene and used as a pool. Sequences targeted by shRNAs for Cnksr2 and
Clcn4–2 (Clcn4) genes and control sequences are GGAGCAGAGG
ATGGCAGTCATTCA, GGTGGGAAGGCTAGCTCTGTTACT, GCGCGGCGTATCAG
GGCAAAGCTT, GGGTATGTGGGAGGGTGTAAATGA, GGGAGAGGCGAGTAC
GAAGATGAA, GTGGTCTACTCATGGCCATCTCAT and GCTCACCCTTCCTACTC
TC. Full-length murine Cnksr2 (NCBI reference sequence NM_177751.2) and
Clcn4 (NCBI reference sequence NM_011334.4) cDNAs were cloned into
pFN21A HaloTag® CMV Flexi® vector (Promega). For rescue experiments,
pool of plasmids encoding shRNAs were cotransfected with pFN21A
HaloTag® fused to either Cnksr2 or Clcn4. All constructs were sequence
verified and plasmids were purified using an endotoxin-free kit (Macherey
Nagel, Düren, Germany). Transfections were carried out using Lipofecta-
mine (Invitrogen, Life Technologies, Carlsbad, CA, USA) at 11 DIV and cells
were fixed at a later stage of differentiation for analysis (DIV 18). Individual
neurons were directly imaged under fluorescence and confocal micro-
scopy (spinning disk microscope, Leica, Leica Microsystems, Wetzlar,
Germany) using GFP labeling as a tracer of morphology. Immunocyto-
chemistry to detect GFP (goat antibody, Abcam, Cambridge, UK) and
HaloTag constructs (HaloTag TMR Ligand, Promega) was also realized
according to standard procedures. Image analysis was done using Imaris
software with ‘Filament tracer’ plugin (Bitplane Scientific Software, Bitplane
AG, Zürich, Switzerland) and ImageJ software (Wayne Rasband, Bethesda,
NIH). It allowed quantifying total arborization of neurites (dendrites and
axon) for each neuron (total length of neurites, numbers of branches,
branching complexity), see Supplementary Figure 4 for details on
branching analysis. Quantification was based on three independent
experiments with more than 15 cells of each type per experiment
analyzed. Mann-Whitney statistical test was used to compare total neuritic
length as well as number of branches, whereas Chi-square test was used to

evaluate significance of variations in branching complexity. Primary
cultures of hippocampal neurons from wild-type and Clcn4− /− mice41

were obtained as described above with some minor differences. Animals
were dissected at postnatal day 1 (P1), papain was used for dissociation of
tissue, and glass coverslips were coated with poly-L-Lysine and collagen. At
DIV 11, neurons were transfected with pEGFP-C1 vector (Clontech,
Mountain View, CA, USA) using Lipofectamine-2000 according to the
manufacturer’s instructions. Cells were fixed and stained at DIV15 or DIV18
as described previously.42 Primary antibodies were chicken anti-GFP
(Aves Lab, Tigard, Oregon, USA) and mouse anti-microtubule associated
protein 2 (Chemicon/Millipore, Merck/Millipore, Darmstadt, Germany) as a
neuronal marker. Secondary antibodies conjugated to Alexa Fluor 488 or
546 were from Molecular Probes. Images were taken using a LSM510 laser
scanning confocal microscope equipped with a × 10 lens (Zeiss). Image
analysis was performed in a blinded manner using ImageJ and its plugin
NeuronJ: ns (non-statistically different), *Po0.05, **Po0.01, ***Po0.001
for validation.

RESULTS
Initially, using genome partitioning and NGS we investigated a
cohort of 248 unresolved families with suggestive X-chromosome
involvement. Each of the families has at least 2 affected males and
in 210 families affected males were present in separate sibships.
Before this study, 125 of the index patients had been prescreened
for different (per case) known XLID genes.2,23 For 1/3 of the 248
families, linkage data were available. For enrichment, we
used probes covering 745 X-chromosome genes, including
1 224 575 bp in coding regions and 2 400 136 bp in exonic regions.
In all, 92% of the target sequences were covered by at least three
sequence reads, and 94.2% were covered by at least one read
(Supplementary Figures 5, 6, 7 and 8). In total, we identified 3378
recurrent and 1299 non-recurrent exonic variants, which were also
found in control populations (Table 1). After filtering against
variants from 47000 controls, present in publicly available
databases as well as our in-house database, 28 recurrent and 765
non-recurrent exonic variants, as well as 16 potential splice site
variants remained (Tables 1–3, Supplementary Tables 1, 2, 3 and 4).
As a follow-up study we investigated an additional cohort of

157 unresolved, similarly pre-screened XLID families. For this
cohort, we present data on pathogenic variants identified in
known XLID genes, likely or potentially pathogenic variants in
novel and candidate XLID genes and truncating variants unlikely
implicated in XLID.
For validation and segregation analyses, we prioritized variants

by defining a prioritization score (PS). This score incorporates
several computationally tractable pieces of information including
the type of variant, evolutionary conservation and (if available)
evidence that the gene has a role in XLID. Except for duplications
and small in-frame indels, variants with a PS of ⩾ 5 were
considered as strong candidates for follow-up studies. More
recently, we also assigned C-scores obtained by applying CADD35

for ranking SNVs and short indels.

Pathogenic variants identified in known XLID genes
A critical survey of the medical literature suggests that there are
currently ~ 90 well-established XLID genes (79 previously known
genes proposed as ‘confirmed’ by Piton et al.43 plus HCFC1,13

MAOA,44CCDC22,14USP9X,6PIGA,16WDR45,17KDM6A,18BCAP31,19

ZC4H2,20KIAA2022,21MID222). In these genes, we identified likely
pathogenic variants in 39 of the 248 families (16%) and in 16 of
the 157 families (10%), which together with the 24 families from
these two cohorts that were resolved through this screen and
were published earlier,7,20,21,23,45–50 account for 21 and 18% of the
cohorts (for details, see Supplementary Tables 5 and 6). The
variants include co-segregating protein truncating variants, in-
frame deletions or missense changes and none of them were
reported in 61 486 unrelated individuals (ExAC Browser). Accord-
ing to the current literature and HGMD (as of May 2014), for some
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of these XLID genes only very few families with pathogenic
variants have so far been reported, suggesting that mutations in
these genes are very rare. One example is ACSL4 (previously
known as FACL4 [MIM 300157]), which has a role in long-fatty-acid
metabolism. Its involvement in XLID was discovered more than 10
years ago.51 Yet, until today a total of only four unrelated families
with pathogenic point variants in ACSL4 have been published.
These include one recurrent amino-acid change and one splicing
variant.51–53 We identified a non-sense variant in this gene
(chrX:108902601G4A, p.Arg654*) present in one family
(Supplementary Table 5). Our results strongly support that ACSL4
mutations cause XLID. In NLGN3 [MIM 300336], that is known as
‘autism’ gene with currently two likely pathogenic missense and
two potentially disease relevant splicing variants reported in the
literature,54–56 we identified a likely deleterious stop codon (p.
Arg162*) which is expected to remove most part of the protein.
The variant could not be tested for segregation because additional
family members were unavailable. The 29-year-old affected is the
first and only child of unrelated and healthy parents. He presented
with moderate ID, severe behavioral problems, especially abnor-
mal sexual behavior and aggression. There was no formal
diagnosis of autism. We have also identified pathogenic variants
in ID genes with widely varying phenotypes, which are difficult to
diagnose by clinical examination alone. One example is PQBP1
[MIM 300463] in which we found a pathogenic single nucleotide
deletion that causes a frameshift resulting in a premature stop
codon (p.Phe240Serfs*26, Supplementary Table 5). As a result of
this molecular diagnosis, careful reexamination of the affected
boys revealed subtle dysmorphic features that are in good
agreement with the currently known PQBP1 clinical spectrum.
One of the established XLID genes with several likely

pathogenic variants identified in our study groups is MED12
[MIM 300188]. Missense variants in this gene have been linked
with Lujan-Fryns syndrome57 [MIM 309520], Opitz-Kaveggia
syndrome58 [MIM 305450] and Ohdo syndrome59 [MIM 300895].
In addition to the previously published large family with a protein
truncating variant associated with a profound phenotype in males
and several heterozygous female carriers with variable cognitive
impairment,28 we identified segregating likely pathogenic mis-
sense variants in three families (Supplementary Table 5). Similarly,
eight XLID families carry pathogenic variants in CUL4B [MIM
300304] (Supplementary Table 5).50

Likely pathogenic variants in novel XLID genes and previously
proposed candidate genes
We identified likely deleterious variants in four novel XLID genes
and validated three previously suggested candidates, described
here in more detail, including CLCN4 [MIM 302910], CNKSR2 [MIM
300724], FRMPD4 [MIM 300838], KLHL15, LAS1L, RLIM [MIM 300379]
and USP27X. We propose these genes to be confirmed or novel
X-chromosome ID genes based on our genetic, bioinformatic
and functional evidence as well as current knowledge extracted
from the literature. All but one variant identified in these genes
co-segregated with ID in the relevant families (Table 2, Figures 1
and 2).
In CLCN4, that encodes the electrogenic chloride/proton

exchanger ClC-4,60 we discovered a protein truncating variant
(p.Asp15Serfs*18, family MRX4961) and four missense variants (p.
Gly731Arg, family MRX15,62 p.Leu221Val, p.Val536Met, p.Gly78Ser)
(Figure 1a). ID of the affected males was variable, even within
families, ranging from mild to severe. Similarly, intra- and
interfamilial variable clinical features include epilepsy, dysmorphic
face, scoliosis and strabismus (for detailed clinical information, see
Supplementary Table 7). All affected amino-acid residues lie within
the transmembrane part or in the cytoplasmic, carboxy terminus of
the protein (Figure 1c). To provide further evidence that the
missense variants identified impair ClC-4 protein function, we
performed analyses in Xenopus laevis oocytes. Compared with the
strong outwardly-rectifying currents of wild-type CLC-4 (refs. 36,60)
currents were much smaller or even absent with ClC-4 constructs
carrying the point variants, showing that these substitutions
markedly impaired the function of the ClC-4 protein (Figure 1b).
In the crystal structure of algal CmClC,63 p.Gly731 is located just at
the contact sites of the cytosolic cystathionine-β-synthase (CBS)
domains of the different subunits of the ClC-4 homodimer. Since
CBS domains have been implicated in the gating of CLC
channels,64,65 the p.Gly731Arg substitution may interfere with this
process. We additionally analyzed the effects of the mouse
counterpart, Clcn4, on neuronal differentiation by transfecting
hippocampal neurons at day-in-vitro 11 (DIV11) with knock-down
constructs targeting this gene and evaluated the cells at a later
stage of differentiation (DIV18). At this stage, neuronal differentia-
tion is complete and was clearly affected in Clcn4-depleted cells.
Indeed, compared with controls that were transfected with a non-
silencing construct, in Clcn4 depleted cultures neurons were less

Table 1. Overview of sequence variants identified in 248 index patients with XLID

Variant class Variants found in the study cohort and
present in control populationsa

Variants found in the study cohort and
absent in control populationsa

Recurrent Non-recurrent Total Recurrent Non-recurrent Total

Synonymous 602 262 864 9 235 244
Missense 606 356 962 15 (1) 461 (9) 476
Non-sense 6 4 10 0 13 13
In-frame indels (o50 kb) 13 4 17 1 18 (1) 19
Small frameshift indels (⩽50 kb) 12 7 19 3 29 (1) 32
Large indels (450 kb) 0 0 0 0 9b 9
Total 1239 633 1872 28 765 793
Canonical splice sites 7 3 10 2 10 12
Retrocopies 0 0 0 3 5 8
Potential cryptic splice sites 0 0 0 0 4 4
Non-coding exons 2132 663 2795 342 1468 1810
Total 3378 1299 4677 375 2252 2627

Abbreviations: HGMD, Human Gene Mutation Database; XLID, X-linked intellectual disability. aVariants present in HGMD with PubMed entries (numbers
shown in parentheses) were treated as potentially disease relevant and therefore were excluded from filtering against control populations (dbSNP 135, Exome
Variant Server, NHLBI Exome Sequencing Project (ESP), Seattle, WA, 1000 Genomes Project, 200 Danish exomes3). Indels= insertions and deletions. bThree
duplications were only detected by using a Hidden–Markov Model-based method.30
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branched, that is, the total length of neuritic branches was
decreased by 30% corresponding to less dendritic branches per
cell. However, there was no effect on the complexity of dendritic
branching. Introduction of ClC-4 protein in knock-down cells using
RNAi-insensitive cDNA rescued both dendritic phenotypes to
control levels, thus highlighting the specificity of the phenotype
truly associated with the loss of ClC-4 protein (Figure 3a). Primary

neurons derived from Clcn4− /− mice41 confirmed these findings
(Figure 3b). Although the observed morphological changes were
more subtle when compared with those obtained with the shRNA-
mediated knock-down, they were statistically significant.
In CNKSR2 (also known as CNK2, KSR2, MAGUIN), we identified a

likely pathogenic frameshift variant (p.Asp152Argfs*8) in a family
with four affected males. This variant was present in three affected

?

?

72UA07NMRX49, L19

*

p.G78S

MRX15,T8
p.G731R

p.L221V

*

*

*

* ** *

*

AU4
p.V536M

wt

p.D15SfsX18

wt

wt* *

* *wt

*

*wt wt

wt* *

Figure 1. Apparently pathogenic CLCN4 mutations identified in the screen and functional analysis of the missense variants. (a) Pedigrees of
families with CLCN4 likely pathogenic mutations. Individuals tested for co-segregation with X-linked intellectual disability (XLID) and the
results are indicated, *=mutation carrier, wt= subject does not carry the mutation. (b) Current–voltage relationships of the electrogenic
Cl−/H+ exchanger protein ClC-4 and its mutants expressed in Xenopus oocytes, shown as mean values of normalized steady-state currents from
several oocytes (numbers indicated in figure, in parentheses: number of frogs). Compared with the strongly outwardly-rectifying currents of
wild-type ClC-4,36,121 currents were much smaller or even absent with CIC-4 mutant proteins carrying p.Gly78Ser, p.Leu221Val, p.Val536Met
and p.Gly731Arg substitutions. ctr, non-injected controls; error bars, s.e.m. Two-tailed t-test was used for statistical comparisons (**Po0.01,
***Po0.001 compared with wild-type ClC-4 currents). (c) Analogous positions of amino acids mutated in ClC-4 highlighted in the crystal
structure of CmClC.63 Amino acids are displayed as spheres in colors like in (b). The small green spheres represent Cl− ions. CLC transporters
form dimers of identical subunits (shown in different shades) and include a transmembrane domain (TMD) and two cytosolic cystathionine-β-
synthase (CBS) domains.
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Figure 2. Pedigrees of families with co-segregating truncating and missense variants in novel and previously suggested candidate X-linked
intellectual disability (XLID) genes validated through this study. (a) In the postsynaptic density protein CNKSR2, we observed a protein
truncating variant in family P180. (b) In FRMPD4, we detected a unique protein truncating variant in family P58 with five affected males. (c) In
KLHL15, we identified a protein truncating variant in family D60 with eight affected males. (d) In LAS1L, we found unique missense variants in
families MRXS6 (ref. 66) and T50, both with Wilson-Turner (WTS) syndrome. (e) In RLIM, we identified missense variants in three large families
D72, T11 and AU31. (f) In USPX27, we found a protein truncating variant in family D177 and a missense variant in family L75. (g) In the novel
candidate XLID gene CDK16, we detected a protein truncating variant in family L56. (h) In the novel candidate XLID gene TAF1, we identified
missense variants in families D185 and N67. *=mutation carrier, wt=wild type.
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brothers tested and their mother (Figure 2a). That CNKSR2 is
implicated in ID is further supported by an unrelated intellectually
impaired female who carries a balanced translocation with a

chromosomal breakpoint that disrupts CNKSR2 (J Chelly et al.,
unpublished result). To assess whether the loss of the mouse
ortholog, Cnksr2, has a functional impact, we depleted it in
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primary hippocampal neurons fully differentiated in vitro. Reduc-
tion of Cnksr2 had a profound effect on the number of dendritic
branches, as well as on total length of neurites per neuron,
which were all reduced by 65–75% (Figure 3c). These two drastic
phenotypes were partially, but highly significantly rescued
in neurons by expression of a shRNA-resistant cDNA plasmid
encoding HaloTag-fused Cnksr2 protein. Furthermore, dendritic
branching complexity was largely affected due to loss of terminal
branches (level 4 30%, level 5 50% and level 6 70%). This
phenotype could be restored in the rescue experiment (Figure 3c).
In FRMPD4 we identified a protein truncating variant

(p.Cys618Valfs*8) in a single XLID family with five affected males
in different sibships (Figure 2b) and a de novo missense mutation
in an unrelated male who at the age of 17 years presented with
significant developmental delay, the absence of speech and
autism spectrum disorder. His brother and a half-brother did not
carry the mutation, and upon re-examination it appeared that
they had much milder phenotypes characterized by learning
problems at school.
In the poorly characterized KLHL15 gene, encoding a member of

the kelch-like protein family, we identified a protein-truncating
variant (p.Tyr394Ilefs*61) that co-segregates with ID in a large
family with eight affected males in three different sibships
(Figure 2c). Further support for KLHL15 being implicated in XLID
comes from an unrelated XLID family, which carries a small
deletion that removes part of KLHL15 and is expected to result
either in a C-terminally truncated protein or in a complete loss of
KLHL15 (J Gecz, V Kalscheuer and F McKenzie et al., unpublished
result).
Two likely causative missense variants potentially affecting

protein biosynthesis or transcription regulation involved LAS1L,
encoding the human homolog of the highly evolutionary
conserved S. cerevisiae protein Las1 (lethal in the absence of
SSD1-v1). The p.Ala269Gly substitution was identified in the large
original family described as Wilson-Turner syndrome (WTS, MIM
309585) with mild to moderate ID and obesity (Figure 2d). 66 More
than half of the affecteds had speech disability (mutism or
stuttering), small or undescended testes and relatively small feet.
The p.Arg415Trp substitution was present in an unrelated family
from France with five affected males in three different sibships
(Figure 2d). Upon clinical re-examination of affected males from
this family, they all turned out to have ID with speech impairment,
obesity and hypogonadism, too.
For RLIM, which encodes the RING-H2 zinc finger protein 12,

we identified three families who carry unique missense variants
that resulted in single amino-acid substitutions (D72, p.Arg387Cys;
T11/MRX61, p.Pro587Arg; AU31, p.Arg599Cys). All variants co-
segregated with XLID in these large families (Figure 2e) and
affected highly conserved amino-acid residues. Both p.Pro587Arg
and p.Arg599Cys substitutions affect amino acids of the zinc-
finger domain of RLIM. In addition, HOPE67 predicts that the
differences in amino-acid properties disturb this domain.

Family D177 with three affected males in different sibships
carries a 5-bp deletion (g.AAGTA) in USP27X encoding ubiquitin-
specific peptidase 27. The deletion was also present in their
mothers (Figure 2f). The variant results in a frameshift and
premature stop codon (p.Ser342Argfs*14) that is expected
to remove the C-terminal part of the corresponding protein.
The unrelated family L75 with four affected males (Figure 2f)
carries a potentially deleterious missense variant in USP27X, which
substitutes a highly conserved tryptophane by a histidine residue
(p.Trp381His).

Variants identified in novel candidate XLID genes
In CDK16 (also frequently named in the literature as PCTK1 and
PCTAIRE1, [MIM 311550]), which is highly expressed in brain and
testis, we identified a dinucleotide deletion in the index male of
family L56. The deletion affects all three known RNA isoforms and
results in a frameshift and a premature stop codon before the
N-terminal kinase domain (p.Trp326Valfs*5). The deletion was also
present in his affected brother and two affected male cousins
(Figure 2g) who, in addition to ID, all suffered from spastic
diplegia. It is currently unclear whether another dinucleotide
deletion (g.TG, chrX:47085594-47085595, p.Phe322Trpfs*12),
which would truncate the C-terminus of only one CDK16 protein
isoform (non RefSeq variant), and was identified in a single family
is a rare neutral variant. CDK16 is a poorly characterized atypical
member of the cyclin-dependent kinase family. It is particularly
abundant in postmitotic neurons,68 and has been implicated
in the regulation of neurite outgrowth,69 neuronal migra-
tion, vesicular transport and exocytosis.70–72 Depletion of Cdk16
abolished dendrite development in primary neuron cultures,73

and in C. elegans it is important for localizing presynaptic
components.74 Thus, it is plausible to assume that loss of CDK16
function could have a role in ID, but more evidence is required to
accept CDK16 as a novel XLID gene.
In TAF1 [MIM 313650] we identified segregating missense

variants in two unrelated families (Figure 2h), both of which affect
highly conserved amino acids of proteins encoded by the longest
transcript isoforms encoding the TATA box binding protein-
associated factor, 250 kD (TAF1), which is a subunit of a complex
with a key role in transcription initiation. Additionally, TAF1 is part
of the H3K4 methyltransferase MLL1, which also contains CHD8
that is implicated in autism.75,76 Reduced expression of TAF1 has
been shown in brain tissues from patients with X-linked Dystonia-
Parkinsonism [MIM 314250], a movement disorder endemic to the
Philippines.77 Furthermore, variants in TAF2 have been associated
with autosomal recessive ID.78,79 Although additional evidence for
TAF1 being implicated in XLID is currently missing, these data
indicate that loss of TAF1 function could affect cognition.

Figure 3. Effects of Clcn4 or Cnksr2 downregulation on morphology of mouse hippocampal neurons. Typical arborization of GFP-labeled
neurons cultured for 18 days in vitro (DIV) after targeting by non-silencing (NS) or gene-specific shRNA (Clcn4 or Cnksr2) at 11 DIV.
Quantification of transfected neurons, for total length of neuritic branches, total number of branches (a branch is considered as the segment
between two branching points) and for dendritic branching complexity (levels were quantified per neuron from 1 to 6, each time a branching
point is met from nucleus toward the distal part of each dendrite). Detection of co-transfections of shRNA and cDNA encoding plasmids
for rescue experiments is shown as overlap of GFP (green) and Halotag (red) signals. Clcn4 experiment is shown in (a) and Cnksr2 in (c). More
than 15 representative cells of each type were analyzed per experiment, with three independent experiments conducted. (b) Quantification
of neuritic arborization in GFP expressing primary hippocampal neurons derived from Clcn4+/+ and Clcn4− /− mice as described above. Two
independent experiments with430 cells per genotype of five wild-type and four knock-out mice were analyzed. ClC-4-deficient neurons
showed a significant reduction in the total number and total length of neuritic branches compared with wild-type cells. Average values with
s.e.m. are shown (i) in histograms for neuritic length and number of branches and (ii) in curves for complexity levels of branching. Mann-
Whitney and Chi2 tests were respectively used for statistical comparisons (ns: non-statistically significant, *Po0.05, **Po0.01, ***Po0.001).
Scale bar represents 10 μm.
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Variants with unlikely effect on brain function
We also identified protein truncating or read-through changes in
40 genes which we considered as unlikely to cause ID because
these were (i) outside the linkage intervals in the respective
families and therefore expected not to co-segregate with the
phenotype, (ii) did not co-segregate with ID, (iii) previously
reported in healthy males3,80 or (iv) involved in phenotypes
distinct from ID. From these, protein truncating variants that have
not been reported in controls are presented in Table 3. The ARSF
[MIM 300003] variant is present in a family with two affected
males. Other ARSF truncations were reported in controls.3

The index patient sequenced here additionally carries a non-
segregating truncating variant in MAGIX, but we currently cannot
entirely rule out that this proband is a phenocopy. Single
truncating variants in COL4A6 [MIM 303631], CXorf61 [MIM
300625] and MAP3K15 [MIM 300820] are outside the linkage
intervals of the respective families and therefore unlikely co-
segregate with XLID in the families in which they were found.
Similarly, the GUCY2F [MIM 300041] and SLC25A43 [MIM 300641]
truncating variants did not co-segregate with XLID in the family in
which they were identified and other rare protein truncating
variants were reported in ESP6500 and in other healthy male
controls.81,82 Furthermore, COL4A6 is part of a contiguous gene
deletion causing Alport syndrome [MIM 301050], a childhood
onset progressive haematuric glomerulopathy with high-
frequency sensorineural hearing loss and typical ocular signs,
and for MAP3K15 other stop-gain variants have been identified in
male controls.3 CXorf64 and FATE1 [MIM 300450] truncating
variants were identified in the same family and both did not
co-segregate with XLID. Variants in FRMD7 [MIM 300628] cause
idiopathic infantile nystagmus [MIM 310700]. Similarly, a non-
segregating stop-gain variant in GPR112 and a non-segregating
stop-loss variant in the XLID gene HDAC8 [MIM 300269] (Table 3)
were found in a family with a co-segregating protein truncating
variant in the XLID gene UPF3B [MIM 300298], which was
considered as the cause of ID (Supplementary Table 5). For
HS6ST2 [MIM 300545], our follow-up study revealed that this
deletion is recurrent and also present in a family with a
pathogenic variant in the known XLID gene KDM5C (previously
known as JARID1C [MIM 314690]). Similarly, other HS6ST2
truncating variants were identified in normal males.30 Further-
more, a recurrent RAB40AL dinucleotide missense variant
(p.Asp59Gly) previously reported to cause Martin-Probst
syndrome83 [MIM 300519] and published as causal in an unrelated
male84 was identified in four unrelated index patients and did not
segregate in two of the families. In another family, a protein

truncating variant was present on both X-chromosomes of healthy
females, as recently reported.85

DISCUSSION
For many years, research into the molecular causes of ID has
focused on the X-chromosome, prompted by the observation that
males are more often affected than females.86,87 Cumulatively,
sequencing of positional and functional candidate genes as well
as high-resolution array CGH led to the identification of apparently
causative defects in more than 100 X-linked genes, but after the
advent of high-throughput sequencing techniques, mutations
inactivating some of these genes were also observed in healthy
individuals, thereby questioning the identity of several of the
previously identified XLID genes.43

Despite the large number of established XLID genes, more than
half of the XLID families remained unsolved,2,3 suggesting further
heterogeneity. This prompted us to investigate a cohort of 405
XLID families by NGS. 74 (18%) of the families carry variants in
established XLID genes that we consider as causative. Six families
(1.5%) carry potentially causative XLID variants which, in our
opinion, have to be studied in more detail before qualifying for
carrier testing or prenatal diagnosis. Some of these variants are
recurrent and were previously reported in other XLID families (for
example, ATRX, CUL4B, HUWE1, for more details see our previously
unpublished variants showing the respective HGMD entries in
Supplementary Table 5). We did not identify any pathogenic
variants in genes with an unclear role in XLID,43 apart from a co-
segregating missense variant identified in ARHGEF6 [MIM 300267]
the functional relevance of which remains to be established. This
does not disprove a possible role of these genes in ID.
In 5% of the families, we identified likely deleterious variants

in novel XLID genes and previously proposed candidate genes.
In 2% of the families, mutations were observed in XLID genes
that emerged from this screen and have been or will be
reported in detail elsewhere, for example, ZC4H2,20 KIAA2022,21

THOC2 [MIM 300395] (Kumar et al., manuscript in preparation) and
EIF2S3 [MIM 300161] (manuscript in preparation). None of these
variants was found in 461 486 ‘healthy’ controls except for
3 heterozygous females with RLIM protein truncating variants,
and none of these genes carry loss-of-function variants in these
controls (dbSNP138, ExAC Browser30,81,88–90).
One of the novel XLID genes discovered in this study is CLCN4 in

which we identified protein truncating and missense variants in
five unrelated families, including families MRX15 (ref. 62)
and MRX49 (ref. 61) with non-syndromic XLID. Electrophysiological

Table 3. Potentially non-XLID causing recurrent and non-recurrent transcript and protein truncating variants identified in the screen and not present
in controls (dbSNP 135, 1000 Genomes Project, 200 Danish exomes, NHLBI Exome Sequencing Project (ESP6500, Exome Variant Server))

Recurrence in 248 probands Gene Variant Protein length Genomic location (Hg19)

1 ARSF del5bp, p.F283Sfs*30 591 X:3007551-3007555
1 COL4A6 del1bp, p.L891Sfs*14 1691 X:107420086-107420086
1 CXorf61 C4T, p.W19* 114 X:115593961-115593961
1 CXorf64 C4T, p.R201* 299 X:125955222-125955222
3 FAM58A ins1bp, p.Q18Afs*39a 248 X:152864477-152864478
1 FATE1 ins7bp, p.M38* 184 X:150885749-150885750
1 FRMD7 del1bp, p.L713* 715 X:131211907-131211907
1 GPR112 ins2bp, p.A1156Gfs*7 3081 X:135429330-135429331
1 GUCY2F G4A, p.R628* 1109 X:108652307-108652307
1 HDAC8 A4G, p.*257QKQLPQLVFPHLHSLV 257 X:71694548-71694548
1 HS6ST2 del1bp, p.V8Afs*27 606 X:132092608-132092608
1 MAGIX ins1bp, p.G316Rfs*20 335 X:49022676-49022677
1 MAP3K15 A4T, p.Y645* 1314 X:19416475-19416475
1 SLC25A43 C4T, p.R196* 342 X:118544221-118544221

Abbreviation: XLID, X-linked intellectual disability. aThis variant is reported in dbSNP138.
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studies in Xenopus laevis oocytes showed that the amino-acid
substitutions present in the affected males markedly impaired
ClC-4 function and primary mouse neurons depleted of Clcn4, the
mouse counterpart of CLCN4. As well, primary neurons derived
from Clcn4 knock-out mice showed a significant effect on
neuronal differentiation thereby corroborating that ClC-4 is
important for cognition. Our results further support pathogenicity
of a de novo CLCN4 missense variant identified in a boy with
epilepsy and cognitive dysfunction.91 Very little is known about
the physiological role of ClC-4. It is a member of the CLC family
and most homologous to ClC-3 and ClC-5. Similar to ClC-4, other
members of this family are also required for normal brain function,
for example, ClC-2 variants have been described in individuals
with leukoencephalopathy and MRI abnormalities,92 and loss of
ClC-7 leads to neurodegeneration associated with lysosomal
storage and osteopetrosis, respectively.93–95 Clcn4− /− mice do
not display an obvious phenotype,41 whereas Clcn3− /− mice are

developmentally retarded, show neurological manifestations
and severe postnatal degeneration of the hippocampus,96 and
Clcn6− /− mice display lysosomal storage in neurons.97 Thus, direct
and indirect evidence point to a vital role for ClC proteins,
including ClC-4, in the central nervous system.
Interestingly, the proteins encoded by the now confirmed XLID

genes CNKSR2 and FRMPD4 (also termed PDZD10, PDZK10, Preso
and Preso1) interact with PSD95 (Figure 4), the major scaffold
protein of the postsynaptic density, which has an important role in
neuronal plasticity. In CNKSR2, we identified a deleterious variant
in a single family. This result was conducive to interprete
a previously reported intragenic deletion identified in a boy
with non-syndromic XLID98 and of two additional CNKSR2 gene
deletions present in unrelated families.99 In addition, depletion
of Cnksr2 in primary hippocampal neurons resulted in
reduced number and complexity of dendritic branches. CNKSR2
is also connected with the XLID protein DLG3 and the ID/autism
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Figure 4. Novel X-linked intellectual disability (XLID) genes and candidates that emerged from this study encode components of key cellular
protein networks. All available protein–protein interactions involving known intellectual disability (ID) proteins and the proteins likely
implicated in XLID identified in this study were first extracted from the literature and then connected into a set of protein–protein interaction
networks via the Ingenuity tool. Functional cellular subnetworks were extracted by using the available annotations of the interacting proteins
(e.g., defined by functional category ‘translation/transcription’) and by performing literature searches. (a) PSD-95 (postsynaptic density protein
95)/Ras/Rho interaction network. CNKSR2 (CNK2, MAGUIN1, validated XLID protein) that likely functions as an adapter protein or regulator of
Ras signaling pathways interacts with PSD-95 in synaptosomes.122 FRMPD4 (Preso, validated XLID protein), which is a positive regulator of
dendritic spine morphogenesis and density and is required for the maintenance of excitatory synaptic transmission, interacts with PSD-95,104

and together with its binding partner ARHGEF7 (βPix) localizes in dendritic growth cones.123 (b) Transcriptional/translational interaction
network. Known protein complexes are highlighted. RNA Polymerase II (RNAPII) complex with the core component TAF1 (novel candidate
XLID protein). ATN1 (known ID protein) interacts with TAF4 and negatively regulates transcription of RNAPII.124 Large ribosomal subunit (60S)
contains RPL10 (known candidate XLID/autism protein). LAS1L (novel XLID protein) is essential for the biogenesis of the ribosomal subunit
60S.114 Eukaryotic translation initiation factor, EIF2S3 (novel XLID protein), is a component of the translation initiation complex and promotes
binding of the initiator methionyl-tRNA to the 40S ribosomal subunit.125 POLDIP3 (SKAR), involved in positive regulation of translation,
associates with THOC2 (novel XLID protein) as a part of the TREX complex (functioning in mRNA export),126 with mRNA surveillance factor
UPF3B (known XLID protein), as well as with a core component of the exon junction complex, EIF4A3.127 CDK16 (novel candidate XLID
protein) and Synapsin 1 (Syn1, known XLID protein) were shown to interact in a membrane fraction from brain.71 Cdk16 associates with 14-3-3
zeta in Neuro-2A cells.69 Mediator complex, which functions as a transcriptional coactivator, contains MED12 (known XLID protein) and
MED13L (known ID protein). NIPBL (known ID protein) is involved in loading of cohesin and associates with the mediator-cohesin complex,
which interfaces gene expression and chromatin structure. Histone methyltransferase MLL2 (known ID protein) associates with a core
component of Pol II, POLR2B, and activates transcription.128 Deubiquitinating enzyme USP27X (novel XLID protein) interacts with USP22 that
is required for histone deubiquitination,129 and which associates together with TAF10 as part of the TBP-free TAF complex (TFTC).109 ADRA2B,
G-protein coupled receptor, by interacting with EIF2B130 and 14-3-3 zeta131 links G protein-mediated signaling network and cellular control of
protein synthesis. (c) Ubiquitination interaction network. KLHL15 (validated XLID protein) with a function in protein ubiquitination interacts
with a component of an ubiquitin E3 ligase, CUL3.132 RLIM (novel XLID protein) is an E3 ubiquitin protein ligase113 and associates with
UBE2D1.133

Novel X-linked intellectual disability genes
H Hu et al

11

© 2015 Macmillan Publishers Limited Molecular Psychiatry (2015), 1 – 16



protein SHANK3 (ref. 100) is involved in the assembly of synaptic
junction components,101 and modulates Rac cycling during spine
morphogenesis.102

For FRMPD4, the first evidence for its involvement in XLID
came from a duplication that likely disrupted this gene in a male
with mild ID and autism.103 Depletion of the FRMPD4 ortholog in
the mouse decreases spine density and excitatory synaptic
transmission,104 similarly to what has been described for other
proteins important for normal brain function and, when deficient
result in cognitive impairment.
Four of the novel and validated XLID genes are potentially

directly or indirectly implicated in the regulation of protein
turnover (Figure 4). One of these is KLHL15, in which we identified
a deleterious variant in a large family and a deletion that likely
affects its normal function in an unrelated family (unpublished
results). Our results support pathogenicity of a partial deletion of
KLHL15, which has very recently been described in a single
proband with severe ID, epilepsy and anomalies of cortical
development.105 KLHL15 is a member of the Kelch-like proteins,
many of which are adaptors for the recruitment of substrates
to Cul3-based E3 ubiquitin ligases for degradation by the 26S
proteasome. KLHL15-Cul3 specifically targets a brain-specific
regulatory subunit of the protein phosphatase 2A (PP2A/B’ß)
and thereby promotes its proteasomal degradation, resulting in
the formation of alternative PP2A holoenzymes.106 PP2A/B’ß has
been shown to inactivate CAMKII, which is a key mediator of long-
term potentiation. Thus, aberrant turnover of PP2A/B’ß caused by
KLHL15 protein-truncating variants could contribute to XLID.
Little is currently known about the functional role of the

ubiquitin specific peptidase USP27X. It was among the top 50
genes with enriched expression in mouse embryonic serotonin
neurons and thus may be important for serotonergic function.107

The only known interaction partner of USP27X is USP22, which has
been shown to be required for glial cell and neuronal develop-
ment in flies.108 It is an integral component of a Pol II coactivator
complex that, in addition to its histone acetyltransferase activity,
has a role in the turnover of histone modifications by specifically
removing the ubiquitin moiety from histones H2A and B, and
it functions as a positive cofactor for activation by nuclear
receptors.109 Several previously identified ID genes code for
subunits of the same complex, for example, proteins from the
mediator complex, for example, MED12 and MED13L [MIM
608771], and a range of proteins that regulate transcription by
modulation of the chromatin structure.110 Furthermore, variants in
another member of the peptidase C19 family, USP9X, are also
associated with XLID.6

Three unrelated families carry co-segregating point mutations
in the E3 ubiquitin ligase RLIM, which were all predicted as disease
causing.111 Two of the amino-acid substitutions lie in the
C-terminal zinc finger domain and could disturb its function.
RLIM has an important role in embryonic development by acting
as a negative regulator of LIM homeodomain transcription factors
through two distinct and complementary mechanisms: recruit-
ment of the Sin3A/histone deacetylase corepressor complex and
targeting the coactivator of LIM homeodomain proteins for
degradation,112,113 suggesting that it has critical functions in
regulating associated transcriptional activity.
LAS1L in which we identified likely pathogenic missense

variants in two families with a syndromic form of XLID (WTS,66

[MIM 309585]) is involved in ribosome biogenesis. It is required for
the synthesis of the 60S ribosomal subunit and maturation of 28S
rRNA. Depletion of LAS1L results in a p53-dependent cell-cycle
arrest, defective pre-rRNA processing and failure to synthesize
mature 60S ribosomal subunits.114,115 Additionally, LAS1L is part of
a large nuclear complex (Five Friend of Methylated chromatin
target of protein-arginine-methyltransferase-1) that has a role in
transcription regulation by affecting the sumoylation status and
transactivation potential of the zinc-finger transcription factor

Zbp-89,116,117 and is a component of the CoREST1/HDAC1
corepressor complex.117 It remains to be determined which of
the LAS1L functions are compromised by the missense variants.
Interestingly, another missense variant in this gene has recently
been identified in a boy with congenital lethal motor neuron
disease,118 suggesting that LAS1L variants are associated with
a variable phenotype. Similarly, a family with a phenotype
resembling WTS carries a missense variant in the known XLID
gene HDAC8,119 in which loss-of-function variants are associated
with Cornelia de Lange syndrome (CDLS5 [MIM 300882]).12

Our investigation has led to the identification of several novel ID
genes that are mutated in up to 7% of the XLID families. There are
still many ID families with evidence for X-linkage that remain
unresolved, including 75 families with 4 and more affected males
in separate sibships connected through female carriers, suggest-
ing several yet to be identified genes or loci on the X-chromosome
involved in ID. The ‘diagnostic’ yield of 26% obtained by
performing X-exome resequencing on a pre-screened cohort
contrasts with our previous experience that defects in XLID genes
known until 2007 account for more than half of the families
screened.2 This discrepancy can be explained by the fact that in
the present study, most of the families had already undergone
prior FraX testing, array CGH and targeted analysis of many
previously known genes. Indeed, KDM5C variants and disease-
causing variants in three other most common XLID genes, namely
MECP2 [MIM 300005], IL1RAPL1 [MIM 300206] and PQBP1, turned
out to be strongly under-represented in the families included here
(Supplementary Table 10). To estimate the diagnostic yield of
sequencing all X-chromosomal exons in novel, not previously
examined XLID families, we selected 222 EUROMRX consortium
families with convincing evidence for X-linkage, as evidenced by
two or more affected males in two generations connected
through healthy female carriers. In all, 97 of these 222 families
had been resolved by mutation screening of single genes or by
array CGH before this study (unpublished results).2 Of the
remaining 125 families, 32 could be solved and 3 potentially
solved by NGS-based sequencing of all X-chromosomal genes, but
90 remained unsolved, with half of them having four or more
affected males in separate sibships. Assuming that we would have
detected all previously identified defects by NGS, this indicates
that mutations in coding regions of all presently known XLID
genes account for 58% of the (EUROMRX) Fragile X-negative
families (Supplementary Figure 9). Combined with Fragile X, which
is seen in about 15% of XLID families, NGS and Fragile X testing
allows a molecular diagnosis in 64% of all families with XLID
(Supplementary Figure 10).
There are several explanations why about one-third of all XLID

families cannot be solved by Fragile X testing combined with
X-exome sequencing, (1) technical limitations because of poor
enrichment and coverage that may account for a small number of
the families, (2) non-coding variants or yet to be annotated
regions of X-chromosome, (3) also, it is rather likely that at least
some of the families might have autosomal ID instead of XLID, (4)
the unique DNA missense variants with currently unknown
causality are pathogenic, (5) at least some of the cases might be
due to multigenic variations, or (6) deleterious variants are located
in yet undiscovered regulatory elements. Although there is no
reliable information about the proportion of disease-causing
mutations located outside coding exons, their frequency may be
considerable. A recent effort to annotate the non-coding
sequence showed that around 80% of the genome contains
elements linked to a biochemical function.120 Nowadays, whole
genome sequencing or targeted genomic sequencing of linkage
intervals combined with sophisticated computational tools that
predict such potentially functionally relevant sequences, in
principle, allow finding disease-relevant variants outside coding
exons. One example is a family with non-syndromic XLID in which
we failed to identify the causative mutation by exome sequencing.
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Subsequent massively parallel resequencing of the non-repetitive
genomic linkage interval identified a regulatory variant that leads
to overexpression of the transcriptional regulator HCFC1.7 Though
the numbers of non-coding sequences in the human genome are
comparably large, interpreting non-protein coding variants is a
new challenge for the next years.
In conclusion, we have been able to identify numerous patho-

genic variants in known XLID genes, previously proposed and
novel XLID genes and two XLID candidates. The results provide a
molecular diagnosis for the families involved and will be useful for
interpreting variants that will be identified in other patients and
families in these genes in the future. It will also help to better
understand the genetic complexity underlying ID and the
functional complexity underlying normal brain function, which is
amazingly diverse. There is a growing body of evidence
demonstrating that genetic lesions identified in XLID genes are
also associated with other brain/neurological disorders, many of
these often co-occurring with ID including autism, epilepsy,
schizophrenia or other neuropsychiatric and neurobehavioral
problems. Therefore, further investigations of the XLID genes in
the context of their functional and regulatory networks will not
only deepen our insight into the pathogenesis of ID but also shed
more light into the etiology of related neurological disorders and
into human brain development.
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