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Abstract In this study, we introduce a Lagrangian drop (LD) model to study warm rain microphysical
processes in shallow cumulus. The approach combines Large-Eddy Simulations (LES) including a bulk micro-
physics parameterization with an LD model for raindrop growth. The LD model is one-way coupled with the
Eulerian LES and represents all relevant rain microphysical processes such as evaporation, accretion, and
selfcollection among LDs as well as dynamical effects such as sedimentation and inertia. To test whether
the LD model is fit for purpose, a sensitivity study for isolated shallow cumulus clouds is conducted. We
show that the surface precipitation rate and the development of the raindrop size distribution are sensitive
to the treatment of selfcollection in the LD model. Some uncertainty remains for the contribution of the
subgrid-scale turbulence to the relative velocity difference of a pair of LDs, which appears as a factor in the
collision kernel. Sensitivities to other model parameters such as the initial multiplicity or the initial mass dis-
tribution are small. Overall, sensitivities of the LD model are small compared to the uncertainties in the
assumptions of the bulk rain microphysics scheme, and the LD model is well suited for particle-based stud-
ies of raindrop growth and dynamics. This opens up the opportunity to study effects like recirculation, devi-
ations from terminal fall velocity and other microphysical phenomena that so far were not accessible for
bin, bulk, or parcel models.

1. Introduction

In atmospheric modeling, microphysical processes are traditionally parameterized on Eulerian grids either
using bulk schemes or (potentially more accurate) bin schemes. On a microphysical process level, a Lagran-
gian approach is the most natural framework to study cloud droplet and raindrop development. Recently,
the superdroplet method has been introduced to study cloud droplet behavior on a particle-based level
and on domain sizes of a few kilometers [Andrejczuk et al., 2008, 2010; Shima et al., 2009; Riechelmann et al.,
2012]. Because cloud droplets are typically orders of magnitude more numerous than raindrops, those stud-
ies focus their computational resources mostly on cloud droplet behavior and an adequate representation
of the tail of the drop size distribution, which is decisive for precipitation characteristics, is challenging. In
this paper, we introduce a Lagrangian drop (LD) model that focuses on the raindrop phase and that targets
specifically the warm rain microphysical processes and the growth history of raindrops after the initial for-
mation of drizzle drops.

Warm rain bulk microphysics parameterizations usually distinguish between two hydrometeor classes: cloud
droplets and raindrops [Kessler, 1969; Beheng, 1994] (for a triclass parameterization, see, e.g., Sant et al.
[2013]). While the precise separation value in terms of drop radius or mass may differ between the studies,
the cloud droplet class is generally defined such that the sedimentation velocity is negligible and cloud
droplets are assumed to evaporate immediately when they encounter unsaturated air. For raindrops in con-
trast, condensational growth is neglected because collision-coalescence—both with cloud droplets and
among raindrops—is the dominant growth mechanism. Also, raindrops do not behave like massless par-
ticles but have a mass-dependent sedimentation velocity and experience inertial effects.

To describe the cloud droplet and the raindrop development in space and time, bulk schemes assume that
the cloud droplet size distribution and the raindrop size distribution (RSD) in a model grid box can be
described well by a family of distributions with few free parameters. Changes in the RSD due to microphysi-
cal processes are then formulated as changes in the moments of the RSD. The different moments of the
RSD have different sedimentation velocities, which in higher moment schemes generally allows for a
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representation of gravitational sorting but is also known to produce too excessive sorting and even the
occurrence of shock waves [Wacker and Seifert, 2001; Mansell, 2010; Milbrandt and McTaggart-Cowan, 2010].

In bin schemes, the drop size distribution in each model grid box is discretized in a (large) number of size
bins, and the temporal development of the number of drops in each bin is calculated for each bin sepa-
rately. Therefore, no artificial distinction between cloud droplets and raindrops is needed and (provided
that the number of bins is high) the shape of the drop size distribution can evolve freely. Bin schemes are,
however, known to encounter diffusion among bins and across grid box boundaries [Stevens et al., 1996],
which hinders a correct representation of important processes such as sedimentation. Another limitation of
the bin schemes is that all particles in a bin have identical properties, e.g., fall speeds. This makes it difficult
to study inertial effects or the history of raindrops.

In the LD model, we use the distinction between cloud droplets and raindrops from the bulk approach. We
run a Large-Eddy Simulation (LES) model with a conventional two-moment bulk microphysics scheme that
simulates both the cloud droplet and the raindrop phase [Stevens and Seifert, 2008]. In addition, the LD
model also simulates the raindrop phase of the drop development but is run without feedbacks on the
Eulerian LES fields. The RSD in the LD model is not restricted but each LD follows its own trajectory and size
evolution driven by the time-dependent, thermodynamical background fields of the Eulerian LES. By allow-
ing for subgrid-scale positions of the LDs within the Eulerian grid, also sedimentation and gravitational sort-
ing are considered inherently.

We intend the LD model to be used as a tool to understand warm rain microphysical processes in shallow
cumulus on a particle-based level. The LD model is suited to investigate a range of questions such as the
effect of subcloud layer evaporation on the RSD, the importance of ‘‘lucky raindrops’’ for the formation of
surface precipitation [Magaritz et al., 2009] or the role of a subsiding shell for the growth history of rain-
drops in shallow cumulus [Heus and Jonker, 2008]. In this study, we test whether a particle-based model can
be used to investigate these questions, i.e., whether the LD model is fit for purpose. To do this, we critically
examine the assumptions made in the particle-based approach and attempt to quantify the uncertainties of
the LD model. Such a quantification of the uncertainties of the introduced LD model is an essential prereq-
uisite before the method can be applied to specific research questions such as those outlined above.

Several modifications of the LD model are conceivable to further broaden the scope of the method. For
instance, the implementation of collisional raindrop breakup allows for the simulation of more heavily pre-
cipitating clouds and a detailed investigation of the effect of raindrop breakup on the RSD. Another applica-
tion is the fragmentation of freezing raindrops to quantify their effect on the glaciation of cumulus cloud
tops [Rangno, 2008].

The rest of the paper is structured as follows: in section 2, we shortly describe the LES model and the model
setup for a test case of lightly precipitating shallow cumulus. We then introduce the LD model in section 3,
in particular, the initialization of the LDs, the calculation of their trajectories, and the growth and shrinking
mechanisms—accretion, selfcollection, and evaporation. In that section, we also briefly mention sensitivities
to choices of model parameters from the test case setup that are found to be small. In section 4, we focus
on those sensitivities to model assumptions that are relatively large and require a more detailed discussion:
inertia, the subgrid-scale contribution of the fluid velocity, and their effects on the selfcollection rate. In sec-
tion 5, we set the sensitivities of the LD model in context to uncertainties in the bulk microphysics parame-
terization. Finally, in section 6, we give some concluding remarks.

2. Test Case Description

2.1. Large Eddy Simulation
We use the University of California, Los Angeles LES (UCLA-LES) [Stevens et al., 2005; Stevens, 2007] with a
third-order Runge-Kutta scheme for time stepping. Prognostic equations are solved for the three compo-
nents of the velocity, the total water mixing ratio, the liquid water potential temperature, the mass mixing
ratio of rainwater, and the mass-specific number of raindrops. Warm cloud and rain microphysical processes
are parameterized by the two-moment bulk microphysics scheme of Seifert and Beheng [2001] with a diag-
nostic shape parameter [Seifert, 2008] and a fixed cloud droplet density. We adjusted the density correction
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exponent to 0.35 to better fit the behavior of small raindrops (see discussion in the Appendix A). Subgrid-
scale fluxes are modeled with the Smagorinsky-Lilly model.

2.2. Case Setup
We use two variants of a case study of shallow cumulus over the ocean (Rain In Cumulus over the Ocean,
RICO) [see Rauber et al., 2007]. For the standard RICO simulation, the initial profiles and the large-scale forc-
ing are described by van Zanten et al. [2011]. The moist RICO case differs from the standard setup only by a
moister initial profile and was first used by Stevens and Seifert [2008]. For large domains, this moister setup
results in a higher rain rate, which is both a result of and also a cause for mesoscale organization [Seifert
and Heus, 2013]. We choose a much smaller domain size of 3.2 km in both horizontal directions. This has
the advantage that there is basically a single cloud in the whole domain at one time, which allows us to iso-
late the behavior of an individual cloud.

We use a vertical domain size of 3.2 and 4.0 km for the standard and moist RICO setup, respectively, and a
grid spacing of 25 m in all spatial directions for both setups. The time step is 1 s. The Eulerian model is run
for 24 and 17 h for the standard and moist RICO setup, respectively. We then select the cloud that develops
the most bulk rainwater for each run. Over the course of the lifetime of those two clouds (each 1.5 h), we let
the model run again including the LDs and output the LD properties with a temporal resolution of 15 s.
In the following, we refer to the cloud selected from the standard RICO setup as cloud A and to the cloud
selected from the moist RICO setup as cloud B. We do not claim that cloud A (B) is more representative for
drier (moister) environmental conditions but the two selected clouds should be seen as different realiza-
tions of shallow cumulus convection from slightly different environmental conditions. Some characteristic
properties of the two clouds are given in Table 1. Overall, cloud B has a longer lifetime than cloud A and
shows features of pulsating growth [Heus et al., 2009] while the development of cloud A is characterized by
a single but stronger updraft.

3. Lagrangian Drop Model

The LD method used here is based on the superdroplet approach [Andrejczuk et al., 2008, 2010; Shima et al.,
2009; Riechelmann et al., 2012], but adapted to focus on the raindrop distribution by considering basically
two differences: first, instead of modeling the whole lifecycle of drops from their nucleation via a cloud
droplet phase until a few of them eventually reach raindrop size, we simulate the raindrop phase only. By
avoiding nucleation and cloud droplet growth processes for the LDs, (computational) resources are concen-
trated on the raindrop phase, which is very effective because cloud droplets are typically several orders of
magnitude more numerous than raindrops.

A second major difference to the superdroplet method is that we do not use a two-way coupling of the
LDs to the Eulerian model. The LD model uses the data from the Eulerian LES as input but is not coupled
back to the Eulerian model. The Eulerian LES is run including all microphysics, especially also including
the rain microphysics. Such a one-way coupling poses limitations on the usage of the LD model because
differences in the rainwater fields of the bulk microphysics and the LD model result from the different
formulations of microphysical processes and may lead to inconsistencies. In our simulations, the differ-
ences between the rainwater fields are small and hence a one-way coupling is appropriate here. More-
over, the one-way coupling allows for a meaningful comparison of the bulk rain microphysics and the
LD statistics because the bulk rain microphysics and the LD model are forced by the same dynamical
and thermodynamical fields. The limitations and advantages of comparing two parameterizations of
which the first is fully coupled and the second is one-way coupled have recently been discussed by
Grabowski [2014].

Table 1. Characteristic Properties of Cloud A and Cloud Ba

tcloud (min) Amax (km2) LWP (g/m2) RWP (g/m2) zbase (m) ztop;max (m)

Cloud A 45 3.3 99 7.1 600 2500
Cloud B 55 2.4 94 5.7 650 2000

atcloud—cloud lifetime, Amax—maximum cloud area, LWP—mean in-cloud liquid cloud water path, RWP—mean in-cloud rainwater
path, zbase—mean cloud base height, and ztop;max—maximum cloud top height.
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To retrieve the properties of the ambient air of an LD, trilinear interpolation from the Eulerian grid to the
subgrid-scale position of the LD is used for the liquid water potential temperature, the total water mixing
ratio, the pressure, the subgrid-scale velocity variance, and the three components of the resolved fluid
velocity. All derived variables such as the subsaturation for the calculation of evaporation are determined at
the particle position from those interpolated variables.

To explore the sensitivities of the LD model to different model parameters, we ran several additional simulations
each differing from the control run by one model parameter. The results are summarized in Table 2, which
shows the accumulated surface precipitation for the whole domain and the whole simulation time, and the
slope of the RSD after 30 min simulation time for cloud A and for cloud B. The slope of the RSD, K, is fitted for
all LDs in the domain with a diameter D> 200 lm to an exponential function: RSDðDÞ5N0exp ð2KDÞ [Marshall
and Palmer, 1948]. In the following, we will only briefly mention sensitivities due to the choice of model param-
eters that are rather small (sensitivity runs 1–6), and discuss model choices that have a stronger impact on the
accumulated surface precipitation and on the RSD in section 4 in more detail (sensitivity runs 7–12).

We adapt the concept of multiplicity from the superdroplet method, i.e., one LD represents a multiplicity of
raindrops of the same size. While the initial multiplicity of an LD is fixed for each run, during the LD’s life-
cycle, the multiplicity is allowed to change when collision-coalescence takes place. For the control run, we
choose an initial multiplicity of n0553108. When increasing and decreasing the initial multiplicity (sensitiv-
ity runs 1–3 in Table 2), the slope of the RSD varies only slightly for cloud A and cloud B. The accumulated
surface precipitation varies up to 30% for cloud A and up to 20% for the overall less sensitive cloud B.

For the initialization of the LDs (section 3.1) and for the selfcollection among the LDs (section 3.4), a Monte-
Carlo sampling is applied. Sensitivity runs performed with a different initial seed for the Monte-Carlo proc-
esses (sensitivity runs with asterisk in Table 2) show deviations in the accumulated surface precipitation and
the RSD of a similar magnitude as for the different initial multiplicities. Compared to other uncertainties,

Table 2. Accumulated Surface Precipitation (R) and Slope of the RSD (K) from the Control Runs and Sensitivity Runs for the LD Model
and the Bulk Rain Microphysics Schemea

Cloud A Cloud B

R K (mm21) R K (mm21)

c Control run 679 kg 14.8 3925 kg 12.2
Bulk: Control run 166% 21.3 63% 21.3

1 n0513109 97% 14.7 104% 12.9
1� n0513109 108% 13.9 119% 11.3
c Control run, n0553108 100% 14.8 100% 12.2
c� n0553108 110% 13.8 111% 11.6
2 n052:53108 127% 14.1 118% 12.0
2� n052:53108 118% 14.1 105% 12.6
3 n051:253108 123% 14.3 108% 12.0
3� n051:253108 113% 14.6 114% 12.2
4 Initial mass distr. linear decr. 84% 14.8 95% 11.1
5 Initial mass distr. delta fct. 44% 15.9 71% 12.8
6 rmin520 lm 102% 14.6 116% 12.4

7 Selfcollection: vert. vel. 21% 18.3 79% 12.7
8 Selfcollection: S09 118% 14.2 112% 11.7
9 No selfcollection 0% 29.0 26% 14.3
10 Selfcollection: Ec 5 1 1022% 8.2 155% 10.4
11 Traj.: no sgs vel. 55% 15.2 74% 13.6
12 Traj.: no inertia 120% 14.0 110% 11.0

I Bulk: RSD: MY05 3128% 10.2 502% 11.3
II Bulk: RSD: l 5 1 7084% 7.6 847% 9.0
III Bulk: RSD: l 5 10 2% 36.7 3% 38.2

IV Bulk: nc5353106 m23 625% 20.5 225% 22.1
V Bulk: nc51053106 m23 33% 21.5 3% 20.3
13 nc5353106 m23 1978% 10.5 613% 9.5
14 nc51053106 m23 1% 18.1 8% 12.4

aFor the sensitivity runs of the LD model and the bulk scheme, the accumulated surface precipitation is given as percentage of the
LD control run. Sensitivity runs with a different random seed for the LD model are marked with asterisk. Sensitivity runs 7–12 are dis-
cussed in section 4. Sensitivity runs I–V, 13 and 14 are discussed in section 5.
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e.g., in the treatment of selfcollection (sensitivity runs 7–10), the differences in the accumulated surface pre-
cipitation and the slope of the RSD are rather small for different initial multiplicities in the range considered
here and for different random seeds. For a field of clouds, we expect the overall sensitivities to be smaller
than the sensitivities for the isolated clouds shown here.

The initialization of the LDs, the calculation of their trajectory, which includes inertial effects and the influ-
ence of the subgrid-scale velocity, and their mass change due to evaporation, accretion, and selfcollection
are described in more detail below. In the end, some details of the technical implementation of the LD
model are outlined.

3.1. Initialization
The LDs are initialized proportional to the autoconversion rate given in the bulk microphysics scheme
[Seifert and Beheng, 2001] for each grid box and each time step such that the mass of cloud water that is
converted to rainwater in the bulk microphysics scheme equals the rainwater mass that is initialized with
the LDs. We use a fixed initial multiplicity, n0, and the initial position of an LD is chosen randomly within the
grid box it is assigned to.

The distribution of the initial mass of raindrops in general depends on the pairs of cloud droplets that coa-
lesce and form a raindrop as well as on the relative importance of condensation for the largest cloud drop-
lets. This distribution could be analyzed with the superdroplet method or a spectral bin model but so far
has not been investigated to the authors’ knowledge. The initial mass of a raindrop is restricted between
m� and 2m� where m�52:6310210 kg is the minimal mass of a raindrop, which corresponds to a drop
radius of 40 lm. In the bulk microphysics scheme of Seifert and Beheng [2001], 40 lm is chosen to be the
drop radius that separates cloud droplets from raindrops. We decide to use a simple initial mass distribu-
tion, and choose a uniform distribution between m� and 2m�. The actual initial mass of one of the raindrops
represented by an LD, m0, is then drawn randomly from this distribution. Using a uniform distribution pre-
sumably overestimates the mean initial size of the raindrops and hence underestimates the number of rain-
drops, which might lead to a slightly too early emergence of large raindrops for the LD model. Two
sensitivity runs are performed: one with an initial LD mass distribution that decreases linearly to zero
between m� and 2m� (sensitivity run 4 in Table 2) and one with all LDs initialized with m� (sensitivity run 5).
The development of the LD statistics is not very sensitive to the assumed initial mass distribution as long as
it is allowed for some variability in the initial mass.

The average number of newly initialized LDs in a grid box is N5ADVDt=M, where A is the autoconversion
rate, DV is the gridbox volume, Dt is the model time step, and M is the average total initial mass that an LD
represents. For the control run, in which a uniform distribution of the initial mass is assumed, M51:5m�n05

195 g. Because usually N is not a natural number, the actual number of newly initialized LDs is the largest
natural number that is smaller than N, and a Monte-Carlo process is used to determine whether an addi-
tional LD is initialized that represents the decimal places of N. For instance, if N 5 5.3, either 5 or 6 LDs are
initialized and the probability that 5 LDs are initialized is 70%.

Finally, an LD is deactivated as soon as its mass shrinks below m� or it reaches the ground. The sensitivity
for using a smaller minimum mass is small (sensitivity run 6 in Table 2).

3.2. Trajectory
The momentum equation of an LD in a gravity field is obtained from the balance of the drag force,
Fd51=2Cdqapr2

maxj~v a2~v djð~v a2~v dÞ, the gravity force, Fg54=3pr3gðqw2qaÞ, and the inertial force,
Fi54=3pr3qw d~v d=dt, giving

d~v d

dt
5

1
sd
ð~v a2~v dÞ2

�
12

qa

qw

�
g~e3 (1)

with sd5
8qw r3

3qaCd r2
max

1
j~v a2~v dj

(2)

Here~v is the velocity vector of an LD and its ambient air indicated by the indices d and a, respectively. Then r
is the LD’s mass equivalent radius, i.e., the radius of the mass equivalent perfect sphere. To account for
the flattening of large raindrops that deviate from a perfect sphere, we use the approximation from
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Seifert et al. [2014] to specify the maximum dimension of the drop, rmax. The droplet relaxation time, sd,
depends on the drag coefficient, Cd, which in turn is a function of the Reynolds number, NRe52rmaxj~v a2~v dj=m,
i.e., depends on the drop’s relative speed compared to its environmental air and on the size of the drop. The
kinetic viscosity of air, m, depends on temperature and is given by Sutherland’s law [Sutherland, 1893]. Further-
more,~e3 is the unit vector in vertical direction, g gravity, qw the density of water, and qa the density of air.

In equilibrium, the LD velocity is~v d;15~v a2vt~e3 with vt being the (equilibrium) terminal fall velocity of the
drop relative to the moving fluid,

vt5sd;1

�
12

qa

qw

�
g (3)

Note that sd;1 itself is a function of~v d;1 and~v a (equation (2)). Inertial effects can be quantified by analyzing
the deviation of the instantaneous LD velocity, ~v d , from its equilibrium value, ~v d;1. Accordingly, we also
define an instantaneous fall velocity, vf 5wa2wd , which may differ from the terminal fall velocity, vt. Here w
is the vertical component of the velocity vector.

Because sd is small—mostly much smaller than the model time step, Dt—and slowly varying in time, equa-

tion (1) reveals properties of a stiff system and a third-order Runge-Kutta scheme is not appropriate to solve

numerically for~v d . To ensure that, independent of the time step of the LES model, the momentum equation

of the LD is solved robustly, i.e., without spurious oscillations in the LD velocity, we use a procedure related

to the idea of an exponential integrator [Certaine, 1960]. To predict the LD velocity, we first determine sd

with a predictor-corrector method and then use the analytical solution of the momentum equation (equa-

tion (1)) to predict~v d . The momentum equation can be solved analytically assuming that sd and~v a are con-

stant for one time step and with the initial condition of~v dðt50Þ5~v d;0 by

~v dðtÞ5ð~v d;02~v a1sd

�
12

qa

qw

�
g~e3Þexp

�
2

t
sd

�
1~v a2sd

�
12

qa

qw

�
g~e3 (4)

For consistency with the Eulerian model, we update the LD position with a third-order Runge-Kutta scheme
that considers the variability of~v a.

Such a mixed approach of an analytical solution for the LD velocity with a predictor-corrector procedure for
sd, and a third-order Runge-Kutta scheme for the LD position is equal to the analytical solution with the
predictor-corrector method if~v a is constant during each time step. Asymptotically, if the mass of the drop
vanished, sd and vt approach zero and ~v d is equal to ~v a, i.e., the result is equal to the third-order Runge-
Kutta scheme for a massless particle.

Following Abraham [1970], a good approximation of Cd is given by

Cd5C0

�
11

d0ffiffiffiffiffiffiffi
NRe
p

�2
(5)

with C050:29 and d059:06. For small NRe, it follows that Cd5C0d
2
0=NRe524=NRe, which matches the solution

for the Stokes regime. For large raindrops, the flattened shape of the raindrop deviating from a perfect
sphere and a turbulence correction of Cd should be considered [e.g., Khvorostyanov and Curry, 2002, 2005].
For r 5 500 lm, the difference between the terminal fall velocity according to equations (3) and (5), and the
terminal fall velocity from Khvorostyanov and Curry [2005] is 9 cm/s, i.e., less than 3% (Figure 1). Compared
to the semiempirical formulas from Beard [1976], the difference is 24 cm/s for r 5 500 lm, i.e., less than 7%.
Because in this study the raindrops are mostly smaller, we neglect such corrections on~v t and use Cd as writ-
ten in equation (5). Therefore, Cd is used consistently with equations (1) and (2) and also takes into account
deviation from its equilibrium value, which can be caused by the LD velocity deviating from its terminal fall
velocity due to inertial effects.

The fluid velocity that an LD feels is composed of two parts, the resolved fluid velocity of the ambient air
and the subgrid-scale contribution: ~v a5~v res1~v sgs. The subgrid-scale velocity is calculated once every time
step according to the approach from Weil et al. [2004], which has been developed for stationary, homoge-
neous, and isotropic turbulence, and noninteracting particles. Weil’s prognostic equation for a Gaussian ran-
dom subgrid-scale velocity forcing is based on the unresolved turbulent kinetic energy, which in turn is
calculated by the Smagorinsky-Lilly model in UCLA-LES.
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The Lagrangian subgrid-scale model from Weil et al.
[2004] has been applied to massless, noninteracting
Lagrangian particles in LES, e.g., to study mixing and
entrainment in the convective boundary layer [Heus
et al., 2008; Yamaguchi and Randall, 2012]. However,
the model has limitation when being applied to inter-
acting Lagrangian drops. For a pair of particles, Weil’s
assumption of a random, uncorrelated subgrid-scale
contribution to each particle’s velocity becomes
invalid if small separation distances between particles
are considered, e.g., for point sources [Bec et al., 2010].
In contrast, an identical subgrid-scale contribution for
particle pairs with a negligible separation distance
would neglect inertial effects. Using the concept of
multiplicity, the actual LD concentration is lower than
the raindrop concentration in a cloud. If the multiplic-
ity was drastically reduced, i.e., the LD concentration
increased, neglecting the subgrid-scale velocity corre-
lation of particle pairs possibly alters the convergence
behavior of the LD model.

For the control run, we include the subgrid-scale contribution according to Weil et al. [2004]. In addition, we
perform a sensitivity run in which the subgrid-scale contribution to the LD’s momentum equation is neglected
and we discuss the effect of an uncorrelated subgrid-scale velocity on the collision rate in section 4.

3.3. Evaporation and Accretion
For the calculation of evaporation, we follow Mason [1971, p. 123] and additionally include the effect of
ventilation:

dm
dt

����
evap

5fv 4prqw
ðS21Þ
ðFh1FvÞ

(6)

where S – 1 is supersaturation, Fh describes conduction of heat, and Fv describes diffusion of water vapor. The
factor fv represents the effect of ventilation according to Beard and Pruppacher [1971] and Pruppacher and Ras-
mussen [1979], and depends on NRe and on the Schmidt number for water vapor, NSc5m=Dv , with Dv52:53

1025 m2/s being the diffusivity of water vapor. In this approach, the effects of curvature and solution are
neglected as well as kinematic and statistical, nonstationary growth effects, which is a reasonable assumption
for raindrops of the sizes considered [e.g., Rogers and Yau, 1989, pp. 103 and 112]. For raindrops, the growth
rate due to condensation is typically much smaller than the growth rate due to accretion and is not taken into
account here.

For accretion, a continuous model of collection growth is used [Pruppacher and Klett, 1997, p. 617]. For the
model to be valid, it is assumed that the collected cloud droplets are much smaller than the collector rain-
drop, i.e., that the cloud droplet fall velocity is much smaller than the raindrop fall velocity, and that the
raindrop number density (typically <1 cm23) is much smaller than cloud droplet density (typically
100 cm23). Then the mass gain due to accretion is given by:

dm
dt

���
accr

5Ecpqar2
maxj~v d2~v ajqc (7)

where m is the raindrop mass, qc is the ambient cloud water mixing ratio, and the collision-coalescence effi-
ciency, Ec, is set to unity. For maritime clouds with relatively large cloud droplets, Ec 5 1 is justified but a
parameterization of Ec as a function of the cloud droplet size distribution should to be considered if the typ-
ical cloud droplet size is smaller.

3.4. Selfcollection
Selfcollection of raindrops is important if the raindrop number density is high. Using a bulk microphysics
scheme, Stevens and Seifert [2008] found that also for lightly precipitating shallow cumulus clouds,

Figure 1. Terminal fall velocity for surface conditions of a stand-
ard atmosphere according to equations (3) and (5), and after
Khvorostyanov and Curry [2005, KC05] and Beard [1976].
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selfcollection has an important effect on the precipitation amount. For a raindrop distribution, selfcollection
overall reduces the number of raindrops but conserves the rainwater mass. Hence for the LD model, selfcol-
lection redistributes mass among the LDs and reduces their multiplicity. The formulation of selfcollection
for the LD model consists of two steps: first it is defined how a pair of LDs coalesces and second the proba-
bility of selfcollection is determined depending on this definition.

Concerning the first step of how LDs coalesce, we closely follow the approach of Shima et al. [2009]. For the
selfcollection of a pair of LDs (j, k), the LD with the lower multiplicity retains its multiplicity while gaining
mass and the LD with the higher multiplicity retains its mass while its multiplicity is lowered. For multiplic-
ities nj and nk, where nj 6¼ nk and without loss of generality nj < nk , the properties of the LDs after a selfcol-
lection event (dashed variables) are

n0j5nj; n0k5nk2nj (8)

m0j5mj1mk ; m0k5mk (9)

For nj5nk ,

n0j5floorðnj=2Þ; n0k5nk2floorðnj=2Þ (10)

m0j5mj1mk ; m0k5mj1mk (11)

For the second step, to determine the probability of selfcollection of a pair of LDs, we follow the approach
of S€olch and K€archer [2010] who suggest an algorithm for selfcollection that takes into account the vertical
position of the LDs. Only if the difference between the vertical velocities of the LDs times the time step is
larger than vertical distance between the LDs, selfcollection may take place. We consider all LD pairs within
one grid column, i.e., we consider LDs falling across vertical grid box boundaries, but not across horizontal
grid box boundaries. Collisions of a pair of LDs may occur within one model time step, Dt, if

0 <
zj2zk

wd;k2wd;j
� Dt (12)

where z is the vertical position of the LD and wd its vertical velocity. If this criteria is met and if a homogene-
ous distribution of raindrops in the horizontal of one grid box column is assumed, the probability for selfcol-
lection for each pair of LDs (j, k), Pjk, is given by

PCTRL
jk 5

maxðnj ; nkÞ
DxDy

Ecpðrj1rkÞ2
j~v d;j2~v d;k j
jwd;j2wd;k j

(13)

where Dx and Dy are the horizontal dimensions of a grid box and pðDrÞ2jD~v dj=jwdj is the projected sweep
area of the raindrops. The last factor of equation (13), jD~v dj=jDwdj, approaches one if the vertical compo-
nent of the LD velocities dominates the velocity difference of a pair of LDs. We use this formulation of LD
selfcollection given in equations (8)–(13) for the control run.

Alternatively, it may also be assumed that the raindrops an LD is representing are distributed homogene-
ously within one grid box not only in the horizontal but also in the vertical. This follows the ideas of Shima
et al. [2009, hereinafter S09] except for their Monte-Carlo sampling of superdroplet pairs that we do not
apply. Then the probability of selfcollection for each pair of LDs (j, k) that is located in the same grid box is

PS09
jk 5Ec

maxðnj; nkÞ
DxDyDz

pðrj1rkÞ2Dtj~v d;j2~v d;k j (14)

where Dz is the vertical size of a grid box and pðDrÞ2DtjD~v dj is the sweep volume of the raindrops. Again,
in case that the vertical velocity difference dominates the velocity difference of a pair of LDs, the last factor,
jD~v j, could be replaced by the vertical velocity difference, jDwj. The assumption of homogeneously distrib-
uted raindrops within each grid box, may overestimate the probability for selfcollection, if due to gravita-
tional sorting and raindrop growth heavier (i.e., larger) drops tend to be positioned lower within a grid box.
If heavier drops are positioned lower in a grid box, they are not able to capture the smaller drop above
them according to PCTRL

jk (equation (13)) but are considered in PS09
jk (equation (14)). We will show later in
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section 4, that the horizontal velocity difference of a pair of LDs contributes noticeably to their total velocity
difference and that the effect of gravitational sorting in a grid box on the selfcollection can indeed be
neglected in the cases considered.

For both approaches, PCTRL
jk and PS09

jk equal the expected value of the selfcollections of minðnj; nkÞ pairs of
real drops. However, due to the rather small number of LDs (compared to the number of raindrops in a real
cloud), the variance of the number of coalesced pairs is overestimated by the LD model (for a detailed dis-
cussion of the expectation value and variance, see Shima et al. [2009]).

For selfcollection, it is not justified to set the collision-coalescence efficiency, Ec, to unity. Instead, the coa-
lescence efficiency depends on the raindrop size and is determined following the measurements of Beard
and Ochs [1995]. Using such a parameterization for Ec can also be understood as an attempt to take rain-
drop breakup into account, i.e., be interpreted as a pair of raindrops rebouncing from each other without
changing their masses. For raindrops larger than those considered here, filament breakup becomes an
important process [Low and List, 1982; Seifert et al., 2005; Straub et al., 2010] but is not taken into account
in this study.

We use a Monte-Carlo sampling to determine whether two LDs, that have the probability Pjk to collide, do
collide in the model.

The position and the velocity of the LDs are assumed to remain unchanged directly after selfcollection.

3.5. Implementation
The LDs are implemented as a linked list of particles with several properties. For each processor, a maximum
length of the list is specified a priori and represents a ‘‘reservoir’’ of LDs. From that reservoir particles are
activated as LDs according to the autoconversion rate on that part of the grid that the particular processor
represents. When LDs leave the spatial domain of the processor, they are passed to the linked list of the
processor they enter. Once an LD is deactivated, because it shrinks below a threshold or reaches the surface,
it is passed back to the linked list of its home processor. There, it is available for activation again. To distin-
guish the former LD (and its trajectory) from the newly activated one, each LD has a property called drop
number, which is increased by a value of one if a new LD is activated. To find potential pairs of LDs for self-
collection more effectively, the LDs are also sorted and linked on an additional three-dimensional variable
spanning the spatial grid.

The fixed reservoir size per processor, which is specified before starting the model, has only become neces-
sary due to limitations in the output to NetCDF. Before particle output is written, all particles are passed
back to their home processor so that the number and order of particles for each output time step is fixed.
Using such a static array for writing data ensures an efficient output routine while the usage of a linked list
in principle allows for a dynamic internal memory management. Particle properties are written to disk every
15 s of simulation time to be able to analyze an LD’s trajectory and growth history. For each particle, 22 vari-
ables are saved. Ten of them give properties of the LD: the drop number, the mass and multiplicity, the
relaxation time scale, the three components of the LD position in space, and the three velocity components
of the instantaneous LD velocity. In addition, 12 properties of the flow at the LDs position are saved: the
three components of the fluid velocity and the three components of the subgrid-scale contribution to the
fluid velocity, the potential temperature, the virtual potential temperature, the cloud liquid water, the total
water, the dissipation rate, and the pressure.

The computational overhead of the LD model depends on the number of particles per reservoir and on the
number of active LDs. The runs analyzed in this study are all run on 32 processors and most of them use a
reservoir which corresponds to two particles per grid box, i.e., depending on the domain size there are
about 1:53105 particles available per processor or roughly 53106 particles for the whole domain. For the
sensitivity run with quartered initial multiplicity, the number of particles is doubled, i.e., there are four par-
ticles in the reservoir per grid box. Without the LD model, one LES run needs about 1800 CPU h, for the
runs with the LD model and two LDs per grid box about 3400–3800 CPU h are consumed and for four LDs
per grid box 4800 CPU h are needed. Therefore, the computational overhead due to the LD model is
typically about 100% for the runs performed for this study. Nevertheless, the limiting factor for these
simulations is mostly the available disk space for the output of all LDs, not the actual CPU time consumed
for the run.
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4. Resolved and Subgrid-Scale Turbulent Velocity Fluctuations and Their Effect
on Collision Frequency

While sensitivities to some assumptions of the LD model such as the initial multiplicity, the initial mass dis-
tribution, or the minimum mass are rather small for a reasonable range of parameters (sensitivity runs 1–6
in Table 2), we find that the LD model shows a more pronounced sensitivity to the treatment of selfcollec-
tion. Besides the radius and the multiplicity, the selfcollection rate depends on the velocity difference
between a pair of LDs (section 3.4). Therefore, we first discuss the impact of inertial effects on the LD’s
velocity, and then expand the discussion on effects that impact the collision probability such as the
subgrid-scale velocity.

To analyze the effect of inertia on the instantaneous vertical drop velocity, we define the normalized vertical
velocity deviation of an LD, Dw=vt5ðwd2wa1vtÞ=vt , which characterizes the strength of inertial effects on
the raindrop velocity and is zero if inertial effects are negligible, i.e., if the instantaneous fall velocity is equal
to the fluid velocity minus the terminal fall velocity. For the control run, the normalized vertical velocity
deviation is rarely as large as 20% and is less than 5% more than 90% of the time (Figure 2). Neglecting the
subgrid-scale contribution of the fluid velocity on the LD’s momentum equation narrows the distribution of
the normalized vertical velocity deviation of an LD even further.

Observations of more heavily precipitating cases have found that ‘‘superterminal’’ raindrops, i.e., raindrops
that fall faster than their terminal fall velocity (Dw=vt < 0), are abundant for raindrop diameters <1 mm
[Montero-Mart�ınez et al., 2009; Larsen et al., 2014]. Montero-Mart�ınez et al. [2009] suggest that those super-
terminal raindrops are caused by the breakup of very large raindrops, whose fragments directly after the
breakup event still fall with the higher fall velocity of the original raindrop and then slow down with time
by relaxing to their own terminal fall velocity. To be able to investigate the occurrence of such a mecha-
nism with the LD model, a detailed formulation for breakup of large raindrops still has to be included in
the LD model. From our current simulations, we find no evidence for a large fraction of superterminal
raindrops.

The rather small effect of inertia on the LD’s velocity observed in this study is consistent with the values of
the Stokes number of the LDs, St5sd=sg, where sg5

ffiffiffiffiffiffiffi
m=�

p
is the Kolmogorov time scale and � the dissipa-

tion rate (calculated as described in Stevens et al. [1999]). For large Stokes numbers, the LD relaxation time
scale, sd, is larger than the Kolmogorov time scale, sg, and inertial effects are important. The Stokes number
is >1 for 18% of the LDs in cloud A and for only 6% of the LDs in cloud B (Figure 3). Stokes numbers >5 are
very rare (0.28% for cloud A and 0.01% for cloud B). Although the relaxation time scale is increasing almost
linearly with the LD diameter for the range considered, the spread in Stokes numbers is large because LDs
of different size do not sample the three-dimensional domain homogeneously. Small LDs dominate regions
with high dissipation rates near cloud top where the autoconversion rate is high. In contrast, large LDs are
often located in less turbulent regions with low dissipation rates both inside the cloud and outside the
cloud in the environmental air.

To investigate the effects of velocity deviations due to inertial effects in the LD’s momentum equation
(equation (4)) on the development of the RSD, we perform a sensitivity run where instead of applying a
relaxation time scale, sd, the LD’s velocity is simply set to ~v d5~v a2vt~e3, i.e., explicit inertial effects are
neglected in the momentum equation (‘‘traj.: no inertia’’ in Figure 4, sensitivity run 12 in Table 2). Because
the fluid velocity, ~v a, is the sum of the resolved fluid velocity and a contribution from the Lagrangian
subgrid-scale model, this setup still allows for velocity differences between a pair of LDs at the same loca-
tion due to the subgrid-scale contribution. Compared to the control run, the RSD and the surface precipita-
tion rate do not differ noticeably. This implies that the effect of the vertical velocity deviations as shown in
Figure 2 (i.e., the difference between the control run and a delta function at zero) and of the corresponding
horizontal velocity deviations on the LD growth is small.

The horizontal velocity difference of two LDs that are located close to each other is increasing with increas-
ing separation distance (Figure 5). This has implication for the representation of selfcollection in the LD
model: using the concept of multiplicity, collision probabilities in the LD model are calculated for all LD pairs
that are located within the same grid box (equation (14); or within the same column and within a vertical
distance that is defined by their vertical velocity difference, equations (12) and (13)). Real raindrops,
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however, only collide if they meet at the same position. Because collisions are considered for LD pairs within
a grid box regardless of their separation distance, the horizontal velocity difference of a pair of LDs is over-
estimated for the collision rate in the LD model. However, due to inertial effects we do not expect the hori-
zontal velocity difference to be zero either.

A second issue concerning the velocity difference of a pair of LDs for the collision rate arises from the use of
a Lagrangian subgrid-scale model. The subgrid-scale contribution to the fluid velocity directly influences
the LD’s trajectory via its momentum equation but also impacts the relative velocity difference between a
pair of LDs and therefore the collision rate (equations (13) and (14)). Switching off the subgrid-scale contri-
bution for a sensitivity run (‘‘traj.: no sgs vel.,’’ Figures 5c and 5d), the average horizontal velocity difference
of a pair of LDs is smaller than for the control run that includes the subgrid-scale contribution (Figures 5a
and 5b). Including the subgrid-scale contribution, we find that the horizontal velocity difference is higher
especially for those pairs of LDs that are located close to each other. Here the horizontal velocity difference

Figure 2. Normalized vertical velocity deviation, Dw=vt5ðwd2wa1vtÞ=vt . Values are positive if the LD is falling down slower than its equi-
librium terminal fall velocity would suggest; for negative values, the LD is falling faster.

Figure 3. Boxplot of the Stokes number of the LDs as a function of the LD diameter. The whiskers and the boxes mark the 5%, 25%, 50%,
75%, and 95% percentiles, and the dots mark the mean.
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is probably overestimated by the subgrid-scale model from Weil et al. [2004] because the subgrid-scale
model neglects velocity correlations among LD pairs (see section 3.2) [Yang et al., 2008; Wang et al., 2009].

Recent superdroplet studies treat both issues differently. They either neglect the subgrid-scale contribution
on the collision rate [Shima et al., 2009; Andrejczuk et al., 2010] or include it in an average sense by using a
mean field approach derived from direct numerical simulations rather than a statistical approach for
collision-coalescence [Riechelmann et al., 2012]. All three studies assume collisions of superdroplets within a
certain volume. In the collision kernel, Shima et al. [2009] include horizontal velocity differences of a pair of
superdroplets and assume that the superdroplet’s fall velocity equals its terminal fall velocity. Andrejczuk
et al. [2010] consider only the vertical velocity difference of a pair of superdroplets.

To explore both the effect of the subgrid-scale contribution on the collision rate and the effect of the sepa-
ration distance on the horizontal velocity difference (and thereby on the collision rate), we compare three
simulations. In the control simulations, the Lagrangian subgrid-scale model with the uncorrelated velocity
differences is used, and the horizontal velocity difference of a pair of LDs contributes to the collision proba-
bility. Two sensitivity runs are performed: in the first one, the subgrid-scale contribution to the LD velocity is

Figure 4. Raindrop size distribution (RSD) and 2 min running average of the surface precipitation rate for the control run and selected sensitivity
runs. The grey area indicates the uncertainties in the bulk rain microphysics scheme due to the choice of the shape parameter of the RSD (see
section 5 for explanation). The blue area gives the sensitivity of the bulk scheme to decreasing and increasing the cloud droplet density by 50%.
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neglected (‘‘traj.: no sgs vel.’’ in Figure 4, sensitivity run 11 in Table 2), which underestimates the collision
rate in that respect. In the second one, the subgrid-scale model is applied, but only the vertical velocity dif-
ference of a pair of LDs is considered for the collision rate (‘‘selfcollection: vert. vel.,’’ sensitivity run 7). This
also underestimates the collision rate because the contribution of the horizontal velocity difference is
neglected. For both sensitivity runs, the surface precipitation is notably reduced for cloud A (to 55% and to
21%, respectively) and the RSDs are narrower compared to the control simulation.

To quantify these effects in the collision kernel, we analyze the vertical velocity difference of an LD pair nor-
malized by the magnitude of its three-dimensional velocity vector (Figure 6). If the masses of an LD pair dif-
fer substantially, the velocity difference of a pair of LDs is dominated by the sedimentation velocity
difference, i.e., the normalized vertical velocity difference is close to one. For small mass differences, the hor-
izontal velocity difference may also contribute noticeably to the three-dimensional velocity difference and
therefore the normalized vertical velocity difference is substantially lower.

For both the control run and the sensitivity run without the Lagrangian subgrid-scale model, the spread in
normalized vertical velocity difference is high. For the control run, the average normalized vertical velocity
difference is about 55%, i.e., using only the vertical velocity difference instead of the three-dimensional one,

Figure 5. Boxplot for the horizontal velocity difference of pairs of LDs that are located in the same grid box as a function the LD separation
distance. The whiskers and the boxes mark the 5%, 25%, 50%, 75%, and 95% percentiles, and the dots mark the mean.
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such as it is done in a classical gravitational kernel, on average reduces the collision rate by 45% compared
to the control run. Without the Lagrangian subgrid-scale model, the average normalized vertical velocity dif-
ference is about 5% higher than for the control run and increases with decreasing separation distance.

This leads us to the conclusion that both the subgrid-scale contribution of the fluid velocity as well as the
horizontal velocity difference, which is connected to the separation distance of a pair of LDs, do have a
noticeable effect on the collision rate. All variants discussed here (the control run, the sensitivity runs ‘‘traj.:
no sgs vel.,’’ and ‘‘selfcollection: vert. vel.’’) have their issues and it is not obvious which implementation is
most realistic leaving us with a considerable uncertainty in the formulation of the selfcollection of the LDs.
Therefore, both effects should be explored further, e.g., by using a Lagrangian subgrid-scale model that
includes correlation statistics for particles that are located close to each other [Mazzitelli et al., 2014].

The assumption of a vertically homogeneous distribution of raindrops within one grid box [Shima et al., 2009]
instead of taking their vertical position into account [S€olch and K€archer, 2010] does not have a distinct effect for
cloud A or cloud B. Therefore, gravitational sorting within one grid box is not important for selfcollection in this case.

While all the sensitivity analyses above are physically reasonable and give an estimate of the uncertainty in
the LD model, two further sensitivity runs make rather crude simplifications and again highlight the

Figure 6. As Figure 5 but for the vertical velocity difference of LD pairs normalized by the magnitude of the three-dimensional velocity
vector.
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importance of the selfcollection process: neglecting selfcollection altogether (‘‘no selfcollection’’ in Figure 4,
sensitivity run 9 in Table 2) results in a very narrow RSD and the absence of surface precipitation for cloud
A. A constant collision-coalescence efficiency equal to unity (‘‘selfcollection: Ec 5 1,’’ sensitivity run 10)
results in a very broad RSD and a large increase in surface precipitation.

For cloud B, the tested sensitivities are consistent in sign with cloud A but overall lower in magnitude, both
for the RSD and for the surface precipitation rate (Figure 4 and Table 2). Because cloud B has a more com-
plex and overall longer lifecycle showing features of pulsating growth, we speculate that this less sensitive
behavior is related to a microphysical buffering that compensates for changes, e.g., in selfcollection. Large
normalized vertical velocity deviations and large Stokes numbers are even less numerous for cloud B than
for cloud A due to an overall less vigorous lifecycle.

5. Assessment of the Bulk Microphysics Scheme

For both cloud A and cloud B, the LD statistics show some agreement with the bulk rain microphysics control
run, which uses the closure equation of Seifert [2008] for the shape parameter of the RSD (‘‘bulk: control run’’

Figure 7. Raindrop size distribution (RSD) and 2 min running average surface precipitation rate for different assumptions of the cloud
droplet number density, nc.
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in Figure 4 and Table 2). In the two-moment bulk microphysics scheme from Seifert and Beheng [2001], the
RSD is assumed to follow a gamma distribution in terms of the raindrop diameter. Because the gamma distri-
bution has three free parameters and only two of those can be determined from the prognostic moments of
the parameterization, a closure equation for the third parameter, usually the shape parameter, is needed. To
set the sensitivities of the LD model in context to the uncertainties in the bulk rain microphysics scheme, a set
of four Eulerian simulations is run. Each simulation has been started from the same initial conditions and with
the same Eulerian model setup as described in section 2.1 despite a change in the closure equation that
determines the shape of the RSD in the bulk scheme. In addition to the control run, which uses the closure
equation from Seifert [2008], three simulation are run: one using the closure equation suggested by Milbrandt
and Yau [2005, MY05 in Table 2], one using a constant shape parameter equal to 1, and one using a constant
shape parameter equal to 10. Considering the uncertain knowledge about the value of the shape parameter,
besides the relations from Seifert [2008] and Milbrandt and Yau [2005] also a constant value of 1 and a con-
stant value of 10 are plausible choices [Stevens and Seifert, 2008]. In Figure 4, the uncertainty in the RSD and
the surface precipitation rate due to the choice of the shape parameter in the bulk scheme is given as a grey
shading and only the control run is shown explicitly (dashed line). From Figure 4 and Table 2 (sensitivity run I–
III), it can be seen that the uncertainty range of the bulk scheme due to the choices for the shape parameter
of the assumed RSD is much larger than the uncertainty in the LD model.

An additional uncertainty of the bulk scheme lies in the treatment of the cloud droplet number density, nc.
In the bulk scheme, nc is assumed to be constant in space and time, and aerosol effects are often studied
by varying nc [e.g., Savic-Jovcic and Stevens, 2008]. If nc is decreased and to a first order it is assumed that
the cloud water content is constant, the mean cloud droplet diameter and the autoconversion rate increase,
i.e., more cloud water is converted to rainwater. In our control run, nc5703106 m23 is prescribed in accord-
ance with the RICO case setup [van Zanten et al., 2011]. When decreasing nc by 50%, the rainwater content
is increasing (and vice versa for increasing nc) but the slope of the RSD in the bulk scheme does not vary
much (Figure 7 and sensitivity runs IV–V in Table 2). For the LD model, the tail of the RSD flattens with
decreasing nc (sensitivity run 13–14), i.e., with increasing rainwater content, the number of large raindrops
increases disproportionally strong, probably due to more efficient selfcollection. Therefore, with decreasing
nc, the surface rain rate also increases more for the LD model than for the bulk scheme.

Overall, the uncertainty of the LD model, e.g., for the treatment of selfcollection, is smaller than the nc sensi-
tivity in both the bulk scheme and the LD model. The uncertainty of the bulk scheme due to the choice of
the shape parameter of the RSD is at least as large as the impact of nc.

6. Conclusions

We introduced a Lagrangian drop (LD) model to study warm rain microphysical processes. The LD model
presented here is closely related to the superdroplet method and applies their concept of multiplicity but
instead of trying to represent the whole drop size distribution it simulates the raindrop phase only, making
the problem computationally more feasible. The LDs are initialized proportional to the autoconversion rate
of the bulk microphysics scheme to assure that the same amount of rainwater is initialized in the bulk
scheme and in the LD model. All relevant microphysical processes—accretion of bulk cloud water, selfcol-
lection among the LDs, and evaporation in unsaturated air—are included so that the mass of an LD devel-
ops according to its environment. The momentum equation for each LD includes dynamical effects such as
sedimentation and inertia, and a contribution from the parameterized subgrid-scale fluid velocity.

The LD model is intended to be used as a tool to understand warm rain microphysical processes in shallow
cumulus on a particle-based level. In the present study, we test whether the model is fit for purpose. We there-
fore conduct a sensitivity study of two isolated shallow cumulus clouds that are simulated with Large-Eddy Sim-
ulations (LES) including a bulk microphysics parameterization and with the LD model for raindrop growth
without feedbacks to the Eulerian LES fields. We show that the surface precipitation rate and the slope of the
raindrop size distribution (RSD) are especially sensitive to the treatment of selfcollection in the LD model. Some
uncertainty remains in determining the velocity difference of a pair of LDs, which appears as a factor in the col-
lection kernel. On the one hand, a pure gravitational kernel underestimates the collection rate because it
neglects the horizontal component of the velocity difference of a pair of LDs. On the other hand, a Lagrangian
subgrid-scale model that does not take velocity correlations among particle pairs into account overestimates the
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collision rate. In contrast, gravitational sorting within an LES grid box and other parameters such as the initial
mass distribution or the initial multiplicity are found to have no distinct effect on the development of the RSD.

Comparing the LD model to the bulk microphysics scheme, we find that the tail of the RSD is less sensitive
to changes in the cloud droplet number density for the bulk scheme than for the LD model. The uncertain-
ties due to assumptions in the LD model—including those in the treatment of selfcollection—are much
smaller than uncertainties of the bulk rain microphysics scheme due to assumptions on the shape parame-
ter and the cloud droplet number density.

We therefore conclude that the LD model is a valuable tool for further studies to advance understanding of
raindrop growth and dynamics. Possible applications to specific research questions include, e.g., the effect
of evaporation on the RSD or the growth history of raindrops (see section 1). In a follow-up paper, we will
use the LD model to investigate the importance of recirculation for rain formation in shallow cumuli.

Appendix A: Density Dependence of the Terminal Fall Velocity

The terminal fall velocity of a raindrop is not solely determined by its mass but also depends on the air den-
sity. For the LD model, this is taken into account via the temperature dependency of the air viscosity. (The
pressure dependence is much smaller and thus neglected.) For a bulk rain microphysics scheme, the decel-
eration of a raindrop with increasing density, i.e., decreasing height, is usually considered by applying a
density correction to the terminal fall velocity that is valid for sea level conditions, vt;0. The terminal fall
velocity at any height, vt, is then given by Beard [1985]

vt

vt;0
5

qa;0

qa

� �m

(A1)

where qa;0 is the air density at sea level, qa is the actual air density, and m is the air density exponent.
When taking the temperature dependence of the air viscosity into account [Sutherland, 1893], using the
approach of Abraham [1970] to calculate the drag coefficient (equation (5)) and assuming a standard
atmosphere to relate the air density and the temperature, m is increasing from about 0.2 for cloud drop-
lets to 0.5 for large raindrops, i.e., small droplets decelerate less with decreasing height than large rain-
drops (Figure 8). Very similar values of m are obtained using the temperature and pressure correction
from Khvorostyanov and Curry [2005]. In contrast, neglecting the temperature dependence of the air vis-
cosity, results in increasing values of m with decreasing drop radius, i.e., an erroneous dependence of m
on drop size. Because for large raindrops it is well established that m approaches 0.5, bulk rain microphy-
sics schemes typically assume m 5 0.5 when accounting for the density dependence of the terminal fall

Figure 8. Air density exponent, m, as a function of the raindrop radius for different assumptions of the air viscosity.
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velocities of raindrops. In this study, raindrops have a typical radius of 100–200 lm, and therefore, we
choose to use a lower, more appropriate value of m 5 0.35 in the bulk rain microphysics scheme (raindrop
sedimentation and accretion).
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