Supporting Information:

Ring-Closing Alkyne Metathesis Approach toward the Synthesis of Alkyne Mimics of Thioether

A, B, C and DE-ring Systems of the Lantibiotic Nisin Z

Nourdin Ghalit, ${ }^{\dagger}$ Alex J. Poot, ${ }^{\dagger}$ Alois Fürstner, ${ }^{\dagger}$ Dirk T.S. Rijkers ${ }^{\dagger}$ and Rob M. J. Liskamp ${ }^{*}$, ${ }^{\dagger}$

${ }^{\dagger}$ Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands, e-mail: R.M.J.Liskamp@pharm.uu.nl
${ }^{\dagger}$ Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany

Instruments and Methods. Unless stated otherwise, chemicals were obtained from commercial sources and used without any further purification. Peptide grade or pro analysi solvents were purchased from Biosolve (Valkenswaard, the Netherlands) and dried on $4 \AA \mathrm{MS}(\mathrm{MeOH}: 3 \AA \mathrm{MS}$) before use. $\mathrm{N}, \mathrm{N}-$ Diisopropylethylamine (DIPEA) was distilled from ninhydrin and KOH-pellets. R_{f} values were determined by thin layer chromatography (TLC) on Merck precoated silicagel $60 \mathrm{~F}_{254}$ plates. Spots were visualized with UV quenching, ninhydrin or with $\mathrm{Cl}_{2}-\mathrm{TDM} .{ }^{1}$ Solid phase peptide synthesis was monitored with the Kaiser test ${ }^{2}$ and the loading of the resin ${ }^{3}$ was determined using a He λ ios β UV/VISspectrophotometer at $\lambda 300 \mathrm{~nm}$. Solvents were removed by rotary evaporation under reduced pressure at $40^{\circ} \mathrm{C}$. Melting points were determined using a Büchi melting point apparatus accordig to dr. Tottoli and were uncorrected. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were measured on a Varian G-300 spectrometer. ${ }^{1} \mathrm{H}$ NMR 500 MHz spectra were recorded on a Varian INOVA-500 spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts are given in ppm (δ) relative to TMS and ${ }^{13} \mathrm{C}$ NMR chemical shifts are given in $\mathrm{ppm}(\delta)$ relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded using the attached proton test (APT) pulse sequence. Analytical HPLC runs were performed on a Shimadzu automated HPLC (SPD-10A VP) system equipped with an evaporative light scattering detector (PLELS 1000, Polymer Laboratories) and a UV/VIS detector operating at $220 / 254 \mathrm{~nm}$. Preparative HPLC runs were performed on a Gilson HPLC workstation. Chiral HPLC analysis was performed on an analytical reverse-phase column (Astec, Teicoplanin, Chirobiotic T, $250 \times 4.6 \mathrm{~mm}$) at a steady flow of
$0.5 \mathrm{~mL} / \mathrm{min}$ with 1% TEA in $\mathrm{H}_{2} \mathrm{O}$ adjusted to pH 4 with $\mathrm{AcOH} / \mathrm{MeOH} 1: 1 \mathrm{v} / \mathrm{v}$ as eluens. Electrospray ionisation (ESI) mass spectrometry was carried out on a Shimadzu LCMS QP-8000 quadrupole benchtop spectrometer coupled to a QP-8000 data system. MS/MS-spectra were measured on a Micromass Quattro Ultima or a Micromass Q-TOF mass spectrometer.Optical rotations were measured on a Jasco P-1010 Polarimeter.

Solid phase peptide synthesis: Peptides $\mathbf{1 4}$ and $\mathbf{1 6}$ were synthesized manually on a 0.25 mmol scale on plain Argogel resin. Each synthetic cycle consisted of $N-\alpha$-Fmoc removal by treatment with 20% piperidine in DMF ($3 \times 10 \mathrm{~mL}, 8 \mathrm{~min}$), a washing step (DMF: $3 \times 10 \mathrm{~mL}, 2 \mathrm{~min} ; \mathrm{DCM}: 3 \times 10 \mathrm{~mL}, 2$ min and DMF: $3 \times 10 \mathrm{~mL}, 2 \mathrm{~min}$) a coupling step (60 min) with 1.0 mmol of preactivated Fmoc amino acid in the presence of 2 equivalents DIPEA in DMF $(10 \mathrm{~mL})$ and a final washing step (DMF: 3×10 $\mathrm{mL}, 2 \mathrm{~min}$; DCM: $3 \times 10 \mathrm{~mL}, 2 \mathrm{~min}$ and DMF: $3 \times 10 \mathrm{~mL}, 2 \mathrm{~min}$). N - α-Fmoc amino acids (1 mmol) were activated in situ with BOP (1 mmol) in the presence of DIPEA (2 mmol). Fmoc-removal and coupling reactions were monitored by the Kaiser test. ${ }^{2}$ The peptides were cleaved from the resin by treatment with a catalytic amount of KCN in $\mathrm{MeOH}(15 \mathrm{~mL})$ during 16 h . The resin was filtered and washed with $\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$, the filtrate was concentrated in vacuo to yield the crude peptide.

Solution phase peptide synthesis: Coupling reaction: The carboxylic acid moiety (1 equiv) was coupled to the amine derivative (or its TFA-salt, 1 equiv) in the presence of BOP (1 equiv) and DIPEA (2 equiv, when the amine was protonated 3 equiv were used) as coupling reagents in DCM (10 mL per mmol) as solvent. Coupling time was 16 h . After completion of the reaction, DCM was removed under reduced pressure and the residue was dissolved in EtOAc (25 mL per mmol). The EtOAc solution was washed with 1 N KHSO4 $(3 \times 25 \mathrm{~mL}), 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 25 \mathrm{~mL})$ and brine $(1 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and evaporated in vacuo. The obtained crude product was analyzed by TLC, ${ }^{1} \mathrm{H}$ NMR and ESI-MS and generally pure enough to be used in the next synthesis steps.

Boc-removal: A Boc-protected intermediate was dissolved in TFA/DCM 1:1 v/v (4 mL per mmol) and stirred for 2 h . Then, the solvents were removed under reduced pressure and the residue was coevaporated with toluene $(2 \times 25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(2 \times 25 \mathrm{~mL})$ and $\mathrm{DCM}(2 \times 25 \mathrm{~mL})$ to remove any residual TFA. The obtained TFA-salt was used without further purification in the next synthesis steps.

Peptide purification: The crude lyophilized peptides ($30-60 \mathrm{mg}$) were dissolved in a minimum amount of 0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 8: 2 \mathrm{v} / \mathrm{v}$ and loaded onto an Adsorbosphere XL C8 HPLC column ($90 \AA$ pore size, $10 \mu \mathrm{~m}$ particle size, $25 \times 2.2 \mathrm{~cm}$). The peptides were eluted with a flow rate of $10.0 \mathrm{~mL} / \mathrm{min}$ using a linear gradient of buffer B (100% in 60 min) from 100% buffer A (buffer A: 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$,
buffer B: 0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}$). The purities were evaluated by analytical HPLC on an Adsorbosphere XL C8 column ($90 \AA$ pore size, $5 \mu \mathrm{~m}$ particle size, $25 \times 0.46 \mathrm{~cm}$) at a flow rate of 1 $\mathrm{mL} / \mathrm{min}$ using a linear gradient of buffer B (100% in 30 min) from 100% buffer A (buffer A: 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$; buffer B: 0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}$).

Peptide characterization: The peptides were characterized by mass spectrometry and ${ }^{1} \mathrm{H}$ NMR (300 or 500 MHz$)$. The mass of each analog was measured and the observed monoisotopic $(\mathrm{M}+\mathrm{H})^{+}$values were correlated with the calculated $(\mathrm{M}+\mathrm{H})^{+}$values using MacBioSpec (Perkin Elmer Sciex Instruments, Thornhill, Ontario, Canada). Peak assingments were based on ${ }^{1} \mathrm{H}$ NMR COSY, TOCSY and/or ROESY spectra.

General procedure of ring closing alkyne metathesis (RCAM). All RCAM reactions were carried out under argon in flame-dried glassware using Schlenk techniques. A solution of the peptide and the catalyst $\left((\mathrm{tBuO})_{3} \mathrm{~W} \equiv \mathrm{CCMe}_{3}\right)$ in toluene stirred at $80^{\circ} \mathrm{C}$ till TLC analysis showed the completion of the reaction. Water (1 mL) was added to the reaction mixture and stirred for 10 min to quench the catalyst. After the evaporation of the solvent the product was purified by column chromatography.

Alkylation of the Gly/Ni/BPB-complex with 1-Bromo-2-butyne: The Gly/Ni/BPB-complex ${ }^{4,5}$ (6 g , $12 \mathrm{mmol})$ and $\mathrm{NaOH}(1.2 \mathrm{~g}, 30 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ and 1-bromo-2-butyne (1.2 $\mathrm{mL}, 13.4 \mathrm{mmol}$) was added dropwise. The deeply red mixture was stirred for 1.5 h at room temperature. Then, the excess of NaOH was neutralized with $\mathrm{HCl}(0.1 \mathrm{M}, 180 \mathrm{~mL})$. The alkylation product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The product was purified by silicagel column chromatography (eluens $\mathrm{CHCl}_{3} /$ acetone $5: 1$ v / v) to obtain both diastereoisomers as red crystals with 61% yield $(4 \mathrm{~g}) . R_{\mathrm{f}}: 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $2: 1$ $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{21}+268(c 0.1 \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.93-2.01$ (s, 3H, _H-Bug); 2.02-2.18 (m, 2H, _Pro); 2.21-2.35 (m, 1H, $\beta \mathrm{H}-\mathrm{Bug}) ; 2.44-2.68(\mathrm{~m}, 2 \mathrm{H},[1 \mathrm{H},(\beta \mathrm{H}-\mathrm{Bug}), 1 \mathrm{H},(\gamma \mathrm{H}-\mathrm{Pro})] ; 2.72-2.94$ (m, 1H, $\gamma \mathrm{H}$-Pro); 3.41-3.50 (m, 1H, $\delta \mathrm{H}-\mathrm{Pro}$); 3.51-3.61 (m, 1H, $\delta \mathrm{H}-\mathrm{Pro}$); 3.61-3.82 (m, 2H, [1H, d, $\left.\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 1 \mathrm{H}, \mathrm{m},(\alpha \mathrm{H}-\mathrm{Pro})\right] ; 3.96-4.04$ (q, $\left.1 \mathrm{H}, \alpha \mathrm{H}-\mathrm{Bug}\right) ; 4.42-4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right) ; 6.61-8.24(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.1$ ($\varepsilon \mathrm{C}-\mathrm{Bug}$); 23.0 ($\gamma \mathrm{C}-\mathrm{Pro}$); 23.9 ($\beta \mathrm{C}-\mathrm{Pro}$); 30.6 ($\beta \mathrm{C}-$
 120.6, 123.6, 126.5, 127.7, 128.8, 129.0, 129.7, 131.5, 132.3, 133.4 (Ar-CH); 126.3, 133.0, 133.9, 142.5 (Ar-C); 171.5 (C=N); 178.8 (C=O, Pro); 180.2 (C=O, Gly). ESI-MS: m/z 550.45 [M+H] , $\left(\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NiO}_{3}: \mathrm{M}: 549.16\right)$.
(S)-2-amino-5-hexynoic acid (H-Bug-OH) 1: The alkylated nickel-complex ($10.1 \mathrm{~g}, 18.4 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(300 \mathrm{~mL})$ and heated till reflux. To this solution $2 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ was added and the reaction mixture was refluxed. After 45 min the solvents were evaporated in vacuo. The green solid was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and neutralized with concentrated ammonia until pH 9 was reached and subsequently concentrated to dryness. The obtained solid was washed with acetone to recover the chiral auxillary ($5.8 \mathrm{~g}, 82 \%$). After that, the remaining solid was suspended in $\mathrm{H}_{2} \mathrm{O}$ and centrifuged, the pellet was resuspended once and the insoluble material was collected by centrifugation. The obtained pellet was dried overnight in a vacuum dessicator to give 4.1 g of crude amino acid $\mathbf{1}$. The combined aqueous layers were evaporated to dryness and the residue was treated with a cation exchange resin (Dowex $50 \mathrm{X} 8 \mathrm{H}^{+}$form) to obtain the pure amino acid ($301 \mathrm{mg}, 13 \%$). The crude product was purified by reaction with $(\mathrm{Boc})_{2} \mathrm{O}$ to give the Boc-protected amino acid ($2.83 \mathrm{~g}, 12.4 \mathrm{mmol}, 67 \%$) after treatment with HCl in diethyl ether the hydrochloride of 1 was obtained ($2.06 \mathrm{~g}, 12.4 \mathrm{mmol}$). $R_{\mathrm{f}}: 0.1$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{HOAc} 95: 20: 3 \mathrm{v} / \mathrm{v} / \mathrm{v}\right) .[\alpha]_{\mathrm{D}}{ }^{21}-7.8(c 1.22 \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$: 3.77-3.80 (m, 1H, $\alpha \mathrm{H}) ; 2.50-2.53(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{H}) ; 1.45-1.46(\mathrm{t}, 3 \mathrm{H}, \varepsilon \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(:$ $170.4(\mathrm{C}=\mathrm{O}) ; 82.2(\gamma \mathrm{C}) ; 71.7(\delta \mathrm{C}) ; 52.9(\alpha \mathrm{C}) ; 21.6(\beta \mathrm{C}) ; 3.2(\varepsilon \mathrm{C})$.
(S)-N-(9-fluorenylmethyloxycarbonyl)-2-amino-5-hexynoic acid (Fmoc-Bug-OH) 4: HCl.H-BugOH $1(0.83 \mathrm{mmol})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the pH was set to 9 with TEA. Fmoc-ONSu (269 $\mathrm{mg}, 0.8 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and added to the basic solution. The reaction mixture was stirred at room temperature and the pH was kept at $\mathrm{pH} 8-8.5$ with TEA. After 1.5 h the reaction was complete and $\mathrm{CH}_{3} \mathrm{CN}$ was evaporated in vacuo. The mixture was acidified with $1 \mathrm{~N} \mathrm{KHSO}_{4}$ to pH 1-2 and extracted with EtOAc. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by silicagel column chromatography (eluens: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2 \rightarrow 90: 10 \mathrm{v} / \mathrm{v}$) to give $4(221 \mathrm{mg}, 75 \%)$ as a white solid. $R_{\mathrm{f}}: 0.51\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{HOAc} 95: 20: 3 \mathrm{v} / \mathrm{v} / \mathrm{v}\right) .[\alpha]_{\mathrm{D}}{ }^{21}-17(c 0.95$ DMF). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 9: 1 \mathrm{v} / \mathrm{v}$) $\delta: 1.71-1.82(\mathrm{~s}, 3 \mathrm{H}, \varepsilon \mathrm{H}-\mathrm{Bug}) ; 2.63-2.88(\mathrm{~m}, 2 \mathrm{H}$, β H-Bug); 4.21-4.32 (t, 1H, CH-Fmoc); 4.40-4.48 (d, 2H, CH2-Fmoc); 4.48-4.60 (m, 1H, $\alpha \mathrm{H}-\mathrm{Bug}$); 7.22-7.82 (m, 8H, Ar-Fmoc). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 9: 1 \mathrm{v} / \mathrm{v}$) $\delta: 172.5$ ($\mathrm{C}=\mathrm{O}$, Bug); 156.0 (C=O, Fmoc), 143.5, 141.0, 127.5, 126.9, 124.9, 119.7 (Arom C, Fmoc); $78.8(\gamma \mathrm{C}, \mathrm{Bug}) ; 72.9(\delta \mathrm{C}$, Bug); $66.9\left(\mathrm{CH}_{2}, \mathrm{Fmoc}\right) ; 52.4(\alpha \mathrm{C}, \mathrm{Bug}) ; 46.8(\mathrm{CH}, \mathrm{Fmoc}) ; 22.5$ ($\beta \mathrm{C}, \mathrm{Bug}$); 3.1 ($\varepsilon \mathrm{C}, \mathrm{Bug}$).
(RS)-N-(9-fluorenylmethyloxycarbonyl)-2-amino-5-hexynoic acid (Fmoc-Bug-OH) rac-4: To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(836 \mathrm{mg}, 6.03 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$, tetrabutylammonium bromide (21 mg , $0.01 \mathrm{eq})$ followed by methyl N-(diphenylmethy1ene)-glycinate ${ }^{6,7}$ ($508 \mathrm{mg}, 2 \mathrm{mmol}$) were added. After stirring for 20 min , 1-bromo-2-butyne (186 _L, $2 \mathrm{mmol}, 1 \mathrm{eq}$) was added dropwise and the reaction
mixture was refluxed overnight. After filtration and extensively washing of the remaining solids with diethyl ether, the organic layer was concentrated in vacuo. The product was redissolved in diethyl ether, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. After purification by column chromatography using basic alumina (eluens: EtOAc/hexanes 9:1 v/v) the alkylation product was obtained in 61% (372 mg). The imine was dissolved in diethyl ether $(10 \mathrm{~mL})$ and treated with $1 \mathrm{M} \mathrm{HCl}(2.5 \mathrm{~mL})$ for 3 h . The organic phase was separated and subsequently washed with $\mathrm{H}_{2} \mathrm{O}$. The HCl solution and the combined $\mathrm{H}_{2} \mathrm{O}$ washings were concentrated to dryness and the residue was crystallized from $\mathrm{MeOH} / \mathrm{EtOAc}$ to give $170 \mathrm{mg}(84 \%)$ of racemic HCl .H-Bug-OH. Fmoc protection of the amino group was carried out as described for 4, yield: 71\%.

Boc-Bug-Ile-Ala-Leu-Bug-OMe 6: Coupling and Boc-removal were carried out as described in the general procedure solution phase peptide synthesis.
HCl.H-Bug-OMe 2: To a solution of HCl.H-Bug-OH (337 mg, 2 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added dropwise $\mathrm{SOCl}_{2}\left(362 _\mathrm{L}, 5 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After 5 minutes of stirring the reaction mixture refluxed for 3 h . The methyl ester 2 was obtained after concentration in vacuo and coevaporation with $\mathrm{CH}_{3} \mathrm{CN}$ and CHCl_{3} in quantitative yield. $R_{\mathrm{f}}: 0.40\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{HOAc} 95: 20: 3 \mathrm{v} / \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ 8: 4.11-4.14 (m, 1H, $\left.\alpha \mathrm{H}\right) ; 3.75\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) ; 2.74-2.77(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{H}) ; 1.67-1.70(\mathrm{t}, 3 \mathrm{H}, \varepsilon \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 169.6(\mathrm{C}=\mathrm{O}) ; 82.4(\gamma \mathrm{C}) ; 71.5(\delta \mathrm{C}) ; 53.9(\alpha \mathrm{C}) ; 53.0\left(\mathrm{OCH}_{3}\right) ; 21.6(\beta \mathrm{C}) ; 3.2$ (εC).
Boc-Leu-Bug-OMe: Yield: 91%. $R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.84 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ Leu:
5.39 (d, 1H, NH), 4.24 (m, 1H, C_H), 1.51-1.70 (m, 3H, C_H/C $\gamma \mathrm{H}$), 1.45 (s, 9H, Boc), 0.93-0.97 (m, $\left.6 \mathrm{H}, \mathrm{C} _H\right)$; Bug: _ $7.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.76$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; ES-MS: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}: 355.2$, found: $m / z:[\mathrm{M}+\mathrm{Na}]^{+} 377.4,\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$ 255.3.

Boc-Ala-Leu-Bug-OMe: Yield: 93%. $R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.68 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ Ala: _ 5.54 (d, 1H, NH), 4.33 (m, 1H, C_H), 1.44 (s, 9H, Boc), 1.34 (d, 3H, C_H); Leu: _ 7.19 (d, 1H, NH), 4.58 (m, 1H, C_H), 1.49-1.70 (m, 3H, C_H/C $\gamma \mathrm{H}$), 0.91-0.95 (m, 6H, C_H); Bug: _ 7.19 (d, 1H, NH), $4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.49-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; ES-MS: calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6}$: 426.3, found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 426.6,[\mathrm{M}+\mathrm{Na}]^{+} 448.4,\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 370.3,[(\mathrm{M}-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$326.3.

Boc-Ile-Ala-Leu-Bug-OMe: Coupling of Boc-Ile-OH with TFA.H-Ala-Leu-Bug-OMe was carried out in DMF. The tetrapeptide was isolated by trituration with EtOAc. Yield: $87 \% . R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1$ $\mathrm{v} / \mathrm{v}): 0.62$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ Ile: _ $5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.80(\mathrm{~m}, 1 \mathrm{H}$,

C_H), $1.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 0.85-0.91\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \gamma^{\prime} \mathrm{H} / \mathrm{C} _\mathrm{H}\right)$; Ala: $7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Leu: _ $7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$, 1.60-1.70 (m, 2H, C_H), $1.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 0.85-0.91\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; Bug: _ $7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.74$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 4.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.49-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; 1.74 (s, 3H, C_H); ES-MS: calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{7}$: 539.3, found: m / z : $[\mathrm{M}+\mathrm{H}]^{+} 539.6,[\mathrm{M}+\mathrm{Na}]^{+} 561.6$, $\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 438.5,\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+} 439.5$.
Boc-Bug ${ }^{1}-$ Ile 2-Ala ${ }^{3}$-Leu ${ }^{4}$-Bug ${ }^{5}$-OMe (6): Coupling of Boc-Bug-OH with TFA.H-Ile-Ala-Leu-Bug-OMe was carried out in DCM. The pentapeptide was isolated by trituration with EtOAc. Yield: $350 \mathrm{mg}(73 \%$ over 7 steps $) ; R_{\mathrm{t}}: 17.6 \mathrm{~min} ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.60 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OH} 14.5: 1 \mathrm{v} / \mathrm{v}, 500\right.$ $\mathrm{MHz}) \mathrm{Bug}^{1}$: _ $5.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; 1.47(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{Boc})$; Ile^{2} : _ $7.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.06(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 0.90\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \gamma^{\prime} \mathrm{H} / \mathrm{C} _\mathrm{H}\right) ; \mathrm{Ala}^{3}: ~ _7.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.40(\mathrm{~d}, 3 \mathrm{H}$, C_H); Leu ${ }^{4}$: $7.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 0.90(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Bug ${ }^{5}: ~ _7.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.78$ (s, 3H, C_H); ES-MS: calcd for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{8}: 648.4$, found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 648.7,[\mathrm{M}+\mathrm{Na}]^{+} 670.6,[(\mathrm{M}$ $\left.\left.-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+}$592.6, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+} 548.9$.

Boc-cyclo[Bug ${ }^{1}$-Ile $^{\mathbf{2}}$-Ala $^{3}{ }^{\mathbf{-}}$ Leu 4-Bug ${ }^{5}$]-OMe 7: Linear pentapeptide 6 ($45.9 \mathrm{mg}, 0.07 \mathrm{mmol}$) was dissolved in toluene (200 mL) and the catalyst $\left(4.4 \mathrm{mg}, 9.3 _\mathrm{mol}\right)$ was added. The obtained mixture was heated to and stirred at $80{ }^{\circ} \mathrm{C}$ for two h . The product was purified by column chromatography (DCM/MeOH 97.5:2.5 v/v). Yield: $17.8 \mathrm{mg}(42 \%) ; R_{\mathrm{t}}: 16.4 \mathrm{~min} ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.56 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OH} 14.5: 1 \mathrm{v} / \mathrm{v}, 500 \mathrm{MHz}\right) \mathrm{Bug}^{1}$: _ $5.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc})$; Ile^{2} : $7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.58(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 0.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \gamma^{\prime} \mathrm{H} / \mathrm{C}_{-} \mathrm{H}\right) ; \mathrm{Ala}^{3}:{ }_{-} 7.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.09(\mathrm{~m}, 1 \mathrm{H}$, C_H), $1.51\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Leu ${ }^{4}$: $7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.62(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}$ _H), $0.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; Bug^{5} : $\quad 7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67$ (m, 2H, C_H). ES-MS: calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{8}$: 594.4, found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 594.7,[\mathrm{M}+\mathrm{Na}]^{+} 617.5$, $\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+}$538.6, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$494.5. HRMS: calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Na}$: 616.33218 . Found: 616.33223.

Boc-Bug-Pro-Gly-OMe 8: Boc-Pro-OH ($495 \mathrm{mg}, 2.3 \mathrm{mmol}$) and HCl.H-Gly-OMe ($300 \mathrm{mg}, 2.4$ $\mathrm{mmol})$ were coupled in the presence of BOP ($1.02 \mathrm{~g}, 2.3 \mathrm{mmol}$) and DIPEA ($962 _\mathrm{L}$) in DCM (25 mL) as described in the general procedure solution phase peptide synthesis.

Boc-Pro-Gly-OMe: Yield: $592 \mathrm{mg}(90 \%) ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.48 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ Pro: $\delta 4.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.14-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.86-1.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$); Gly: _ 7.01 and $7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.) ; ES-MS: calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$: 309.1, found: m / z : $[\mathrm{M}+\mathrm{Na}]^{+} 309.2$, $[\mathrm{M}+\mathrm{Na}+\mathrm{ACN}]^{+} 350.2,\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\right.$ $\mathrm{H}]^{+}$228.1, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$187.1.
The protected dipeptide ($300 \mathrm{mg}, 1.1 \mathrm{mmol}$) was treated with TFA/DCM $1: 1 \mathrm{v} / \mathrm{v}(4 \mathrm{~mL})$ for 2 h to remove the Boc group. Then, the reaction mixture was concentrated in vacuo and coevaporated with toluene $(2 \times 10 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(2 \times 10 \mathrm{~mL})$ and $\mathrm{DCM}(2 \times 10 \mathrm{~mL})$ to remove any residual TFA. The TFA-salt was dissolved in DCM $(15 \mathrm{~mL})$ and to this solution were added: Boc-Bug-OH ($228 \mathrm{mg}, 1.0$ mmol), BOP ($442 \mathrm{mg}, 1.0 \mathrm{mmol}$) and DiPEA ($436 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) and the obtained reaction mixture was stirred overnight. After evaporation of DCM, the residue was dissolved in EtOAc (50 mL) and this solution was washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}(3 \times 20 \mathrm{~mL}), 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 20 \mathrm{~mL})$ and brine $(1 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and evaporated in vacuo.
Boc-Bug-Pro-Gly-OMe 8: was obtained in 75% yield (297 mg) after column chromatography ($\mathrm{DCM} / \mathrm{MeOH} 97.5 / 2.5 \mathrm{v} / \mathrm{v}$). $R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.60 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \mathrm{Bug}: \delta 5.51$ (d, 1H, NH), $4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.51$ (m, 2H, C_H), 1.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}$), 1.44 (s, 9H, Boc); Pro: $\delta 4.69$ (m, 1H, C_H), $3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}) ; \mathrm{Gly}$ _ $7.33,7.97(\mathrm{~m}, 1 \mathrm{H}$, NH), 3.95 ($2 \mathrm{xd}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$); ES-MS: calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}$: 506.2, found: m / z : $[\mathrm{M}+$ $\mathrm{Na}]^{+} 418.35,\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 340.3,\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+} 296.2$.

Boc-Bug ${ }^{1}$-Pro ${ }^{\mathbf{2}}$-Gly $^{\mathbf{3}}$-Bug 4-OMe 9: Boc-Bug-Pro-Gly-OMe 8 ($240 \mathrm{mg}, 0.6 \mathrm{mmol}$) was dissolved in THF (10 mL) and the methyl ester saponified with 0.2 N LiOH $(5 \mathrm{~mL})$ during 2 h . Then, THF was removed in vacuo and the aqueous solution was acidified with $1 \mathrm{~N} \mathrm{KHSO}_{4}$ and subsequently extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined EtOAc layers were washed with brine $(1 \times 15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Boc-Bug-Pro-Gly-OH was obtained in quantitative yield (214 mg) and was used in the next step without further purification. HCl.H-Bug-OMe ($130 \mathrm{mg}, 0.7$ $\mathrm{mmol})$ was dissolved in DCM $(10 \mathrm{~mL})$ and the tripeptide acid was added followed by BOP (265 mg , 0.6 mmol) and DIPEA ($305 \mu \mathrm{~L}, 1.75 \mathrm{mmol}$) and the mixture was stirred overnight. The reaction mixture was concentrated in vacuo and the residue was dissolved in EtOAc (20 mL) and this solution was washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}(3 \times 5 \mathrm{~mL}), 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 5 \mathrm{~mL})$ and brine $(1 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtrated and evaporated in vacuo. Tetrapeptide 9 was purified by column chromatography (DCM/MeOH 97.5:2.5) and obtained in 86% yield (260 mg). $R_{\mathrm{t}}: 15.3 \mathrm{~min} ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v})$: 0.56. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$; Bug^{1} : 5.42 and $5.47(2 \times \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}), 4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.54-2.67$ (m, 2H, C_H), $1.42(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc})$; Pro $^{2}: 4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 3.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$,
$2.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}) ; \mathrm{Gly}^{3}$: _ 7.31 and $8.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.93-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right) ; \mathrm{Bug}^{4}$: _ 7.21 and 6.96 (d, 1H, NH), $4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.46-2.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} \varepsilon \mathrm{H})$. ESMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}$: 505.6 found: m / z : $[\mathrm{M}+\mathrm{H}]^{+} 505.4,[\mathrm{M}+\mathrm{Na}]^{+} 527.5,\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+}$ 449.5, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+} 406.45$.

Boc-cyclo[Bug ${ }^{1}$-Pro ${ }^{2}$ - Gly 3-Bug $\left.{ }^{4}\right]$-OMe 10: Ring-closure was carried according the general procedure with 8% catalyst at the concentration of 2 mM in toluene. Cyclic pentapeptide $\mathbf{1 0}$ was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH} 97.5: 2.5 \mathrm{v} / \mathrm{v}$) and was obtained as a white powder in 82% yield $(83.2 \mathrm{mg}) . R_{\mathrm{t}}: 14.0 \mathrm{~min} ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.43 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ; \mathrm{Bug}^{1}: 5.89(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{NH}), 4.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.47-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.50(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}) ; \operatorname{Pro}^{2}: 4.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$, $3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.96-2.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}+\mathrm{C} \gamma \mathrm{H}\right), \mathrm{Gly}^{3}$: _ $7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.62-4.40\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; Bug^{4} : _ $8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.60-2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$. ES-MS: calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{7}$: 551.5 found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 451.6$, $[\mathrm{M}+\mathrm{Na}]^{+} 473.5$, $\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 395.3$, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$351.3. HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}$: 473.20096. Found: 473.20122.

Boc-Ala-d-Leu-Nle-Gly-Bug-OMe 11: To a solution of Boc-Ala-D-Leu-Nle-Gly-OH ($236 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$, HOBt. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.6 \mathrm{mmol})$ and HCl.H-Bug-OMe $(116 \mathrm{mg}, 0.6 \mathrm{mmol})$ were added followed by DIPEA $(223 \mu \mathrm{~L})$. The mixture was cooled to $-15^{\circ} \mathrm{C}$ and EDCI $(124.6 \mathrm{mg}, 0.6$ mmol) was added. The obtained reaction mixture was stirred overnight. Then, the reaction mixture was worked up using the standard procedures as described above. Yield after column purification (eluens: DCM/MeOH 95:5 v/v) was $246 \mathrm{mg}(82 \%) ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.36 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) Ala: _ 5.91 (d, 1H, NH), 4.34 (m, 1H, C_H), 1.41 (s, 9H, Boc), 1.35 (d, 3H, C_H); D-Leu: _ 7.76 (d, 1H, NH), $4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _H\right), 1.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _H\right), 0.89-0.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; Nle: _ 8.16 (br s, 1H, NH), $4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.42-1.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.26-1.37(\mathrm{~m}$, 2H, C_H), 0.89-0.95 (m, 3H, C_H); Gly: _ $8.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.12-4.39\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Bug: _ $8.00(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{NH}), 4.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$. ES-MS: calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{8}$: 596.4, found: $m / z:[\mathrm{M}+\mathrm{Na}]^{+} 618.6$.

Boc-Bug ${ }^{\mathbf{1}}$ Gly $^{\mathbf{2}}$-Ala ${ }^{\mathbf{3}}$-D-Leu ${ }^{4}$-Nle ${ }^{\mathbf{5}}$-Gly $^{\mathbf{6}}$-Bug $^{\mathbf{7}}$-OMe 12: Pentapeptide $\mathbf{1 1}$ ($240 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dissolved in TFA/DCM $1: 1 \mathrm{v} / \mathrm{v}(4 \mathrm{~mL})$ to remove the Boc group and worked up as described. The obtained TFA-salt was dissolved in DCM $(10 \mathrm{~mL})$ and to this solution, Boc-Bug-Gly-OH ($141 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ and $\mathrm{HOBt} . \mathrm{H}_{2} \mathrm{O}(76.7 \mathrm{mg}, 0.5 \mathrm{mmol})$ were added. The obtained mixture was cooled to $-15^{\circ} \mathrm{C}$ and EDCI ($97 \mathrm{mg}, 0.5 \mathrm{mmol}$) followed by DiPEA ($105 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) were added. After stirring for 16 h , DCM was removed under reduced pressure and $\mathbf{1 2}$ was purified by trituration with EtOAc. Yield: 191
$\mathrm{mg}(63 \%) ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{v} / \mathrm{v}): 0.46 ; R_{\mathrm{t}}: 16.6 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OH} 14.5: 1 \mathrm{v} / \mathrm{v}, 500\right.$ $\mathrm{MHz}) \mathrm{Bug}^{1}$: _ $5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.61-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.45$
 $4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.36\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; D-Leu ${ }^{4}$: _ $7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.90(\mathrm{~m}, 2 \mathrm{H}$, C_H), $1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 0.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} _\mathrm{H}\right) ; \mathrm{Nle}^{5}:{ }_{-} 7.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.90(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; \mathrm{Bug}^{7}:{ }_{-} 7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.61$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.61-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; ES-MS: calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{10}$: 762.9, found: m / z : $[\mathrm{M}+\mathrm{H}]^{+} 762.6$, $[\mathrm{M}+\mathrm{Na}]^{+} 784.7$, $\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 706.8,[(\mathrm{M}-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$662.6.

Boc-cyclo[Bug ${ }^{1}$-Gy 2 - Ala 3-D-Leu ${ }^{4}-$ Nle 5 - Gly 6 - Bug 7]-OMe 13: To a solution of the fully protected linear heptapeptide $\mathbf{1 2}(21.6 \mathrm{mg}, 0.028 \mathrm{mmol})$ in toluene, 3.6 mg of catalyst was added and the mixture was stirred for 3 h at $80^{\circ} \mathrm{C}$. After concentrating in vacuo, the cyclic product was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH} 97.5: 2.5 \mathrm{v} / \mathrm{v}$). Yield: $3.6 \mathrm{mg}(18 \%) ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 97.5: 2.5 \mathrm{v} / \mathrm{v}) 0.42$; $R_{\mathrm{t}} 15.5 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OH} 14.5: 1 \mathrm{v} / \mathrm{v}, 500 \mathrm{MHz}\right) \mathrm{Bug}^{1}$: $6.03(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.34(\mathrm{~m}, 1 \mathrm{H}$, C_H), 2.62-2.85 (m, 2H, C_H), 1.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$); Gly^{2} : _ 8.16 (bs, 1H, NH), 3.95 (m, 2H, C_H); Ala ${ }^{3}$; _ $7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; \mathrm{D}_{\mathrm{L}} \mathrm{Leu}^{4}$: _ $7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.34(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 0.91\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; \mathrm{Nle}^{5} \mathrm{:}_{-} 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, $4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Gly ${ }^{6}$: _ $7.81(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.91-4.12$ (dd, 2H, C_H); Bug ${ }^{7}$: $7.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.62-2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; ES-MS: calcd for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{7} \mathrm{O}_{10}$: 708.4, found: $m / z:[\mathrm{M}+$ $\mathrm{H}^{+} 708.8,[\mathrm{M}+\mathrm{Na}]^{+} 730.6,\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)+\mathrm{H}\right]^{+} 652.8,\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$608.8. HRMS: calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{Na}$: 730.37478. Found: 730.37516.

Boc-Bug-Gly-OH: Coupling was carried out as described in the general procedure solution phase peptide synthesis. Boc-Bug-Gly-OEt: Yield $83 \%(155 \mathrm{mg}) ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 95: 5 \mathrm{v} / \mathrm{v}): 0.70 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \mathrm{Bug}: ~ _5.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.52-2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right),{ }_{\mathrm{C}} 1.79(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), \quad 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}\right)$; Gly: _ $7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 4.21(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ES-MS: calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$: 335.2, found: $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ 335.2, $\left[\mathrm{M}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}$376.2, $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)+\mathrm{H}\right]^{+}$213.2. Boc-Bug-Gly-OH: Boc-Bug-Gly-OEt $(155 \mathrm{mg}, 0.5 \mathrm{mmol})$ was dissolved in THF $(5 \mathrm{~mL})$ and the ethyl ester was saponified with 0.2 N LiOH $(4 \mathrm{~mL})$ during 45 min at $0^{\circ} \mathrm{C}$. Then, THF was partially removed in vacuo and the aqueous solution was acidified with $1 \mathrm{~N} \mathrm{KHSO}_{4}$ and subsequently extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined EtOAc layers were washed with brine $(1 \times 15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Yield:

141 mg (quant); $R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 95: 5 \mathrm{v} / \mathrm{v}): 0 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \mathrm{Bug}: ~ .5 .60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$, $4.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.60-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.77\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}\right) ; \mathrm{Gly}$ _ $8.62(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.00-4,11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; ES-MS: calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}: 306.1$, found: $m / z:[\mathrm{M}+\mathrm{Na}]^{+} 307.2,[\mathrm{M}+\mathrm{Na}+\mathrm{ACN}]^{+} 348.2$.

Boc-Bug ${ }^{1}-$ Ala $^{\mathbf{2}}$-Bug $^{\mathbf{3}}$ - $\mathbf{B u g}^{4}$ - $\mathbf{A s n}(\mathbf{T r t})^{5}$ - $\mathbf{B u g}^{\mathbf{6}}$-OMe 14: The peptide was synthesized manually on a 0.20 mmol scale on plain Argogel resin as described in the general procedures. The peptide was purified by column chromatography (eluens: DCM/MeOH 97.5:2.5 $\rightarrow 95: 5 \mathrm{v} / \mathrm{v}$). Yield: $187 \mathrm{mg}(99 \%) ; R_{\mathrm{f}} 0.60$ (DCM/MeOH 9:1 v/v); $R_{\mathrm{t}} 18.94 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \mathrm{Bug}^{1}: \mathrm{D}_{\mathrm{L}} 6.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.06$ (m, 1H, C_H), 2.38-2.70 (m, 2H, C_H), 1.69 (s, 3H, C_H), 1.39 (s, 9H, Boc); Ala ${ }^{2}$: 7.93 (d, 1H, NH), 4.32-4.42 (m, 1H, C_H), 1.21 (d, 3H, C_H); Bug ${ }^{3}$: _ 7.98 (d, 1H, NH), 4.32-4.42 (m, 1H, C_H), 2.38$2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; Bug^{4} : _ 8.16 (d, 1H, NH), 4.32-4.42 (m, 1H, C_H), 2.38-2.70 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; \operatorname{Asn}(\mathrm{Trt})^{5}: ~ _8.63\left(\mathrm{~m}, 1 \mathrm{H}, _\mathrm{NH}\right), \quad 8.29\left(\mathrm{~d}, 1 \mathrm{H}, _\mathrm{NH}\right), 7.16-7.29(\mathrm{~m}$, 15 H , arom Trt), $4.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 2.38-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right) ; \mathrm{Bug}^{6}$: _ $8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.32-4.42(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.38-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$. ES-MS: calcd for $\mathrm{C}_{56} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{10}$: 996.5, found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 996.8,[\mathrm{M}+\mathrm{Na}]^{+}$1018.7.
 mmol scale on plain Argogel resin as described in the general procedures. The peptide was purified by column chromatography (eluens: DCM/MeOH 97.5:2.5 $\rightarrow 95: 5 \mathrm{v} / \mathrm{v}$). Yield $=180.6 \mathrm{mg}(93 \%) . R_{\mathrm{f}} 0.60$ (DCM/MeOH 9:1 v/v); $\mathrm{R}_{\mathrm{t}}=18.86 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 500 \mathrm{MHz}$) Alg^{1} :_ $6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.69$ (m, 1H, C $\gamma \mathrm{H}$), 4.98-5.11 (m, 2H, C_H), $3.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.17-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc})$;
 $4.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.17-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} _\mathrm{H}\right) ; \mathrm{Alg}^{4}:{ }_{\mathrm{Z}} 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.69(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C} \gamma \mathrm{H})$, 4.98-5.11 (m, 2H, C_H), 4.33-4.40 (m, 1H, C_H), 2.17-2.57 (m, 2H, C_H); Asn(Trt) $)^{5}: \quad 8.60(\mathrm{~m}$, $\left.1 \mathrm{H}, _\mathrm{NH}\right), \quad 8.30\left(\mathrm{~d}, 1 \mathrm{H}, _\mathrm{NH}\right), 7.16-7.27\left(\mathrm{~m}, 15 \mathrm{H}\right.$, arom Trt), $4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right)$; Bug^{6} : _ $8.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 4.33-4.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.17-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.16$ (s, 3H, C_H). ES-MS: calcd for $\mathrm{C}_{54} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{10}$: 972.5, found: m / z : $[\mathrm{M}+\mathrm{H}]^{+} 972.7,[\mathrm{M}+\mathrm{Na}]^{+} 994.6$.
 mmol) was dissolved in toluene (200 mL) and the catalyst ($3.9 \mathrm{mg}, 8.3 _\mathrm{mol}$) was added. The obtained mixture was heated to and stirred at $80^{\circ} \mathrm{C}$ for 90 min . The product was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH} 97.5: 2.5 \mathrm{v} / \mathrm{v}$). Yield: 27.5 mg . This was a mixture of the desired product and a side product in a ratio $3: 2$. These two products were seperated by preparative HPLC chromatography to yield the desired product $(4.6 \mathrm{mg})$ as jugded by MS/MS. $R_{\mathrm{f}}=0.60(\mathrm{DCM} / \mathrm{MeOH}$

9:1 v/v); $R_{\mathrm{t}} 17.93 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \mathrm{Alg}^{1}$: _ $5.45(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 5.65-5.74(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C} \gamma \mathrm{H}), 5.06-5.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 4.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.38-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}) ; \mathrm{Ala}^{2}$: _ 7.41 (bs, 1H, NH), 4.42 (m, 1H, C_H), 1.37 (d, 3H, C_H); Bug ${ }^{3}$: _ 7.58 (bs, 1H, NH), 4.49 ($\mathrm{m}, 1 \mathrm{H}$, C_H), 2.38-2.64 (m, 2H, C_H); Alg ${ }^{4}$: _ $7.95(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), ~ 5.65-5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \gamma \mathrm{H}), 4.06-5.15(\mathrm{~m}, 2 \mathrm{H}$, C_H), $4.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.65-2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} _\mathrm{H}\right) ; \operatorname{Asn}(\mathrm{Trt})^{5}:{ }_{_} 7.58\left(\mathrm{bs}, 1 \mathrm{H}, _\mathrm{NH}\right),{ }_{2} 8.03(\mathrm{~d}, 1 \mathrm{H}$, _NH), 7.18-7.28 (m, 15H, arom Trt), $4.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} _\mathrm{H}\right), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right)$; $\mathrm{Bug}^{6}{ }^{2}$ _ $7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$, $4.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{-} \mathrm{H}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.38-2.64 (m, 2H, C_H). ES-MS: calcd for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{10}$: 918.4, found: $m / z:[\mathrm{M}+\mathrm{H}]^{+} 918.7,[\mathrm{M}+\mathrm{Na}]^{+} 940.8$.

References

1 E. von Arx, M. Faupel, M.J. Bruggen, J. Chromatogr. 1976, 120, 224.
2 E. Kaiser, R.L. Colescott, C.D. Bossinger, P.I. Cook, Anal. Biochem. 1970, 34, 595.
3 J. Meienhofer, M. Waki, E.P. Heimer, T.J. Lambros, R.C. Makofske, C.-D. Chang, Int. J. Peptide Protein Res. 1979, 13, 35.
4 Y.N. Belokon, Janssen Chimica Acta 1992, 10, 4.
5 S. Collet, P. Bauchat, R. Danion-Bougot, D. Danion, Tetrahedron Asymm. 1998, 9, 2121.
6 M.J. O'Donnell, J.M. Boniece, S.E. Earp, Tetrahedron Lett. 1978, 2641; M.J. O'Donnell, T.M. Eckrich, Tetrahedron Lett. 1978, 4625.
7 L.B. Wolf, T. Sonke, K.C.M.F. Tjen, B. Kaptein, Q.B. Broxterman, H.E. Schoemaker, F.P.J.T. Rutjes, Adv. Synth. Catal. 2001, 343, 662.

