
How non-adiabatic passing electron layers of linear microinstabilities affect

turbulent transport
J Dominski,1, a) S Brunner,1 T Görler,2 F Jenko,2, 3, 4 D Told,2, 4 and L Villard1
1)École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP),
CH-1015 Lausanne, Switzerland.
2)Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching,
Germany.
3)Max-Planck/Princeton Center for Plasma Physics
4)Department of Physics and Astronomy, University of California, Los Angeles,
California 90095.

(Dated: 6 March 2015)

The response of passing electrons in ion temperature gradient (ITG) and trapped electron mode (TEM)
microturbulence regimes is investigated in tokamak geometry making use of the flux-tube version of the
gyrokinetic code GENE. Results are obtained using two different electron models, fully kinetic and hybrid in
which passing particles are forced to respond adiabatically while trapped are handled kinetically. Comparing
linear eigenmodes obtained with these two models enables to systematically isolate fine radial structures
located at corresponding mode rational surfaces, clearly resulting from the non-adiabatic passing electron
response. Non-linear simulations show that these fine structures on the non-axisymmetric modes survive in
the turbulent phase. Furthermore, through non-linear coupling to axisymmetric modes, they induce radial
modulations in the effective profiles of density, ion/electron temperature and E ×B shearing rate. Finally,
the passing electron channel is shown to significantly contribute to the transport levels, at least in our ITG
case. Also shown is that the passing electrons significantly influence the E ×B saturation mechanism of
turbulence fluxes.

I. INTRODUCTION

In axisymmetric, magnetic fusion-type plasmas such
as generated in tokamaks, the amplitude of the magnetic
field roughly varies as the inverse of the distance R to the
axis of symmetry, B ∝ 1/R, such that particles can be
mirror-trapped in the low field side of the torus. Phase
space of each plasma species (electrons and ions) can thus
be separated into trapped and passing regions. When
studying microinstabilities and associated turbulence at
the ion time scale, as in the cases of ion temperature
gradient (ITG) and trapped electron mode (TEM), it is
often assumed that the real frequency ωr of these modes
is sufficiently low compared to the fast parallel dynamics
of the passing electrons for these passing electrons to re-
spond adiabatically. The reduced adiabatic (Boltzmann)
response1 for passing electrons has thus been extensively
applied in gyrokinetic codes with the purpose of study-
ing turbulent transport in the ITG and TEM regimes,
for example in ORB52,3, GT5D4, and GYSELA5. This
approximation is practical due to the large time scale
separation between the ion and electron dynamics, espe-
cially that of passing electrons. Resolving the full kinetic
evolution of all species corresponds to a multi-scale com-
putation which therefore remains a significant numerical
challenge.
The assumption of an adiabatic response for the pass-

ing electrons is based on the argument that these parti-
cles are sufficiently mobile along the magnetic field line
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to remain in thermal equilibrium even in the presence of
field fluctuations1. This adiabatic response is justified as
long as |ωr/k‖| ≪ vthe, i.e. the parallel phase velocity
ωr/k‖ of ITG/TEM microinstabilities is small compared

to the electron thermal velocity vthe =
√
Te0/me, where

k‖ is the component parallel to the magnetic field of a
given mode wave vector k, Te0 the equilibrium temper-
ature of the electrons, and me their mass. Near mode
rational surfaces (MRSs) of low order, i.e. magnetic sur-
faces where the safety factor qs is a low order rational
number, qs = −m/n with m,n integer, the adiabatic as-
sumption is in fact not justified. Indeed, near such a
MRS, resonant Fourier modes with poloidal and toroidal
mode numbers (m,n) align with the magnetic field line,
k‖ ≈ (nqs + m)/Rqs = 0. It results that the associ-
ated parallel phase velocity |ωr/k‖| becomes larger than
the electron thermal velocity vthe within a certain radial
width δx around this surface. The condition for adiabatic
response is thus clearly violated within this interval.

When accounting for the fully kinetic response of the
electrons, fine structures related to their non-adiabatic
response appear on the eigenmode structures in the vicin-
ity of MRSs6,7. Their presence in non-linear simulations
has been observed as well8–10, potentially altering the
electron particle flux11. Turbulence simulation including
full passing electrons dynamics has also been discussed
in 12. We propose here to more systematically charac-
terize the role of the non-adiabatic response of passing
electrons near MRSs, its linear destabilization mecha-
nism, as well as its effect on the non-linear turbulent
saturated regimes. We thus present the results of a sys-
tematic study of the non-adiabatic response of passing
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electrons in the vicinity of MRSs in both an ITG and
a TEM dominated regimes. This analysis is based on
results obtained with the gyrokinetic code GENE13. Al-
though GENE is a very comprehensive code, which in
particular has been generalized more recently to enable
global (finite ρ⋆) simulations13–15, this study has made
use of its flux-tube (i.e. local) limit. In the consid-
ered flux-tube geometry, the density Nj0 and temper-
ature Tj0 of a given species j, as well as corresponding
inverse radial gradient lengths 1/LNj

= −d logNj0/dr
and 1/LTj

= −d logTj0/dr respectively, r being a radial
coordinate with units of length labeling the magnetic sur-
faces, are evaluated at a given flux-surface of minor radius
r0 and are assumed constant. The only radial variation
of an equilibrium profile which is accounted for is the
safety factor qs(r), whose variation is assumed linear and
thus characterized by q0 = qs(r0) and magnetic shear
ŝ = (r0/q0)dqs/dr|r0 , thereby providing the appropriate
magnetic topology required to study the particular parti-
cle dynamics that may develop in the vicinity of low order
MRSs. For the magnetic equilibrium, a tokamak geome-
try with circular concentric magnetic surfaces is chosen,
as described by the so-called analytic ad hoc model16.
Note that in this study we consider non-collisional plas-
mas for simplicity.

The paper is organized as follows. In Sec. II, the gen-
eral aspects of the GENE code as well as its three differ-
ent electron models are described : 1) a fully kinetic, 2) a
fully adiabatic, and 3) a hybrid electron model in which
the trapped particles are described kinetically, while the
passing ones are forced to respond adiabatically. Then
one illustrates the difference between these electron re-
sponses by comparing the linear spectra obtained from
GENE using these three models, in two chosen refer-
ence cases: an ITG and a TEM regimes respectively.
In Sec. III, the impact of the non-adiabatic response
of passing electrons on the linear mode destabilization
is addressed. Systematically comparing eigenmodes ob-
tained from GENE linear simulations where the electron
response is fully kinetic, with eigenmodes obtained from
simulations where the electron response is hybrid, one
clearly identifies a fine structure near MRS resulting from
the non-adiabatic response of passing electrons17. The
underlying mechanisms of the destabilization near MRS
due to the non-adiabatic response of passing electrons
are revealed by the derivation of a local dispersion re-
lation to which GENE results are confronted. A sys-
tematic comparison based on the estimate of the fine ra-
dial structure width, within which the electrons respond
non-adiabatically, is carried out by scanning physical pa-
rameters: the magnetic shear ŝ, the safety factor q0, the
electron to ion temperature ratio τ = Te0/Ti0, the ion to
electron mass ratio µ = mi/me and the wave vector in
the binormal direction kyρi (normalized to the ion Lar-
mor radius). The interplay between the non-adiabatic re-
sponse of passing electrons and the non-linear turbulence
is analyzed in Sec. IV. The persistence in the turbulent
regime of these fine structures on the considered ky 6= 0

modes is first addressed. The resulting radial modulation
of the axisymmetric mode (ky = 0) due to the non-linear
coupling with the ky 6= 0 modes is shown. In particu-
lar, the development of corrugations in the flux-surface-
and time-averaged profiles is pointed out as already ob-
served8–10. The importance of the passing electron con-
tribution to the different turbulent fluxes is quantified as
well as their influence on the E ×B saturation mecha-
nism. Conclusions are finally drawn in Sec. V

II. ELECTRON MODELS IMPLEMENTED IN GENE

A. The GENE code

The code GENE13 evolves the distributions of an arbi-
trary number of different particle species by solving the
associated gyrokinetic equations18. GENE makes use of
an Eulerian-based representation and enables to carry
out linear and non-linear simulations of microinstabili-
ties and related turbulence in magnetic confinement de-
vices. The system of gyrokinetic equations is closed by
reduced Maxwell’s equations for electromagnetic poten-
tials: the quasi-neutrality (or Poisson’s) equation is suf-
ficient if only electrostatic fluctuations are considered,
while Ampère’s law is invoked if electromagnetic fluctu-
ations are accounted for. More details on the system
of gyrokinetic equations implemented in GENE can be
found in Ref. 19.
In GENE, the configuration space is described with

field-aligned coordinates (x, y, z), which is a natural
choice for representing the fluctuating fields of microtur-
bulence, as they are themselves aligned with the equilib-
rium magnetic field B0 (B0 ‖∇x× ∇y). For a tokamak
configuration, in terms of magnetic coordinates (ψ, χ, ϕ)
= (poloidal magnetic flux, straight field line poloidal an-
gle, toroidal angle), one defines the radial coordinate
x = r−r0, with r a function of ψ with units of length and
r0 the center of the simulation domain. The binormal co-
ordinate, also called field-line coordinate, is defined by
y = Cy [qs(ψ)χ − ϕ] and the “parallel” coordinate by
z = χ. One chooses Cy = r0/q0 such that y acquires
units of length as well.
In GENE, the radial and binormal directions are rep-

resented in Fourier space with periodic boundary condi-
tions, using nkx = nx and nky = ny/2 complex Fourier
modes (invoking reality condition). Periodic boundary
conditions are actually imposed in the radial direction
and natural in the binormal one. In GENE, the “paral-
lel” direction is represented in direct space with nz grid
points and the boundary conditions in this direction are
pseudo-periodic19,20:

A(x, y, z + 2π) = A(x, y − Cyqs2π, z), (1)

where the periodicity of the poloidal direction
A(ψ, χ, ϕ) = A(ψ, χ+2π, ϕ) in (ψ, χ, ϕ) coordinates has
been translated in (x, y, z) coordinates. In Fourier repre-
sentation, this results in a coupling of the modes through
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the relation Â(kx, ky, z + 2π) = Â(kx + 2πŝky, ky, z).
Consequently 2πŝky must be a harmonic of the fun-
damental kx,min = 2π/Lx and the radial size of the
flux-tube must be Lx = M/ŝky,min an integer number
M times the distance between lowest order MRSs:
LLMRS = 1/ŝky,min.
A tokamak magnetic surface can be represented in the

plane (χ, ϕ) with χ and ϕ varying betwen 0 and 2π. In
these coordinates, the magnetic field lines are straight
lines of constant safety factor qs = B · ∇ϕ/B · ∇χ and
the flux-tube simulation domain covers a fraction of the
magnetic surface which is bounded between two straight
lines distant of ∆ϕ = 2π/n0 in the toroidal direction
(constant χ) and n0 an integer. By definition of the y
coordinate, the box size in the binormal direction is then
Ly = 2πCy/n0. When n0 > 1, only a fraction of the
magnetic surface is accounted for and the box length in
the y-direction must be much longer than the typical cor-
relation length of the turbulence (≈ 10ρi) to avoid un-
physical reconnection of turbulence. A similar constraint
has to be respected in the radial direction, i.e. Lx much
longer than the correlation length of the turbulence, be-
cause periodic boundary conditions are not natural in
this direction. Finally, having Lz = 2π the dimensions
Lx × Ly × Lz of the flux-tube simulation box represent-
ing the configuration space have been determined by the
choice of physical and numerical parameters.
The considered velocity space coordinates are the gy-

rocenter variables (v‖, µ), with µ = mv2⊥/2B0 the mag-
netic moment and v‖, resp. v⊥, the parallel, resp. per-
pendicular, components of velocity to the magnetic field.
The numerical representation of these directions origi-
nally infinite are restricted to −vmax < v‖ < +vmax

and 0 < µ < µmax = mv2max/2B0 where typically
vmax = 4 − 5 vth. This species dependent velocity phase
space is discretized with nv‖ equidistant mesh points in
the v‖ direction and with nµ points, either equidistant
or given by Gauss-Legendre integration points, in the
µ direction. In this paper we use the thermal velocity
definition: vth =

√
T0/m, while the GENE code uses a

different thermal velocity definition: vT =
√
2T0/m.

B. Electron Models

The implementation of the hybrid electron model, a
new feature in GENE, is briefly described here. It is a
reduced model for the electron dynamics in which the
trapped particles are solved kinetically, while the pass-
ing particles are forced to respond adiabatically. This
model is only to be considered for representing electro-
static fluctuations at the ion scale, such as typically the
ITG and TEM. Indeed, by neglecting the non-adiabatic
response of passing-electrons, one excludes the dynamics
essential to electron temperature gradient (ETG) modes
and furthermore is unable to represent fluctuations in the
electron current essential for describing electromagnetic
modes. In the frame of the hybrid model, the only field

equation that needs to be accounted for is therefore the
quasi-neutrality equation (QNE):

∑

j=species

qjδNj = 0, (2)

where δNj stands for the perturbed density of species j.
Species-dependent quantities are labeled with the sub-
script j: electric charge qj , mass mj , background den-
sity Nj0, background temperature Tj0, perturbed density
δNj , perturbed temperature δTj, and thermal velocity

vthj =
√
Tj0/mj (j = i ions and j = e electrons).

When describing a certain species, or sub-group of
species, kinetically, the corresponding density fluctuation
δNkin

j is given within the gyrokinetic formalism by

δNkin
j (x) = 2π

∫

V

dµdv‖
B⋆0‖(x, v‖)

mj

{
δfj(x, v‖, µ)

− qjfj0(x, v‖, µ)

Tj0

[
φ(x) − ¯̄φ(x, µ)

] }
, (3)

where V represents the domain in velocity space of the
considered sub-group of particles, fj0 stands for the
corresponding unperturbed distribution and δfj for the
fluctuating part provided by the gyrokinetic equation,
B⋆0‖/mj is the Jacobian relative to the velocity variables

(v‖, µ), B
⋆
0‖ = B0+(mjv‖/qj)(∇×b0) ·b0, b0 = B0/B0,

and φ is the perturbed electric potential. In Eq. (3),
the charge density of each species is decomposed into
two contributions: the gyrodensity, explicitly expressed
in terms of δfj , and the polarization drift contribution,

expressed in terms of φ. The notationAused in (3) stands
for the so-called gyroaverage of a given field A(x) seen
by a particle over one cyclotron period:

Ā(x, µ) =
1

2π

∮
dθA(x + ρ(x, µ, θ)), (4)

with ρ(x, µ, θ) the gyrovector of the particle and θ the

gyroangle. Furthermore ¯̄A stands for the double gyroav-
eraging:

¯̄A(x, µ) =

∮
dθ

2π

∮
dθ′

2π
A(x+ρ(x, µ, θ)−ρ(x, µ, θ′)), (5)

where the variation of the Larmor radius between the
particle position and the guiding-center position has been
neglected: ||ρ||(x) ≈ ||ρ||(x − ρ). In Eq. (3), the
background distribution fj0 has in fact been assumed
Maxwellian:

fj0 =
Nj0

(2πTj0/mj)3/2
exp

(
−
mjv

2
‖/2 + µB0

Tj0

)
. (6)

When describing a certain (sub-group) of species, adi-
abatically, the corresponding, linearized, density fluctua-
tion response δNad

j reads:

δNad
j (x) = α

qjNj0
Tj0

(φ− 〈φ〉FS), (7)
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where α is the fraction of the species population which
compose the considered sub-group and 〈·〉FS stands for
the flux-surface averaging operator

〈·〉FS = lim
∆ψ→0

1

∆V

∫

∆V

dV, (8)

with ∆V the space volume between two consecutive mag-
netic surfaces ψ and ψ +∆ψ.
Let us now briefly detail the particular cases of the

three electron models.

1. Fully kinetic

In the case of the fully kinetic model, the perturbed
density of each species is computed kinetically by inte-
grating Eq. (3) over the whole velocity phase-space, i.e.∫
V=all dv‖dµ =

∫ +∞

0 dµ
∫ +∞

−∞ dv‖. In this case the QNE
reads:

∑

j=i,e

qj

{
2π

∫ +∞

0

dµ

∫ +∞

−∞

dv‖
B⋆0‖

mj
δfj

− qjNj0
Tj0

[
φ− B0

Tj0

∫ +∞

0

dµ ¯̄φ exp

(
−µB0

Tj0

)]}
= 0,

(9)

where the backgroundMaxwellian distribution appearing
in the polarization-drift term has been analytically inte-
grated over the v‖ variable. Eq. (9) requires the evolution
of both the ion and electron distributions.

2. Adiabatic

In the adiabatic model, all types of electrons are forced
to respond adiabatically. Their perturbed density being
thus determined with Eq. (7) where α is set to unity as
the whole electron population is considered to respond
adiabatically. In this case, the QNE reads:

∑

i

qi

{
2π

∫ +∞

0

dµ

∫ +∞

−∞

dv‖
B⋆0‖

mi
δfi

− qiNi0
Ti0

[
φ − B0

Ti0

∫ +∞

0

dµ ¯̄φ exp

(
−µB0

Ti0

)]}

= q2e
Ne0
Te0

(φ− 〈φ〉FS), (10)

where the sum over species on the left hand side of
Eq. (9) is now reduced to the sole (multiple) ion con-
tribution(s), while the charge density contribution from
the adiabatic electron response appears on the right hand
side of Eq. (10). For this adiabatic model, there is clearly
no need to evolve the gyrokinetic equation for the elec-
tron distribution.

3. Hybrid

Finally, in the case of the hybrid model, the QNE is
written:

∑

i

qi

{
2π

∫ +∞

0

dµ

∫ +∞

−∞

dv‖
B⋆0‖

mi
δfi

− qiNi0
Ti0

[
φ− B0

Ti0

∫ +∞

0

dµ ¯̄φ exp

(
−µB0

Ti0

)]}

= (1 − αt)q
2
e

Ne0
Te0

(φ− 〈φ〉FS)

− 2πqe

∫ +∞

0

dµ

∫ +v‖c

−v‖c

dv‖
B⋆0‖

me
δfe +

q2eNe0
Te0

αtφ

− q2eNe0B0

T 2
e0

∫ +∞

0

dµ ¯̄φ exp

(
−µB0

Te0

)
erf

(
v‖c

2vthe

)
,(11)

where the fluctuating component of the electron charge
density on the right hand side yields two contributions:
the first term from the passing particles, handled adia-
batically, and the other terms from the trapped parti-
cles, handled kinetically. The trapped electron contri-
bution, at a position x, is obtained by integrating the
kinetic estimate as described in Eq. (3) over the velocity
phase-space volume of trapped particles

∫
V=trp dµdv‖ =∫ +∞

0
dµ
∫ +v‖c
−v‖c

dv‖ which is characterized by the critical

parallel velocity v‖c(x, µ) =
√
2µ[B0,max(x) −B(x)]/me

where B0,max(x) is the maximum of the magnetic field on
the magnetic surface of radial position x on which x lie.
The passing electrons contribution, at the same position,
is estimated by weighting Eq. (7) by the passing elec-
tron fraction α = (1 − αt), itself defined by the trapped
electron fraction αt which can be estimated as

αt =

∫

V=trap

d3v
fe0
Ne0

=

√
1− B0

B0,max(x)
. (12)

In Eq. (11) the presence of the error function, erf(x) =

(2/
√
π)
∫ x
0
dt e−t

2

, results from the analytical integra-
tion of the background Maxwellian distribution appear-
ing in the polarization drift term over the parallel veloc-
ity phase-space of trapped electrons. Note that in the
limit of v‖c → ∞ (αt → 1), one recovers the fully-kinetic
model of Eq. (9) from Eq. (11). Respectively, in the limit
of v‖c → 0 (αt → 0), one recovers the adiabatic model of
Eq. (10) from Eq. (11).
In the hybrid model, only the distribution of trapped

electrons is required to evaluate the QNE. The distri-
bution of passing electrons however does not explicitly
appear in this equation. It may therefore appear that
the passing electron distribution can be neglected. This
is in fact not true, as the effective particle trajectories,
perturbed by the fluctuating fields associated to the mi-
croturbulence, can lead to passing particles becoming
trapped and vice versa. Consequently, the total elec-
tron distribution must nonetheless be evolved in the hy-
brid model, according to the same gyrokinetic equation
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FIG. 1. (Color online) Growth rates γ (full lines) and real
frequencies ωr (dashed lines) in units vthi/R as a function
of kyρi for the test cases of reference described in table I,
and considering different electron models: adiabatic (green),
hybrid (red), fully kinetic (blue). Both ITG (left column)
and TEM (right column) cases shown. Results obtained with
(a-d) GENE and (e-f) local dispersion relation. Also plotted
are the results obtained with GENE when running simulation
with the reduced mass ratio µ = 400 (thin lines with circles).
For the local dispersion relation one considers k‖Rq0 = 0.2 for
all the electron models, and one considers the additional case
with k‖Rq0 = 0 (lines with asterisk) for the kinetic electron
model.

considered in the fully kinetic model, except that, the
contribution of the passing particles to the QNE as ob-
tained from the adiabatic assumption and not from their
particle distribution function.

C. Illustration on reference cases

Differences between these electron models are briefly
illustrated by looking at the linear spectra obtained with
the GENE code when using alternatively the fully ki-
netic, adiabatic, and hybrid electron models. The phys-
ical parameters of these test cases are summarized in
Tab. I. The real frequencies ωr and growth rates γ of the

For all cases: concentric circular geometry with q0 = 1.4,
ŝ = 0.8, Z = 1, τ = Te0/Ti0 = 1. β = 10−3 for fully-kinetic
model.

Case R/Ln R/LTe0 R/LTi0
ky,minρi µ = mi/me ǫ = r0/R

ITG 2.0 2.0 6.0 0.3 (0.07) 1836 (400) 0.18

TEM 3.0 6.0 0.0 0.3 (0.04) 1836 (400) 0.16

Grid resolution: nx×nky×nz×nv‖×nµ = 64×1×32×64×32

(432 × 64× 16× 64× 8 in non-linear ITG and

256 × 64× 16× 64× 16 in non-linear TEM).

TABLE I. Physical parameters for the ITG and TEM refer-
ence cases, considered in GENE simulations and in the local
dispersion relation. The parameters ǫ, q0, and ŝ stand respec-
tively for the inverse aspect ratio and the magnetic shear at
the center of the flux-tube. Parameter values in parenthesis
correspond to the ones considered in the non-linear simula-
tions when different from the corresponding linear run values.

most unstable mode at each wave number ky (∼ average
poloidal) are presented in Fig. 1 subplots (a,b,c,d). This
figure shows the results obtained for two different insta-
bility regimes: an ITG and a TEM. These two cases are
the reference cases considered in this entire work. The
ITG is close to the cyclone base case (CBC), whose char-
acteristic gradients lengths of density and ion/electron
temperatures have been slightly modified to avoid the
presence of secondary TEM or ETG modes. The TEM
case is inspired by Ref. 21 but considering the temper-
ature ratio τ = 1 instead of 3: will be discussed in
Sec. IVA, this change is made to obtain a TEM case
whose turbulent fluxes are significantly saturated by the
zonal flows (ZFs).

In the ITG case, Fig. 1 (a) and (c), for small wave
numbers, 0 < kyρi <∼ 0.7, the fully kinetic electron model
(blue) provides an ITG instability (ωr < 0), well repro-
duced by the hybrid (red) but not so well reproduced
by the adiabatic model (green): there is indeed a ∼ 50%
lower γ with this latter model, resulting from the trapped
electrons being forced to respond adiabatically, when in
fact they are essentially passive for this ITG. Accounting
for the fully kinetic electron response provides essentially
the same spectra as when accounting for the hybrid elec-
tron response, in this ITG case where no unstable TEM
or ETG are present.

In the TEM case, Fig. 1 (b) and (d), the kinetic model
(blue) provides a TEM instability (ωr > 0) well repro-
duced by the hybrid model (red) for small to intermediate
wave numbers 0 < kyρi <∼ 1.5. At high wave numbers,
kyρi >∼ 1.5, the fully kinetic spectra shows a progres-
sive transition of the TEM mode towards an ETG in-
stability, at which point the hybrid representation starts
to fail. The adiabatic electron model does not give any
TEM instability because this response cannot be used to
reproduce the TEM destabilization mechanism which is
caused by a resonance between the perturbation and the
toroidal precessional drift of the trapped electrons.
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III. FINE STRUCTURES AT LOW ORDER MRS, IN

LINEAR REGIMES

A. Analytical estimate of the radial width of fine

structures

An analytical estimate of the radial width δxth measur-
ing the region centered around a MRS, within which the
passing electron response is expected to be non-adiabatic,
is derived. The considered MRS is assumed located at
x0 = 0 where q(x0) = q0 = −m/n. The wave vector
of the Fourier mode of poloidal-toroidal mode numbers
(m,n) is given by k = m∇χ + n∇ϕ and its component
parallel to B0 reads:

k‖ = k·B0

B0
=

B0 · ∇χ
B0

[m+nqs(x)] =
B0 · ∇ϕ
B0qs

[m+nqs(x)],

having used qs = B0 · ∇ϕ/B0 · ∇χ, constant on a mag-
netic surface for the straight field line poloidal angle χ.
Near the MRS located at x0, one clearly has k‖ → 0
and the condition of validity for limiting the passing elec-
tron response to their adiabatic response, |ωr/k‖| ≪ vthe,
breaks down. Note that the parallel component of the
wave vector goes to zero as the mode aligns with the
magnetic field at the position of the MRS.
To have an estimate of the parallel phase velocity

ωr/k‖ with respect to x, one Taylor expands the safety
factor and the parallel component of the wave vector
around x0 with respect to the small deviation x = x−x0,
leading to:

qs(x) ≃ q0

(
1 +

ŝ x

r0

)

and

k‖(x) ≃
ŝ

q0

x

R
ky, (13)

with ky = −nq0/r0 and B0 · ∇ϕ ≈ B0/R. Then, as-
suming that the electrons respond non-adiabatically in
the region where the phase velocity of the perturba-
tion is larger than the electron thermal velocity, one
estimates the boundaries of this region to be where
|ωr/k‖(±δxth/2)| = vthe. Finally, the distance between
these boundaries located on both sides of the MRS gives
the so-called “theoretical” estimate of the fine structure

δxth

ρi
= 2

|ωr|
vthi/R

q0
ŝ
√
τµ kyρi

. (14)

This theoretical estimate requires the knowledge of the
real frequencies, ωr, which we take here from GENE lin-
ear simulations. For example, to estimate the theoreti-
cal width of the kyρi = 0.3 mode of reference, the real
frequencies of the ITG and TEM cases are taken from
Fig. 1(c,d): ωr ≈ −0.7vthi/R and 0.6vthi/R respectively.
Then considering appropriate physical parameters from
Tab. I, one roughly estimates the respective radial widths
to be δxth ≈ 0.21ρi and 0.18ρi. This narrow region of
non-adiabatic electron response motivates the use of high
radial resolution in GENE simulations.

B. Fine structures near MRS in linear GENE simulations

Linear flux-tube simulations of ITG and TEM eigen-
modes have been carried out by using the spectral ap-
proach provided in the GENE code, which enables one
to compute dominant as well as sub-dominant unstable
eigenmodes with complex frequency ω = ωr + ıγ, as de-
tailed in Ref. 22–24. In the GENE representation, an
eigenmode of a field A thus takes on the functional form:

A(x, y, z; t) = Â(x, z) exp[ı(kyy − ωt)].

The eigenmode is therefore essentially characterized by

the complex amplitude Â(x, z), which represents the slow
spatial variation, the fast phase variation being contained
in the factor exp(ıkyy). Figs. 2 and 3 show typical eigen-
mode envelopes of fluctuating fields of interest (φ, δN ,
δTe and δTi), for both the ITG and TEM test cases in
respectively the left and right columns of these figures.
In these figures the fields are weighted by the Jacobian
J xyz.
In a linear flux-tube simulation, due to the imposed

periodic boundary conditions in x, the system size Lx
along this direction must be taken as the distance be-
tween consecutive lowest order MRSs for the considered
ky mode number: 1 = −n(dqs/dx)Lx = ky ŝLx, lead-
ing to Lx = 1/(ky ŝ). Furthermore the origin of the x
coordinates is always chosen to be located at MRS. For
kyρi = 0.3 and ŝ = 0.8 considered here, one thus obtains
Lx = 4.17 ρi.
In Fig. 2, whose results are obtained with the fully ki-

netic electron model, the characteristic ballooned struc-
tures of ITG/TEM modes is recovered: the amplitude of
the slow spatial envelope of the perturbation is systemat-
ically modulated in the z ≡ χ direction with a minimum
located in the inner mid-plane at z = ±π and a maxi-
mum located in the outer mid-plane at z = 0. Indeed
the maximum of amplitude is positioned in both cases
at the outer mid-plane of the tokamak where the inter-
change is unfavorable in the ITG case and where the
trapped electrons are resonating with the perturbation
in the TEM case. Remarkable on all fields, except δTi,
is the presence of a fine radial structure centered on the
MRS located, as previously mentioned above, at x = 0
where the non-adiabatic response of the passing electrons
cannot be neglected.
To clearly identify the effect of the non-adiabatic re-

sponse of passing electrons, the envelopes of the electric
potential |φ| obtained with the hybrid model and with the
fully kinetic model, respectively, are compared in Fig. 3.
Subplots (a,b) present results carried out with the fully
kinetic model, while subplots (c,d) show results obtained
with the hybrid model. Note that the ballooned struc-
ture is recovered for the case of hybrid electron model.
A notable difference, however, is the presence of the fine
almost slab-like structure centered at the MRS (x = 0)
in the eigenmodes from the fully kinetic model, which is
absent in the hybrid model results, thus clearly identified
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FIG. 2. (x, z)-envelopes of fluctuation fields φ, δN , δTe, δTi

weighted by the Jacobian J xyz and corresponding to the ITG
(a,c,e,g) and to the TEM (b,d,f,h) reference cases whose pa-
rameters are given in Tab. I. The fully kinetic model has been
used. Color coding: dark blue = zero, dark red = maximum
value.

as a feature resulting from the non-adiabatic response of
passing electrons in the vicinity of the lowest order MRS
of the considered ky mode number. The slab-like feature

along z at x = 0 ensures |k‖| ≈ |∂ log φ̂/∂z| ≈ 0, es-
sential for a non-adiabatic response of passing electrons.

∂φ̂/∂z = 0 is clearly only possible at MRS. By subtract-
ing the mode envelopes obtained from the two differ-

ent electron models, ∆|φ̂|(x, z) = |φ̂kin| − |φ̂hyb| shown
in subplots (e,f) of Fig. 3, we are able to cleanly iso-
late the radial structure. Note that prior to this sub-

traction, the field φ̂hyb has been normalized such that

〈|φ̂hyb|〉z = 〈|φ̂kin|〉z at x = ±Lx/2, i.e. at the most
distant radial points from the MRSs where the fields
provided by the fully kinetic and hybrid models are es-
sentially identical. Furthermore z-averaging provides an
average radial profile

〈∆|φ̂|〉z(x) =
∫
dzJ xyz∆|φ̂|(x, z)∫

dzJ xyz
, (15)

shown in subplots (g,h) of Fig. 3, from which a numeri-
cal estimate δxsimlin of the structure width is measured as
the full width at half maximum (FWHM): δxsimlin /ρi ≈
0.27 (ITG) and 0.48 (TEM). Numerical estimates are of
the same order of magnitude than the theoretical ones,
δxth/ρi ≈ 0.21 (ITG) and 0.18 (TEM), with good agree-
ment for ITG and a factor 2.5 larger for TEM.
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|〉
z
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TEMITG

FIG. 3. Envelopes J xyz|φ̂|(x, z) of linear eigenmodes for the
same ITG and TEM cases as in Fig. 2. The first and sec-
ond row of sub-plots respectively present the results from the

fully kinetic and hybrid electron models. The difference ∆|φ̂|
is shown in the third row and its z-averaged profile in the
fourth row, from which the numerical FWHM δxsim

lin (magenta
circles) estimate for the fine structure width can be obtained.
Color coding: dark blue = zero, dark red = maximum value.

These fine structures can be indirectly observed
through the presence of so-called “Giant tails”11 in the
ballooning representation of the electric potential. In-
deed, giant tails in Fourier space correspond to a localized
fine structure in direct space. Corresponding giant tails
as illustrated in Fig. 4, for the ITG case, are present in
the fully kinetic case, when no such big tails are present
in the hybrid or adiabatic cases, thus confirming that
the fine radial structures are due to the non-adiabatic
response of the passing electrons. Nonetheless tails of
lower amplitude (2 orders of magnitude smaller) are also
present in the hybrid cases corresponding to weak ra-
dial modulation in direct space and visible in Fig 3(c-d).
They are due to the trapped electrons response as there
is no such tail of low amplitude in the adiabatic case. In
the TEM case, not shown here, results are essentially the
same.

C. Local dispersion relation

1. Model

In this section one introduces the local dispersion re-
lation used to describe both ITG and TEM instabilities
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FIG. 4. Ballooning representation of the electric potential am-
plitude |φ| obtained in linear GENE simulations when using
the different electron models. ITG test case with nx = 128.

at the most unfavorable position (χ = 0). In this local
approach the field aligned coordinate system is approxi-
mated by a local Cartesian system whose orthogonal di-
rections are: the radial direction where the typical gra-
dients are defined (1/LN,Ti,Te

= d ln(N, Ti, Te)/dx), the
binormal direction which is associated in this local ap-
proach to be the perpendicular direction (k⊥ ≡ ky), and
the parallel direction to the magnetic field (k‖ ≡ kz).
This dispersion relation is based on the gyrokinetic QNE.
The perturbed density contribution of each species j to
the QNE is obtained from the gyrokinetic equation25:

δNj = −qjφ
Tj0

∫

V

d3v

[
1− J2

0 (ϑj)
ω − ω⋆j

ω − k‖v‖ − ωdj

]
fj0,

(16)
where the first term in the square bracket of the RHS
gives the adiabatic response and the second term con-
taining the Bessel function of the first kind J0 gives the
non-adiabatic response. Other parameters are: ϑj =
k⊥v⊥/Ωj, Ωj = qjB0/mj the cyclotron frequency, ωdj =
−(v2‖ + v2⊥/2)k⊥/RΩj the drift frequency related to cur-

vature and gradient of B0, ω
⋆
j = ωNj(1 + ηjTj0∂/∂Tj),

ωNj = −Tj0k⊥/qjB0LN , and ηj = LNj
/LTj

. The ki-
netic estimate of the ion perturbed density with charge
qi = Ze is obtained from Eq. (16) where the domain of
integration is the whole velocity space, giving:

δNi
Ni0

= −Zeφ
Ti0

[
1−

∫ +∞

−∞

d3v J2
0 (ϑi)

ω − ω⋆i
ω − k‖v‖ − ωdi

fi0
Ni0

]
.

(17)
In the frame of the hybrid electron model, the elec-
tron density is composed of two contributions: the adi-
abatic response of the passing electrons δNe,pas/Ne0 =
(1−αt)eφ/Te0 and the bounce-averaged kinetic response
of the trapped electrons

δNe,trp
Ne0

= αt
eφ

Te0

(
1− 4π

∫ +∞

0

dε
√
2ε

ω − ω⋆e
ω − n〈ϕ̇〉

fe0
Ne0

)
,

(18)

where ε = (v2⊥ + v2‖)/2 is the kinetic energy divided by

the mass and n〈ϕ̇〉 is the toroidal precessional drift fre-
quency of the trapped electrons. Introducing the disper-

sion function W (z) = (2π)−1/2
∫
Υ dx e

−x2/2 x/(x − z),

this last equation reduces26 to

δNe,trp
Ne0

= αt
eφ

Te0

{
1 +

(
1− ω⋆e

ω

)[
z2beW (zbe)

]}
, (19)

where ωϕe = n〈ϕ̇〉v2the/ε = ωNeGLN/R, G ≈ 1 and

zbe = sgn(ωϕe)
√
2ω/ωϕe has been chosen in order to re-

spect causality over the Landau contour Υ of the integral
defining W (z).

In order to study the fully kinetic response of the
plasma in this local approach, the previously ignored
non-adiabatic response of the passing electrons is intro-
duced. The passing electron drift frequency is averaged
to zero ωde = 0 because these passing electrons circulate
successively over the favorable and unfavorable sides of
the poloidal plane with a much higher transit frequency
ωt than the typical ITG/TEM frequencies. The Lar-
mor radius of electrons being small enough, k⊥ρe ≪ 1,
the electron finite Larmor radius effects are neglected:
J0(ϑe) ≈ 1. The non-adiabatic response of passing
electrons is then obtained by integrating Eq. (16) with
ωde = 0 and J0 = 1 over the passing velocity phase space∫
pas

d3v = 2π
∫ +∞

−∞
dv‖

∫ v⊥c

0
dv⊥, where v⊥c = v‖ tan θc is

the critical perpendicular velocity above which the elec-
trons are trapped. Finally, the fully kinetic response of
the passing electrons reads:

δNe,pas
Ne0

= (1− αt)
eφ

Te0

×
{
1−

(
1− ω⋆e

ω

)[
1− W (ze)− αtW (ze/αt)

1− αt

]}
,

(20)

whereW (z) is the dispersion function and ze = ω/k‖vthe.
Finally, having a quasi-neutral background (ZNi0 =
Ne0), the dispersion relation of the fully kinetic model
is:

0 = Zτ + 1− Zτ

∫
d3v J2

0 (ϑi)
ω − ω⋆i

ω − k‖v‖ − ωdi

fi0
Ni0

+

(
1− ω⋆e

ω

)[
αtz

2
beW (zbe)

]

+

(
1− ω⋆e

ω

)[
−1 + αt +W (ze)− αtW

(
ze
αt

)]
.(21)

Removing both terms proportional to (1 − ω⋆e/ω) which
contain the non-adiabatic response of electrons gives the
dispersion relation of the adiabatic model. Removing
only the second term proportional to (1 − ω⋆e/ω) gives
the dispersion relation of the hybrid model.
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2. Analytical solution at MRS

We are now interested in deriving an analytical solu-
tion at MRS, i.e. k‖ = 0, by keeping the essential terms
of this local dispersion relation. Eq. (21) is simplified by
noting that k‖v‖/ω = 0. For all cases, ion finite Larmor
radius effects turn out to be essential in the destabiliza-
tion mechanism at MRS, and they are kept at second or-
der by employing the approximation J2

0 (ϑi) ≈ 1 − ϑ2i /2.
This seems to be a reasonable approximation for our ref-
erence cases as k⊥ρi = 0.3. Also assuming |ω/ωdi| ≫ 1,
the ion density response at MRS reads

δNi
Ni0

≈ −Zeφ
Ti0

{
1− ω − ω⋆i

ω

[
1− ξi + (2− 3ξi)

〈ωdi〉
2ω

]}
,

(22)
where ξi = (k⊥ρi)

2 and 〈ωdi〉 =
∫
dv ωdifi0/Ni0 =

−2Ti0k⊥/qiB0R is the drift frequency moment of the
Maxwellian distribution function. The kinetic response
of the trapped electrons is assumed to be passive (= 0)
in the ITG case and to be the bounce averaged one in
the TEM case. The latter response is obtained by taking
the asymptotic expansion W (zbe) ≃ −z−2

be − z−4
be when

assuming |zbe| ≫ 1, thus giving26

δNe,trp
Ne0

≃ αt
eφ

Te0

[
ωNe − 3ωϕe/2

ω
+

3

2
(1 + ηe)

ωNeωϕe
ω2

]
.

(23)
The kinetic response of passing electrons is obtained by
making use of the asymptotic expansion W (ze) ≃ −z−2

e

for |ze| ≫ 1 which in the limit k‖ → 0 leads to

δNe,pas
Ne0

=
k‖→0

(1− αt)
eφ

Te0

ωNe
ω

. (24)

These approximations finally lead to the so-called asymp-
totic dispersion relation

0 = ω2
(
ξi +

c1
Zτ

)

+ ω

{
ωNi [1− c2 − (1 + ηi) ξi]− 〈ωdi〉

(
1− 3

2
ξi

)}

+ ωNi〈ωdi〉
[
(1 + ηi)

(
1− 3

2
ξi

)
− 3

2
ηiξi

]

− c3 ωNi

{
ω − 3LNG

2R
[ω + ZτωNi (1 + ηe)]

}
, (25)

where c1 is the proportion of adiabatic electrons, c2 is
the proportion of kinetic passing electrons, and c3 is the
proportion of kinetic trapped electrons. In the ITG case
for adiabatic electrons (c1 = 1, c2 = 0, c3 = 0), for hybrid
electrons (c1 = 1 − αt, c2 = 0, c3 = 0), and for fully
kinetic electrons (c1 = 0, c2 = 1 − αt, c3 = 0). In the
TEM case for the hybrid electron model (c1 = 1−αt, c2 =
0, c3 = αt) and for the fully kinetic model (c1 = 0, c2 =
1 − αt, c3 = αt). Note that in all cases c1 + c2 + c3 = 1
except in the ITG case for hybrid and fully kinetic models
where c1 + c2 + c3 = 1 − αt as trapped electrons are
assumed to be passive.
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FIG. 5. Growth rate γ at the MRS (k‖ = 0) obtained with
the local dispersion relation Eq. (21) (full line), and with the
asymptotic dispersion relation Eq. (25) (dash-dotted line).
ITG case (a) and TEM case (b). Electron models: kinetic
(blue), hybrid (red) and adiabatic (green). The vertical dot-
ted line indicates the reference temperature ratio τ = 1.

The second order polynomial equation (25) of the form
Aω2+Bω+C = 0 accounts for an instability if and only if
the discriminant ∆ = B2− 4AC is negative. Noting that
A > 0, in all cases, a necessary condition for instability is
thus C > 0 which in turns requires ωNi(1 + ηi)〈ωdi〉 > 0
reflecting the interchange nature of the instability.
In order to appreciate the agreement between the lo-

cal dispersion relation (21) and the asymptotic one (25),
a scan in τ is carried out in Fig. 5. The destabi-
lizing influence of the non-adiabatic electron response,
near MRSs, is recovered with both dispersion relations:
γkin > γhyb > γad. The growth rates obtained from
Eq. (25) are in a quite good agreement with those ob-
tained from Eq. (21) in the ITG case but appear to be
overestimated in the TEM case by a factor ≈ 2− 3: this
may be due to the approximation |zbe| ≫ 1 when in fact
|zbe| >∼ 1 in this TEM case when k‖ = 0. Also for both
local and asymptotic dispersion relations, increasing τ ,
which corresponds to decreasing the adiabatic response,
has the effect of reducing the difference between the
growth rates obtained with the different electron mod-
els.
We now discuss results obtained with the local disper-

sion relation Eq. (21).

3. Local destabilization near MRS, results

The real frequencies and growth rates obtained with
the local dispersion relation (21) are plotted in Fig. 1
subplots (e) and (f), in the ITG and TEM cases, re-
spectively. To obtain an unstable branch from the local
dispersion relation (21), one has to choose a value of the
k‖ parameter. Results obtained with the adiabatic and
hybrid models are not significantly affected by the value
of k‖ and have then been plotted only for k‖Rq0 = 0.2.
On the contrary, results obtained with the fully kinetic
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model can be significantly affected by the value of k‖ -
especially if one compares cases for which ωr/k‖ ≪ 1 or
not -, results have thus been plotted for two values of k‖.
The first value of the parallel wave vector is the same
as the one taken to obtain results with the hybrid and
adiabatic models: k‖Rq0 = 0.2; it corresponds to a value
of the wave vector located far from a MRS where the
adiabatic electron hypothesis is valid (|ωr/k‖vthe| ≪ 1).
The second value of the parallel wave vector is taken at
MRS: k‖Rq0 = 0, where the adiabatic hypothesis is in-
valid (|ωr/k‖vthe| ≫ 1). Far from the MRS (full lines),
the complex frequencies obtained with these local mod-
els are in a qualitative agreement with results obtained
from GENE and plotted in subplots (a-d) but the local
dispersion relation overestimates the real frequencies and
growth rates up to a factor two. This difference can be ex-
plained by the fact that the local dispersion is located at
the most unstable position, but the flux-tube accounts for
both unstable and stable sides of the magnetic surface.
At MRS (blue lines with asterisk), in comparison with
kinetic results obtained far from MRS (blue lines), the
ITG growth rates are larger for almost all wavelengths
(kyρi >∼ 0.1) and the TEM growth rates are larger for
the long wavelengths (kyρi <∼ 0.8) and smaller elsewhere.
This sensibility to the value of k‖ of the local dispersion
relation with fully kinetic electrons underlines that the
non-adiabatic response of passing electrons plays a role
near MRS.

In Fig. 6 subplots (a,b) the real frequencies ωr and
growth rates γ solutions of Eq. (21) are plotted with re-
spect to k‖, and in subplots (c,d) the phase to thermal
velocities ratios |ωr/k‖vthe| are plotted with respect to x.
The value of x is computed using the mapping k‖ 7→ x de-
scribed by Eq. (13). It clearly appears that when getting
closer to the MRS, i.e. k‖ going to zero, the kinetic model
provides larger growth rates than the hybrid model. It
thus reveals the destabilizing role of the non-adiabatic
response of passing electrons near MRS. Moreover, this
divergence between kinetic and hybrid results starts from
a value of k‖ where the parallel phase velocity of the wave
is of the order of the electron thermal velocity. It vali-
dates the choice of the criteria |ω/k‖| = vthe used to de-
rive the theoretical width estimate of the fine structures
Eq. (14).

In Fig. 7 the relative difference between kinetic and hy-
brid growth rates, ∆γ = (γkin−γhyb), obtained with the
local dispersion relation, as well as the difference between
kinetic and hybrid envelopes of the electric potential,
∆|φ| = |φkin| − |φhyb|, obtained with GENE are plotted
with respect to the radial distance to the MRS. It is re-
markable that the abrupt increase of the growth rate due
to the non-adiabatic response of passing electrons near
MRS occurs within a radial region where the radial fine
structure is present over the perturbation fields of GENE
results. Defining the local estimate of the fine structure
width δxloc to be the FWHM of ∆γ(x), the structure
boundary is then localized in Fig. 6 to be at x/ρi ≈ 0.1
and 0.2, in the ITG and TEM cases respectively. At these
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FIG. 6. Solution to the local dispersion relations Eq. (21)
obtained when considering the different electron models: adi-
abatic (green), hybrid (red) and fully kinetic (blue), for both
(a,c) ITG and (b,d) TEM test cases of reference described
in Tab. I. In the top subplots (a) and (b), the growth rate
is plotted with full lines and the real frequency with dashed
lines. In the bottom subplots (c) and (d), the phase veloc-
ity normalized wrt. the electron thermal one is shown as a
function of the distance x to the MRS. The radial distance
to the MRS x, in the x-axis of (a) and (b) is mapped to the
value of k‖ in the x-axis of (c) and (d) by using Eq. (13). The
FWHM which corresponds to the local width estimate of the
fine structure δxloc is plotted with magenta circles. Growth
rates obtained with the asymptotic dispersion relation (25)
are indicated with an asterisk in subplots (a) and (b).

respective positions one has |ωr/k‖vthe| ≈ 1 and 0.4.
We will now systematically compare the different esti-

mates of the fine structure widths, δxth , δxloc and δxsimlin ,
when scanning physical parameters.

D. Systematic scan of physical parameters and

comparison of the radial width estimates

Numerical width estimates δxsimlin plotted in Fig. 8 are
obtained while scanning the aforementioned physical pa-
rameters of Eq. (14): τ , µ, q0, ŝ, and ky. It is remarkable
that a fine structure is always present over the eigen-
mode of the electric potential with a radial width sys-
tematically smaller than an ion Larmor radius or so, ex-
cept for ŝ → 0. It is also remarkable that the width
estimate obtained from the local dispersion relation is
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FIG. 7. Fine radial structure over the electric potential

∆|φ| = |φ̃kin| − |φ̃hyb| in linear GENE simulations (blue full
lines) and of the growth rate ∆γ = (γkin − γhyb) obtained
from local dispersion relation (red dashed lines). Both curves
are normalized to their maximum value as one is only inter-
ested in the radial localization of the structures. Estimates
of the width δxsim

lin and δxloc (FWHMs) are indicated with
circles and squares, respectively.

in qualitative agreement with GENE simulation results,
thus confirming that the radial fine structures are re-
lated to a local destabilization of the plasma due to the
non-adiabatic response of passing electron near MRSs.
The influence of the scanned physical parameters over
the structure width can be obtained by fitting the re-
sults with power scaling laws: in the ITG case we ob-
tain δxsimlin,ITG ∝ µ−1/2q0 and in the TEM case we obtain

δxsimlin,TEM ∝ τ1/2µ−1/2q
3/2
0 ŝ−1k

−1/2
y . The difference of

these two relations with the theoretical relation given by
Eq. (14) reflects the fact that ωr is not constant and its
value taken from GENE varies with the scanned param-
eters.

In Fig. 9, for each linear simulation carried out with
GENE when scanning the physical parameters, the nu-
merical width estimate δxsimlin is compared to both the-
oretical estimate δxth and local estimate δxloc obtained
with corresponding parameters. In subplot (a), the nu-
merical estimates obtained from GENE simulations are
in good agreement with the theoretical ones, as their ra-
tio is of order unity. In the ITG case, for the majority
of scanned parameters one has κ = δxth/δxsimlin ≈ 1. In
the TEM case, this velocity ratio is of the order of, but
smaller, than unity: κ = δxth/δxsimlin ≈ 0.4 indicating
that the destabilization occurs for slower parallel wave ve-
locities in this case than for ITG modes. It thus validates
the choice of using the criteria |ωr/k‖| ≈ vthe to localize,
at leading order, the boundaries of the non-adiabatic re-
gion when defining the theoretical estimate δxth of the
width, Eq. (14). In subplot (b), the numerical width esti-
mates obtained from GENE δxsimlin are in good agreement
with the local ones δxloc for all scanned parameters of
both the ITG and TEM test cases. This good agreement
between the results obtained with GENE and the results
obtained with the local dispersion relation, also clearly
appreciable in Fig. 8, shows that the fine structures near
MRSs are related to the local destabilization due to the

passing electrons dynamics.

IV. FINE STRUCTURES IN NON-LINEAR

SIMULATIONS AND THEIR EFFECT ON TRANSPORT

A. ITG and TEM test cases

Non-linear simulations with hybrid and fully kinetic
electrons have been carried out considering the reduced
mass ratio µ = 400 (see table I) over a sufficiently long
time (up to t ∼ 300R/vthi) to ensure good statistics over
the saturated turbulent phase, as illustrated in Fig. 10
showing the time traces of the ion and electron kinetic
energy fluxes, Qi and Qe respectively, for both the ITG
and TEM cases. Also reported in these plots are the run-

ning time averages, Qrun
j (t) =

∫ t
ts
Qj(t

′)dt′/(t−ts), taken
over the turbulent saturated regime, which has been es-
timated to start in both cases at ts = 20R/vthi. The
final values of these running averages provide the time-
averaged fluxes over the full saturated turbulent phase
of the simulation. In the following, 〈·〉t stands for the
time average of different physical quantities taken over
the so-defined saturated time window.
Turbulence simulations involve the evolution of a spec-

trum of non-linearly coupled ky modes which consists,
in our simulations, of a set of 64 modes ky = iyky,min
(iy = 0, .., 63), so that ky,min ρi = 0.07 and 0.04, in ITG
and TEM cases, respectively. The kx spectrum consists
of a set of nkx = 432 (resp. 256) modes kx = ixkx,min
(ix = −nkx/2, .., 0, ..., nkx/2), so that kx,min ρi = 0.032
(resp. 0.056), in ITG (resp. TEM) case. A convergence
study with respect to the number of kx modes, nkx = nx,
is conducted in Sec. IVC2.
Shearing of turbulent eddies by turbulence-generated

Zonal Flows (ZFs) is understood to be the dominant satu-
ration mechanism of ITG-driven turbulence and therefore
of the associated transport fluxes27–29. As various stud-
ies have shown21,30, the role played by ZFs in saturating
TEM driven turbulence is more complex. In particu-
lar, in Ref. 30 the efficiency of turbulence saturation by
ZFs is strongly dependent on the parameter range con-
sidered. It is to be noted that the physical parameters
for the considered TEM case are essentially the same as
the ones considered in Ref 21, except for the temperature
ratio τ = 1 considered here instead of τ = 3. According
to Ref 30, going from τ = 3 to τ = 1 pushes the system
from a regime where ZFs play a sub-dominant role in the
saturation mechanism of the TEM turbulence towards a
regime where ZFs play a dominant role. This has been
confirmed in our simulations by artificially zeroing out
the ZFs, which led to a 10-fold increase of the turbulent
fluxes, clearly reflecting the essential role played by the
ZFs in regulating the turbulence.
As already mentioned when discussing the linear re-

sults, the boundary conditions require the radial length
Lx of the simulation to be an integer multiple of the dis-
tance between MRSs for each considered ky mode. Note
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that it is sufficient for this condition to be verified by
Lx for ky,min for it to be verified for all ky. One thus
needs to set Lx = M LLMRS, with M an integer and
LLMRS = 1/ŝky,min the distance between Lowest order
MRSs. For the ITG and TEM cases, M = 8 and 4 were
chosen, giving respectively Lx = 142.9 ρi and 125.0 ρi,
thus ensuring a large enough box (> 100 ρi) compared to
the typical radial turbulence correlation length of order
∼ 10 ρi. The number of radial grid points nx is taken
so as to resolve the fine structures in the corresponding
linear eigenmodes of the ky modes which dominate the
turbulent flux spectra (see Fig. 15). The values nx = 432
and 256 were thus chosen for the basic simulations, cor-
responding to radial grid spacings ∆x = Lx/nx = 0.33 ρi
and 0.49 ρi for the ITG and TEM cases respectively. Fig-
ure 11 confirms that these resolutions are indeed suf-
ficient according to this criteria. Note that the radial
widths δxsimlin of linear eigenmode structures as a function
of kyρi shown in Fig. 11 are very similar to the results
shown in Fig. 8(e), these widths being however broad-



13

0 0.5 1 1.5
0

1

2

3

4

5

k
y
ρ

i

δ 
x 

/ ρ
i

(a) ITG

0 0.5 1 1.5
0

2

4

6

8

k
y
ρ

i

(b) TEM

 

 
δ xth

δ xsim
lin

δ xsim
non−lin

1/ky ŝ
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ened as a result of the reduced mass ratio considered
here. This is explained by the fact that δx ∝ ωr/µ

1/2

according to Eq. (14) with the real frequency ωr being
essentially unchanged when reducing µ from the physical
value 1836 to the reduced value 400 as shown in Fig. 1.
This has been confirmed with linear simulations when es-
tablishing the power scaling laws δxsimlin,ITG and δxsimlin,TEM

both proportional to µ−1/2. Simulations with other val-
ues of nx were carried out as well and are presented in
Sec. IVC2 where the issue of radial resolution conver-
gence of fine structures is discussed. The broadening of
the radial structures are the main rationale for consider-
ing a reduced mass ratio for the non-linear simulations,
as it enables to more easily ensure sufficient radial reso-
lution with a tractable number of grid points.
Concerning the grid resolutions in the other phase

space directions, nz = 16 points along z were chosen
for both the ITG and TEM cases. Boundaries along the
velocity space directions were set to v‖,max = 4.2 vth and
µmax = 9T/B0 for each species both in the ITG and
TEM cases, with the corresponding resolutions nv‖ ×
nµ = 64 × 8 and 64 × 16 respectively. Note the slightly
higher velocity resolution for the latter case, to ensure
an accurate description of the trapped/passing bound-
ary, essential for TEM simulations.

B. Fine structures at MRSs

1. Fine structure over ky 6= 0 modes

The z- and time- averaged amplitudes of non-zero
ky Fourier modes obtained from the electric potential,

〈|φ̂ky |〉zt(x, z), are shown in Fig. 12. These plots clearly
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xŝky

ITG TEM

FIG. 12. Radial dependence of the z- and time- averaged elec-

tric potential amplitude 〈|φ̂ky |〉zt(x) for the non-linear (a-c)
ITG and (d-f) TEM cases. Comparing results from both the
fully kinetic (blue) and hybrid (red) electron models for differ-
ent values of kyρi. For each ky , associated MRSs are pointed
out with tick marks along the box edge of the corresponding
figure.

illustrate for each mode ky 6= 0 the presence in the fully
kinetic results of fine radial structures located at the as-
sociated MRSs, positioned at x = δm/ŝky, δm integer
and indicated with tick marks in the corresponding plots.
Similar fine structures are essentially (see the next para-
graph) absent in the hybrid simulations. This confirms
that the fine structures related to the non-adiabatic pass-
ing electrons and originally identified in the linear simula-
tions actually persist in the non-linear turbulent regime.
The systematic procedure applied in the linear study for
measuring their radial width δx, based on subtracting
the eigenmode envelope related to the hybrid computa-
tion from the one obtained with fully kinetic electrons,
is however not applicable in any straightforward way for
analyzing the non-linear data. One can nonetheless esti-

mate the widths δx by directly measuring on 〈|φ̂kinky |〉zt(x)
the FWHM of fine structures appearing at correspond-
ing MRSs. As the non-linear simulation system contains
multiple MRSs for each ky 6= 0, one in fact estimates an
average δx over all associated structures. Corresponding
results in Fig. 11, labeled δxsimnon−lin, show that structures,
although persisting in the non-linear regime, are signifi-
cantly broadened compared to the linear widths δxsimlin in
both the ITG and TEM cases, by up to a factor ∼ 9 for
the lower ky modes.

In the TEM non-linear hybrid simulations, the partic-
ular case of the kyρi = 0.12 mode shows, in Fig. 12 (e),
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radial corrugations over the time-averaged enveloppe of
|φ|hyb. Indeed as shown with linear hybrid electron simu-
lations in Fig. 2 (c) and (d), a large radial modulation of
weak amplitude is already present on the linear mode en-
veloppe |φhyb|. This weak corrugation not exactly aligned
with the MRS is even more visible on the small ky modes
in adiabatic electrons simulations (kyρi < 0.15) - not
shown in this paper. We attribute this weak radial cor-
rugation to the ion dynamics.

2. Fine radial corrugation of ky = 0 modes

In non-linear simulations, the axisymmetric Fourier
modes (ky = 0) are coupled to, and thus driven by, the
unstable non-axisymmetric modes (ky 6= 0). As a re-
sult, the radial structures located at MRSs of ky 6= 0
modes lead to similar structures on the ky = 0 modes
in case of fully kinetic electron simulations. Such cou-
pling is brought to the fore by studying time- and flux-
surface- averages of various fluctuation field quantities,
〈·〉FS = 〈·〉yz in flux-tube coordinates. Note that averag-
ing over the y-direction provides the ky = 0 Fourier com-
ponent. This is clearly illustrated in Fig. 13(a-b) where
the time-averaged shearing rate 〈ωE×B〉t related to the
zonal E ×B flow has been plotted. This shearing rate is

related to the zonal component 〈φ〉yz(x, t) =
∫
φ̂(x, ky =

0, z, t)J xyzdz/
∫
J xyzdz by the relation ωE×B(x, t) ≃

(1/B0)∂
2〈φ〉yz/∂x2. As will appear even clearer in

Fig. 14, radial structures can be identified not only at
the position of lowest order MRSs (i.e. related to ky =
ky,min) but to the positions of next order MRSs (corre-
sponding to ky = 2ky,min and ky = 3ky,min) as well. This
appearance of radial structures on the ky = 0 Fourier
modes through non-linear coupling can be identified on
essentially all fluctuation fields. As an example, the ra-
dial gradient profile ∇x〈δTe〉yzt of the time- and flux-
surface- averaged electron temperature fluctuation (with
δTe computed using δTj =

∫
d3vδfjv

2/3N0−Tj0δN/Nj0)
is shown in Fig. 13(c-d). Note how corresponding simula-
tion results obtained with the hybrid electron model pro-
vide profiles with radial structures which either present
much weaker amplitudes and/or whose radial positions
do not appear to be correlated to MRSs. It is impor-
tant to point out that in the non-linear turbulent simu-
lations, the fine radial structures are fully revealed only
after time-averaging the fluctuations. The standard de-
viation over time, σ(x), of the flux-surface-averaged fluc-
tuations have been reported in Fig. 13 as well. Note
that σ appears to be only very weakly dependent on
x. The fact that σ in the case of fully kinetic electron
simulations is of the same order as the radial modula-
tion amplitude of the time averages (both for ωE×B and
∇x〈δTe〉yzt) reflects that the time-averaged component of
the fluctuations is at least partly “drowned” by the time-
dependent component. This is all the more so in the case
of the hybrid simulations, where the weak non-zero time-
averaged component is significantly smaller than the time

dependent component [e.g. maxx(|ωE×B|) ∼ σ/2 and
maxx(|∇x〈δTe〉yzt|) ∼ σ/8].

3. Characteristic profile modulation of flux-surface

averaged fields and related gradients

Remarkable in Fig. 13 on both radial profiles 〈ωE×B〉t
and ∇x〈δTe〉yzt of the fully kinetic electron simulations
are their periodicity with respect to the distance LLMRS

between lowest order MRSs. This periodicity is em-
phasized in Fig. 14, where the time- and flux-surface-
averaged profiles over the full radial simulation length
Lx = M LLMRS of various fluctuation fields have been
cut into M segments which were then superimposed, the
lowest order MRSs of each segment having been posi-
tioned at the center x = 0 of these plots. The nearly
perfect alignment of profile segments in the case of sim-
ulation results obtained with the fully kinetic electron
model, both in the ITG and TEM case, thus clearly re-
flects the periodicity of radial structures, while the ob-
vious misalignment in corresponding plots obtained with
the hybrid model reflects that such periodicity of struc-
tures related to positions of MRSs is lacking or at least
much weaker in these latter simulations. A hint of peri-
odic structures aligned with the lowest order mode ratio-
nal surfaces is nonetheless apparent in the hybrid elec-
tron ITG simulation, Figs. 14(b) and 14(f). These struc-
tures must however be related to the particular resonant
dynamics near MRSs of passing ions and corresponding
widths are therefore much wider than in the simulations
with fully kinetic electrons.
In particular, the radial gradient ∇x〈δA〉yzt of the

time- and flux-surface- averaged fluctuations for different
field quantities A normalized with respect to correspond-
ing background gradients |∇xA0| = A0/LA are plotted
in the first row of Fig. 14. Shown are profiles related
to density, A = N , as well as electron and ion temper-
atures, i.e. A = Te and A = Ti respectively. The ap-
pearance of non-zero profiles ∇x〈δA〉yzt which converge
in time during the saturated turbulent phase obviously
correspond to a modification of the average profiles from
the initial background profiles A0. The total time- and
flux-surface- averaged radial gradient profile of a given
field A = A0 + δA can indeed be written:

∇x〈A〉yzt = ∇xA0 +∇x〈δA〉yzt = |∇xA0|(−1 + ζA),

noting that −∇xA0 = |∇xA0| = A0/LA and having
used the notation ζA = ∇x〈δA〉yzt/(A0/LA) for the
normalized averaged fluctuation profiles as appearing in
Figs. 14(a-d). Therefore where ζA > 0, respectively
ζA < 0, the profile of A is locally flattened, respectively
steepened, compared to the initial background A0. In
particular, a value of ζA = +1 corresponds to a full
(100%) flattening.
One observes that in the case of fully kinetic electron

simulations, for both the ITG and TEM cases, all three
gradients ratios ζN , ζTe

, and ζTi
present maxima at the
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low order mode rational surfaces. These maxima are
most prominent for the electron temperature profile at
the position x = δm/ŝky,min of the lowest order mode
rational surfaces, presenting values up to ζTe

= +0.5
and thus reflecting a 50% flattening at these positions,
in both the ITG and TEM cases. Somewhat lower lo-
cal maximums are also clearly visible at the positions
x = δm/ŝky of next order mode rational surfaces, i.e. at
least for ky = 2 ky,min and 3 ky,min. Between these low-
est order MRSs, ζA of the different fields takes on neg-
ative values, reflecting steepening of corresponding val-
ues. Most prominent minimum values are again reached
in case of the electron temperature, with values down to
ζA = −0.3 corresponding to a 30% steepening. Due to
the periodic radial boundaries in a flux-tube simulation,
the radial average of the total profile gradient cannot be
modified. Locally flattened regions must therefore neces-
sarily alternate with locally steepened ones: 〈ζA〉x = 0.

4. Characteristic profile modulation of ωE×B and of its

gyroaverage

In the second row of Fig. 14, the M segments of the
shearing rate profile 〈ωE×B〉t have been superimposed
as well. In fact, the effective electric field felt by the
particles is a gyroaveraged one. As the width δx of ra-
dial structures apparent on the 〈ωE×B〉t shear profiles
are comparable to the ion Larmor radius, an effective
shearing rate 〈ωjE×B〉t should be computed separately for
each species using the gyroaveraged zonal flow compo-
nent of φ, i.e. ωjE×B ≃ (1/B0)∂

2〈φ〉yz/∂x2, with φ= Gjφ
and the gyroaveraging operator Gj , itself averaged over
the Maxwellian background distribution, given in Fourier
space by

Ĝj =
B0

T0,j

∫ +∞

0

dµ exp

(
−µB0

T0,j

)
J0

(
k⊥v⊥
Ωj

)
= e−ξj/2,

recalling the notation ξj = (k⊥ρj)
2. For ions, the so-

obtained gyroaveraged shearing rate 〈ωiE×B〉t is reduced
by nearly 50% in both the ITG and TEM simulations
with fully kinetic electrons. For electrons, the corre-
sponding effective shearing rate 〈ωeE×B〉t is essentially
identical to the non-gyroaveraged profile 〈ωE×B〉t. This
is to be expected as the radial structures remain large
with respect to electron Larmor radii. In the hybrid sim-
ulations, the structures on the 〈ωE×B〉t profile are less
affected by the gyroaveraging effects, even in case of ions,
as their widths are significantly larger than in the fully
kinetic electron simulations.
Finally, comparing the gradients with the E ×B shear-

ing rate, in ITG and TEM cases with kinetic electrons,
it appears that ζN , ζTi

and ζTe
have an extremum where

the ωE×B shearing rate is zero. Conversely, ζN , ζTi
and

ζTe
are zero when the ωE×B is extremum. In compar-

ison, no such regular and well defined pattern seems to
appear in the hybrid simulation cases. In Fig. 13, this ba-
sic pattern organization can be clearly recognized in the

ITG case not only for the ky,min related MRSs but also
for the 2 ky,min and 3 ky,min MRSs as already observed10

over the electron temperature profiles. The same struc-
tures related to 2 ky,min and 3 ky,min Fourier modes, al-
though somewhat fainter, can be seen for the TEM case
as well.

C. Turbulent fluxes

The turbulent radial fluxes result from the x-
component of the E ×B drift, given by vE×B,x =
−(1/B2

0)(∇φ × B0) · ∇x/|∇x| ≃ −(1/B0)∂φ/∂y, where
φ is the scalar potential related to the essentially elec-
trostatic fluctuations. One notes that although mag-
netic fluctuations have been accounted for in the fully
kinetic simulations, their contribution to the turbulent
fluxes represent less than 1% of the total fluxes and are
not discussed here. The electrostatic fluxes, specific to
each species j and averaged over the flux-tube volume
V =

∫
d3x =

∫
dxdydzJ xyz, are essentially of the form:

Fj[•](t) =
1

V

∫
d3x

1

B0

(
−∂φ
∂y

)
(x, t)

∫
d3v • δfj(x,v, t).

(26)
In particular, the particle flux and kinetic energy flux
are given by Γj = Fj[1] and Qj = Fj[mjv

2/2], and have
been normalized to the following ion Gyro-Bohm units
ΓGB,i = N0vthiρ

2
i /R

2 and QGB,i = N0Ti0vthiρ
2
i /R

2, re-
spectively. In our ITG and TEM reference cases Z = 1
and therefore Γi = Γe = Γ.
A fundamental issue, due to limited simulation statis-

tics, is in providing error estimates of time-averaged
fluxes 〈F〉t. The practical approach considered here con-
sists in dividing the quasi-stationary turbulent phase of
the simulation into N disjoint time intervals of equal span
and computing the time averages 〈F〉n over each of these
sub-intervals. An estimate of the error 〈v2〉t on the total
time-average flux can then be provided by the root mean
square deviation:

Err[F ] =

[
1

N

N∑

n=1

(〈F〉n − 〈F〉t)2
]1/2

. (27)

The number of time intervals N one can consider is usu-
ally very limited (typically 3 for our simulations) as each
must contain at least a few (∼ 10) turbulent bursts.
The rough error estimate on the time-averaged fluxes ob-
tained in this way is less than 5% for non-linear simula-
tion results shown in Figs. 15, 16, and 17.

1. kx and ky Spectra

Flux spectra enable to study the contribution to trans-
port from the different fluctuation scale lengths. Such
spectra are derived by expressing relation (26) in terms
of the Fourier representations of φ and δfj with respect
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FIG. 15. Time-averaged, turbulent particle flux spectra 〈Γ̃〉t
in units of ΓGB,i with respect to (a and b) kx and (c and d) ky
for the ITG (a and c, nx = 432) and TEM (b and d, nx = 256)
test cases (log-log scale). Fully kinetic (blue) and hybrid (red)
electron models. Peaks in the fully kinetic electron spectra at
the harmonics kx = p 2π/LLMRS, p = 1, 2, . . ., are related to
the non-adiabatic response of passing electrons near lowest
order MRSs.

to x and y. In particular, the Fourier decomposition of
φ reads:

φ(x, y, z, t) =
∑

kx,ky

φ̂(kx, ky, z, t) exp[ı(kxx+ kyy)].

In the case of particle flux, for example, equation (26)
then becomes:

Γj(t) =
∑

kx,ky

∫
dzJ xyzB−1

0 ikyφ̂
⋆δ̂N j∫

dzJ xyz
=
∑

kx,ky

Γ̃j(kx, ky, t),

having identified the flux spectra as

Γ̃j(kx, ky, t) =

〈
1

B0
ıkyφ̂

⋆δ̂N j

〉

z

,

where φ̂⋆ is the complex conjugate of φ̂.
The time-averaged kx- and ky- particle flux spectra

are plotted for both the ITG and TEM cases in Fig. 15,

obtained by summing 〈Γ̃〉t(kx, ky) over ky and kx, re-
spectively. For comparison, the figure shows simulation
results obtained with both the fully kinetic and hybrid
electron models. All these spectra present a typical de-
cay towards the shorter wavelengths, which is roughly
algebraic, ∼ k−α, corresponding to a straight line in log-
log scale, often referred to as the “inertial range”. The

contributions to the fluxes from the shortest considered
wavelength modes are thus at least three orders of mag-
nitude smaller than the one from the spectrum peak, typ-
ically located at kyρi = 0.2− 0.3, which is a clear indica-
tion of a well-converged turbulent simulation in terms of
the number of Fourier modes considered. The spectrum
peak itself is well resolved, reflecting a good spectral res-
olution ∆kx,y = kx,y,min = 2π/Lx,y, i.e. a sufficiently
large simulation box. In the ITG case, at the very edge
(Nyquist limit) of the spectra, one observes however a
slight deviation from the algebraic decay, in the form of
a flattening or even roll-over for the ky-spectra. This
is clearly not due to a linearly unstable mode at these
scales, as shown in Fig. 1(a) (see results for µ = 400 and
τ = 1), but is most probably related to a pile-up of energy
cascading down toward small scales. In the TEM case,
no roll-over is present at the very edge (Nyquist limit)
of the spectra even if the curve’s decay slightly lessen
for kyρi ≈ 1.5. The absence of roll-over has also been
confirmed for simulations with higher radial resolutions.

Remarkable on the kx-spectra of fully kinetic electron

simulations are peaks at harmonics k
(p)
x = p 2π/LLMRS =

pMkx,min. These peaks are most clearly visible in the
particle flux spectra of the ITG case, and most promi-
nent for p = 2, 3, and 4. These are clearly related to
the Fourier mode components giving rise to the peri-
odic structures located at the lowest order MRSs and
are thus absent from the hybrid simulation results. The
origin of the peaks in the time-averaged kx spectra

〈Γ̃〉t,ky (kx) =
∑
ky
〈Γ̃〉t(kx, ky) is shown to be due to

the presence of peaks at aligned along (ky = kx/2πŝ)

in the time-averaged bi-dimensional spectra 〈Γ̃〉t(kx, ky)
which are plotted in Fig. 16. These modes correspond,
for each ky, to the first order coupling to the mode
(kx, ky) = (0, ky) resulting from the pseudo periodicity
boundary conditions described by Eq. (1). Very simi-
lar features are also observed on both electron and ion
kinetic energy flux spectra (not shown).

2. Numerical radial resolution

As can be observed in Fig. 11, the widths of the fine
structures roughly scale as half the distance between con-
secutive lowest order MRSs for each ky. Non-linear sim-
ulation cases considered in this work are composed of 64
ky modes; the biggest ky mode has the highest number
of MRSs (64×M) within the box boundaries: 512 (ITG)
and 256 (TEM). As a result, if one wants for example a
minimum of 10 points between the MRSs to resolve the
fine radial structures of all modes, it respectively requires
5120 and 2560 points in x. Nonetheless, as discussed
in Sec. IVC1, the turbulence spectra is dominated by
low ky modes (kyρi < 0.3) which have the largest ra-
dial structures at MRSs: δxnumnon−lin

>∼ 2ρi. To have at
least 10 points between these ky’s lowest order MRSs, it
requires to have nx > 340 and 300. In our convergence
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FIG. 16. Time-averaged, turbulent particle flux spec-

trum 〈Γ̃〉t(kx, ky) for same cases as in Fig. 15 (shown is

log 〈Γ̃〉t(kx, ky)). ITG (a and b) and TEM (c and d) cases with
kinetic (a,b) and hybrid (c,d) electron models. For the kinetic
results, a black dotted line is plotted at ky = kx/2πŝ to em-
phasize the (kx, ky) coupling due to pseudo-periodic boundary

conditions Eq. (1) and positions of the harmonics k
(p)
x with

p = 1..8 are plotted with black tick marks along the x-axis.
The ky = 0 modes are not shown as they do not contribute
to the transport in the ∇x direction: ∂/∂y ≡ −ıky = 0.

study, we went beyond this resolution by taking nx = 512
and 1024. Note that these two runs with very high ra-
dial resolutions have been carried out over a shorter time
window tend ≈ 200vthi/R compared to other simulations
for which tend ≈ 300vthi/R.

In the convergence study (Fig. 17), we scanned a range
of radial point numbers, nx, for which the mesh size in
units of the ion Larmor radius, ∆x/ρi = Lx/nxρi, varies
from 0.28 to 1.49 in the ITG case and from 0.12 to 1.30
in the TEM case. The highest resolutions provide more
than 7 (ITG) and 16 (TEM) radial grid points over the
fine structure widths, δxsimnon−lin, of dominant ky modes
(kyρi < 0.3). In comparison, the lowest resolutions pro-
vide less than two grid points over the fine structure
widths of almost all ky modes. This low resolution is
clearly not sufficient to describe the radial corrugations
present near MRSs in kinetic electron simulations. In
Fig. 17, we show with dashed lines the linear fits that
have been extrapolated to obtain the converged values
(∆x→ 0).

The particle and kinetic energy fluxes of ions and elec-
trons, as well as the effective E ×B shearing rate ωeff ,
which are obtained from simulations running with the hy-
brid model are essentially converged already for low res-
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FIG. 17. Flux-surface and time averaged particle and ki-
netic energy fluxes plotted with respect to the radial res-
olution ∆x = Lx/nxρi, and effective E ×B shearing rate
ωeff (tw = γ−1

ref ) plotted with respect to the number of points
in the radial direction nx. In ITG (a,b,c,d) and TEM (e,f,g,h)
regimes with hybrid (circles) and kinetic (asterisk) electrons.
Also plotted are the fluxes solely due to the trapped elec-
trons (triangle). In hybrid simulations particle flux is com-
puted with ion (circles) and with trapped electrons (crosses).
ΓGB,i = N0vthiρ

2
i /R

2; QGB,i = N0Ti0vthiρ
2
i /R

2. Vertical
dotted lines indicate the fine structure width of kyρi ≤ 1
modes in linear simulations taken from Fig. 11.

olutions (circles in Fig. 17). On the contrary, the fluxes
and ωeff obtained from simulations carried out with the
kinetic electron model (asterisk in Fig. 17) are not con-
verged at low resolutions. In subplot (h), the ωeff does
not appear clearly converged, even at the highest resolu-
tion. As we discuss now, the effective shearing rate ωeff
considered in this work includes a fluctuating contribu-
tion. The following results show that the strong increase
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of the effective shearing rate, occurring in the TEM case
when ∆x→ 0, is due to the contribution from the rapid
fluctuations. The effective E ×B shearing rate is defined
by:

ωeff (tw) =

〈∣∣∣∣
1

tw

∫ t+tw

t

dt′ ωE×B(x, t
′)

∣∣∣∣
〉

xt

, (28)

which is a function of the time-window tw. In the last row
of Fig. 17, the effective shearing rate is plotted using a
value of the time window equal to the the typical growth
time of the turbulence: tw = γ−1

ref . This choice permits to
filter out the ωE×B fluctuations assumed to oscillate too
rapidly to be able to suppress turbulence31,32 but to still
account for the slower ones which should be effective in
suppressing turbulence. In the ITG case, this particular
time window is chosen as the inverse of the maximum lin-
ear growth rate of the dispersion relation in Fig. 1(a). In
the TEM case, it is chosen as the maximum growth rate
over the spectrum interval 0.1 < kyρi < 0.4 of the disper-
sion relation in Fig. 1(b). This limited spectrum interval
considered for the TEM case corresponds to modes which
contribute the most to the turbulent fluxes (see 15(d)).
The fact that the ωeff is essentially converged at

lower resolution in hybrid electron simulations is clearer
in Fig. 18 (dashed lines). In this figure, the effective
shearing rate is plotted with respect to the time window
width for different radial resolutions. In the TEM case
(Fig. 18.b) with kinetic electrons (full line), the effective
shearing rate strongly increases when the mesh size nx
increases, especially for small values of the time window
tw. This short scale effect is particularly important in the
highest resolution simulation. Going back to Fig. 17 (f)
and (h), we note that going to higher resolution has the
effect of increasing ωeff while decreasing the turbulent
fluxes. This is in agreement with the drift wave-zonal
flow paradigm for non-linear saturation. Comparing the
ωeff between hybrid and kinetic simulations is not force-
fully significant as the difference of the ZFs spatial orga-
nization is not taken into account by this indicator; but
comparing the ωeff between simulations with the same
electron model and the same magnetic equilibrium, i.e.
the same spatial organization of ZFs, one can expect that
with a larger ωeff the ZFs will be more effective for sup-
pressing turbulence.
As a conclusion of this section, we emphasize the ne-

cessity to use a high radial resolution for converging the
flux levels and associated E ×B saturation mechanisms.
Fully kinetic simulations carried out with too low radial
resolution can lead to strong over-estimate of the fluxes
correlated to a strong under-estimate of the E ×B shear-
ing rate.

3. Passing electrons contributions to the turbulent

transport

In this section, we note 〈•〉t the time averaged level of
transport extrapolated at ∆x = 0 by linear fits indicated

with dashed lines in Fig. 17.
a. In the ITG case, the particle and kinetic energy

fluxes of ion and electron species are underestimated
when running simulations using the hybrid electron
model: 〈Γhyb

e 〉t ≈ 27%〈Γkin
e 〉t, 〈Qhyb

e 〉t ≈ 36%〈Qkin
e 〉t,

and 〈Qhyb
i 〉t ≈ 69%〈Qkin

i 〉t. The error due to the ex-
trapolation method is small enough to be confident in
these numbers.
The particle flux is composed of a passing electron flux

and of a trapped electron flux: Γe = Γe,pas + Γe,trp.
In simulations running with kinetic electrons, the main
contribution to the flux comes from the passing electron
channel of transport: 〈Γkin

e,pas〉t ≈ 63%〈Γkin
e 〉t. The pass-

ing electrons being adiabatic in the hybrid model, one
obviously has Γhyb

e,pas = 0. The trapped electron particle
fluxes obtained from simulations running with hybrid or

kinetic electron models are of same order: Γhyb
e,trp ≈ Γkin

e,trp.

The kinetic energy flux is composed of a heat flux33

and of an advective flux:

Qj = qh,j +
5

2
T0jΓj, (29)

where the heat flux33 is defined by qh,j = Fj [mj(v
2 −

5v2thj)/2] and Fj [•] is defined by Eq. (26). With the
fully kinetic model, the advective contribution from the
passing electrons dominates the electron kinetic energy
flux: (5/2)Te0〈Γkin

e,pas〉t ≈ 78%〈Qkin
e 〉t.

The ion kinetic energy flux, which is the most impor-
tant for an ITG regime, is underestimated by simulations

running with the hybrid model: 〈Qhyb
i 〉t ≈ 69%〈Qkin

i 〉t.
Having ambipolar fluxes, 〈Γi〉t = 〈Γe〉t, the hybrid model

underestimation of the kinetic energy flux, i.e. 〈Qhyb
i 〉t <

〈Qkin
i 〉t, is significantly due to the missing passing elec-

tron channel of transport: (5/2)Te0〈Γhyb
e,pas〉t = 0.

b. In the TEM case, the extrapolated levels of
transport obtained with the hybrid and kinetic models
are: 〈Γhyb

e 〉t ≈ 61%〈Γkin
e 〉t, 〈Qhyb

e 〉t ≈ 85%〈Qkin
e 〉t, and

〈Qhyb
i 〉t ≈ 180%〈Qkin

i 〉t. In absolute value, the differ-
ences between these hybrid and kinetic fluxes are of the
order of the uncertainty on their amplitude due to the
choice of extrapolation method.
The particle flux, in simulation with kinetic electrons,

is mainly composed of the trapped electrons transport
channel: 〈Γkin

e,trp〉t ≈ 119%〈Γkin
e 〉t, and the passing elec-

tron flux is inward. The trapped electron fluxes ob-
tained from simulations carried out with hybrid and ki-

netic electron models are of comparable level: 〈Γhyb
e,trp〉t ≈

134%〈Γkin
e,trp〉t. The difference being of the order of the

error due to the extrapolation method.
The electron kinetic energy flux is the major trans-

port channel causing power loss in this TEM case, as
expected of a TEM regime. In simulation with ki-
netic electrons, this flux is essentially due the trapped
electrons channel: 〈Qkin

e,trp〉t ≈ 87%〈Qkin
e 〉t, and it has

a non negligible advective component (see Eq. (29)):
(5/2)Te0〈Γkin

e 〉t ≈ 37%〈Qkin
e 〉t. Not shown here is the fact

that, in both hybrid and kinetic simulations of the TEM
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FIG. 18. Effective shearing rate ωeff = 〈|〈ωE×B〉tw |〉xt with respect to a time window tw for different radial resolutions
indicated for (a) ITG and (b) TEM test cases. Both hybrid (dashed) and kinetic (full line) electron models are considered here
where each resolution respects the same color code as indicated in the plots. The linear growth rate of reference γref is plotted
with horizontal dotted line and its corresponding time γ−1
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case, the electron heat flux is solely due to the trapped

electrons: 〈qkinh,e〉t = 〈qkinh,e,trp〉t and 〈qhybh,e 〉t = 〈qhybh,e,trp〉t.
The transport levels obtained from hybrid and kinetic
electron simulations are only different by ≈ 15%. This is
not a significant difference regarding the error due to the
extrapolation method.

The transport levels of ion kinetic energy obtained
with the kinetic and hybrid electron models are different
enough to at least say that this flux is decreased by the
influence of the passing electron dynamics. But this ion
kinetic energy flux remains much lower than the electron
kinetic energy flux.

V. CONCLUSION

The non-adiabatic response of passing electrons near
mode rational surfaces has been characterized in the
flux-tube geometry by identifying its role in linear and
non-linear collisionless plasma, studying instabilities and
turbulent saturated regimes of an ITG and a TEM test
cases. This characterization was achieved by systemati-
cally comparing results obtained when accounting for the
fully kinetic response of the electrons with results ob-
tained with an hybrid model in which the trapped elec-
trons are handled kinetically and the passing electrons
are forced to respond adiabatically.

In linear simulations, fine radial structures due to the
non-adiabatic response of passing electrons are systemat-
ically present near MRSs. These fine structures develop
in the vicinity of MRSs where k‖ is small enough to have

|ωr/k‖| >∼ vthe. The condition |ωr/k‖| = vthe appears
to be a good criteria to localize the boundaries of the
region where passing electrons are non-adiabatic. The
dependence on the main physical parameters of the fine
structure radial width has been characterized.

For comparison, the underlying destabilization occur-
ring near MRS and related to the passing electrons dy-
namics have been described with a local dispersion rela-
tion. It was shown that in the radial region where the fine
structure related to the non-adiabatic response of pass-
ing electrons is present, the growth rate obtained with
the local dispersion relation is significantly raised, by a
factor two or more, when including the non-adiabatic re-
sponse of passing electrons. The radial width estimate
based on this local growth rate was found to be in good
agreement with the one directly measured in the results
from GENE numerical simulations.
This local dispersion relation has then been reduced to

a second order polynomial equation, in order to compute
an analytical solution. In this simple form, the ion finite
Larmor radius effects cannot be neglected if one wants to
correctly describe the destabilization mechanism due to
the passing electrons near MRS. Finally, with this analyt-
ical dispersion relation, an instability condition showing
the interchange nature of the instability at MRS has been
found for both ITG and TEM cases.
In non-linear simulations, fine structures due to the

non-adiabatic response of passing electrons over ky 6= 0
modes persist in the turbulent saturated regime, some-
what broadened compared to the linear case. By non-
linear coupling with the ky = 0 mode, it leads to peri-
odic radial corrugations over the flux-surface- and time-
averaged gradients of temperature and density, as well
as over the time-averaged E ×B shearing rate. Conse-
quently, dominant ky modes which contribute the most
to the fluxes, as illustrated in direct space and Fourier
space, require to be finely resolved in the radial direction
to properly account for the particular dynamics of pass-
ing electrons near MRSs. An effective E ×B shearing
rate was introduced which filters out the (too) rapidly
oscillating component of the ωE×B.
It has been necessary, with the fully kinetic model, to
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use a much higher radial resolution for converging the
flux levels and associated E ×B saturation mechanisms
than with the hybrid model. Fully kinetic simulations
carried out with too low radial resolution can lead to
strong over-estimates of the fluxes correlated to a strong
under-estimate of the E ×B shearing rate. In the par-
ticular case of kinetic electrons, a high radial resolution
is necessary to finely resolve the structures present near
MRSs on the ZF profiles.
In the ITG case, the hybrid model is shown to sys-

tematically underestimates the flux levels: 〈Γhyb
e 〉t ≈

27%〈Γkin
e 〉t, 〈Qhyb

e 〉t ≈ 36%〈Qkin
e 〉t, and 〈Qhyb

i 〉t ≈
69%〈Qkin

i 〉t (flux levels are extrapolated from the radial
resolution convergence study). A first cause of this differ-
ence is related to the different radial organizations of the
ZFs for simulations carried out with the hybrid model
and simulations carried out with the fully kinetic model.
These differences in the radial organization of the ZFs
thus affect the turbulence saturation mechanism and as-
sociated transport levels. A second identified shortcom-
ing of the hybrid model is directly related to the hy-
pothesis of an adiabatic response of the passing electrons
which consequently leads to ignore their contribution to
the fluxes. The hybrid model then fails to reproduce the
passing electrons channel of transport which represents,
in the ITG case: 63% and 78% of particle and electron
kinetic energy fluxes, respectively.
In the TEM case, the flux levels of hybrid and ki-

netic simulations, obtained in the radial resolution con-
vergence study, are different but this difference is not
significantly bigger than the uncertainty due to the ex-
trapolation method. Nonetheless, for fully kinetic sim-
ulations, a much finer radial resolution was required to
converge the fluxes than for the hybrid electron simula-
tions. It shows that the turbulence dynamics and self
regulation mechanisms are affected by the passing elec-
tron dynamics. Indeed, it could be interesting to carry
out simulations of other TEM test cases to see if there are
regimes for which the transport level obtained with the
hybrid and kinetic electron models diverge more signifi-
cantly. It should be recalled that not all the TEM cases
are dominantly saturated by zonal flows, as mentioned
when discussing the choice of temperature ratio for our
TEM case. Therefore our results are relevant for par-
ticular TEM cases and do not contradict with previous
gyrokinetic studies.
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