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Abstract. We apply a machine learning algorithm, the artificial neural network,

to the search for gravitational-wave signals associated with short gamma-ray bursts.

The multi-dimensional samples consisting of data corresponding to the statistical and

physical quantities from the coherent search pipeline are fed into the artificial neural

network to distinguish simulated gravitational-wave signals from background noise

artifacts. Our result shows that the data classification efficiency at a fixed false

alarm probability is improved by the artificial neural network in comparison to the

conventional detection statistic. Therefore, this algorithm increases the distance at

which a gravitational-wave signal could be observed in coincidence with a gamma-ray

burst. In order to demonstrate the performance, we also evaluate a few seconds of

gravitational-wave data segment using the trained networks and obtain the false alarm

probability. We suggest that the artificial neural network can be a complementary

method to the conventional detection statistic for identifying gravitational-wave signals

related to the short gamma-ray bursts.
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1. Introduction

Gamma-ray bursts (GRBs) are the most energetic electromagnetic events among various

observable astronomical phenomena in the Universe. GRBs are very frequent events,

as we observe them more or less once a day in isotropic spatial distribution (Meegan

et al. 1992). In general, all observed GRBs can be classified in two categories, long and

short, by a characteristic duration time, T90,‡ of the gamma-ray flashes. If the T90 of

a GRB is longer or shorter than 2 seconds,§ it is classified as a long or short GRB,

respectively. The most plausible scenario for the progenitor of long GRBs is a stellar

collapse of a massive star to (i) a black hole with a forming accretion disk or (ii) a highly

magnetized neutron star (Ott 2009). In contrast, for short GRBs, it is believed that the

inspiral merging process of a compact binary system composed of at least one neutron

star such as a binary neutron star (BNS) or a neutron star-black hole binary (NS-BH)

is the most viable progenitor model (Berger 2014, Shibata & Taniguchi 2008).

The progenitor of short GRBs has been considered as one of the most promising

sources of gravitational-waves (GWs) (Abadie et al. 2012b) that can be detected by

the ground-based GW detectors such as the Laser Interferometer Gravitational-wave

Observatory (LIGO) (Abbott et al. 2009b) in the U.S. and Virgo (Acernese et al. 2008)

in Italy. Indeed, the LIGO scientific collaboration and the Virgo collaboration have

conducted searches for GW signals from compact binary coalescences (CBCs) related

to short GRBs (or CBC-GRB searches in short) with the data taken from two recent

joint runs (Abadie et al. 2010c, Abadie et al. 2012a, Aasi et al. 2014). The data of

the first joint search (Abadie et al. 2010c) were taken from the fifth LIGO science run

(S5) and the first Virgo science run (VSR1) and the data of the second search (Abadie

et al. 2012a) were taken from the sixth LIGO science run (S6) and the second and third

Virgo science runs (VSR2 and VSR3). On the other hand, the third joint search (Aasi

et al. 2014) used the data obtained from both joint runs, S5/VSR1 and S6/VSR2,3,

together. To try to observe relevant GW signals, the search pipelines for those previous

searches use a matched filtering method (Owen & Sathyaprakash 1999) with template

waveforms (Cokelaer 2007). From the matched filtering, the search pipeline finds events

which are highly correlated to the template waveforms by calculating the signal-to-

noise ratio (SNR). When events in more than one detecter have an SNR that exceeds

a predetermined search threshold, the events are recorded as a trigger. A trigger is

characterized by several statistical quantities, for example, the signal-to-noise ratios

(SNRs) in individual detectors, combined SNR statistics, values of various signal

consistency tests, and other variants of them which are used for other consistency tests

(refer to Ref. (Harry & Fairhurst 2011) for details). Thus, a trigger is characterized by

a multi-dimensional vector of values.

‡ It is defined by the time taken to accumulate 90% of the burst fluence starting at 5% of fluence level.
§ This fiducial time has been determined from the statistical distribution of observed duration times for

BATSE sample. Note that T90 = 0.8 seconds is used to distinguish between collapsar and non-collapsar

progenitors for Swift sample (Bromberg et al. 2013).
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Table 1. The observationally-obtained information of our test GRBs. RA and DEC

indicate right ascension and declination, respectively. The duration time T90 is given in

seconds. The values of duration time and redshift are obtained from Ref. (Berger 2014).

GRB
Observation

UTC Time RA DEC Duration, T90 (sec) Redshift

070714B 2007-07-14 T04:59:29 57.85◦ 28.29◦ 2.0 0.923

070923 2007-09-23 T19:15:23 184.62◦ −38.29◦ 0.05 N/A

Table 2. The characteristics of GW detectors related to selected GRBs in Table 1.

From the second to the fourth columns we summarize the antenna factors (Anderson

et al. 2001, Anderson et al. 2002) of each detector for ‘+’ and ‘×’ polarizations of

expected GWs with pairing them in parentheses such as (F+, F×). We present each

detector’s antenna response, F , which is defined by F = (F 2
+ + F 2

×)1/2, in the last

three columns, respectively.

GRB
Antenna Factor, F+,× Antenna Response, F

H1 L1 V1 H1 L1 V1

070714B (-0.25, -0.07) (0.27, 0.26) (-0.83, -0.03) 0.26 0.37 0.83

070923 (0.15, -0.28) (-0.13, 0.37) (0.56, 0.40) 0.32 0.39 0.69

In the recent CBC-GRB searches, two different ranking methods, a likelihood ratio

(Abadie et al. 2010c) and a detection statistic (Harry & Fairhurst 2011) were calculated

to classify whether a trigger is more likely to be caused by either a real GW signal

radiated from an expected astrophysical source or a noise artifact originated by non-

Gaussian and non-stationary noises coming from instruments and/or environments. The

classification was done by the estimation of the false alarm probability (FAP) of a trigger

based on the value of its detection statistic. The FAP of the triggers related to short

GRBs were consistent with background; no evidence of GW signals in the GW data was

found related to the considered short GRBs.

Over recent decades, various machine learning algorithms (MLAs) such as artificial

neural networks (ANN) (Hastie et al. 2009, Hecht-Nielsen 1989), random forests of

bagged decision trees (Breiman 1996, Breiman 2001), and support vector machines

(Cortes & Vapnik 1995, Cristianini & Shawe-Taylor 2000) have been developed and

evolved to analyze multi-dimensional data efficiently. Application of MLAs to many

problems including several GW related searches (Cannon 2008, Biswas et al. 2013,

Adams et al. 2013, Rampone et al. 2013) have shown good classification performances for

their nonlinear multi-dimensional data, which provides a complementary way of making

a decision. Specifically, a recent development of an advanced ANN algorithms called

Deep Learning (Deng & Yu 2013) offers a clear motivation of applying ANN to GW data

analysis. However, for the data set with a small sample size, relatively simple network
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structure can provide a satisfactory performance. In this motivation, we investigate

the feasibility of applying ANNs to the CBC-GRB search as a new way of ranking

a trigger. Moreover, we explore the possibility of the ANN as a potential method of

improving the classification efficiency. Even without the notion of Deep Learning, it is

quite significant to apply a standard ANN to CBC-GRB classification for improving its

detection performance, comparing to the convention detection statistic.

This paper is organized as follows. In Sec. 2, we summarize the data preparation.

In Sec. 3, we introduce the basics of the ANN employed in this work, summarize the

methodology of our investigation, and discuss the classification performance test. In

Sec. 4, we present the results of our application of ANNs in terms of the detection

sensitivity as a function of distance and the evaluation of unknown triggers. Finally, we

summarize the results and discuss the future prospects of this approach in the era of

the Advanced LIGO‖ and Advanced Virgo¶ detectors in Sec. 5.

2. Data Preparation

2.1. Gravitational-Wave Data

We focus on data from the fifth LIGO science run (S5) and the first Virgo science

run (VSR1). The S5 data has been taken from the two LIGO detectors (H1 and

H2) with 4 km and 2 km arms, respectively, in Hanford, Washington and a LIGO

detector (L1) with 4 km arms, in Livingston, Louisiana. The VSR1 data has been

taken from the 3 km arm Virgo detector (V1) at Cascina, Italy. Among the 22

short GRBs observed when at least two of the LIGO and Virgo instruments were

operating during the first joint search (S5/VSR1), we select two GRBs, GRB070714B

(Berger 2014, Racusin et al. 2007, Barbier et al. 2007a, Graham et al. 2007) and

GRB070923 (Berger 2014, Stroh et al. 2007, Barbier et al. 2007b), which were observed

by Swift satellite (Gehrels et al. 2004) and have corresponding GW data in three

detectors, H1, L1, and V1 available, coincidentally. The availability of using GW

data is determined by the requirements of both stable operation at the event time of

a GRB and provision of sufficient data (40 minutes in minimum) for the estimation of

background distribution. We summarise the observation information of GRB070714B

and GRB070923, including the event time and the sky location, in Table 1, and the

characteristics of corresponding GW detectors in Table 2.

In the previous search (Abadie et al. 2010c), the authors concluded that they could

find no evidence of GW signals related to these GRBs, GRB070714B and GRB070923;

the estimated false alarm probabilities (FAPs) for the selected GRBs were consistent

with the noise hypothesis. The exclusion distances to the potential progenitors of a

GRB with 90% confidence level were computed — 3.2 Mpc to a BNS progenitor and 5.1

Mpc to a NS-BH progenitor for GRB070714B, and 5.1 Mpc to a BNS progenitor and

‖ https://www.advancedligo.mit.edu
¶ https://wwwcascina.virgo.infn.it/advirgo
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Table 3. Brief description of the input variables we consider. One can find more

detailed descriptions and forms of listed features in Ref. (Harry & Fairhurst 2011).

Input Variable Description

Single detector’s SNR, ρIFO Signal-to-noise ratio (SNR) value obtained from each

of the detectors’ data where IFO = H1, L1, or V1.

In this work, we have ρH1, ρL1, and ρV1
Coherent SNR, ρcoh Coherent combination of the complex single detector’s

SNRs

Coherent χ2-test value Mitigating non-Gaussian noise contribution by testing

the differences between template waveforms and instru-

mental/environmental noise

New SNR, ρnew Filtered ρcoh by checking whether the χ2-test value is

larger or smaller than the number of degrees-of-freedom

of χ2 statistic

Coherent bank χ2-test value Testing the consistency of the observed ρcoh over

different template waveforms in the template bank at

the time of signal candidate trigger

Coherent auto-correlation Testing the consistency of the observed ρcoh over SNR

χ2-test value time series around the trigger in the template bank at

the time of signal candidate trigger

Masses Component masses of a binary system, m1 (BH) and

m2 (NS)

7.9 Mpc to a NS-BH progenitor for GRB070923.

With the given GRBs’ observation information, we run the coherent search pipeline

(Harry & Fairhurst 2011), which has been used for a recent CBC-GRB search (Abadie

et al. 2012a), on the data from the sixth LIGO science run (S6) and the second and

third Virgo science runs (VSR2 and VSR3). As a first step, the pipeline coherently

combines the data from the three operational detectors, H1, L1, and V1. Next, the

pipeline divides the combined data into several partial segments such as the on-source

and off-source segments (see Refs. (Abadie et al. 2010c) and (Abadie et al. 2012a)

for details of the segmentation). The on-source segment is [-5,+1) seconds around the

event times of selected GRBs. The off-source segment is 1944 seconds of data around

the on-source segment that does not overlap with the on-source segment.

The coherent search pipeline performs matched filtering (Owen & Sathyaprakash

1999) on the data with the template bank of GW waveforms (Cokelaer 2007). The

products of matched filtering are called as triggers : the on-source triggers denote triggers

that may contain a potential GW event candidate and the off-source triggers are believed

to be noise artifacts originated by instrumental and/or environmental noises. The off-
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source triggers are used for the background estimation of the on-source triggers. These

on- and off-source triggers are characterized by several statistical quantities and physical

parameters such as signal-to-noise ratio (SNR), various signal consistency tests, and

component masses of a binary system. The detection statistic (Harry & Fairhurst 2011)

of the coherent search pipeline can be calculated with these quantities and the estimation

of FAP becomes possible. Then, we determine whether an on-source trigger is a GW

signal or not based on the estimated FAP.

The coherent search pipeline also adds simulated waveforms+ to the off-source

segment∗ and this procedure is referred to software injections. Then the search pipeline

repeats the matched filtering on the software injected waveforms. The simulated

waveforms for the software injection are generated by the spinning TaylorT4 waveform

(Boyle et al. 2007) code in the LIGO Algorithm Library (LAL)] with correction terms up

to the 3.5 post-Newtonian order. In the generation of those simulated waveforms, several

physical parameters such as the masses and spins of component objects (NS or BH), and

the distance to the expected binary system need to be chosen. The details of choosing

physical parameters and their distributions are discussed in Appendix Appendix A.

From this procedure, we get software injection triggers which are separated into two

categories. If there is a trigger found within in 100 ms of the time of simulation, we

call that trigger as a found injection trigger (Predoi 2012). While, if not, it becomes a

missed injection trigger.

2.2. Training and Evaluation Samples

We configure two different sample sets, training and evaluation samples for the ANN.

For the performance test, we take the found injection triggers and off-source triggers

as the sets of signal samples, XS, and background samples, XB, respectively. With this

notation, we define similar notation xS and xB to denote each sample of XS and XB,

respectively, such as

XS = {xSl ; l = 1, 2, . . . , NS}, (1)

XB = {xBm;m = 1, 2, . . . , NB}, (2)

where NS and NB correspond the total number of the signal samples and the background

samples, respectively. In the preparation of samples for the performance test, the missed

injection triggers are discarded because they are improper for the purpose of training

ANN. Meanwhile, the on-source triggers are also not used for the performance test.

However, we use the on-source triggers as another set of evaluation samples in order

+ The template waveforms also can be called as simulated waveforms. However, the template waveforms

are used only for the matched filtering. Thus, we use the term of simulated waveform only for the

software injection to prevent confusion.
∗ The on-source segment is not used in order to avoid any contaminations in the potential candidate

GW event in the on-source segment.
] https://www.lsc-group.phys.uwm.edu/daswg/projects/lal/nightly/docs/html/
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(a) NS-BH model (b) BNS model

Figure 1. (Color online) The scatter plots of selected input variables for GRB070714B.

In each figure, a blue + denotes the signal sample and a red ‘×’ denotes the background

sample. As one can see, NS-BH and BNS model cases have the same distribution

in background samples. For signal sample, both models show similar distributions.

However, the bottom panels show that mass related distributions are significantly

different for both models.

to find the most significant (or, equivalently, the loudest) trigger among them and to

examine its significance.

2.3. Input Variables

For the configuration of the input variables of the multi-dimensional sample data, we

take the 8 statistical and 2 physical quantities from the CBC-GRB search pipeline

as input variables, since they are considered important in discriminating signals from

noise and in characterizing the GW sources††. We choose three single detectors’ SNRs

(ρH1, ρL1, and ρV1), coherent SNR (ρcoh), coherent χ2-test value, new SNR (ρnew) of

the coincidence, coherent bank χ2-test value, coherent auto-correlation χ2-test value,

and component masses, m1 and m2 for each trigger. The selected input variables

are tabulated in Table 3 with brief descriptions (For more details, see Ref. (Harry

& Fairhurst 2011)). We plot the scatter plots of several input variables, the coherent

SNR, the new SNR, the χ2-test value, and the component masses (m1 and m2) in Fig. 1.

From the figure, one can see that the distributions of statistical quantities have similar

shapes between the NS-BH and the BNS model. The mass-related distributions for the

††We investigated the influence of change in input variables by reducing the number of input

variables using linear correlation coefficient (Pearson 1895) and Principal Component Analysis (PCA)

(Izenman 2008). Reduction of input vector size did not significantly either improve or lower the

classification performance. Thus we decided to use every possible variable in order to maximize the

mount of information fed into ANN unless it impaired the performance.
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Figure 2. (Color online) A schematic example of an ANN. In this example, the

network topology consists of 1 input layer, 1 hidden layer, and 1 output layer. Each

colored circle corresponds to a node. In this figure, xi, yj , and zk represent nodes and

wij and wjk represent connection weights. In specific, bs are the bias nodes and w0j

and w0k are the connection weights from the bias nodes to the node(s) in next adjacent

layers.

signal samples are different, as expected given the injected ranges on masses for NS-

BH versus BNS systems (Appendix Appendix A). The background samples are exactly

the same for both NS-BH and BNS models because we use the same bank of template

waveforms for both models.

3. Classification Performance Test using Artifical Neural Network

3.1. Artificial Neural Network

The ANN (Hastie et al. 2009, Hecht-Nielsen 1989) is a widely-used machine learning

algorithm based on mimicking the biological neural system, which has been designed for

artificial intelligence. This algorithm can be simplified with some mathematical models,

which work as a black box system with data-driven input and output samples.

The implemented mathematical model includes nodes, a network topology, and

learning rules adopted to a specific data processing task. Nodes are described by their

number of inputs/outputs and the connection weights associated with each input and

output. The network topology is closely related to the connections between the nodes.

The learning rules represent how the connection weights are optimized. A node can be

activated if the summed value of input nodes exceeds its threshold value.

Among various models of ANNs with different topologies, the multi-layered

perceptron model (Rosenblatt 1961) is widely used for its efficient classification. The

model is composed of input and output layers as well as a few hidden layers in between.

We present a simple schematic example of a network topology in Fig. 2. For the nodes
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xi in the input layer, the features of an input sample are used. Those nodes in the

input layer are connected to the nodes yj in the adjacent hidden layer with different

connection weights wij. Then the value of yj is determined by an activation function f

as

yj = f(Nj), (3)

and Nj is defined by a linear combination of the xi and b such as

Nj ≡
i∑
i=1

xi · wij + b · w0j, (4)

where b denotes the bias node that makes the node yj activated and w0j indicates the

connection weight between the bias node in the input layer and the node yj. The

activation function can be chosen in various options such as sigmoid, piecewise linear,

step, and gaussian functions. Here, we choose the sigmoid function

f(Nj) = (1 + e−2sNj)−1, (5)

which is the activation function chosen in Ref. (Biswas et al. 2013). From Eq. (5),

one can see that the property of this sigmoid function is determined by the steepness

s. Also, if many hidden layers are given in a network topology, similar processes are

repeated until the connections will converge in the output layer.

In each layer, the learning algorithm finds the optimal connection weights between

nodes. We particularly use the improved resilient back propagation (iRPROP) algorithm

(Igel & Hüsken 2000), which minimizes the error between the output and the goal values.

We choose the Fast Artificial Neural Network (FANN) library package (Nissen n.d.) for

machine learning and find optimal connection weights by controlling parameters such

as the number of layers, the number of nodes in each layer, and so on, which are given

in the library.

We construct a simple network topology with one input layer, one hidden layer,

and one output layer. For our feature space of 10 input variables, we let 10 nodes be

placed in the input layer and put the same number of nodes in the hidden layer. In

the output layer, we have only 1 output node. Bias nodes in the input and the hidden

layers are systematically placed with a value of 1.0 in our model. For the steepness s

of the sigmoid activation function, we simply set it to be 0.5. These parameters are

empirically determined by considering the computational expenses and the efficiency of

the classification performance which will be described in Sec. 3.2.

When the network topology and other training parameters are fixed, we can train

the ANN with the training samples which have preassigned classes either 1 for a signal

sample or 0 for a background sample. The goal of the training process is to find the

most optimal set of connection weights such that the error between the values assigned

by the ANN and the target values of samples is minimized. In this work, the error is

represented by the mean-squared-error (MSE) that is defined as

MSE ≡ 1

N

N∑
k=1

∣∣ztk − zok∣∣2 , (6)
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where N is the total number of samples and ztk and zok are the target value of the output

and the observed value of a sample, respectively, of a sample. In this work, ztk is the

class (1 or 0) of a sample. Meanwhile, zok is determined by Eqs. (3) and (5) and zk
has a value between 0 and 1. We terminate the training process when MSE

stops decreasing and reaches a plateau with small oscillation around it as

the iteration evolves.

Samples of known and unknown class can be evaluated deterministically by the

trained ANN. The final zk value obtained after this evaluation process corresponds to

the prediction of whether a sample is a signal or not. Hereafter, we call the final zk as

the rank, r, of a sample.

3.2. Results

We introduce the receiver operating characteristic (ROC) curve in order to interpret

the result. The ROC curve is obtained by calculating the efficiency and FAP which are

defined as

Efficiency(R) ≡ NS(R)

NS

, (7)

FAP(R) ≡ NB(R)

NB

, (8)

where R denotes a threshold chosen among the ranks of evaluation samples. NS(R) and

NB(R) in the numerators of Eqs. (7) and (8) are defined as

NS(R) ≡ {xSl (r); r ≥ R, l = 1, 2, . . . , NS}, (9)

NB(R) ≡ {xBm(r); r ≥ R,m = 1, 2, . . . , NB}, (10)

respectively, that is, the number of evaluated signal samples and background samples

with scored ranks, r, exceeding a criterion rank value, R among all xSl (r) and xBm(r).

When we compute Eqs. (7) and (8), we only have ∼ 2,000 - 3,000 signal samples

and ∼ 6,000 - 7,000 background samples for the denominator NS and NB, respectively.

Therefore, if the numerator NB(R) is 1, the minimum value of FAP becomes ∼10−4 due

to the number of background samples. That value corresponds to a ∼3.89-σ confidence

level in a sense of the normal distribution. However, since we desire a confidence level of

at least 5-σ (FAP of ∼10−7) to confidently claim the detection of a real GW signal event,

using only the samples from a single segment limits our ability to determine significance

on the expected level. In order to reach this minimum FAP, we need to include more

background samples. This issue is not addressed in this paper, but we discuss how we

can increase the background samples for future work in Appendix B.

In order to fairly evaluate our classification efficiency, we split the full set of signal

and background samples prepared in the previous section into training and evaluation

samples via a round-robin process (see Appendix C for details). Then we train the ANN

with the training samples and test the classification performance with the evaluation

samples. The training process ends with the MSEs reaching 0.08 and 0.06 for NS-BH
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Figure 3. (Color online) Histogram of ranks scored on evaluation samples of NS-BH

model for GRB070714B using the result of evaluation trial #1.

model and BNS model, respectively.† We find that each of the trained ANNs result in

different ranks on some of evaluation sample depending on the randomly given initial

connection weights. Therefore, we repeat the training process 100 times in order to

see distribution of rank and to obtain a representative statistical quantity for a given

evaluation sample. The method for obtaining representative statistical quantity will be

discussed later. From the repeated trials, it is shown that the resulted MSEs are similar

to the values stated above for all trials of both NS-BH and BNS cases. Then we evaluate

the evaluation samples with each trained classifier. In Fig. 3, we present a histogram

of ranks scored on evaluation samples by using the result of evaluation trial #1 out of

100 trials. One can see that the scored ranks of both signal and background samples

are widely spreaded between 0 and 1. This result shows that the ANN does not classify

the given data clearly.

We also show the ROC curve of each trial in Fig. 4. The ROC curves are given

in the Fig. 4 by calculating Eqs. (7) and (8) by varying R in a range from Rmin with

NB(Rmin) = NB to Rmax with NB(Rmax) = 1. In particular, if NB(R) = NB, Eq.

(8) becomes 1 and this special point corresponds to the point at the upper-right corner

of the ROC curves. On the other hand, NB(R) = 1 corresponds to the leftmost point,

i.e., the minimum FAP of each curve. This variation in R is consistently applied to

both NS(R) and NB(R). As one can see from the ROC curves in Fig. 4, when we

repeat the training and evaluation processes many times (100 trials in our case), we

find that there are large variations in the efficiency below FAP of ∼ 10−3 of each run:

We find that when (i) the maximum rank of all background samples is greater than

† For this result, one can guess that it seems to be stuck in local minima. However, recent works

(Pascanu et al. 2014, Dauphin et al. 2014) explain that there does not exists distinct local minimum

comparing to the global minimum in the higher dimensional non-convex optimization. Instead they

are all similarly long plateaus or saddle points that leads to slow down the learning convergence.
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Figure 4. (Color online) The ROC curves drawn via ranks of NS-BH model for

GRB070714B. This figure is obtained from 100 trials of training and evaluation, using

the same data and fixing the training parameters (except for the random seed) for all

trials.

Figure 5. (Color online) The histogram of ranks scored on a background sample (ID

#2657) of NS-BH model for GRB070714B.

that of all signal samples or (ii) the number of signal samples exceeding the maximum

rank of background samples is small, the efficiency at the minimum FAP is significantly

decreased. On the other hand, when (i) the maximum rank of background samples is

smaller than the maximum rank of signal samples and (ii) there are many signal samples

exceeding the maximum rank of background samples, the efficiency can be increased at

the minimum FAP.

Simple statistics such as mean and standard deviation can hardly represent either

the distribution of efficiencies at the minimum FAP or the distributions of ranks
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(a) NS-BH model for GRB070714B (b) BNS model for GRB070714B

(c) NS-BH model for GRB070923 (d) BNS model for GRB070923

Figure 6. (Color online) The histogram of the maximum likelihood ratios of the signal

and background samples. The blue bars and red bars denote the signal samples and

the background samples, respectively. One can see that about half of signal samples

are clearly separated from the distributions of background samples for all considered

cases.

for the given samples as shown in Fig. 5. Therefore, in this work, we adopt the

maximum likelihood ratio (MLR) which is shown to be an optimal method in obtaining

a representative quantity for GW data (Biswas et al. 2012, Biswas et al. 2013).

The MLR for an n-th sample can be calculated by

λ(rn) = max
rαn

{∫ 1

rαn
p(rα

′
n |1)drα

′
n∫ 1

rαn
p(rα′

n |0)drα′
n

}
= max

rαn

{
P1(r

α
n)

P0(rαn)

}
, (11)

where α denotes the trial (α = 1, 2, . . . , 100) and rαi indicates the rank of i-th sample

in a trial α. As one can see from Eq. (11), we find the maximum value of the ratio

between the probability of correctly finding a true signal (P1) and the probability of

finding a false signal (P0). Thus, in our case, Eq. (11) can be rewritten as

λ(rn) = max
rαn

{
Efficiency(rαn)

FAP(rαn)

}
. (12)

In Fig. 6, we plot the distribution of MLRs. From this figure, one can see that the
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(a) NS-BH model for GRB070714B (b) BNS model for GRB070714B

(c) NS-BH model for GRB070923 (d) BNS model for GRB070923

Figure 7. Comparion of the ROC curves of the ANNs’ results against to the detection

statistic of the coherent CBC-GRB search. The black solid line indicates the ROC

curve of the ANNs with the MLR and the gray solid line indicates that of the detection

statistic. The gray dashed-line is caused by the discontinuity of the calculated efficiency

and FAP with the detection statistic.

background samples have finite values of MLR. However, for signal samples, about half

of samples have similar values of MLR to the values of background samples and the

rest of them are separated from the range of finite MLRs and take an infinite value.

This tendency is consistently shown in all considered cases. The infinity MLR of signal

sample can be easily derived from Eq. (11), i.e., if there are no background samples

exceeding rn, then FAP(rn) becomes 0 and it leads λ(rn) to be infinity. Also, when we

compare this Fig. 6 to the histogram of ranks in Fig. 3, we see that the classification

efficiency with the MLR is enhanced by the fraction of clearly separated signal samples.

With the MLR, the efficiency and FAP of Eqs. (7) and (8) are changed to

Efficiency(Λ) ≡ NS(Λ)

NS

, (13)

FAP(Λ) ≡ NB(Λ)

NB

, (14)
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(a) NS-BH model for GRB070714B (b) BNS model for GRB070714B

(c) NS-BH model for GRB070923 (d) BNS model for GRB070923

Figure 8. Detection sensitivity of obtaining found injection triggers with respect to

the distance to the short GRB’s progenitor. The distances used in this plot are the

parameters of the software injeciton. We only consider the found injection triggers

which have FAPs ≤ 0.1%. The error bar is drawn with 1-σ confidence level based on

the normal distribution.

where

NS(Λ) ≡ {xSl (λ);λ ≥ Λ, l = 1, 2, . . . , NS}, (15)

NB(Λ) ≡ {xBm(λ);λ ≥ Λ,m = 1, 2, . . . , NB}, (16)

and the ROC curves with Eqs. (13) and (14) are drawn in Fig. 7 by varying Λ from

Λ = λBmin to Λ = λBmax. From this figure, one can see that the ROC curves with the

MLR are more or less similar to the maximum efficiency calculated via the rank given

in Fig. 4. Also, we see that ANNs’ performances are improved by 5-10% compared to

the detection statistic as expected from the histogram of Fig. 6. Therefore, we conclude

that the MLR-aided ANN can improve the classification performance.

Meanwhile, when we compare NS-BH model and BNS model of each GRB data,

we find that the classification efficiency of the BNS model is better than that of the

NS-BH model. To understand this difference, we look the scatter plots of m1 vs. χ2

in Fig. 1. From the scatter plot of NS-BH model, one can see that the m1 parameters
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of signal and background samples are distributed almost in the same region. On the

other hand, the scatter plot of the BNS model shows that the m1 parameters of signal

samples have different distribution, that is, rather squeezed distribution compared to

the distribution of background samples. From this comparison, we expect that if there

are visible differences in the distributions of feature parameters, m1 in this case, the

classification performance of ANN is biased by the training samples.

4. Applications

4.1. Detection Sensitivity on Distance

So far, we have demonstrated the applicability ANNs to classifying the samples

generated by running the CBC-GRB coherent search pipeline on the selected data

segments and have demonstrated the ANN’s classification performance on the data

classification via plotting the ROC curves.

In this section, we demonstrate the results of performance test in terms of an

astrophysical observable, i.e., the distance. It is possible to estimate the detection

efficiency as a function of the distance since we have set the distribution of possible

distance range for the simulated signals.

Firstly, we define the number of found injection samples that is exceeding a criterion

MLR, ΛT in a l-th distance bin [Dl, Dl+1) such as

N found
inj (ΛT )|

[Dl,Dl+1)
= {xfound

inj (λ);λ ≥ ΛT}|
[Dl,Dl+1)

. (17)

Here, we set ΛT to give 0.1% of FAP (or, equivalently, 3.29-σ confidence level). With Eq.

(17), we define the fraction of correctly classified signal samples, P , for each distance

bin, [Dl, Dl+1), such as

P (ΛT )|[Dl,Dl+1) ≡
N found

inj (ΛT )|
[Dl,Dl+1)

Ntot
inj (ΛT )|

[Dl,Dl+1)

, (18)

where the denominator denotes the total number of signal samples in a given distance

bin and it is defined as

Ntot
inj (ΛT )|

[Dl,Dl+1)
≡ N found

inj (ΛT )|
[Dl,Dl+1)

+

Nmissed
inj (ΛT )|

[Dl,Dl+1)
. (19)

In order to get the appropriate numbers of both terms, N found
inj (ΛT ) and Nmissed

inj (ΛT ) in

the right-hand-side of Eq. (19), we use the found injection triggers and missed injection

triggers, respectively. We can see that if there are no missed triggers in a distance bin,

namely, Nmissed
inj equals zero, then

Ntot
inj (ΛT ) = N found

inj (ΛT ) (20)
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Table 4. Distances where 90% of injection triggers can be correctly classified by

detection statistic and ANNs. As in Fig. 8, we only consider injection triggers which

have FAPs are equal to or smaller than 0.1%.

Data Waveform Type
Distance at 90% of Probability

DetStat ANNs

GRB070714B
NS-BH 23.9 Mpc 24.5 Mpc

BNS 12.7 Mpc 14.8 Mpc

GRB070923
NS-BH 28.1 Mpc 28.5 Mpc

BNS 16.0 Mpc 17.2 Mpc

is easily derived from Eq. (19) and the right-hand-side of Eq. (18) becomes 1. With

the calculated P (ΛT ), we draw the detection sensitivity vs. distances to the progenitor,

as presented in Fig. 8 for the given distance bins. One can see that the signal samples

injected in the close distance range (. 10 Mpc) are mostly found injection events and

the number of missed injection events gradually increases as the distance becomes larger.

We also draw error bars assuming a binomial distribution with 1-σ confidence interval

for each plotting point.

From Fig. 8, we clearly see that the ANN is a more efficient tool in detecting

short GRBs at large distances for a fixed probability of finding correctly classified signal

events. The detectable distances at 90% of detection efficiency are summarized in Table

4. The distances in this table mean that, if a short GRB event occurs within this

distance, the probability of detecting the GW signal associated with the GRB event is

90% at least. Thus, if the detection of a GW signal is successful and we can properly

recover the distance parameter of the waveform of the GW signal, we can estimate the

distance to the progenitor of the observed event, i.e., the common source of the GW

signal and short GRB.

However, the distances summarized in Table 4 are not the exclusion distance to

the co-progenitor of a GW signal and a short GRB event. To calculate the exclusion

distance, we need to take the errors such as error in the calibration of GW data and

error in the amplitude of template waveform into account. Thus, it is hard to directly

compare our results to the exclusion distances given in the result of the previous search

(Abadie et al. 2010c).

4.2. Evaluation of Unknown Triggers

We would like to extend this work to the classification of unknown triggers. For this

purpose, we use some triggers in a randomly chosen 6 seconds block of the buffer
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segment‡ to mimic an on-source segment§ and evaluate them with the trained ANNs in

the previous section. We believe that no triggers in the buffer segment are associated

with any GRB.

The coherent search pipeline finds 37 triggers and 27 triggers, respectively, in each

of the selected blocks in buffer segments of GRB070714B and GRB070923. We evaluate

these triggers 100 times with the 100 sets of different connection weights as done in

the previous section and then combine their ranks with the MLR. The distribution of

calculated MLRs of the unknown triggers are plotted in Fig. 9. When we compare

this figure with Fig. 6, it looks like all unknown triggers, even the loudest triggers, can

be seen as either signal or background samples for both NS-BH and BNS model cases.

From this comparison, we suggest a criterion: if the MLR of the loudest unknown trigger

λunknown is smaller than the loudest MLR of background samples λBmax, the loudest

trigger is close to a background event. On the other hand, if λunknown is greater than

λBmax, the FAP becomes zero because the numerator of Eq. (14) becomes zero under

this condition.

Meanwhile, the loudest triggers of the NS-BH and BNS models are different (7th and

21st triggers, respectively, among 37 triggers in the GRB070714B buffer segment and 7th

and 15th triggers, respectively, among 27 triggers in the GRB070923 buffer segment).

We examine these triggers more precisely by estimating the FAPs of the loudest triggers

as drawn in Fig. 10. Here, we have changed the entry of background samples from

all off-source triggers to the selected off-source triggers which are the triggers having

the loudest MLR of each 6 seconds block as done in Ref. (Abadie et al. 2010c).‖ From

this change, the number of reduced background samples, N ′B becomes 324 and Eq. (16)

changes to

N ′B(Λ′) = {xBq (λ′);λ′ ≥ Λ′, q = 1, 2, . . . , 324}. (21)

In Fig. 10, we draw the FAPs of background samples as gray lines using Eq. (14) by

varying from Λ′ = λ′Bmin to Λ′ = λ′Bmax. From these figures, we see that the FAPs of

the loudest unknown triggers are placed on the line of FAPs of the background samples.

If they were real GW signals, the loudest triggers should be placed out of the line

of FAPs of the background samples, i.e., it should be placed in more left and upper

area of the minimum FAP.¶ This result shows that those loudest unknown triggers are

less significant than the loudest background sample and are not GW signals. Also,

‡ The buffer segment is adopted to prevent biasing our background estimation due to a potential loud

signal in the on-source segment (Fotopoulos 2010). Therefore the buffer segment is placed between the

on- and off-source segment.
§ In the real CBC-GRB search, we do not know whether the on-source triggers are real GW signals or

noise artifacts. Thus we intend to mock up the situation.
‖ In Ref. (Abadie et al. 2010c), the authors were interested in the existence of GW signal within the 6

seconds on-source segment via examining the most significant trigger. Thus, they divided the off-source

segment into 6 seconds long 324 trials to estimate the distribution off background due to the accidental

coincidences of noise triggers.
¶ For this case, we need more precise follow-up analysis, e.g., testing correlation with known background

events.
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the calculated FAPs are 0.14 (NS-BH) and 0.21 (BNS) for the loudest triggers in the

GRB070714B buffer segment and 0.46 (NS-BH) and 0.56 (BNS) for the loudest triggers

in the GRB070923 buffer segment. Therefore, we conclude that we find no significant

trigger in the selected 6 seconds block.

5. Summary and Discussion

In this work, we discuss the improvement of the search performance for GW candidate

events related to short GRBs by using ANN algorithm compared to a conventional

detection statistic. With this demonstration, we aim to increase the search sensitivity

on GWs associated with short GRBs.

We use the GW data obtained by the LIGO and Virgo detectors during S5 and

VSR1 and take short GRBs, GRB070714B and GRB070923 as test samples. By using

the coherent CBC-GRB search pipeline, on-source, off-source, and software injection

triggers are generated. For the generation of the software injection triggers, we consider

both NS-BH and BNS binaries as the progenitor of a GRB for the determination of

component masses. We set the distributions of the distances to the progenitors to have

different ranges depending on the detectors’ responses at the given event time and/or on

the type of binary system. We train ANNs with taking found injection triggers as signal

samples and off-source triggers as background samples. Then, we evaluate test samples

with the trained ANNs. Each sample for both training and evaluation is characterized

by the 8 statistical quantities and 2 physical quantities listed in Table 3.

The training process is done by minimizing the error between the observed value

from a given ANN and the target values of samples. In this work, the error is calculated

by the mean-squared-error (MSE), which is defined in Eq. (6). For this result, one can

suspect that the training processes were stuck in local minima. Recent work (Pascanu

et al. 2014, Dauphin et al. 2014) show that there is no such distinct local minima

compared to the global minimum in the higher dimensional non-convex optimization.

It appears however that the performance on data classification vary significantly

between the trained ANNs. We find that this variation results from the statistical

variance in the ANN algorithm because ANN uses a randomly distributed initial input

configuration. Therefore, we need to mitigate the variation in order to get a reliable

interpretation on our results. For the mitigation of the statistical variance, there are

several possible ways of reducing the variance, for example, calculating ensemble average

of ranks, taking median value, and computing maximum likelihood ratio (MLR). Among

those, we adopt MLR because the other two methods are not suitable to the data as

shown in Fig. 5. Moreover, the MLR method has already been shown to be an optimal

method in obtaining a representative quantity for GW data in Refs. (Biswas et al. 2013)

and (Biswas et al. 2012). With this prescription, we resolve the variance in ranks and

the classification performance by combining the results from 100 trials.

As a result of the performance test, we see that the background samples have finite

values of MLR from the distribution of MLRs given in Fig. 6. However, for signal
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samples, about half of samples have similar values of MLR to the values of background

samples and the rest of them are separated from the range of finite MLRs and take an

infinite value. This tendency is consistently shown in all considered cases. When we

compare this Fig. 6 to the histogram of ranks in Fig. 3, we see that the classification

efficiency with the MLR is enhanced by the fraction of clearly separated signal samples.

Also, we examine the improvement in the classification performance by comparing

the ROC curves, instead of directly comparing the ranks of two ranking methods,

because there is no rule to connect two different ranks, scored independently by the

conventional detection statistic or by the ANN. When we look the ROC curves, we

find that the ROC curve obtained by MLR are more or less similar to the maximum

efficiency calculated via the ANN’s rank given in Fig. 4. From the comparison of the

ROC curves between the one obtained by using the conventional detection statistic and

the other one obtained by using the ANN, we see that the data classification efficiency

at the minimum false alarm probability (FAP) is improved by 5% – 10% as expected

from the histogram of Fig. 6. Therefore, we conclude that the MLR-aided ANN can

improve the classification performance.

Meanwhile, when we compare NS-BH model and BNS model of each GRB data,

we find that the classification efficiency of the BNS model is better than that of the

NS-BH model. To understand this difference, we look the scatter plots of m1 vs. χ2

in Fig. 1. From the scatter plot of NS-BH model, one can see that the m1 parameters

of signal and background samples are distributed almost in the same region. On the

other hand, the scatter plot of the BNS model shows that the m1 parameters of signal

samples have different distribution, that is, rather squeezed distribution compared to

the distribution of background samples. From this comparison, we expect that if there

are visible differences in the distributions of feature parameters, m1 in this case, the

classification performance of ANN is biased by the training samples.

For the real search, we need to support the identification of a GW signal related

to a short GRB event by recovering thel distance to the progenitor of GWs. With the

help of the observations on GRBs during recent decades, one can estimate the redshift

of the event and estimate the distance to the source. However, the redshift of short

GRBs is not determined well because the duration time of afterglow of a short GRB

is not long enough to localize the position of the host galaxy which is need to perform

spectroscopic analysis for measuring relevant redshift (Rowlinson et al. 2010). Also, the

uncertainty on the sky location occurred by the large field of view of the GRB telescope

such as Fermi satellite (Meegan et al. 2009) hinders the accurate measurement of the

short GRBs’ redshifts. So, we know the redshift values only for several short GRB

events, e.g., 4 GRBs out of 22 GRBs analyzed for the Ref. (Abadie et al. 2010c). Thus,

if we can detect a GW signal related to a short GRB and if the detection efficiency as

a function of the distances can be provided, we may obtain more accurate information

on the distance to the source in addition to the redshift measurement.

We extend the results of the MLR-aided ANN’s classification performance to the

estimation of the sensitivity of analysis as a function of the distance which denote
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the upper bound of the distance where we can observe a GW event within the given

distance. In this work, it is possible to estimate this quantity since we have set the

distribution of possible distance range for the simulated signals. For this estimation,

we assume that mass parameters are marginalized. From the results presented in Fig.

8 and Table 4, we find that the sensitivity of analysis as a function of the distance

at 90% of probability can be increased by ∼ 1.4% – 16.5% compared to the distance

calculated with the conventional detection statistic. This means that if a GW event

occur at a distance which are greater than the distance estimated by the conventional

detection statistic and smaller than the distance estimated by the MLR-aided ANN, we

can identify that event with MLR-aided ANN. Therefore, it is shown that the estimated

sensitivity of analysis obtained by using the MLR-aided ANN’s classification results

allows us to observe more events occurring at farther distance than the conventional

method. However, as discussed in Section 4.1, the distances summarized in Table 4 are

not the exclusion distance to the co-progenitor of a GW signal and a short GRB event.

To calculate the exclusion distance, we need to take the errors such as error in the

calibration of GW data and error in the amplitude of template waveform into account.

Thus, it is hard to directly compare our results to the exclusion distances given in the

result of the previous search (Abadie et al. 2010c).

We apply our analysis to the data in the buffer segment of the two GRBs. From

the evaluation of triggers in the buffer segment, we see that the loudest triggers are

placed on the line of FAPs of the background samples as shown in Fig. 10. If they were

real GW signals, the loudest triggers should be placed out of the line of FAPs of the

background samples, i.e., it should be placed in more left and upper area of the minimum

FAP. Therefore, this result shows that those loudest triggers are less significant than

the loudest background sample and they cannot be GW signals. The estimated FAPs

are 0.14 (NS-BH) and 0.21 (BNS) for the loudest triggers in the GRB070714B buffer

segment and 0.46 (NS-BH) and 0.56 (BNS) for the loudest triggers in the GRB070923

buffer segment. Therefore, it can be concluded that we find no significant event with

the analysis with MLR-aided ANN on the buffer triggers.

In this analysis, the lowest obtainable FAP, that is defined by one over the number

of background samples which are determined by the pipeline, is found to be much higher

(∼ 10−3) than the required value (≤ 10−7) for a clear declaration of a GW signal. In

order to lower the minimum FAP to the expected level, we need to have at least 10,000

times more background samples with such a method given in Appendix B: adding more

segments not far from the original segment by seeking additionally available segments

via shifting original GRB’s event time by sidereal days to get segments with the fixed

sky location because we may assume that the profile of background transients around

given sky location are not much differ from the originally interesting segment. As an

alternative method of getting additional background samples, (i) time slides of GW data

(Abadie et al. 2010b) or (ii) extrapolating given distribution of FAP such as done in Ref.

(Adams et al. 2013) can be adopted. It remains as a future work how to implement

those methods in the analysis.



Application of aritificial neural networks to CBC-GRB search 22

Table 5. The horizon distance and volume-weighted average distance range of each

detector. All tabulated values are given in unit of Mpc. For the horizon distances of

H1 and L1, we take the maximum value of given range in Ref. (Abbott et al. 2009a).

Meanwhile, we read the value of mode from Fig. 1 of Ref. (Abadie et al. 2010d) for

the horizon distance of V1. Among the values of volume-weighted average distance

ranges, asterisks indicate the decisive distances.

Data
Horizon Distance, DIFO

h Volume-Weighted Average Distance, D̃IFO

H1 L1 V1 H1 L1 V1

GRB070714B 35.0 35.0 7.5 9.1∗ 12.9 6.2

GRB070923 35.0 35.0 7.5 11.1∗ 13.7 5.2

Throughout this work, we investigate the feasibility of application of ANN to

CBC-GRB search as a new ranking method and we find that it can improve the

search performance by estimating the FAP and the detectable distance. Therefore,

we would suggest that the artificial neural network can be a complementary method to

the conventional detection statistic for identifying gravitational-wave signals related to

the short gamma-ray bursts.

We however have a limit obviously in arguing the robustness and the consistency of

this approach since we have tested only four-cases (two GW data × two binary models).

This fact means that we need to test more data. As a possible way of obtaining more

test data, we may consider to use GW data for other targeted GRBs summarized in

Ref. (Abadie et al. 2010c, Abadie et al. 2012a, Aasi et al. 2014). Or, alternatively,

we may choose random sky locations and random times to generate triggers, instead

of restricting our focus to known GRBs’ event times and sky locations, because we

know that GRBs are isotropically distributed in the sky. So, in a future work, we will

test more data to examine the robustness of this approach and will discuss the general

characteristic of this analysis method.
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Appendix A. Physical Parameters of Simulated Waveforms for Software

Injection

In this section, we need to corroborate some physical parameters such as mass, distance,

and spin that are used in the generation of simulated waveforms. These parameters

represent various types of GW progenitors and the property of waveform itself. For the

mass parameter, we consider two appropriate binary systems such as BNS and NS-BH as

the sources of simulated signals based on the predicted event rates (Abadie et al. 2010a).

For the neutron stars in the BNS system, their masses are given in range of 1-3 M�
with mean mass, mNS = 1.4 M� and standard deviation, σNS = 0.2 M� with the

assumption of the Gaussian distribution. Similarly, for the NS-BH system, the ranges

of component masses are set as mNS = 1-3 M� (mNS = 1.4 M� for neutron star and

σNS = 0.4 M�) and mBH 2-25 M� (with mBH = 10 M� and σBH = 6.0 M�) for

black hole under the assumption of the Gaussian distribution too (for details, see Ref.

(Abadie et al. 2012a)).

One can expect from the name of used waveforms for this software injection that

they contain spin effect on the contrary to the template waveforms for the matched

filtering process. With observed information and models (Mandel & O’Shaughnessy

2010, Hessels et al. 2006) we assume possible ranges of spin magnitudes for NS and

BH as [0,0.4] and [0,0.98), respectively. Therefore, we set possible values of them to be

uniform in given ranges with random orientation.

When we take the spinning waveform into account, the related important parameter

for describing a binary system is the inclination angle which describes size of angle

between the direction of the total angluar momentum and the line of sight to the

observer because the strength of a GW to a detector can be varied depending on the

angle. Many observations and models suggest that a GRB is generated by cone-shaped

outflow from a CBC system (Burrows et al. 2006, Grupe et al. 2006, Dietz 2011). From

these, it is supposed that when the inclination angle is placed within the cone it is

possible to find a GW signal directly related to a short GRB. Thus, the pipeline uses

four different half-opening angles, 10◦, 30◦, 45◦, and 90◦ as possible sizes of cone and it

allows the inclination angle to be distributed within the cone (for more details refer to

Ref. (Abadie et al. 2012a)). We only take 10◦ for simplicity.

The range of distances to the progenitors are differently determined by the type

of progenitor and applied with taking the detectors’ sensitivities on given GRB’s sky

location into account too. To estimate the sensitivity, first, we need to calculate the

antenna response, F (Allen et al. 2012):

F =
(
F 2
+ + F 2

×
)1/2

, (A.1)

where F+ and F× are the antenna factors of a detector for the ‘+’- and ‘×’-polarizations

of a GW signal, respectively (for more details see Ref. (Allen et al. 2012)). These F+,×
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represent the amount of sensitivity on each polarization of the incident GW signal. A

GRB’s event time and its sky location play an important role in the determination of the

values of F+,×. The determined values of F+,× and F of each detector for the selected

GRB are summarized in Table 2. In particular, if the value of F is 1, one finds that

the detector is at mostly optimal location for the putative GW source at that location.

On the other hand, 0 value means that it is impossible to see any GW signals with that

detector. When we obtain the antenna response F of each detector, we can calculate

the volume-weighted average distance range D̃IFO (Finn & Chernoff 1993) by simply

multiplying F to the horizon distance DIFO
h (Abbott et al. 2009a, Abadie et al. 2010d)

D̃IFO = FIFO ×DIFO
h , (A.2)

where IFO of the superscripts stands for interferometric observatories, H1, L1, or V1.

The horizon distances DIFO
h and volume-weighted average distances D̃IFO of relevant

detectors for GRB070714B and GRB070923 are listed in Table 5. From the values of

D̃IFO, we can read the upper limit of reachable distance of each detector. That is, if a

GW event is occurred within the distance limit at the given sky location, we may detect

that event. Among the listed D̃IFO in Table 5, in particular, we choose the second

largest value as the decisive distance for the GRB070714B as done in Ref. (Abadie

et al. 2012a). Resultantly, applied distance ranges for the software injection are 2-30

Mpc for BNS system and 2-72.5 Mpc for NS-BH case. We also suppose that the sources

of GWs are distributed in uniform within the ranges.

Appendix B. Lowering the Minimum False Alarm Probability

For the issue of the lowering the minimum FAP, we may consider a method suggested

by Ghosh et al. (Ghosh et al. 2013) to increase the number of background samples. The

main feature of suggested method is adding more segments not far from the original

segment. To take account this, they assume that the profile of background transients

around given sky location are not much differ from the originally interesting segment.

With this method, we seek additionally available segments via shifting original GRB’s

event time by sidereal days to get segments with the fixed sky location. From the shifting

10 sidereal days, such as from 1- to 5-days before and after the original event time of

GRB070714B, we find that there are 6 more available segments. For the availability

of segments, we check whether each detector includes the extended data or not. The

information about additional segments are summarized in Table B1. From this table,

one can see that the availability of additional segments are tested based on the type of

GW detectors’ network on each of the shifted sidereal days. As a result, we obtain at

least 6 times more background samples and find that it is possible to lower the minimum

FAP to ∼10−5 (∼4.4-σ) with the increased number of background samples.

On the other hand, Clark et al. (Clark et al. 2014) also suggest that time slides

of GW data could be used as an alternative method of getting additional background

samples.



Application of aritificial neural networks to CBC-GRB search 25

Table B1. List of available segments for GRB070714B. The day shifts are done based

on the sidereal day. Because the GW data for this GRB was a triple coincident data

of H1, L1, and V1, the available additional data segments are only 6 segments of the

day-5, -3, -1, +1, +2, and +5.

Day UTC Time Detected IFOs

-5 2007-07-09 T05:19:08.54180 H1, L1, V1

-4 2007-07-10 T05:15:12.63344 H1, L1

-3 2007-07-11 T05:11:16.72508 H1, L1, V1

-2 2007-07-12 T05:07:20.81672 H1, V1

-1 2007-07-13 T05:03:24.90836 H1, L1, V1

+1 2007-07-15 T04:55:33.09164 H1, L1, V1

+2 2007-07-16 T04:51:37.18328 H1, L1, V1

+3 2007-07-17 T04:47:41.27492 H1, V1

+4 2007-07-18 T04:43:45.36656 H1, L1

+5 2007-07-19 T04:39:49.45820 H1, L1, V1

Appendix C. Round-Robin Process

In the preparation of input samples, we conduct a pre-process, called round-robin

process, on the sample data before performing training process. The purpose of this pre-

process is to mitigate the possibility of overestimation (or, equivalently, overtraining)

which may be occurred by inadequate training with small or limited numbers of sample

data. In order to successfully implement this pre-process and reduce the rate of

overtraining, we prepare M sets of round-robined sample data by evenly dividing

the whole samples of XS and XB into M different sets of Xk
Ss and Xk

Bs, where

k = 1, 2, . . . ,M , in the same manner: a set to be consistently composed of one-tenth of

total signal samples and one-tenth of total background samples. When it is done, there

are no overlaps between the samples in one set and the samples in other sets. Then, to

make a pair of training and evaluation sets, we let one of total round-robined sets to be

an evaluation set and rest of them be the pairing training set. Then, with the definition

in Eqs. (1) and (2), we can get the first pair of an evaluation set E1st and a training

set T 1st as follows:

E1st = X1
S ∪X1

B

= {xiS; i = 1, 2, . . . , N ′S} ∪ {x
j
B; j = 1, 2, . . . , N ′B},

(C.1)

T 1st = X2
S ∪ · · · ∪XM

S ∪X2
B ∪ · · · ∪XM

B
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= {xlS; l = N ′S + 1, N ′S + 2, . . . , NS}
∪ {xmB ;m = N ′B + 1, N ′B + 2, . . . , NB}, (C.2)

where N ′S = NS/M and N ′B = NB/M . Then, with same manner, other M − 1 pairs can

be configured as

E2nd = X2
S ∪X2

B

= {xiS; i = N ′S + 1, . . . , 2N ′S}
∪ {xjB; j = N ′B + 1, . . . , 2N ′B}, (C.3)

T 2nd = X1
S ∪X3

S ∪ · · · ∪XM
S ∪X1

B ∪X3
B ∪ · · · ∪XM

B

= {xlS; l = 1, . . . , N ′S}
∪ {xlS; l = 2N ′S + 1, . . . , NS}
∪ {xmB ;m = 1, . . . , N ′B}
∪ {xmB ;m = 2N ′B + 1, . . . , NB}, (C.4)

...

EMth = XM
S ∪XM

B

= {xiS; i = (M − 1)N ′S + 1, . . . , NS}
∪ {xjB; j = (M − 1)N ′B + 1, . . . , NB}, (C.5)

TMth = X1
S ∪ · · · ∪XM−1

S ∪X1
B ∪ · · · ∪XM−1

B

= {xlS; l = 1, . . . , (M − 1)N ′S}
∪ {xmB ;m = 1, . . . , (M − 1)N ′B}. (C.6)

Note that, from above relations, one can easily see that overlaps in configured samples

between different training sets are allowed while there are no overlaps between each of

evaluation sets. By repeating the similar paring for other sets we now have M pairs of

[T k, Ek] which are having different evaluation samples to each others. In this work, we

prepare 10 pairs of round-robined samples with setting M = 10.

Firstly we train ANN with the samples in a training set T k and then evaluate xiSs

and xjBs in a paired evaluation set Ek. In the training process, ANN recursively finds an

optimal connection weight between each node by the iRPROP algorithm. In practice,

we set the tolerance of error between the originally given ranks as either 1 or 0 for xiS or

xjB, respectively, and the value of output node to be 10−3. When the training process

is finished, the resulted connection weights are saved for the evaluation process. Then,

evaluation samples xiS and xjB get their ranks based on the trained result. Finally, from

the evaluation, ANN scores a rank between 0 and 1 for each evaluation sample.
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(a) NS-BH model for GRB070714B (b) BNS model for GRB070714B

(c) NS-BH model for GRB070923 (d) BNS model for GRB070923

Figure 9. (Color online) The histogram of the maximum likelihood ratios of unknown

triggers. For each case, one trigger has a relatively significant value of the MLR than

others. The loudest triggers of NS-BH and BNS models for GRB070714B are different

such as 6th and 20th triggers among 37 triggers. On the other hand, for GRB070923,

the loudest triggers of both NS-BH and BNS models are diffrent too (6th and 14th

among 27 triggers).
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(a) NS-BH model for GRB070714B (b) BNS model for GRB070714B

(c) NS-BH model for GRB070923 (d) BNS model for GRB070923

Figure 10. (Color online) The examination of the FAPs of the loudest unknown

triggers. The loudest trigger of each case is marked as blue star. The gray lines

indicate the FAPs of the background samples. As one can see that the FAPs of the

loudest triggers are placed on the line of FAPs of the background samples for both

models. This means that those loudest triggers are not GW signals but background

events.


