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Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-
dimensional information for computational neuroscience applications standardized data fusion and efficient
reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used
for computational brain modeling to constrain models with individual measurable features of the brain, such
as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional
data to build full brainmodels of individual humans. For convenientmodel construction,we developed a process-
ing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally
electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to
generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional
connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen
level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly
uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and
intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail
the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also intro-
duce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity
(SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the
functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome
extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared
them to other tractography approaches. Together with the pipeline we present several principles to guide future
efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are
made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.
com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly usedwithHigh Perfor-
mance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a
convenient web-interface.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In biology, the notion that structure predicts function is widespread.
In human neurosciences, different modalities image different structural
aspectsmaking their integration imperative to predict function (Sporns,
r Human Cognitive and Brain
rsitaetsmedizin, Charitéplatz 1,
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2013). The Virtual Brain (TVB, thevirtualbrain.org) uses empirical struc-
tural and functional data to build full brain models of individual
primates—consisting of interacting dynamic local models—that predict
individual whole-brain activity on different scales (Ritter et al., 2013;
Sanz-Leon et al., 2013; Roy et al., 2014; Woodman et al., 2014). The
interactions between neuronal populations in a full brain model are
constrained by the anatomical fiber skeleton, i.e., the structural
connectome, obtained from diffusion-weighted magnetic resonance
imaging (dwMRI) using tractography techniques. The human brain
connectome is the set of neuronal connections in the human brain, a
concept that crosses spatial brain scales (Sporns et al., 2005; Craddock
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et al., 2013). The termconnectome is used in the literature for functional
connectivity (FC; i.e., statistical dependencies of brain activity), struc-
tural connectivity (SC; i.e., anatomical connections between brain
areas) and effective connectivity (EC; i.e., causal interaction between
brain areas). A connectome is often represented as a weighted graph
with nodes defining brain regions and edges characterizing the connec-
tions between these regions. FC is a highly variable and non-stationary
activity pattern (Bassett et al., 2011b; Allen et al., 2014; Hutchison
et al., 2013; Zalesky et al., 2014) arising from interactions within the
structural skeleton. FC is a statistical concept that estimates correlations
between data from simultaneousmeasurements of different brain areas
that does not necessarily reflect the neuroanatomical structures. On the
other hand, the anatomical connection pattern or wiring diagram
between neurons and neuronal ensembles, dubbed SC, is typically
described in terms of distances and connection strengths mediated by
synaptic or electric connections between region pairs. In contrast, EC
captures the causal relations between neural systems by quantifying
the directed influences that one element of a generative model exerts
over another (Valdes-Sosa et al., 2011).

In recent years, efforts for multicenter data sharing have increased
and several large-scale projects started to collaboratively pool and
compile multimodal neuroimaging data, e.g., (Biswal et al., 2010; Van
Essen et al., 2012). The Neuroscience Information Framework (http://
neuinfo.org/) lists over 2500 different databases with relevance for
neuroscience. This high number of heterogeneous resources requires
standardized and efficient processing routines in order to (i) extract
interpretable and relevant information and to (ii) organize and
integrate it in a systematic and unifying structure: “Perhaps the single
biggest roadblock to higher order datamining is the lack of standardized
frameworks for organizing neuroscience data” (Akil et al., 2011).

We propose to go one step further: In order to get from pure data
gathering to knowledge inference we need to connect functional and
structural data by means of model-based integration (Jirsa et al.,
2002, 2010; Ritter et al., 2013). The formulation of a comprehensive
theory of neural computation that allows a qualitative and quantita-
tive mapping between cognitive and neural states is only possible if
we close the loop between data-driven inference and model-based
prediction. Jirsa et al. (2002) merged geometric and topographic
structural information with brain network modeling, but used
simplified network connectivity and demonstrated that temporal
activation patterns are well captured as observed in human brain
imaging. A necessary condition to produce realistic spatiotemporal
activations is the additional inclusion of topological information,
that is, realistic network connectivity, which poses substantial
neuroinformatics challenges. The Virtual Brain is a step into this
direction and provides an integrated neuroinformatics platform
(Sanz-Leon et al., 2013) for modeling dynamic large-scale brain
network models (BNM) constructed from structural data and
interacting local dynamic population models. Within its theoretical
framework, TVB integrates the relevant information extracted from
a variety of empirical sources associating brain network structure
with brain function via models of neural activity. By doing so, it
abstracts from the high dimensionality of information contained in
raw imaging data and unifies relevant structural and dynamical
information within a single brain model. The unified theoretical
framework provided by TVB together with the processing pipeline
for multimodal empirical data opens up new avenues of collective
neuroscience. TVB empowers the community to conveniently
construct biologically informed brain models, to perform in silico
experiments that predict neuronal activity and to expose principles
of computation across spatial and temporal scales in a variety of
modalities.

Data reduction and fusion are prerequisites for automated data
analysis, to ensure interoperability of data structures and for compara-
bility of multicenter acquisitions. One example is the alignment of the
spatial and temporal dimensions of recordings fromdifferentmodalities
within and across subjects and their integration into a common refer-
ence system. Data turns into information when they are semantically
annotated and ontologically aligned. Extracted information gains maxi-
mal interpretability when mappings between data sets and their
organization into a unified coordinate system can be achieved, e.g., the
registration and mapping of anatomical structures between modalities
or temporal alignment of simultaneously acquired multimodal data
(Calhoun and Lemieux, 2014; Jorge et al., 2014; James and Dasarathy,
2014; Uludağ and Roebroeck, 2014).

The processing pipeline presented in this article provides an efficient
and automated way for generating full and self-consistent data sets
for TVB model construction integrating anatomical, diffusion weighted
and functional MRI scans with EEG recordings. Online supplementary
Movie M1 illustrates the involved imaging modalities and estimated
source activity along with brain network activity projected onto recon-
structed head and cortex models of the exemplary subject QL used
throughout this paper. The pipeline runs on standard computers, but
also supports a high degree of parallelization for computationally inten-
sive processes, optimized to run on stand-alone workstations and high
performance clusters alike. In the following, we describe the functional-
ity of the pipeline by demonstrating each step on the exemplary data
set. Up to now we pre-processed 50 full data sets using this pipeline.
All data setswere stored in the TVB XNAT (Marcus et al., 2007) database
in Toronto where they are made available to the TVB consortium. Along
with the processing steps, we illustrate the challenges posed when
workingwithmultimodal imaging data and integrating them in a single
framework such as provided by TVB. These challenges range from stor-
age requirements due to large amounts of data, interoperability and
interfacing between different toolboxes and coordinate systems,
fallacies of dwMRI tractography to outcome validation. Each of the
imaging modalities serves different purposes during model generation
and optimization within TVB:

(i) High resolution T1-weighted MRI scans are used to obtain
parcellations of cortical and subcortical white and gray matter
(WM, GM) into subregions of interest based on anatomical
landmarks and to construct anatomically constrained dipole
source models for forward modeling and inverse source recon-
struction of EEG andmagnetoencephalography (MEG). Resulting
lead-fieldmatrices and inversion kernels are used tomap cortical
activity to scalp locations of (M)EEG sensors and vice versa. Fur-
thermore, high-resolution scalp/head, skull and cortex-surface
triangulations are used for highly resolved surface simulations
and output visualization.

(ii) fMRI volumes are parcellated according to the high-resolution
atlases derived from T1-weighted data yielding region-wise
aggregated BOLD time-series and FC matrices generated from
these are used tofit model output bymeans of parameter tuning.

(iii) Diffusion-weighted MRI (dwMRI) data are parcellated according
to the high-resolution atlases derived from T1-weighted data
yielding estimated white matter fiber tracts and SC matrices.
The parcellations are used for defining seed- and stop-locations
during tractography.

(iv) EEG data is projected to source space and used to optimize
parameters of the brain model.

Pipeline results are provided in a format that can be directly
imported to TVB and readily integrated into a single full-brain model.
As part of this pipeline a novel tractography-based connectome extrac-
tion approach is described. Themethod introduces several concepts that
facilitate the standardization of the BNM construction process.
Connectomes are embedded at the core of the generic BNM equation
to define long-range information transmission thereby linking large-
scale network infrastructurewith neuralmass dynamics. In this context,
connectomes are based on a given parcellation of the brain and consist
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of two matrices that describe the strength and the time-delay of signal
transmission between each pair of brain regions. Coupling strengths
and distances (that are turned into delays by dividing through transmis-
sion velocity) define the mutual interaction of nodes within the BNM
equation, which states in its most general form that the evolution of
activity of a certain node in the network is the sum of its intrinsic local
dynamics (often described by a neural mass model), input from
connected regions, external input, and a term that accounts for different
types of noise (Sanz-Leon et al., 2015). Long-range input for a given
population is computed by summing the scaled and delayed activity of
connected nodes according to such strengths and time-delay matrices.
BNMs are—similar to models used in dynamic causal modeling
(Friston et al., 2003)—biophysical network models of coupled differen-
tial equations that describe the underlying neuronal dynamics of
observed data. In contrast to DCM where typically only few regions
are used (to enable Bayesian model inversion), BNMs attempt to
model a whole brain network. Similar to DCM, the coupling parameters
of BNMs that predict neural activity form a hypothesis about how one
brain region exerts a directed influence upon another region, i.e. their
effective connectivity.

An important criterion for the quality of extracted subject-specific
models is the ability to infer physiologically relevant individual varia-
tion. In other words, the inferred inter-individual differences should
outweigh estimation bias. One goal of connectome extraction is robust-
ness, i.e., low intra-individual variability of structural connectomes
extracted from different data sets of the same subject, while maintain-
ing biological variability that gives rise to differential dynamics between
different subjects. Metrics that estimate the rescan-variability of the
pipeline show very high robustness and almost identical connectomes
extracted from different scans of the same subjects (average intra-
subject correlation r = 0.98), while maintaining between-subject
inter-individual variability at the same time (average inter-subject
correlation r = 0.89).

Apart from computational modeling, SC matrices are also analyzed
with methods from graph theory to study the organization of the
brain network and associate it with function (Hagmann et al., 2008;
Bullmore and Sporns, 2009).

Preliminary partial least square analyses of resulting connectomes
showed significant age-depended modulations of several network fea-
tures (e.g., density of individual axonal tracts (r = .82, p b .01, 95% CI
[0.77, .90]), strength of functional interactions between regions (r =
0.54, p b .01, 95% CI [0.53, 0.82]) (Zimmermann et al., 2014)).

The software can be installed fromonline repositories (https://github.
com/BrainModes/TVB-empirical-data-pipeline or thevirtualbrain.org) or
directly used with HPC resources on the Neuroscience Gateway Portal
(http://www.nsgportal.org) through a convenient web-interface
(Sivagnanam et al., 2013).

Methods and results

Multimodal data acquisition

In this study we analyze 49 resting state simultaneous EEG–fMRI
data sets acquired at Berlin Center for Advanced Imaging, Charité
University Medicine, Berlin, Germany (age ranged from 18 to 80 years,
mean 41.55 ± 18.44; 30 females and 19 males) and one simultaneous
EEG–fMRI data set under task conditions acquired at Baycrest Centre,
Toronto, Canada (54 year old female). After EEG–fMRI acquisition,
anatomical and diffusion weighted images of subjects were acquired.
In order to characterize the test–retest robustness of the connectome
estimation, an additional dataset of three subjects was acquired in
Berlin consisting of anatomical and diffusion weighted scans. In this
case, each subject was scanned three times; the first two scans were
acquired in sequence without a break in between. For the third scan
the subject was moved out of the scanner in order to modify head
position and moved back into the scanner. The Berlin subjects were
asked to keep awake and to keep the eyes closed— no other controlled
task had to be performed. At Baycrest Centre, the subject was equipped
with the EEG cap, moved into the MR scanner and localizer, anatomical
T1 and four functional runs were performed. Then, upon removing the
subject from the scanner and removing the EEG cap, the subject was
moved back into the scanner and one localizer, dwMRI and T2 sequence
were recorded. MR and EEG acquisition setup, parameters and EEG
preprocessing can be found in the Supplementary material.

Pipeline workflow

In the following, we demonstrate the individual steps of the process-
ing pipeline on one example data set (Fig. 1 and supplementary Movie
M1) and evaluate its outputs. The results provide insights on themean-
ing and interpretability of various measures used in previous studies,
e.g., metrics of structural or functional connectivity, and shall assist
future users of the pipeline for selecting suitable outputs in the context
of their study. A detailed overview of the pipeline workflow and the
interaction of different software modules are shown in Supplementary
Fig. 1. The average amount of processed and stored data generated by
the pipeline is 89.9 ± 15.12 GB per subject, but depends on the proper-
ties of the data set (e.g., resolution of dwMRI data) and used pipeline
settings (e.g., number of generated tracks). The inter-subject differences
of data size and computation time for a data set with identical acquisi-
tion parameters are mainly explained by differences in brain size
(connectome extraction depends on the number of seed voxels). All
computations described in the following section were done on a high
performance computer consisting of multicore CPUs at a clock rate of
~2.54 GHz per CPU core and 8GB RAM per core. In Table 1, we provide
the generated data amount and computational cost of each individual
step.

Under the assumption of linear scalability, we calculated execution
time of the pipeline based on our test setup (computer consisting of
184 CPU cores at a clock-rate of 2.54 GHz). The scaling assumes an
octa-core workstation with equally fast CPU cores and I/O latencies.
Only the tractography and connectome extraction modules of the
pipeline are parallelized. Since preprocessing steps are all executed on
a single core their executional times are scale invariant. The accumu-
lated execution time for these scale invariant preprocessing processes
is around 10 h.

• Fiber Tractography: around 2 h. Hence for a work station as described
above: (2 h ∗ 184 Cores)/8 Cores = 46 h.

• Computing SC Matrices: 2 h using a maximum of 68 cores in parallel.
For a workstation hence it follows: (2 h ∗ 68 cores)/8 cores = 17 h.

To process a single subject from the rawDICOMdata to the final SC &
FC matrices using a workstation containing eight CPU cores, one would
need approximately 73 h.

Mandatory pipeline inputs are three raw MRI data sets in DICOM
format: T1-weighted structural, BOLD and dwMRI with at least 45
distinct gradient directions and one b0 image as first image in the data
set. Optionally, one EEGLAB set file and one data set containing axon
tract directionality information, e.g., derived from CoCoMac database,
http://cocomac.org, and adapted to the human brain (Bezgin et al.,
2012) can be read. Exemplary pipeline output files compatible with
TVB upload requirements are public and can be found via this URL:
https://github.com/the-virtual-brain/tvb-data.

A detailed description of pipeline output, TVB file formats and the
optional EEG source-imaging step can be found in the Supplementary
material.

Preprocessing of T1-weighted anatomical MRI data
High-resolution anatomical images are used to create a segmenta-

tion of white matter, for segmentation and parcellation of cortical and
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Fig. 1. Illustration of pipeline input and output based on imaging data of one subject. Input is anatomical, functional and diffusionMRI data. Optionally, EEG data can be inputted for source
estimation. The output includes surface triangulations (scalp/head, skull, cortical), tracks returned by tractography, tracks aggregated to SC matrices, source activity, region-wise BOLD
activity and FC matrices.

346 M. Schirner et al. / NeuroImage 117 (2015) 343–357
subcortical gray matter (to be used for full-brain simulation within
TVB and for the extraction of region-wise averaged BOLD activity)
and for the generation of tractography masks. The following major
steps are performed by FREESURFER's recon-all function: motion
correction, intensity normalization, skull stripping, removal of
non-brain tissue, brain mask generation, cortical reconstruction,
WM and subcortical segmentation, cortical tessellation generating
GM–WM and GM-pia interface surface-triangulations and probabi-
listic atlas based cortical and subcortical parcellation. Relevant output
of these operations are NifTi volumes that contain GM and WM
parcellations.

Optional: Using parcellations defined for standard brain templates
Optionally, warping-based normalization of subject-specific brains

to the MNI152 standard brain (Grabner et al., 2006) can be selected.
Brain normalization by warping is an error prone procedure that often
results in misalignment of anatomical structures, while FREESURFER
segmentations and parcellations are based on probabilistic atlases that
show better identification of brain structures. To enhance erroneous
normalization results, we devised an automated correction heuristic,
using the high-quality GM and WM segmentations generated by
FREESURFER (Fig. 2) Initially, the heuristic determineswhichGMvoxels
of the standard brain image have been erroneously warped onto WM
voxels of the subject image and which voxels have been correctly
warped onto GM voxels. All MNI voxels that have been falsely warped
onto subject-space WM voxels are excluded from the final parcellation,
while all MNI parcellation voxels that have been assigned to subject-
space GM voxels are assumed to be correct in the final parcellation.
Then, the algorithm proceeds by iterating through all unassigned GM
voxels and assigning each voxel the label of the majority of GM voxels
in its neighborhood. In the case that there are two or more equally
sized groups of voxels in the voxel's neighborhood that are assigned
to different regions, the search-radius is increased until an unambigu-
ous decision can be made.



Table 1
Computation time and data sizes generated.

CPU clockrate @2.54 GHz

Suppl.
Fig. 1

Data type Data
size

Time/hh:min Toolbox Output format

Raw T1 40 MB DICOM
Raw fMRI 270 MB DICOM
Raw EEG 85 MB Brain Vision Analyzer Format
Raw dw-MRI 110 MB DICOM

A Segmentation
Parcellation
Triangulation

390 MB 9:45 FREESURFER FREESURFER/Nifti (nii)

B Preprocessing dMRI 227 MB 00:02 FREESURFER FREESURFER/Nifti (nii)
C Transforming the WM/GM interface triangulation

into a 3D volume
64 MB 00:00:20 FREESURFER Nifti (nii)

F Transforming anatomical masks from individual
anatomical to individual diffusion space

69 MB 00:02 FSL Nifti (nii)

G Generating WM brain masks for tractography 70 MB 00:02 FSL Nifti (nii)
H Computing the fiber Orientation Distribution

Function (fODF)
205 MB 00:03 MRTrix MRTrix image format (mif)

I Generating seeding-, target- and stop-masks
for tracking

40 MB 00:20 MATLAB MATLAB (mat)/Nifti (nii)

J Fiber tracking 78 GB 02:00 using 184 CPU
cores in parallel

MRTrix MRTrix track file format (tck)

K Computing the SC matrices 156 MB 02:00 using 68 CPU
cores in parallel

MATLAB MATLAB (mat)/packed
ASCII text files (zip)

L Region wise aggregation of the BOLD signal 228 MB 01:00 FSL Nifti (nii)/ASCII (txt)
M Computing the FC matrix 864 KB 00:00:30 MATLAB MATLAB (mat)
N EEG artifact correction Brain Vision Analyzer Brain Vision Analyzer Format
P EEG signal filtering MATLAB/EEGlab EEGlab dataset (set)
Q Lead field matrix computation using Brainstorm 452 MB 01:00 MATLAB/Brainstorm MATLAB (mat)
R Converting Brainstorm data into TVB format 9.1 MB 00:02 MATLAB/Brainstorm ASCII (txt)/packed ASCII (zip)/

MATLAB (mat)
D & E Normalization to MNI space for including directionality 180 MB 00:45 MATLAB/FSL Nifti (nii)
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Optional: Merging connectomes with directionality information derived
from other sources

Directionality of fiber tracks cannot be derived from dwMRI data.
However, databases exist that contain directionality information de-
rived from axonal tract-tracing, such as the CoCoMac database (http://
cocomac.g-node.org/) that contains several hundreds of published stud-
ies. Bezgin et al. (2012) created an approach to register cortical brain re-
gions ofmacaques and tomap themonto a standardmacaquebrain. The
resulting parcellation was warped to the MNI standard human brain
template using landmarks defined in Caret (www.nitrc.org/projects/
caret) (Van Essen et al., 2001; Van Essen and Dierker, 2007). This map-
ping between human and monkey brain parcellations enables the
merging of directionality information from invasive monkey tracing
studies with human structural connectomes. In the pipeline, this merg-
ing is realized by warping subject brains onto the MNI152 standard
brain, for which the parcellation by Bezgin and colleagues is defined.
Connections that were found to be explicitly absent in the macaque
brain are deleted from the structural connectomes.
Tractography
Three types of masks are used to constrain tractography and to

exclude spurious tracks: seeding-, target- and stop-masks. The GM–
WM-interface (GWI) is used as seeding and termination masks for
dwMRI-tractography; therefore, FREESURFER's parcellation-masks for
the different cortical- and subcortical GM structures are loaded and
the WM-voxels adjacent to the structures of interest are defined as
seeding- and target-voxels. WM segmentations are used to generate
masks that terminate tracks as soon as they leave WM. Since MRTrix
and other tractography toolboxes enable sub-voxel tractography,
tractography masks are created from FREESURFER's high-resolution
parcellations. For this article, we use the Desikan–Killiany atlas
(Desikan et al., 2006) as implemented in FREESURFER (excluding the
corpus callosum, but including the insular cortices of both hemi-
spheres). The pipeline also enables tracking using FREESURFER's
Destrieux atlas, tracking from and to subcortical structures defined by
FREESURFER's subcortical segmentation atlas as well as atlases defined
for the MNI brain.

Upon extraction of gradient vectors and values (known as b-table)
using MRTrix, dwMRI data are pre-processed using FREESURFER's
dt_recon function. Besides motion correction and eddy current correc-
tion (ECC), the b0 image is linearly registered to the subject's anatomical
T1-weighted image and the resulting registration rule is used to trans-
form the high-resolution mask volumes from the anatomical space to
the subject's diffusion space. Note that there is an ongoing debate over
the usefulness of ECC for diffusion data processing (Jones et al., 2013;
Soares et al., 2013). A key assumptionwhen performing simple registra-
tion based ECC (e.g. via FLIRT's eddy_correct algorithm) is that the
distortions that are caused by the eddy currents are uniform during
the whole scanning time, i.e., over all slices. Hence this assumption
does not hold if there is any kind of subject movement during the
recording. A more robust approach is to create a time-varying model
of distortions caused by eddy currents (Johansen-Berg and Behrens,
2013). Due to the uncertainty about the usefulness of registration-
based ECC (e.g., via FSL's eddy_correct) its computation is optional in
the pipeline.

During MRTrix pre-processing, image-volumes that store the diffu-
sion tensor (i.e., the diffusion ellipsoid) for each voxel are computed.
Based on that, a fractional anisotropy (FA) and an eigenvector map are
computed and masked by the binary WM mask created previously.
For subsequent fiber-response function estimation, a mask containing
high-anisotropy voxels (and therefore presumably unidirectional fiber
populations) is computed. Probabilistic tractography in MRTrix is
based on a constrained spherical deconvolution (CSD) that computes
the fiber orientation distribution function (fODF) for each image voxel
(Tournier et al., 2004, 2007). For our 64-direction dwMRI data we are
able to use a maximum harmonic order of 8.

To address several confounds in the estimation of connection
strengths (transmission strengths), tractography is based on a proper
selection of seed voxels and on controlling for the number of generated
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Fig. 2. Nonlinear registration of individual brain anatomy to the MNI152 standard brain can produce strong anatomical mismatches, i.e., anatomical regions are incorrectly mapped: in
many cases even parts of GM are registered ontoWM and vice-versa. We developed an algorithm that corrects erroneously assigned GM andWMvoxels using high-quality FREESURFER
segmentations. A) Red indicates GM segmentation obtained by warping the standard brain to the subject's brain; yellow indicates GM as identified by FREESURFER's recon_all function.
B) GM parcellation before correction. Note the strong deviations from actual anatomy. C) GM parcellation after applying the correction algorithm within the pipeline.
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tracks in each seed voxel. To support comparability of resulting
connectomes, tracks are initiated from GM–WM-interface voxels
instead of using every white matter voxel and a fixed number of tracks
are generated for each seed-voxel. Seeding solely from the voxels of
the GWI can be problematic due to partial voluming effects and
image-noise near the transition between GM and WM. To alleviate
this issue, the GWI can be extended into the voxels of the WM, for ex-
ample by applying mathematical morphology (e.g. dilation).

For parallelization of the computationally intensive tractography
part of the pipeline, the seeding mask can be split into several masks
each containing only a subset of all GWI voxels allowing multiple
instances of MRTrix to perform tractography (all other masks have to
contain their full set of voxels). The time needed to complete the
whole tractography scales linearly with the number of seeding voxels
per mask given enough processors. Along with seeding-masks, target-
masks are defined specifying the GWI complement to each seeding
region as terminal regions.

During the actual tractography tracks are initiated at uniformly
distributed coordinates contained in the seeding ROI and propagated
until they reach a termination ROI. All tracks that do not enter the
specified termination ROI are discarded. Probabilistic tractography algo-
rithms prolong tracks in a direction that they sample from the fODF of
the underlying voxel. The algorithm continues to produce tracks until
the specified number of tracks per seed voxel was generated or an
upper threshold of tractography attempts is reached (by default this
threshold is 1000 times the specified number of wanted tracks). There-
fore, the number of tracks that are generated for each region is directly
proportional to the size of the GWI of that region. The underlying
assumption is that the coupling strength of a region (i.e., the strength
of the influence a region can assert over another region) is constrained
by the area of the GWI, since it introduces a bottleneck through which
the tracks that connect two regions have to pass. By default, amaximum
length constraint of 300 mm and a maximum radius of curvature of
1 mm are used. Besides probabilistic tractography the pipeline can
also generate tracks using deterministic tractography.

Structural connectome extraction
The connectivity measures derived between each pair of regions are

intended to estimate the relative strengths of the influence that regions
exert over another, i.e., their SC. Structural connectivity is a relative
description of coupling that can be turned into an absolute description
of mutual influence that only exists in the context of a specific model
and a coupling function that transforms it into effective connectivity
(EC) with respect to the specific local node models that are coupled
together. However, neither SC nor EC can be directly measured by
diffusion imaging and several aspects harden their approximation:
First, the diameter of WM fibers is below imaging resolution rendering
it impossible to directly resolve actual fiber tracts, but only to concate-
nate model-based estimations of the diffusion profile at each voxel
(i.e., tractography). Second, the impact that a WM tract exerts on a
distant neuronal population is dependent on a variety of factors
besides the number of axonal connections it contains, e.g., degree of
myelination and type, distribution and number of synaptic connections
at the terminus of the tract. Third, the number of tracks that was gener-
ated for a given pathway does not necessarily reflect the probability of
existence or the strength of that pathway. Especially the last problem
reflects the confound arising from the dependency of the number of
found tracks on path-length and on the shape of the diffusion orienta-
tion profile along the pathway due to streamline dispersivity (Liptrot
et al., 2014). This issue arises out of the aforementioned problems and
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the mechanism of probabilistic tractography: due to step-wise disper-
sion of the propagating streamline the probability that a specific track
is prolonged decreases as a function of the distance from the seed
point. This creates a bias towards short pathways and pathways that
follow the major diffusion directions. Therefore, the number of found
tracks does neither quantify the strength of a connection nor the prob-
ability of the existence of a connection but merely reflect the chance
that a streamline could propagate along the specific pathway of the
tracks. When seeding tractography from every WM-voxel, another
bias arises from the fact that tracks that are longer have a higher prob-
ability of being tracked than shorter tracks (Jones, 2010; Jbabdi and
Johansen-Berg, 2011; Jones et al., 2013; Smith et al., 2013). Figs. 3 and
5 illustrate this multiple-counting bias by comparing raw track counts
with the numbers of distinct voxel-to-voxel connections found between
two regions. Note the strong multiple counting effect for several
Fig. 3. Strategy for track aggregation using the “bottleneck” assumption. A) Tracks generated b
10,003 uniformly distributed pointswithin the single voxel resulting in 26 valid tracks. Valid trac
contain each voxel of the GWI). B) A ten times higher amount of seed points leads to 172 valid
tracks. C) As a consequence, counting the number of trackswould lead to biased estimates of the
wise aggregation. D) The GWI, individually segmented and parcellated by FREESURFER for each
regions. Shownare the resulting SCmatrices (strengths& distances) from the exemplary subject
not correspond to single voxels of the interface anymore, but to Atlas regions.
connections: for some tractography-runs the raw counts are 40 times
larger than the number of distinct voxel-to-voxel connections, i.e., the
coupling strength estimated by raw counts is 40 times larger than the
relative surface that is used to connect these regions. The right panel
of Fig. 5 shows the percentage of all existing connections (thresholded
at 1% of maximal unique count value) that has been counted multiple
times for different multiples. Note that for about one third of connec-
tions of each subject the number of raw counts was at least two times
as high as the number of unique connections. Further analyses showed
that that the number of multiple counts varies for the same region-to-
region connection in different subjects making it unpredictable.

In order to improve existing methods for strength estimation and
to address the aforementioned confounds, wemake use of several tech-
niques with regard to seed-ROI selection, tractography and aggregation
of generated tracks. The basic conjecture behind this approach is that
etween two single voxel ROIs (each 2.3 × 2.3 × 2.3 mm) are shown. Seeding was done at
ks produced for each pair of GWI voxels are stored in amatrix (rows, respectively columns
tracks. Note that ten timesmore seeding attempts do not produce ten times as many valid
connection strength. Therefore, voxel-to-voxel connectomes are binarized prior to region-
subject, is used for seeding. E) Voxels of the largematrix are aggregated according to brain
based on the described algorithm. The rows and columns of the aggregatedmatrix nowdo
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the surface area at both GWI terminals of a tract constrains the number
(respectively diameter) of WM fibers that can possibly run between
the connected areas and, therefore, constitutes an upper bound to the
strength of interaction between these two regions. In other words,
the area of the GWI that is used to connect two regions provides a bot-
tleneck to the number of possibly terminating fibers. Thus, we assume
that the total surface area on theGWI used to connect two regions limits
the strength of that connection. Assuming sufficient homogeneity of
cortical microstructure we estimate that the strength of a connection
is proportional to the relative surface area that it occupies on the GWI
(relative in proportion to the total GWI surface area of a given subject).
Based on evidence for cortical microcircuitry invariance (Silberberg
et al., 2002; Douglas and Martin, 2004) we use the approximation that
each unit of GWI surface area provides an equal amount of coupling
strength by restricting the number of axons that can pass through it.
In order to connect two GM regions, every tract has to pass through
the bottleneck created by the surface area of the GM–WM interface at
the terminals of the tracks. We conclude that the maximal coupling
strength of all tracks that connect two cortical regionsmust be bounded
by the minimum of the GWI surface areas at both region terminal sites
and that consequently the total strength between two regions is propor-
tional to the relative area occupied by tracks.

Since tracks are two-dimensional line objects there is no straightfor-
wardway to compute the surface area of a track-terminal. Therefore, we
devised a new bundling scheme in order to group tracks into distinct
connections. We define a distinct connection as a pair of GWI voxels
for which at least one track was generated, regardless of the number
of tracks foundor the concrete pathway. Thismetric is further expanded
to a second metric by another assumption that states that all distinct
connections that share a common terminal voxel must also be bounded
by the same bottleneck, and consequently the maximum bandwidth of
that voxel must be split up among all distinct connections. Therefore,
upon determining all distinct connections for a voxel, the total coupling
strength of this voxel is split up over all its distinct connections in equal
parts resulting in weighted distinct connections. For example, if a voxel
has only one distinct connectionwith another voxel we assume that the
potential coupling strength of that voxel is fully occupied by that single
connection. On the other hand, if a voxel has two or more distinct
connections we assume that these connections share the possible
coupling strength of that voxel. It follows that in this approach the
maximal total coupling strength of a region is given by the area of its
GWI and not by the amount of tracks that emanate from it, since this
number is highly dependent on local anatomy and the characteristics
of the diffusion profile. This approach is justified by the assumption
that the coupling strength of a region is proportional to the size of the
GWI of that region, assuming a fixed ratio of long-range connections
per microcircuit volume. We acknowledge that this approximation is
the result of several simplifying assumptions on the nature of long-
range connectivity that at the moment cannot be verified empirically
due to a lack of empirical data. Pseudo-code given in Supplementary
material summarizes the steps of the algorithm.

Upon tractography the pipeline computes distinct connections and
aggregates them for each region to generate three types of SC matrices
(Fig. 3 visualizes details of the concept):

- raw counts, contain track counts of all tracks that were found
between each pair of regions (symmetric),

- distinct connection counts, contain only distinct connections
between each pair of regions (symmetric),

- weighted distinct connection counts, in which the strength of each
distinct connection is divided by the number of all distinct connec-
tions leaving the voxel (yielding asymmetric strength matrices).

Each of these metrics is outputted in two variants, namely, absolute
values and relative values that have been normalized by the total
surface area of the GWI of a subject. Fig. 4A shows the average and
inter-subject variance of all resulting coupling strength matrices.

Along with strengths, the pipeline outputs three different SC
distances matrices that contain the mean, mode and median lengths
of all tracks that were found between each pair of regions. Fig. 4B
shows mean SC distances matrices and inter-subject variance of all
generated distance SCs. All three weighting schemes for coupling
strength estimation follow a similar distribution that approximates
a power-law. Matrices are not thresholded, which explains their
high density. In separate panels the figure shows the pairwise
inter-subject correlation coefficients for all matrix weightings to esti-
mate their similarity.

Test–retest reliability of structural connectome extraction
In order to quantify the robustness of connectome extraction the

agreement between SCs of different dwMRI acquisitions of the same
subject was contrasted with the agreement of SCs of different subjects.
Furthermore, results were compared to the results of similar estima-
tions from other publications. To compare the similarity of SC matrices
and to estimate whether inter-subject anatomical variability has a
stronger impact on connectome similarity than acquisition noise and
estimation biases Pearson's correlation coefficient was computed be-
tween all pairwise combinations of matrices. Thereby, matrices of the
same strength type were compared between different runs of the
same subject (intra-subject variance) but also between scans for differ-
ent subjects (inter-subject variance). Then, resulting correlation coeffi-
cients (CCs) for each type of SC were grouped into intra- and inter-
subject CC and visualized by boxplots. Since three subjects have been
scanned three times each, this results in three CCs that quantify the
pair-wise similarity of matrices for each subject characterizing the
intra-subject SC agreement and 27 CCs that characterize inter-subject
SC agreement between all three subjects and their three data acquisi-
tions. To further characterize test–retest robustness, the intra-class cor-
relation coefficient, ICC (Shrout and Fleiss, 1979; McGraw and Wong,
1996) was used to assess the degree of consistency among measure-
ments of the same quantity that were made by different observers
(multiple scans in our case). ICC(3,1), which was used to estimate con-
sistency in terms of absolute agreement between repeated measure-
ments is computed as

ICC 3;1ð Þ ¼ MCR−MSE
MSR þ k−1ð ÞMSE

:

MSR denotes the mean square for rows of observations (strengths or
distances between nodes and node degrees), MSE is the mean squared
error, k specifies the number of observations and n is the number of
scans. ICC(3,1) was computed using the MATLAB method Intraclass
Correlation Coefficient created by Arash Salarian (www.mathworks.
com/matlabcentral/fileexchange/22099). ICC(3,1) estimates the simi-
larity of different strength estimates for the same subject, with a value
of 1 indicating perfect agreement between sessions.

In addition to ICCs for full connectivity matrices ICCs for node
strengths were computed. The node strength ωi of node i is defined as
the sum of edge weights (i.e., strengths) aij with all connected nodes j
over all n nodes,

ωi ¼
Xn

j¼1

ai j:

Another type of Intraclass Correlation Coefficientwas used to specifi-
cally testwhether global connectivity properties showed larger variabil-
ity between subjects than within subjects over scanning sessions:

ICC ¼ σ2
bs

σ2
bs þ σ2

ws
:

http://www.mathworks.com/matlabcentral/fileexchange/22099
http://www.mathworks.com/matlabcentral/fileexchange/22099


Fig. 4. A) Resulting average SC matrices N= 49 (data sets acquired at Berlin site): distancematrix resulting from probabilistic tractography; distance matrix resulting from deterministic
tractography; raw countsmatrix resulting from probabilistic tractography; raw counts matrix resulting from deterministic tractography; distinct connection counts matrix resulting from
probabilistic tractography; distinct connection counts matrix resulting from deterministic tractography; distinct weighted connection counts matrix resulting from probabilistic
tractography; and distinct weighted connection counts matrix resulting from deterministic tractography. B) Correlation coefficients between matrices across all subjects for: Distances
probabilistic/deterministic; raw counts probabilistic/deterministic; distinct connection counts probabilistic/deterministic; and distinct weighted connection counts probabilistic/deter-
ministic. C) Intra- compared with inter-subject variability characterized by boxplots of all correlation coefficients (CC) between all pairs of strengths matrices of three subjects and
three scans. Boxes labeled with ‘IA’ denote intra-subject CC, while ‘IE’ denotes inter-subject CC. DC = distinct connections, WDC= weighted distinct connections, C = raw counts, and
DIS = distance.
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Fig. 5. Illustration of themultiple counting biases. Left panel: Histogram of the pooled ratios between raw track counts and extracted distinct connections (over all subjects). Note that the
distribution of multiple count ratios is widespread, indicating strongly heterogeneous ratios of raw counts vs. distinct connections. Right panel: percentage of connections (thresholded at
1% of maximal distinct connections value) that have been counted multiple times. Note that for some subjects almost 40% of connections have been counted at least twice.

Table 2
Correlation between SC and FC using different tracking methods.

Deterministic
tracking

Probabilistic
tracking

Average Raw counts 0.2192 0.2401
Distinct connection counts 0.2263 0.2404
Weighted distinct connection
counts

0.2356 0.2503

Averaged
matrices

Raw counts 0.3257 0.3395
Distinct connection counts 0.3390 0.3410
Weighted distinct connection
counts

0.3416 0.3497

Note: For the row “averaged matrices”, the average matrices over all 49 subjects where
computed and correlated to the average FC of those subjects. Hence this is not the average
over all the values in the single columns.
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Thereby, between-subject variance σbs
2 is contrastedwith the pooled

within-subject variance σws
2 of the respective metrics. ICC estimates

whether the variability across individuals is lager than the variability
present within the estimates for different scans of the same subject. It
is a normalized measure that has a maximum of 1; thus, in our applica-
tion values above 0.5 indicate that there is more variability between
subjects than between different scans of the same subject. A comple-
mentary measure to characterize the variability of node strengths, the
coefficient of variation (CV), was computed. CV is defined as the ratio
of the mean within subject standard deviation σws

2 to the overall
measurement mean μ (Lachin, 2004). Variability of node strength was
considered low if CV is smaller than 1 and high otherwise.

Fig. 4C compares correlation coefficients obtained by correlating
strengths and distances matrices obtained from three data sets of
three subjects. All three weighting schemes obtained high CCs (Range,
Mean ± Standard Deviation): raw counts (0.97–0.99, 0.98 ± 0.007),
distinct connections (0.97–0.99, 0.98 ± 0.006), and weighted distinct
connections (0.96–0.98, 0.98±0.007). Inter-subject CCswere consider-
ably lower: raw counts (0.87–0.93, 0.9 ± 0.02), distinct connections
(0.87–0.92, 0.89 ± 0.02), and weighted distinct connections (0.86–
0.91, 0.89± 0.01). Please see Discussion for comparisonwith published
results of others. Distance matrices showed lower intra-subject similar-
ity compared to coupling strength matrices (0.84–0.92, 0.88 ± 0.03).
Nevertheless also for the distance metric intra-subject similarity was
considerably higher than inter-subject similarity (0.68–0.77, 0.72 ±
0.03). The results of the test–retest analysis using ICC(3,1) are summa-
rized in Table 3. All three strength metrics showed almost perfect
within-subject agreement. The agreement of distances, while being
lower compared to strength agreement, can still be considered as high.
All connectivity properties were computed for the raw unthresholded
matrices outputted by the pipeline. Like for overall strength, average
ICC(3,1) values for node strength showed almost perfect agreement.

To compare within and between subject variability, population ICC
was computed for each node and averaged over all nodes, yielding
0.77 ± 0.16 (distinct connections), 0.76 ± 0.15 (weighted distinct
connections) and 0.8 ± 0.13 (raw counts) indicating that there is more
variability between subjects than between different scans of the same
subject. CVs for node strength were constantly low: 0.07± 0.05 (distinct
connections), 0.06 ± 0.03 (weighted distinct connections) and 0.05 ±
0.03 (raw counts) indicating that the variability of node strength was
low and their estimation robust over different acquisitions.

Functional connectome extraction
In order to generate functional connectivity (FC) matrices, raw fMRI

DICOM files are first converted into a single 4D NifTi image file and FSL's
FEAT pipeline is used to perform the following operations: deleting the
firstfive images of the series to exclude possible saturation effects, high-
pass temporal filtering (100 second high-pass filter), motion correction,
brain extraction and a 6 DOF linear registration to the MNI space. Then,
BOLD volumes are registered to the subject's T1-weighted images
and parcellated according to FREESURFER's cortical segmentation. By
inverting the transformation rule found by registration, anatomical
segmentations are mapped to the functional space and average
BOLD signal time series for each region are generated by computing
the temporal mean for all voxel time-series of each region. From
the region wise aggregated BOLD data, functional connectivity (FC)
matrices are computed within MATLAB using pairwise mutual
information (on z-transformed data) and Pearsons's linear correla-
tion coefficient (equations given in Supplementary material).
Table 2 shows the correlation between extracted FC and SC matrices.
Discussion

The two essential contributions of this publication are: (i) Provision
of an automated pipeline that standardizes the extraction of full-brain
network models from neuroimaging data sets and (ii) as part of that
pipeline a method for quantitative brain networks extraction that
allows for robust transmission strength estimation between brain
regions. In the following, we discuss several aspects of multi-modal
image processing and connectome extraction and present guidelines
and conclusions we drew that lead to standardized connectome extrac-
tion and discuss the validity of the approach.



Table 3
Test–retest analysis for pipeline generated SC matrices.

Subject RC DC WDC DIS NS(RC) NS(DC) NS(WDC) NS(DIS)

1 0.98 0.98 0.97 0.88 1 1 0.99 0.98
2 0.98 0.98 0.97 0.86 1 0.99 0.99 0.97
3 0.98 0.98 0.98 0.89 1 0.99 0.99 0.98

Summary of test–retest analysis for the three capacities metric and the distance estima-
tion. ICC(3,1) values were computed over full networks with matrices being thresholded
at fixed values (thresholds: 4000 for DC, 4500 for RC, 100 for WDC). RC = raw counts,
DC = distinct connections, WDC = weighted distinct connections, DIS = distances, and
NS = node strength.
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Integrating different imaging modalities, file-formats, data-structures and
image spaces

In this paper we presented an automated pipeline that extracts full-
brain models along with brain activity data ready to import and
use within The Virtual Brain. The pipeline automatically extracts infor-
mation from different imaging modalities such as anatomical-,
diffusion-weighted and functional MRI scans as well as simultaneously
acquired EEG. The article describes the necessary steps for the robust
construction of subject-specific high-quality brain-models, common fal-
lacies that should be avoided, guidelines that improve the quality of
connectome extraction and presents a freely available pipeline that
integrates all required toolboxes and performs the aggregation of
tractography results into one automated processing stream. Different
toolboxes often use different image formats and coordinate systems.
The raw output files of MRI scanners are often written in the form of
DICOM files while image processing software like FSL or SPM typically
process analyze or NIfTI volumes. Regarding data structures, raw imag-
ing data is mostly stored as gray-scale images while brain-surface
meshes, like those generated with FREESURFER, exist in the form of
surface-triangulations specified by coordinates of endpoints and edges
that connect them to triangles. Different imaging modalities acquire
and store data in different imaging “spaces”, e.g., standard atlas space
(e.g., Talairach or MNI), structural space (high resolution, small voxel-
size), functional space (low to medium resolution, large to medium
voxel-size, temporal dimension) or diffusion space (low to medium
resolution, large to medium voxel-size, different gradient directions).
Images that are defined in the same space can have different resolutions
(there exist, e.g., 1 mm and 2 mm isotropic voxel size versions of the
MNI152 brain). Images in different spaces need to be registered to
each other, that is, the imaged structures must be in spatial alignment
in order to operate across modalities (e.g., in the form of masks). To
improve spatial resolution high-resolution anatomical images can
be used as registration targets and for generating masks for low-
resolution images from other modalities. Registration rules are inverted
and/or concatenated to transform images or image-related information
between spaces. Especially cross-modal registration is an error-prone
procedure that complicates standardization making manual interven-
tion necessary. The setting of involved parameters like cost functions,
masking, registration parameters (degrees-of-freedom) or quality of
brain extraction immensely affect the registration outcome and are
often different for different modalities. Besides spatial alignment, tem-
poral alignment is often required when time-series data like EEG, PET
or fMRI are simultaneously acquired or are supposed to be processed
time-locked to a given event. In the case of simultaneous EEG–fMRI
scan markers are written into EEG files in order to synchronize both
measurements.

The variety of existing neuroimaging toolboxes, imaging modalities,
data-structures, imaging spaces and dimensions alongwith the amount
of degrees of freedom involved in each single processing step and their
immense impact on the quality of the analyses calls for a concentration
of efforts for standardization of neuroimaging processing streams.
While meta-analyses attribute inconsistency in findings to a lack of
standardization (Fitzgerald et al., 2006) it is encouraging to see that
more and more efforts are being made to overcome this lack: software
pipeline scripting tools like Nipype that interface many of the most
popular neuroimaging toolboxes or projects like BrainMap (Laird
et al., 2011) and protocols like those developed by the 1000 Functional
Connectomes Project (Yan et al., 2013) and the Human Connectome
Project (VanEssen et al., 2012).What dwMRI still lacks is the acquisition
of ground truth data, verification of different tractography approaches
and principles and their integration into a single comprehensive frame-
work that is guided by a formalization of a set of best practices.

Standardizing connectome extraction

The proposed method unifies several principles that we consider as
mandatory prerequisites for standardization of quantitative large-scale
brain network extraction and to compensate for biases arising out of
different tractography approaches. In the following, we list several
operational considerations and principles for future in-depth discussion
and verification. The connectome extraction strategy in the presented
pipeline is informed by the conclusions thatwe draw from the following
considerations. Furthermore, they are intended to guide and improve
future efforts for robust, reliable and plausible connectome extraction
strategies. Tractography is a method that depends on a large number
of modeling assumptions and degrees of freedom and its results are
determined by the choice of tractography algorithm and parameters
involved (Fillard et al., 2011; Bastiani et al., 2012).

Coupling strength estimation
At present, a large and influential part of studies that quantify

strengths are estimated by counting all generated tracks between
regions (Hagmann et al., 2007, 2008, 2010; Honey et al., 2009). In
this regard it is important to acknowledge that tracks estimated by
tractography algorithms are model-based approximations of
the underlying fiber population, since actual tracts that underlie
dwMRI signals are far too small to be resolved by current MR-
scanners. For differentiation between the anatomical structure and
the theoretical construct a subtle spelling difference has established
in current literature: ‘tracts’ addresses the anatomical structure
while ‘tracks’ labels their tractography based approximation.

Several types of biases interfere with quantification of the
strengths of fiber tract reconstructions (Jones, 2010; Jbabdi and
Johansen-Berg, 2011; Jones et al., 2013; Smith et al., 2013). Probabi-
listic connectivity maps are in its most rigorous interpretation noth-
ingmore than a map that quantifies the reproducibility of streamline
reconstruction of a data set. This is problematic since the probability
of tractography for a certain tract does not necessarily depend on its
strength but on several other features e.g., it can be shown that “in a
set of pathways comprising identical microstructure, the path
deemed to mediate the highest connectivity by probabilistic
tractography will be the shortest, simplest and straightest path”
(Jones, 2010). Since diffusion profiles depend on several different
properties of the underlying anatomy, a low tractography count for
a certain pathway does neither imply that the underlying tract is
thin compared to other tracts, nor, that it has a low coupling strength
or even probability of existence, but merely, that it is unlikely to be
found by a probabilistic tractography algorithm. Probabilistic
tractography provides estimates of the probability that a streamline
is found during repeated tractography-runs but not the probability
of the existence of a fiber bundle.

The chance for finding a pathway by tractography depends on its
shape and diffusion profile: when seeding from all WM voxels, longer
and wider tracts will be tracked more often since a higher number of
seeds are placed on it. Several approaches (Hagmann et al., 2008;
Buchanan et al., 2014) aim to compensate for this by dividing raw
tractography counts by the length of the pathway, which introduces a
linear weighting to strength estimates that depends on the length of
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the tracks. However, the number of found tracks does not only depend
on the length and width of the pathway, but on local anatomical
features in a highly non-linear manner. One example for local anatom-
ical biases is the dispersion of the ODF profile, which is in probabilistic
approaches interpreted as an indicator of crossing fibers. With increas-
ing cumulative dispersion of the ODF along the voxels of a pathway, the
probability for the algorithm to branch increases and, consequently,
the expected streamline count decreases. Besides structural effects
resulting from the underlying anatomy that influence the shape of the
ODF it is also highly dependent on several parameters of the MR exper-
iment like b-values, SNR or partial volume effects (Huang et al., 2004).

A conceptual issue arises from the fact that counting tracks (or esti-
mating the thickness of a fiber bundle) is rooted in the idea that the
number of axons connecting two regions could be used as an intuitive
and straightforward correlate of connection strength. However, the
diameter of afiber tract aswell as local anisotropy is not only dependent
on the axon count but also depends on several factors like packing,
degree of myelination, coherence of axon orientations, membrane
permeability and fiber density. Likewise, local anisotropy and thus the
ODF are dependent on those features, e.g., lower packing density results
in fewer barriers to diffusion. Connectivity strength estimates that are
based on the mean anisotropy of a track are similarly biased, i.e., mean
anisotropy is highly dependent on the anatomical neighborhood of a
track: if the streamline runs through areas that have a relatively homoge-
neous orientation of fibers, they will also have a high anisotropy and vice
versa, regardless of the number of axons.While it is true that anisotropy is
modulated by physiological aspects like the degree of myelination, fiber
density and packing that certainly affect connectivity strength, it is,
however, not possible to disentangle structural effects like incoherent
axon orientations, which is the rationale for probabilistic tractography
(i.e., spread diffusion profiles as an indicator of crossing fibers).

While hardly any ground truth data exists for coupling strength
estimation, the accuracy of tractography algorithms to localize existing
major white matter tracts can be verified with a certain amount of
confidence (Jbabdi and Johansen-Berg, 2011). Although validation of
the topology of extracted connectomes is an active area of research
(Seehaus et al., 2013; Schreiber et al., 2014), there is no dataset ormeth-
od that is able to directly estimate connection strengths between
regions for an entire brain. Specifically, the strength of transmission in
the sense of a brain network model, as employed by TVB, cannot be
directly measured. Furthermore, a method to experimentally probe
and disentangle the composite effects of the simultaneous inputs that
a region receives does not exist. Note thatwhile increasing efforts inves-
tigate the relationship between microstructural properties like axon
diameter distribution and diffusion signal (Sherbondy et al., 2010;
Pestilli et al., 2014), there is no established relationship between such
features and their coupling strength, which is one reason for a strength
estimation approach that takes tractography biases into account.

The situation is aggravated by the fact that such connection
strengths are only defined in the context of a particular biophysical
BNM and therefore no universal unit for strengths exists. In the real
scale-free system, connection strengths have a certain physical unit.
For example each axon is capable of inducing a certain PSP membrane
voltage change in the postsynaptic neuron. Hence candidates are,
e.g., voltage change in postsynaptic membranes, mean-field amplitude
change, postsynaptic spike-rate, or some quantity of information
content. Connection strengths in the present context are expressed as
relative quantities that only become functionally interpretable with
regard to a specific BNM that turns SC into EC. Local population models
like those provided within TVB turn SC into EC by embedding them via
population activity models into the interaction infrastructure of a BNM
equation that couples local intrinsic dynamics according to the estimat-
ed connection strengths. A global coupling-scaling factor rescales the
relative SC matrices and turns them into values that assign absolute
changes to each simulated population for a unit mean-field change in
a connected region.
In order to alleviate the aforementioned issues and to standardize
subject-specific connectome extraction we propose several aspects to
make the connectome extraction process robust and reliable.
Tractography shows good robustness in localizing tracts (Jbabdi and
Johansen-Berg, 2011) while, up to now, no dwMRI based metric has
been found that allows the direct inference of transmission strengths
of reconstructed pathways. Therefore, we opt for uncoupling of
strengths estimation from tract reconstruction and to divide
connectome estimation into two parts: (i) identification of pathways
and (ii) estimation of connection strength. Thereby, we disentangle
the quantification of connection strength from the tractography
process, which is only used to infer the existence of connections
between all GWI voxels without making any assumptions about their
strength thus eliminating the multitude of biases arising from track-
count based strength estimation.

Morphologically informed coupling strength quantification
In the proposed GWI area normalized approach, quantification of

connection strength is based on the assumption that the size of a region
(i.e., the number of neurons in a circuit) correlates with the number of
outgoing axons. This assumption rests on the notion of a highly
conserved and generic cortical microcircuit and a relatively homoge-
neous connectivity throughout cortex: across many species and regions
lamina-specific micro-connectivity structures were found to be varia-
tions of a common template (Buxhoeveden and Casanova, 2002;
Casanova et al., 2009).

Since we cannot measure the number of outgoing axons of a region,
we take the surface area that is used to connect two regions as an
indicator of the size of the neural population (and thus outgoing
axons). Considering the homogeneous structure of cortical microcir-
cuits we conjecture that large populations have a higher coupling
strength than small regions. Furthermore, since each voxel of the WM/
GM border can only contain a finite amount of axons (i.e., it constitutes
a bottleneck to the number of axons) the maximum coupling strength
that can be mediated through a GWI voxel must be bounded from
above. For example, if a fiber bundle connects a single voxel from one
region to another single voxel from a different region, there is more
space for axons to connect these voxels compared to a situation in
which the fiber bundle forks and connects to several different voxels.
A corollary from this statement is that asymmetric strength matrices
are possible in this tractography setup since tracks that occupy a bigger
surface area on the GWI of one region can have a greater impact on a
connected region where a smaller GWI surface area is occupied. Thus,
quantification of connection strength is solely based on the relative
surface areas that are occupied by the pathways connecting each
region-pair. Tractography is only used to infer the existence of connec-
tions, while the estimation of connection strengths depends on the
relative surface areas of cortex that are connected. All tracks that con-
nect two given voxels multiple times are aggregated to a single ‘unique
track’. Each unique track gets either uniform weight or is weighted
according to the fraction of unique tracks that are emanating from the
two involved voxels resulting in two flavors of connectivity matrices.

The question of whether and to which degree cortical microcir-
cuit invariance exists is a matter of ongoing debate. The notion of
widespread existence and homogeneity of ensembles of pyramidal
cells surrounded by groups of ~100–200 neurons as basic cortical
building blocks, known as minicolumns, enjoys wide support across
areas, individuals and species (Silberberg et al., 2002; Douglas and
Martin, 2004; Casanova et al., 2009). Nevertheless, the assumptions
made in this model are simplifications that might not account for
several computationally important aspects, even if homogeneous
microcircuitry and bottleneck-like qualities of the GWI are valid
approximations for constraining coupling strengths. Neuronal ele-
ments that make up basic microcircuits are differentiated into
subtypes that vary in occurrence and density in different cortical
areas. Variance in cellular and synaptic organization and receptor
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distribution lead to considerable functional differences that are not
accounted for by the model (DeFelipe et al., 2002). The model also
clearly underestimates the eminent importance of sparse modulato-
ry projection systems (e.g., aminergic neurons) for neural computa-
tion and also the laminar specificity of long-range tracts (e.g. tracts
that target inhibitory interneurons), which will, however, be added
in upcoming versions.

Interventional empiric testing allows the generation of effective
connectivity maps between remote locations on the basis of cortico-
cortical evoked potentials (CCEP) in epileptic patients with subdural
electrodes. With this technique distant field potentials are evoked by
brief single-pulse electrical stimulation and averaged to compute CCEP
maps. Initial results that compare CCEP mapping with anatomical
connectivity derived from tractography show a significant positive
correlation between the two, essentially showing that pathways with
high coupling strengths are more capable of transmitting high ampli-
tude signals (Conner et al., 2011). Since techniques for mapping EC on
the basis of brain stimulation are relatively recent developments, no
studies exist up to now that relate the size of the stimulation site with
evoked potentials at the target site,whichwould constitute an empirical
validation of the employed assumptions. In the absence of such studies,
converging evidence can be collected frommodeling results that inves-
tigate the success of different connectome extraction approaches in
predicting functional data in the context of BNM. Correlation of
connectomes with phenotypic or other traits can shed light on their bi-
ological plausibility, e.g., preliminary partial least square analyses of
resulting connectomes showed significant age-depended modulations
of several network features (e.g., density of individual axonal tracts
(r = .82, p b .01, 95% CI [0.77, .90]), strength of functional interactions
between regions (r = 0.54, p b .01, 95% CI [0.53, 0.82]) (Zimmermann
et al., 2014)).

Choice of seed- and stop-ROIs
In order to compensate for tractography biases on track counts that

arise from the size of the ROI and the number of seeds used, we only
seed from the GWI, instead of using every WM voxel, which increases
the risk for introducing a multiple counting bias. Tractography is done
in an exhaustive manner: from every sub-voxel (1 mm isotropic voxel
size) multiple tracks are initiated towards a target number of 200
valid tracks, resulting in around 2500 tracks per dwMRI voxel. Seeding
from the GWI reduces the effect of the length bias (i.e., longer tracts
are more likely to be tracked more often) since tracks are explicitly
initiated at the extremities of pathways. While several reasons speak
in favor of the GWI as track-termination and seeding site a possible
drawback arises from the fact that some reports indicate that a consid-
erable amount of streamlines does not reach the GWI (Hagmann et al.,
2007). A further drawback of GWI can result from noise due to impre-
cise delineation of the GWI and partial volume effects at the overlap
zone of GM and WM. Another disadvantageous effect of using the
GWI as seeding and target region is a possible bias towards tracks that
terminate in gyral crowns since those can be entered straight, while
sulcal walls are entered with sharp angles and rejection of correspond-
ing tracks due to angular constraints.While we use the GWImostly due
to the possibility of precise assignment of parcellation labels further
improvement could arise from using seeding- and stopping-sites that
are buried deeper inWM, although the association of track termination
sites with the given gray-matter parcellation would start to blur and
become imprecise.

Homogeneous sampling from seeding locations
Another consideration to prevent tractography biases and to stan-

dardize tractography approaches is to use a fixed number of tracks
that are to be generated instead of a fixed number of seeding attempts
in order to ensure homogeneous sampling from seeding locations.
During the tractography process a considerable proportion of tracks
are rejecteddue to the violation of tractography constraints. The reasons
for track rejection are highly dependent on the individual anatomy of a
subject and can even vary within different acquisitions of the same sub-
ject due to several reasons like, e.g., scanner noise or partial volume
effects. By specifying the number of tracks that the algorithm has to
generate it is ensured that an equivalent sampling of WMwas attained
during different tractography runs to get comparable track counts. In
order to make raw track counts comparable across subjects, strengths
matrices can be normalized by the number of streamlines used, making
connection values independent of the inter-individual differences in
size of the GWI.

Another aspect of common tractography approaches that impairs
standardized and comparable tractography results is the fact that
during many tractography setups seeding masks are used as input
that comprise several seeding voxels. Some tractography algorithms
will then initialize uniformly distributed seeding locations at subvoxel
resolution for each seeding voxel. However, not every seeding attempt
will produce a valid track. The number of tracks that are generated for
a given amount of attempts varies from voxel to voxel and depends
on local anatomical conditions, the form of the fODF and the random
numbers that are drawn in each tractography step. Therefore, it is likely
that situations arise inwhich a subset of voxels produced a high number
of valid tracks while the remaining voxels only produced intermediate
or small numbers of tracks. In order to ensure comparable sampling of
seeding locations and to avoid overestimation of connections from a
subset of voxels that are more likely to produce valid tracks than other
voxel, it is necessary to ensure homogenous sampling from each
seeding location.

Test–retest reproducibility

Test–retest robustness of pipeline output and extracted connectomes
was demonstrated on a small data set of three subjects with three MRI
acquisitions each. In all cases the extracted structural connectomes of
the same subjects showed almost perfect agreement and was in general
higher than inter-subject similarity indicating that the method is able to
infer biologically relevant variability and making it a promising tool for
clinical applications.

The principles and standardization guidelines summarized above
improve the robustness of connectome extraction since several met-
rics that quantify reproducibility were higher or at least as high as
the highest scores reported in earlier studies. Average intra-subject
similarity (mean intra-subject correlation over all weighting
schemes: r = 0.98, ICC(3,1) N0.97) was highest compared to earlier
approaches while maintaining between-subject variability (mean
inter-subject correlation over all weighting schemes: r = 0.89):
Hagmann et al. (2008) found a correlation of r = 0.78 for
connectomes extracted from repeated scans of the same subject,
Cheng et al. (2012) yielded mean correlations of 0.89 ± 0.046 and
0.84 ± 0.07 for two different weighting schemes. Cammoun et al.
(2012) scanned five subjects twice and obtained for a 83-regions
parcellation an average correlation of 0.98, however inter-subject
correlation was almost on the same scale ranging between 0.94 and
0.96, which might indicate hampered inference of biological vari-
ability. Besson et al. (2014) used a surface-based tractography
approach and defined node weights as the number of fibers per
unit area. They report inter-acquisition correlations of connection
strengths of 0.81 ± 0.03, node degree correlations of 0.91 ± 0.05
and CV of node degrees b1 (except for 0.26% of surface triangles)
across 10 acquisitions from a single subject. Buchanan et al. (2014)
computed a variety of strength estimates obtaining a maximal
mean ICC(3,1) value of 0.76 for global network strength and 0.62
for node strength. Bassett et al. (2011a) also quantified similarity
between connectivity matrices using correlation coefficients and
found comparable values for intra- and inter-subject similarity.
Variability in connectome estimates are most likely to be attributed
to the accumulation small variations in each processing step in
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particular the error-prone steps atlas segmentation and cross-modal
registration.

Limitations in terms of accuracy of the presented pipeline depend on
the quality of the involved several image-processing streams. Accuracy
of cortical and subcortical segmentations and white-matter surface re-
constructions by FREESURFER are crucial for correct seeding and
results aggregation of tractography. Cross-modal registration between
anatomical- and diffusion-weighted images is a highly error prone
step and likely subject to failure or imprecision when preceding brain
extraction steps fail and visual verification of registration results is
crucial. The test–retest data set (three subjects, acquired three times)
was small and is only used as a preliminary evaluation of rescan reliabil-
ity. Especially for computing reliable estimates of intraclass-correlation
coefficients sample size was too small. Buchanan et al. (2014) recom-
mend for future dwMRI connectome studies to use a sample of more
than 50 subjects. Another limitation arises from the fact that cortical
and subcortical segmentation and regionalization is based on anatomi-
cal features of GM and parcellates it into relatively large chunks. While
coarse parcellations may augment resilience to image- and processing
noise, they may also hamper the extraction of genuine structural differ-
ences between subjects, especially when recognizing that macroscopic
landmarks (folding pattern of sulci and gyri) are not necessarily a
good indicator for localization of functional units and that, conversely,
extrinsic connectivity of a cortical area determines its functionality
(Jbabdi and Johansen-Berg, 2011).

Whilewe could clearly demonstrate the precision (reproducibility of
the result) of the approach we are still not able to quantify its accuracy
(proximity of estimated to true value) due to a lack of ground truth data.
Up to now we can only rely on the converging evidence resulting from
modeling studies that predict brain dynamics on the basis of such struc-
tural connectomes like it is done within the framework of TVB. Other
constraints (beyond biological reality and precision) are imposed by
the simulation environments such as TVB, which require certain accura-
cy in spatial precision of the network, as well as the time delays of the
reconstructed fiber tracks. So far no systematic computational studies
exist that could shed light on the required parameter ranges beyond
more qualitative proof of concept studies (Jirsa and Stefanescu, 2011).

Source imaging

Several choices can be made during source imaging that require
careful consideration with regard to the underlying (M)EEG data and
the intended purpose of the estimated source time-series. Brainstorm
offers a variety of options and source imaging algorithms that impact
the resulting source time-series. Regarding head model computation,
three models are available in Brainstorm: The simpler single sphere
and overlapping sphere models (approximating the head as spheres)
and the more advanced BEM included from the open-source software
OpenMEEG. While the simpler models deliver proper results for MEG,
for EEG the BEMmodel should be preferred, especially if subject specific
anatomical data is available. Noise covariance estimation is sensitive
with regard to the type of EEG experiment done and the intended use
of the data. Source reconstruction requires an estimation of the noise
that is present in different sensors. For MEG, sensor noise can be
estimated by recording the activity present in the sensors while the
scanning room is empty. For EEG, however, it is not easily possible to
disentangle noise from signal since the noise level depends primarily
on the quality of the connection with the skin. Even worse, noise
tends to be non-stationary due to movement of the cap or drying out
of the electrode gel. For stimulation experiments a resting baseline or
a pre-stimulation baseline can be used for estimating noise. However,
for resting-state data like that used in this article this is not possible
since meaningful activity can be subtracted this way. As a remedy,
noise can be estimated by computing it over a long segment of resting
data and to save only the diagonal of the matrix, i.e., the variance of
the sensors, like it was done in this case. If noisemodeling is renounced,
it is possible that electrodes with high noise levels are interpreted as
high activity in its corresponding regions of the brain. Several source
estimation approaches have been developed and some of them are
implemented in Brainstorm. For brain modeling purposes within the
scope of this article sLORETA (Pascual-Marqui, 2002) was chosen since
it estimates current densities with zero localization error which is
preferred when comparing highly localized simulated brain activity
with empirical activity. Regarding the variety of choices that can be
made during source imaging, it is advisable to not fully automate the
source estimation process, but to consider the impact each step has on
the resulting data with respect to their intended use.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.03.055.
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