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ABSTRACT: Next-generation sequencing has greatly ac-
celerated the search for disease-causing defects, but even
for experts the data analysis can be a major challenge. To
facilitate the data processing in a clinical setting, we have
developed a novel medical resequencing analysis pipeline
(MERAP). MERAP assesses the quality of sequencing,
and has optimized capacity for calling variants, including
single-nucleotide variants, insertions and deletions, copy-
number variation, and other structural variants. MERAP
identifies polymorphic and known causal variants by fil-
tering against public domain databases, and flags nonsyn-
onymous and splice-site changes. MERAP uses a logistic
model to estimate the causal likelihood of a given missense
variant. MERAP considers the relevant information such
as phenotype and interaction with known disease-causing
genes. MERAP compares favorably with GATK, one of
the widely used tools, because of its higher sensitivity for
detecting indels, its easy installation, and its economical
use of computational resources. Upon testing more than
1,200 individuals with mutations in known and novel dis-
ease genes, MERAP proved highly reliable, as illustrated
here for five families with disease-causing variants. We
believe that the clinical implementation of MERAP will
expedite the diagnostic process of many disease-causing
defects.
Hum Mutat 35:1427–1435, 2014. C© 2014 Wiley Periodicals, Inc.
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Introduction
Since the introduction of next-generation sequencing (NGS)

techniques, there have been many articles on single gene defects
underlying known or novel genetic diseases [Bamshad et al., 2011;
Najmabadi et al., 2011; Rauch et al., 2012; Yu et al., 2013]. Such gene
defects are not confined to familial cases; de novo and inherited mu-
tations explain a significant portion of common and rare diseases,

Additional Supporting Information may be found in the online version of this article.
∗Correspondence to: Hao Hu, Max-Planck Institute for Molecular Genetics, Berlin

14195, Germany. E-mail: hu@molgen.mpg.de

Contract grant sponsors: Max Planck Society; European Commission Framework

Program 7 (FP7) project GENCODYS (grant number 241995).

particularly in outbred Western populations [Vissers et al., 2010].
Given the growing awareness that the total number of monogenic
disorders is much larger than previously assumed and the rapidly
increasing number of known gene defects [Boycott et al., 2013],
there is a growing need to implement NGS techniques in the clinic
as diagnostic tools [Hu et al., 2009; Mamanova et al., 2010; Hu et al.,
2011; Bainbridge et al., 2013]. While diagnostic tests combining tar-
geted exon enrichment and NGS to rule out mutations in several
dozen to more than 1,000 disease genes are gaining ground, the clin-
ical implementation of whole-exome or whole-genome sequencing
still lags behind. This is a major problem for the molecular diagnosis
of known diseases and for the identification of hitherto unknown
ones, as large-scale medical genome sequencing and central storage
and comparison of the clinical and sequence information are cru-
cially important for identifying disease-causing mutations in a sea
of functionally neutral sequence variants. Whole-exome or genome
sequencing may generate unsolicited genetic information, which is
considered as an issue even though the same is true for a wide va-
riety of established diagnostic procedures. More serious problems
hampering the introduction of medical genome sequencing relate
to the performance of available NGS techniques, the complexity and
low concordance of variant-calling pipelines, and the identification
and prioritization of potentially disease-causing sequence variants
[O’Rawe et al., 2013].

Here, we describe a novel, easy-to-install and to-use medi-
cal resequencing analysis pipeline (MERAP; https://sourceforge.
net/projects/merap) that compares favorably with several of the
existing ones in various respects and is designed as a one-stop so-
lution for clinical applications and for research laboratories with
limited bioinformatics support. It consists of eight sequentially op-
erating software modules that interact with several databases to gen-
erate a prioritized shortlist of plausible disease-causing mutations,
as shown in Figure 1.

Medical Resequencing Analysis Pipeline
MERAP is a comprehensive solution for handling the NGS data,

evaluating the performance, and for detecting, filtering, annotating,
and prioritizing sequence variants. The pipeline is compatible with
a variety of enrichment platforms used in combination with Illu-
mina sequencers, and it requires only minor adjustment for use in
combination with other NGS systems.

MERAP uses SOAP2 as the default mapping tool for aligning the
raw sequencing reads to the human reference genome, but is also
compatible with other tools after minor adjustment [Li et al., 2009b].
Its alignment report provides elementary information such as total
output (Gb), percentage of bases reaching the Q20 quality threshold
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Figure 1. Flowchart and components of MERAP. MERAP is composed of eight software modules, namely, SNVFinder for calling SNVs and
generating the base-wise sequencing depth, IndelFinder for calling indels and other structural variants, CNVFinder for calling CNVs, SSFinder for
defining cryptic splice sites, Coverage for evaluating sequencing performance by coverage information, VariantPacker for packing variants from a
cohort into a general variant list for subsequent annotation and prioritization, Annotation for filtering the variants and annotating by gene models,
and Prioritize for prioritizing candidate mutations by considering their pathogenicity and other relevant information. Boxes connected by arrows
show the direction of the analytical procedure. The color of each box is matched with the software responsible for each specific step.

[Cock et al., 2010], percentage of aligned reads, and so on. The
report also lists the coverage and sequencing depth for each gene, its
exons, coding sequences, and its transcript. In order to evaluate the
evenness of the sequencing depth, a correlation between coverage
and sequencing depth is provided for the entire target region (Supp.
Table S1, also see the Supporting Information for algorithm details
of coverage).

Functionality
Calling sequence variants involves three different software mod-

ules, starting with SNVFinder which focuses on single-nucleotide
variants (SNVs). Characteristically, heterozygous SNVs are called if
30%–70% of the nonredundant reads carry identical sequence vari-
ants, whereas the other reads correspond to the wild-type sequence.
The quality score of each SNV reflects the sequencer-generated
Phred-like score (i.e., the sequencing chip image quality) as well as
the positional mappability (the probability of a read being aligned to
the cognate region) [Ewing and Green, 1998]. The corrected quality
score is rescaled to the customary range of 0–40. Artificial SNVs due
to nearby indels are predicted and removed. SNVFinder can auto-
matically accommodate itself to different read length (allowed in

the same batch), quality format (both Illumina format and Sanger
format are allowed), and allows for both redundant and nonre-
dundant reads (see Supporting Information for algorithm details of
SNVFinder.pl; see Supp. Figs. S1 and S2).

Copy-number variant (CNV) calling is based on the detection of
exons with a significantly elevated or reduced number of overlap-
ping sequence reads. Normalization is performed to compensate for
different exon lengths, GC-content, and possible gaps due to the en-
richment of target sequences, using preferably more than 20 samples
in a batch. After log2 transformation, a value of zero corresponds to
the normal diploid state, with significantly higher or lower values
for duplications and deletions, respectively (see Supp. Fig. S3). In
practice, even after stringent normalization, the variable sequenc-
ing depth renders this method unsuitable for detecting indels that
involve only a single exon. Since most indels detected correspond to
known CNVs, MERAP filters out known and repeatedly occurring
CNVs and retains only indels that encompass two or more adjacent
exons. The price for this is minimal, as most of the smaller CNVs
can be identified by another MERAP module (see below). Further
details concerning the CNVFinder algorithm are provided in the
Supporting Information.

IndelFinder, another subroutine of MERAP, detects indels and
other complex genomic rearrangements. As shown in Figure 2, the

1428 HUMAN MUTATION, Vol. 35, No. 12, 1427–1435, 2014



Figure 2. Algorithm of IndelFinder. A, B, and C show three examples of successful split-read mapping. A: Both substrings (blue and red)
are uniquely mapped to the reference genome; after pattern match and extension, the breakpoints are defined, which are used to define the
events of insertion, deletion, and rearrangement. B: Only one substring (blue) is uniquely mapped to the reference genome; the other substring is
shortened (red) and mapped to the 10-kb genomic vicinity of the mapped substring (blue). After pattern matching and extension, the breakpoints
are established and the molecular details of the rearrangement are inferred. C: Only one substring (blue) is uniquely mapped to the reference
genome; after pattern match and extension, the breakpoint is defined; reads with the same breakpoint from the same direction are collected to find
the one with longest unidentified sequence. If the same breakpoint is identified from the other direction, and if the de novo assembled sequence
aligned to the reference genome with a large insertion shows the same breakpoints, a large insertion is thus defined. The sequences flanking large
insertions are aligned to RepBase to trace their origins.

underlying algorithm combines a split-read strategy with a de novo
assembly approach. Two (e.g., 36 bp) substrings are extracted from
the termini of each unaligned read and mapped to human genome.
If both substrings can be uniquely mapped, they will be used as
anchors for subsequent analyses. If only one substring can be un-
ambiguously mapped, the other substring will be shortened to 10 bp
and used to search in silico for a complementary sequence within of
a radius of 10 kb around the mapped substring. Then, the length of
the two anchors is increased and that of the insert separating them
is reduced by pattern match and extension through comparison
with the reference genome. Subsequently, the positions of the two
anchors and the size of the insert are used to infer the presence of
insertions, deletions, and other rearrangements including complex
substitutions.

To identify insertions that cannot be accommodated on a single
sequence read, IndelFinder starts out from reads harboring only one
anchor to recover flanking sequences from both sides of the inser-
tion. With these sequences as probes, de novo assembly is then per-

formed on the pool of unaligned reads, resulting in a series of con-
tigs that are then aligned to the human reference genome by BLAT
(http://genome.ucsc.edu/FAQ/FAQblat.html). Medium to large size
insertions are also mapped to the repeat sequence database (Rep-
Base, http://www.girinst.org/repbase/) to characterize their origin
(see Supporting Information for algorithm details of IndelFinder).
In practice, deletions as large as 25,859 bp have been detected in this
way; full-length sequences could be inferred for insertions as large as
400 bp; and complex rearrangements such as tandem duplications
ranging in size from 40 to 1,178 bp have been identified.

Typically, MERAP detects 0.82 variant per 1 kb transcript re-
gions, among which the percentages of SNV, small Indel, other
variants such as large insertion, tandem duplication, and CNV, are
85.4, 12.2, and 2.4, respectively. All variants called by MERAP are
presented in a format complying with the nomenclature for the
description of sequence variants (Human Genome Variation So-
ciety [HGVS], http://www.hgvs.org/mutnomen/). Figure 3 shows
nine examples of variants identified by MERAP. The specificity of
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Figure 3. Examples of variants identified by MERAP. The identified variant types include base substitutions, small deletions, large deletions,
small insertions, large insertions, complex indels (with both insertion and deletion), tandem duplications, CNVs, and other rearrangement.

MERAP variant calling has been evaluated by conventional Sanger
sequencing. In practice, >99.9% of the variants called by MERAP
could be confirmed, and false-positive results were only obtained
for variants supported by less than five reads. We evaluated the
sensitivity of MERAP variant calling by comparison with known
variants from Affymetrix genotyping array and found the concor-
dance to be as high as 99.5%. The high reliability of MERAP variant
calling is also reflected by the consistent appearance of highly re-
current (>10% in cohort) variants in public databases including
dbSNP, 1000 Genome, and ESP 6500 exomes [Sherry et al., 2001;
Altshuler et al., 2012; Fu et al., 2013]. All variants identified in a
cohort are packed by VariantPacker into a general variant list for the
subsequent annotation and prioritization.

All variants identified by MERAP are first filtered through
comparison with more than 126,000 disease-associated vari-
ants extracted from Human Gene Mutation Database (HGMD)
and Online Mendelian Inheritance in Man (OMIM) to iden-
tify known disease-causing mutations. In order to filter out neu-
tral variants, MERAP uses up to one million entries from db-
SNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), 1000 Genome
(http://www.1000genomes.org/), and NHLBI Exome Sequenc-
ing Project (ESP, http://evs.gs.washington.edu/EVS/) as databases.
MERAP does not only consider matches in the databases, but also

their frequency in the population and in the cohort studied. For
example, homozygosity for mutations causing recessive disorders
should not occur in healthy controls, and the frequency of heterozy-
gotes should not exceed one or few percent; and mutations causing
severe dominant disorders should not be observed at all. More than
90% of the variants can be ruled out in this way.

For translating DNA variants into amino acid changes and
for assessing the functional relevance of nonsynonymous or
splice-site changes, MERAP uses RefSeq genes (http://www.ncbi.
nlm.nih.gov/refseq/) as reference, because of their nonredundancy
and consistency. Nonsynonymous changes are described in terms
of gene ID, base change, protein change, genomic coordinate, tran-
script coordinate, protein coordinate, protein length, affiliated with
gene description from the Human Gene Nomenclature Commit-
tee (HGNC, http://www.genenames.org/) (Fig. 3; Table 1). MERAP
identifies changes destroying conventional splice sites (2 bp flanking
sequences of exons) or introducing novel splice sites (see Supporting
Information for algorithm details of SSFinder).

To assess the pathogenicity of missense mutations, MERAP gen-
erates a single score that is based on Logit modeling and in-
tegrates the results of seven different algorithms, including the
Grantham score (codon replacement conservation based on chem-
ical dissimilarity) [Grantham, 1974], phyloP (base replacement
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Figure 4. Logit modeling and ROC curves. A: Shows the Logit scores distribution for case set and control set. B: Shows the ROC curves for the
whole data and four test data (see Supporting Information for details). C: Shows the ROC curves of MERAP and the other eight software, and the
AUCs of MERAP, eXtasy, CADD, CoVEC, Condel, CAROL, PolyPhen2, SNPs&GO, and MutPRED are 0.954, 0.952, 0.949, 0.933, 0.929, 0.867, 0.841, 0.834,
and 0.831, respectively.
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Table 1. The Specification of MERAP Result

Detail Example Note

Family and patient ID M999 1274 Family ID M999, patient ID 1274
Gene name, RefSeq ID, protein length, HGNC ID,

gene description, variant coordinate in terms of
genome, cDNA, and protein

HPD(NM 002150,393aa,HGNC:5147,4-
hydroxyphenylpyruvate dioxygenase):
g.12:122277904G>C,c.1005C>G,p.I335M

Multiple isoforms of RefSeq genes are shown together separated by “|”

Number of nonredundant reads supporting the
variant

76

Allele percentage of the variant 0.98
Phred-like quality score (0–40) 40
Subjects in the cohort, incidence of the variant,

homozygote frequency, heterozygote frequency
371|3|1|2 In a cohort of 371 subjects, the variant is observed three times with

once as homozygote and twice as heterozygote
Definition of linkage interval, LOD score, length

of interval, the variant location in the interval
Homozygous|3.1| ∗ In a homozygous interval with LOD score 3.1 and length 5.5 Mb, the

variant is located at the center of the interval. “-” stands for length
unit 0.5 Mb and “∗” stands for the location of variant and also a
length unit 0.5 Mb

HGMD match of the variant DM;HPD;Tyrosinaemia 3;Hum
Genet:v.106,p.654,y.2000

There is a match of the variant in HGMD, with the classification of DM
(disease causing); the host gene name is HPD; the associated
phenotype is Tyrosinaemia 3; it is reported in Hum Genet
(volumn:106, page:654, year:2000)

OMIM match of the variant TYROSINEMIA,TYPE III
dbSNP match of the variant rs137852868
1000 Genome match of the variant HOM REF:HOM VAR:HET = 1,090:0:2;

AF = 0.0009; AMR = 0.01; ASN = 0; AFR = 0;
EUR = 0

The incidences of the variant in homozygous wild type, homozygous
variant, and heterozygous variant are 1,090, 0, and 2, respectively.
The allele frequency of the variant in population is 0.0009, with
ethnic-specific frequencies of 0.01, 0, 0, and 0 in American
population, Asian population, African population, and European
population, respectively

ESP match of the variant N/A
Grantham score for AA change 10
phyloP score for base conservation 2,547
GERP score for base conservation 3.25
SIFT prediction and score Damaging (0.000000)
PolyPhen2 prediction and score Probably damaging (0.978)
MutationTaster prediction and score Disease causing (0.999999)
CDD match and score cl14632:Glo EDI BRP like superfamily

(0.498727735368957)|
Multiple matches are shown together separated by “|”

Integrated pathogenicity score by Logit modeling 4,172 Pass the cutoff 3.57 where false discovery rate is <0.01
If a loss-of-function tolerant gene N N means negative, P means positive
Interaction partner of the gene HPD<->IKBKG The gene interacts physically with IKBKG
Known diseases caused by the gene Hawkinsinuria;Tyrosinaemia 3
Proposed inheritance model for the disease Recessive

There are 24 fields shown in MERAP results, including the sample ID, the variant information, the reads number supporting the variant, the allele percentage of the variant,
the quality of the call, the variant frequency in cohort, the variant position in terms of the linkage intervals, the HGMD match, the OMIM match, the dbSNP match, the 1000
Genome match, the ESP6500 match, the Grantham score, the phyloP score, the GERP score, the SIFT score, the PolyPhen2 score, the MutationTaster score, the CDD score, the
Logit score, the LOF score, the interaction partner, the known disease, and the inheritance model.

conservation) [Pollard et al., 2010], GERP (base replacement con-
servation) [Davydov et al., 2010], SIFT (amino acid residue con-
servation) [Ng and Henikoff, 2003], PolyPhen2 (various physical
and comparative parameters) [Adzhubei et al., 2010], Mutation-
Taster (integrated evaluation of base and amino acid conserva-
tion) [Schwarz et al., 2010], and the Conserved Domains Database
(CDD, http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml; de-
tails of the scoring algorithm are provided in the Supporting
Information). With empirical false discovery rate cutoffs, the in-
tegrated Logit scores allow for dichotomized pathogenicity pre-
dictions even if SIFT, PolyPhen2, and MutationTaster predictions
do not coincide, as is often the case. To calibrate this integrated
score, we collected 7,703 disease-causing (DM) missense mutations
from HGMD, all with heterozygote frequencies of <1% in the 1000
Genome or ESP6500 databases, as well as 3,520 neutral missense
variants that occur in homozygous form in the 1000 Genome and
ESP6500 databases, with allele frequencies exceeding 10%. The seven
aforementioned algorithms generate the numerical predictions for
the case and control sets, which are then converted into ranks. A
Logit model was fitted to optimize the discrimination between case

and control sets. Its receiver operating characteristic (ROC) curve
shows high performance of the model (the area under the curve
[AUC] = 0.95) and its robustness by resampling without replace-
ment (Fig. 4). Compared with other pathogenicity scores combining
multiple predictors, advantages of the MERAP Logit score model
include the availability of stringent training sets and the use of ranks
instead of numerical values [Calabrese et al., 2009; Li et al., 2009a;
Adzhubei et al., 2010; Gonzalez-Perez and Lopez-Bigas, 2011; Lopes
et al., 2012; Frousios et al., 2013; Sifrim et al., 2013; Kircher et al.,
2014]. As shown by the ROC curves, MERAP performs as well as
eXtasy and CADD, outperforms CoVEC and Condel, and is signif-
icantly superior to CAROL, PolyPhen2, SNPs&GO, and MutPRED
(for further information about the annotation algorithm and details
of Logit modeling and ROC evaluation, see Supporting Informa-
tion).

Even after filtering and annotation, we are typically left with
several to dozens of candidate mutations for each case. When co-
horts of patients with the same ethnicity are studied, information
on the proportion of homozygotes and heterozygotes carrying a
particular variant is also useful for detecting population-specific
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polymorphisms (see Table 1). MERAP tracks candidate genes re-
ported to harbor homozygous loss-of-function (LOF) variants in
healthy individuals, which applies to >1% of the human genes. If
more than three independent truncating variants are observed in >10
of the exomes listed in the 1000 Genome and ESP6500 databases,
the relevant gene is flagged as LOF tolerant.

To facilitate the choice between few remaining candidate
genes, MERAP also provides a list of ˜3,000 known disease
genes extracted from OMIM (http://www.ncbi.nlm.nih.gov/omim),
ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), and HGMD
(http://www.hgmd.org/), as well as �8,000 associated disorders and
their symptoms. For novel candidate genes without prior link to dis-
ease, MERAP offers information on their interaction with known
disease genes, based on data from Biogrid (http://thebiogrid.org/)
and IntAct (http://www.ebi.ac.uk/intact/). The rationale is that
genes implicated in clinically similar disorders tend to cluster in
gene or protein interaction networks. Further details about the pri-
oritization algorithm are provided in Supporting Information. A
practical example illustrating the entire MERAP workflow and out-
come is given in Table 1.

Performance
MERAP is faster than other sequence analysis pipelines, and its

computational requirements are modest. For example, on a server
with 48 CPUs sharing 248Gb RAM, MERAP managed to process
221 WES samples (>60× mean coverage) and to complete the anal-
ysis within 4 days (92 hr). For smaller targets, the turnover was even
much higher (see Supp. Table S1). For example, it took MERAP
only 17 hr to screen 195 samples for mutations in 520 genes im-
plicated in severe related to recessive childhood disorders birth de-
fects [Bell et al., 2011], and no more than 11 hr to analyze 60
individuals for mutations in a total of 1,222 disease genes, includ-
ing most genes that have been linked to intellectual disability so
far. For WES with >60× mean coverage, MERAP necessitates only
60 Gb RAM. MERAP has been designed for laboratories with lim-
ited infrastructure and resources for DNA sequence analysis. With
its optimized default parameters and automatic links to all rele-
vant databases, it can be downloaded and installed within 1 day
(https://sourceforge.net/projects/merap), with minimal manual in-
tervention.

To compare its performance with that of the widely used Genome
Analysis Tool Kit (GATK) [DePristo et al., 2011], we have analyzed
WES results from 22 unrelated individuals with both pipelines,
focusing on SNVs and indels. For MERAP and GATK, average pro-
cessing times were 5 and 18 hr, respectively. 98% of the SNVs called
by MERAP were also detected by GATK, whereas 75% of the in-
dels identified by MERAP and 88% of GATK-identified indels were
shared (see Supp. Fig. S4). It is of note that that one-third of the
indels exclusively identified by MERAP correspond to known db-
SNP entries, suggesting that at least some of the indels unique to
MERAP in this study are real. For further details concerning the
relative performance of MERAP and GATK, see the Supporting
Information. The comparison with another SNV caller, VarScan,
was conducted based upon the same dataset [Koboldt et al., 2009].
About 98.5% of SNVs identified by MERAP were also called by
VarScan, whereas 99% of SNVs called by VarScan were identified
by MERAP. The comparison with another indel caller, Pindel, was
implemented based on the same dataset [Ye et al., 2009]. More than
95% of the indels called by Pindel could be found by MERAP but
only 66% of the indels called by MERAP can be identified by Pindel.
Up to 39% of the indels uniquely called by MERAP were variants

listed in dbSNP. MERAP was also compared with CNVnator for
identifying unique CNVs from the aforementioned dataset [Abyzov
et al., 2011]. MERAP called on average 12 multiple-exon-spanning
CNVs for each sample, 90% of which could also be identified by
CNVnator. Seven CNVs on average were exclusively identified by
CNVnator, most of which were deletions, but when we randomly
picked three such CNVs and did quantitative PCR, none of them
could be confirmed.

Discussion
Since 2008, we have used NGS techniques to process and ana-

lyze more than 1,200 human DNA samples (Supp. Table S3). In the
course of this work, which enabled us to identify many dozen novel
disease genes, we have developed several novel sequence alignment
and analysis tools. Improved versions of these tools have now been
linked to form MERAP, an integrated sequence analysis pipeline that
provides a one-stop solution for identifying disease-causing muta-
tions, for example, in a clinical setting. MERAP was instrumental
in the reanalysis of numerous previously unsolved cases, and in the
vast majority of cases that we had considered as solved, it confirmed
our previous conclusions (Supp. Table S3). Moreover, it turned out
to be a major asset for the investigation of more than 800 novel
families with autosomal-recessive ID, autosomal-dominant ID, and
X-linked ID [Hu et al., 2011; Kahrizi et al., 2011; Najmabadi et al.,
2011; Pak et al., 2011; Rafiq et al., 2011; Ropers et al., 2011; Schraders
et al., 2011; Strobl-Wildemann et al., 2011; Huang et al., 2012; Zanni
et al., 2012; Bainbridge et al., 2013; Dreha-Kulaczewski et al., 2013;
Hirata et al., 2013; Lesca et al., 2013; Puttmann et al., 2013; Belet
et al., 2014; de Brouwer et al., 2014; Larti et al., 2014; Masurel-Paulet
et al., 2014; Philips et al., 2014], as illustrated below for five of these
that were found to carry defects in known or novel plausible candi-
date genes (see Supporting Information; Supp. Figus. S5–S9; Supp.
Table S4).

MERAP can be retrieved from https://sourceforge.net/
projects/merap. It includes eight software programs, the rele-
vant databases as well as manuals. NGS data mentioned in this
paper can be retrieved from the Sequence Read Archive (SRA,
http://www.ncbi.nlm.nih.gov/sra) under the accession numbers
SRA036250. The aforementioned list of 1,222 genes for severe reces-
sive childhood disorders and intellectual disability is available upon
request. Most inherited disorders are genetically heterogeneous, and
for some, the heterogeneity is overwhelming. For example, more
than 700 different genes have been implicated in severe forms of in-
tellectual disability (ID) (extracted from the latest version of HGMD
[version 4, 2013] and OMIM [February, 2014]), and there is reason
to believe that the total number of ID genes will run into the thou-
sands, most of which have not been identified yet [Ropers, 2010].
This strongly argues for introducing medical genome sequencing as
standard diagnostic procedure, which in turn necessitates sequence
analysis tools that are adapted to the needs of diagnostic laboratories
with limited bioinformatics experience and infrastructure. MERAP
has been developed to meet the rapidly growing demand for fast,
easy to install, and user-friendly pipelines enabling the search for
clinically relevant mutations in whole exomes or whole genomes,
but also in defined segments of the human genome that can be
isolated by targeted enrichment. Given its superior sensitivity and
specificity, it should be equally useful for large, more experienced
groups.

While in the current version of MERAP, settings have been op-
timized for its present task, future versions will enable users to
fine-tune them at will to meet specific demands. Also, there will
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be room for implementing additional algorithms for pathogenicity
prediction and for other adjustments by individual users. Finally, fu-
ture versions of MERAP will be adapted to handle much larger data
sets, for example, through further improvement of the processing
efficiency and by implementing data compression.
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