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Abstract	

Permafrost-affected environments are characterized by slow biogeochemical cycles due to their 

low temperatures. The slow rates of biogeochemical processes in Arctic landscapes lead to a 

high susceptibility to contamination and to a low pollution resistance. Trace metals are one of the 

major groups of industrial pollutants and can reach the Arctic by different paths, namely through 

local human activity and via long-range atmospheric transport. At present, the knowledge about 

the background levels of trace metals and their behavior in soils of the Arctic Regions is very 

limited, and in particular research is needed to understand the effect of permafrost conditions on 

trace metal mobility and distribution. This question is particularly important in the light of 

anticipated changes of climatic conditions. The predicted temperature increase in the Arctic 

region may lead to an increase of the annual thaw depth of the soils and a change of the 

groundwater table, which may affect the spatial distribution of contaminants. Therefore, there is 

a special need to study the processes that govern trace metal distribution in soils affected by 

permafrost. This knowledge may also help to gain more information about the ecological state of 

Arctic ecosystems and to estimate possible effects from direct anthropogenic pollution and, 

subsequently, predicted climate change. 

Northeast Siberia represents an area remote from evident anthropogenic trace metal sources. This 

fact affords an opportunity to investigate trace metal levels in pristine environments. Soil 

samples from the Lena River Delta region and its hinterland, collected in 2009, 2010, and 2011 

were analysed. The element concentrations in studied soils varied greatly ranging, for example, 

from 0.01 to 0.71 mg kg-1 for Cd, from 0.6 to 65.0 mg kg-1 for Cu, from 0.9 to 55.4 mg kg-1 for 

Ni, from 2.14 to 38.9 mg kg-1 for Pb, and from 12.1 to 440 mg kg-1 for Zn. It could be shown 

that the Lena River Delta and its hinterland are pristine and can serve as a reference region for 

determining human influences on permafrost-affected landscapes. 

The obtained results showed that element properties and soil physical and chemical 

characteristics are one of the major factors controlling the element distribution in studied 

landscapes. Furthermore, topography features (e.g. micro-relief forms) and water drainage are 

likely to govern more intensive element migration to adjacent landscapes and their accumulation 

on natural physico-chemical barriers. This study also showed that the accumulation of trace 

elements by different vegetation types reflects mainly the plant’s biogeochemical characteristics. 
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Furthermore, the soil geochemical composition of natural tundra landscapes presumably controls 

the element uptake by plants. 

A laboratory experiment was performed to determine how the temperature regime affects the 

contaminant distribution within the soil matrix at the boundary between a contaminated surface 

soil layer and an uncontaminated deeper soil layer. The hypothesis was that the water transfer to 

the freezing front will be accompanied by a downward migration of water soluble metals within 

the soil column. The results of this experiment showed that diffusion along the concentration 

gradient seemed to be the most important mechanism controlling the migration of water soluble 

forms of Cd and Pb in unsaturated soils. In the frozen soils, no clear relation between water 

migration and the metal distribution was found. A decrease of the Cd mobility in the lower parts 

of the frozen columns in comparison with the unfrozen columns, suggests that frozen soils acted 

as a temporal geochemical barrier restricting further downward Cd transport. However, the 

experimental data obtained is still not enough to understand all the mechanisms of transport 

processes that occur under natural conditions. To gain a better understanding of these 

mechanisms, further investigations are needed to provide explanations, which which allow to 

quantitatively asses element transport and could be introduced to existing analytical modelling 

methods. 

The results of this research enable a better assessment of the ecological state of permafrost-

affected soils as one of the major components of Arctic ecosystems in changing climatic 

conditions. 
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Zusammenfassung	

Permafrostgeprägte Regionen sind durch langsame biogeochemische Stoffkreisläufe 

charakterisiert; dies ist durch das Niedrigtemperatur-Regime bedingt. Durch diese langsamen 

Stoffkreisläufe sind die arktischen Regionen sehr anfällig für Kontamination und haben eine 

geringe Toleranz gegenüber dem Eintrag von Schadstoffen. Spurenmetalle sind eine der größten 

Gruppen industrieller Schadstoffe. Sie können über verschiedene Wege in die Arktis gelangen, 

hauptsächlich durch lokale menschliche Aktivitäten und aus weiterentfernten Regionen durch 

atmosphärischen Transport. Informationen über Hintergrundgehalte von Spurenmetallen und ihre 

Rolle in arktischen Böden ist ergänzungsbedürftig, ins Besondere ist eine intensivere 

Untersuchung des Einflusses von Permafrost-Bedingungen auf Spurenmetall-Mobilität und –

verbreitung notwendig. Diese Frage ist vor dem Hintergrund der prognostizierten klimatischen 

Veränderungen von Bedeutung. Der vorhergesagte Temperaturanstieg in der Arktis könnte zu 

einer Zunahme der jährlichen Auftautiefe in Permafrostböden und zu einer Veränderung der 

Bodenhydrologie führen. Solche Veränderungen können die räumliche Verteilung von 

eingetragenen Stoffen beeinflussen. Aus diesen Gründen ist es von besonderer Bedeutung, das 

die Prozesse, welche Spurenmetallverlagerung in Permafrostböden beeinflussen, genauer 

untersucht werden. Derartige Untersuchungen würden zudem mehr Informationen zur Situation 

des Ökosystems Arktis liefern und dazu beitragen, den Einfluss der vorhergesagten klimatischen 

Veränderungen auf die Mobilisierung anthropogener Schadstoffe besser zu verstehen. 

Nordostsibirien stellt eine Region fernab nennenswerter anthropogen-bedingter 

Spurenmetalleinträge dar, und ist damit eine zur Untersuchung von Spurenmetall-

Konzentrationen in naturbelassenen Landschaftsräumen hervorragend geeignete Region. 

Bodenproben aus dem Lena-Delta und dem Küstenhinterland aus den Jahren 2009, 2010 und 

2011 wurden analysiert. Die Elementkonzentrationen in den untersuchten Böden zeigen eine 

große Varianz (z.B.: 0.01 bis 0.71 mg kg-1 Cd, 0.60 bis 65.0 mg kg-1 Cu, 0.90 bis 55.4 mg kg-1 

Ni, 2.14 to 38.9 mg kg-1 Pb, und 12.1 bis 440 mg kg-1 Zn). Es konnte gezeigt werden, dass das 

Lena-Delta und das Küstenhinterland naturbelassen und ohne nennenswerten anthropogenen 

Eintrag von Schadstoffen sind. Damit kann dieses Gebiet als ein Vergleichsstandort 

herangezogen werden, um den menschlichen Einfluss auf Permafrost-geprägte Regionen zu 

bestimmen.  
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Die Ergebnisse zeigen, dass die Elementeigenschaften und die bodenphysikalischen und –

chemischen Parameter die Hauptfaktoren bei der Element-Verbreitung in den untersuchten 

Landschaften sind. Darüber hinaus ist ein erheblicher Einfluss von Topographie und Hydrologie 

auf Elementverlagerungen in angrenzende Ökosysteme und auf Elementakkumulierung an 

physikalisch-chemischen Grenzflächen wahrscheinlich. Weiterhin zeigte diese Untersuchung, 

dass die Akkumulierung von Spurenelementen in verschiedenen Vegetationstypen die 

biogeochemischen Eigenschaften der Pflanzenarten widerspiegelt. Des Weiteren ist es 

wahrscheinlich, dass die geochemische Zusammensetzung naturbelassener Tundralandschaften 

die Elementaufnahme durch Pflanzen bestimmt. 

Ein Laborexperiment wurde durchgeführt, um den Einfluss des Temperaturregimes auf die 

Schadstoffverteilung in der Bodenmatrix an der Grenzfläche zwischen kontaminierter 

Oberbodenschicht und nicht kontaminierter Unterbodenschicht zu beschreiben. Die aufgestellte 

Hypothese war, dass der Wassertransfer zur Frierfläche ("freezing front") von einer nach unten 

gerichteten Migration der wasserlöslichen Metalle in der Bodensäule begleitet werden würde. 

Die Ergebnisse zeigten, dass der wichtigste Transportmechanismus die Diffusion entlang des 

Konzentrationsunterschiedes zu sein schien, welcher die Migration von Cd und Pb in 

wasserungesättigten Böden bestimmt. In gefrorenen Böden konnte keine eindeutige Beziehung 

zwischen Wassermigration und Metallkonzentration festgestellt werden. Eine Reduktion der Cd-

Mobilität in den unteren Bereichen der gefrorenen Säule, im Vergleich zu den ungefrorenen 

Bereichen, lässt vermuten, dass der gefrorene Boden als eine zeitweilig wirksame geochemische 

Barriere fungierte, welche eine weitere nach unten gerichtete Ausbreitung von Cd verhinderte. 

Die experimentell gewonnen Daten sind jedoch nicht umfassend genug, um alle Mechanismen 

nachzuvollziehen, welche die Metallverlagerung in einer natürlichen Umgebung beeinflussen. 

Zum vertiefenden Verständnis sind weitere Untersuchungen notwendig, welche dann auch 

quantitative Vorhersagen als Beitrag zu existierenden analytischen Modellierungsmethoden 

ermöglichen könnten. 

Die Ergebnisse dieser Studie erlauben eine verbesserte Bewertung der ökologischen Situation 

von permafrostgeprägten Böden, welche eine der wichtigsten Komponenten des arktischen 

Ökosystems in einem sich ändernden Klima darstellt. 
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1. Introduction		

Arctic ecosystems belong to the most sensitive regions of the world with regard to effects of 

human impact (Weller, 1995; Perel’man & Kasimov, 1999; Gulinska et al, 2003). The Arctic 

was once considered to be a pristine region. However, over the twentieth century worldwide 

emission of anthropogenic pollutants have increased and reached this remote area. Over this 

time, all natural media in the Arctic may have undergone perceptible changes caused by 

pollution which can reach this region mainly by long-range transport (Izrael, 1982; Presley, 

1997). 

Trace metals are one of the major groups of pollutants presented in industrial emissions. They 

can reach the Arctic by different paths, namely through local human activity and via long-range 

atmospheric transport (Ford et al, 1995; AMAP, 2005; Zhulidov et al, 2011). Local 

anthropogenic influence is represented mainly by mining activities which cause polyelemental 

emissions with a considerable amount of trace metals and metalloids. Examples for 

anthropogenic sources of trace metals in the Arctic are the Norilsk industry area in Western 

Siberia and mining industries in Kola Peninsula (Jaffe et al, 1995; Boyd et al, 1997; Kashulina, 

et al, 1997; Niskavaara et al, 1997; Reimann et al, 1997; Gregurek et al, 1998; Reimann et al, 

1999; Opekunova et al, 2007; Boyd et al, 2009; Zhulidov et al, 2011). This locally defined 

human activity can lead to substantial pollution of arctic ecosystems across several hundred 

kilometres. The areas affected by these emissions develop into technogenic geochemical 

anomalies for a number of metals such as Ni and Cu. The input of trace metals to the Arctic 

region by long-range atmospheric transport has been demonstrated by many studies (Ottar, 1981; 

Barrie and Hoff, 1985; Barrie, 1986a; Barrie, 1986b; Maenhaut et al, 1989; Nriagu, 1989; 

Pacyna & Winchester, 1990; Barrie et al, 1992; Thomas et al, 1992; Akeredolu et al, 1994; 

Pacyna, 1995; Rovinskiy et al, 1995; Rahn et al, 1997; Durnford et al, 2010). Pollution that 

reaches the Arctic is observed as so-called “arctic haze”. Arctic haze occurs commonly during 

the winter season and results from strong south-to-north transport of a particulate matter. The 

transport is driven by the Siberian anticyclone which moves winter flow patterns from the 

Eurasian continent to the Arctic (Barrie & Barrie, 1990). The aerosol transport zone extends 

from northern Kazakhstan – southern Urals – Novosibirsk through the eastern Taymyr peninsula 

(Rahn et al, 1997). Further transport of aerosols occurs into the area over the Laptev Sea and the 
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eastern Arctic Ocean where the aerosol diffuses and reaches the North American continent or 

major cyclonic regions in the Aleutians and southern Greenland (Barrie, 1992; Rahn et al, 1997). 

The main components of this particulate matter are sulfate, black carbon, As, Cd, Hg, Pb, Zn, 

and many other metals of anthropogenic origin (Barrie, 1996; Headley, 1996; Wadleigh, 1996). 

Nevertheless, the concentrations of most trace elements in arctic environmental components are 

generally lower than in sample media located in temperate zones. 

Soil can function as a transport barrier by adsorbing contaminants and preventing their further 

migration to aquatic ecosystems for example through seepage water and groundwater 

(Dobrovol’sky & Nikitin, 1986). Metals accumulated in soils are leached out slowly by the 

processes of erosion, weathering processes, and plant uptake (Kabata-Pendias & Pendias, 2001). 

Therefore, the period of metal half-removal from soils is much longer than in other 

environmental components. Permafrost soils are widespread in sub-Arctic and Arctic tundra. 

They are characterized by slow biogeochemical turnover rates, water saturation, reductive 

conditions, and the accumulation of organic matter (Tarnocai et al, 2009). Organic matter is 

capable of forming organo-mineral associations (Höfle et al, 2013) of the type that bind the 

majority of trace metals (Dube et al, 2001; Davranche et al, 2011) and therefore, can serve as a 

barrier for chemical pollutants. According to some authors (e.g. Moscovchenko, 2010), organic 

matter is one of the main factors controlling biogeochemical processes in Arctic landscapes, and 

is therefore, in charge of sustaining Arctic ecosystems. 

The Arctic is a region where the global warming is predicted to be more evident than in 

temperate regions (IPCC, 2007). Warming in the Arctic can dramatically affect permafrost-

affected areas causing changes in cryological conditions. Geothermal observations showed that 

temperature increase in rocks of western Yakutia – the typical example of a permafrost-affected 

area in the Russian Arctic – may influence the upper 60-80 m depth (Pavlov, 2008). As reported 

in some studies, climate change may also affect the contaminant pathways (Goryachkin et al, 

1998; Gordeev, 2002; Hinzman et al, 2005; Macdonald et al, 2005; Liu et al, 2012; Stern et al, 

2012). For example, changes in precipitation or in the balance between rain and snow in the 

Arctic can lead to enhanced airborne contaminant deposition (AMAP, 2005). Climate change 

and progressive anthropogenic impact may affect main soil properties such as carbon content and 

redox potential, leading to a modified migration ability of pollutants (Weller, 1995; Dube et al, 

2001; Balbus et al, 2013). Particularly, the predicted increase of global warming will likely 
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intensify biogeochemical cycling within this large reservoir of carbon (Boike et al, 2012) 

including the bound trace elements in the upper layers of permafrost-affected soils. Considering 

the occurrence of local anthropogenic sources across the Arctic as well as long-range transport of 

pollutants to the polar region, there is the need to study the processes that govern trace metal 

distribution in soils affected by permafrost. 

1.1 Scope	of	the	present	study	

At present, northeast Siberia represents an area remote from evident anthropogenic trace metal 

sources. However, there is a risk of aibone pollution by trace metals from local anthropogenic 

sources connected to the settlements. One of the largest settelments in northeast Siberia is the 

town Tiksi (71° 42’ 55.6" N, 128° 48’ 46.3" E). The anthropogenic influence in Polar Regions is 

likely to increase with new industrial developments (Gautier et al, 2009; Dodin et al, 2010). The 

investigated area of northeast Siberia holds coal, oil, and gas deposits (Fig. 1) and faces the 

thread of fossil fuel exploration (Alekseev & Koz’min, 2005). With the socio-economic 

development associated with the establishment of fuel exploration industries there exists the 

potential risks of environmental pollution (Dodin et al, 2010). According to Alyabina et al 

(2008), soils in the north of middle and eastern Siberia are poorly drained and are characterized 

by high organic matter content and high values of cation exchange capacity and thus have a low 

potential self-purification capacity. The exploration of natural resources in this region together 

with a potential local impact may strongly affect soils and other environmental media and 

eventually lead to a degradation of tundra ecosystems. Therefore, it is important to establish 

baseline levels of trace metals of the investigated area as a basis for further environmental impact 

assessment of the Arctic region. 

The trace metal distribution in water, marine and terrestrial sediments (Dai & Martin, 1995; 

Nolting et al, 1996; Rachold et al, 1996; Klassen, 1998; Alexander & Windom, 1999; Siegel et 

al, 2000; Hölemann et al, 2005; Cai et al, 2011), groundwater (e.g. Banks et al, 1995), air (e.g. 

Golubeva et al, 2013), vegetation (e.g. Wojtun et al, 2013) and fauna (Presley, 1997; Hargreaves 

et al, 2011; Routti et al, 2011; Dietz et al, 2013; Julshamn et al, 2013) of the Arctic regions has 

been studied in detail before. However, the presence and behavior of these substances in 

permafrost-affected soils remains poorly studied. A survey of current literature showed that 
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studies of trace metal content in permafrost-affected soils were concentrated on areas located in 

proximity to the sources of industrial emissions, coal mining, and oil and gas exploration. In 

Russia, these studies covered northeast European Russia (Walker et al, 2003, 2006a, 2006b, 

2009) and western Siberia (Zhulidov et al, 1997b; Allen-Gil et al, 2003; Korobova et al, 2003; 

Moskovchenko, 2010; Zhulidov et al, 2011). Reviews of monitoring studies have been presented 

by Crock et al (1992) for the Alaskan Arctic. Much less of the published literature on soil 

chemistry relates to background trace metal concentration in Russian (Alekseeva-Popova, 1995; 

Rovinsky, 1995; Zhulidov et al, 1997a) and Canadian (Walker, 2012) Arctic soils. Crockett 

(1998) and Bargagli (2000) provided a study of background metal concentrations in the Antarctic 

region. 

In the Arctic region, the river deltas are the most vulnerable areas of the terrestrial ecosystems 

since they may act as traps for chemical contaminants (Lisitzin, 1994). On the example of the 

Mackenzie Delta area it was shown that the chemical element transfer into permafrost-affected 

delta from the river catchments may be considerable (Dyke, 2001). The study of the element 

transport in permafrost-affected soils is important because hydrological and ecological changes 

due to climate warming and human activity in the Arctic region could increase element 

mobilization (Moskalenko, 1998; Serreze et al, 2000; Jorgenson et al, 2001; Hinzman et al, 2005; 

Schindler & Smol, 2006). Temperature increase may lead to permafrost zone degradation and, as 

a consequence, rising groundwater levels and enhanced export of DOC and other organic and 

inorganic substances to adjacent watersheds. This phenomenon causing more intensive thaw of 

deeper soil layers and change of ground water table may affect the vertical contaminant flux 

deeper into soil horizons as well. Cryoturbation processes which are common in arctic regions 

may also cause the contaminant transport to deeper soil horizons, as the input of these substances 

is taking place on the top soils. 
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1.2 Aims	and	objectives	

The aim of this study was to provide the knowledge on the background levels of trace elements 

as well as on the landscape distribution of these elements in permafrost-affected soils of 

northeast Siberia in relation to soil properties. At the same time, experimental studies were 

required to understand the processes of the element transport in soils affected by frost. 

The main objectives of this study were: (1) to provide the first soil geochemical data of the Lena 

River Delta region and its hinterland, (2) to investigate features of the spatial element 

distribution in representative landscape-geochemical units, (3) to reveal factors that affect the 

vertical element distribution in soils within the polygonal forms of the relief, (4) to detect 

hypothetical (local) anthropogenic sources in the study area contributing to the regional 

geochemical background, and (5) to determine how the temperature regime affects the trace 

metal behavior within the soil matrix by simulating the conditions on the boundary between the 

contaminated surface soil layer and a deeper uncontaminated soil layer. 

The hypotheses of this study were: (1) The geochemical composition of the environmental 

components is affected by the geological aspects of the investigated area, (2) grain-size 

composition, organic matter, and in particular the temperature and hydrological regime are the 

major factors controlling the trace element distribution within the matrix of permafrost-affected 

soils, (3) the water transfer to the freezing front is accompanied by a downward migration of 

water soluble metals Cd and Pb within the soil column. 
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2. State‐of‐the‐Art.	Trace	Metals	and	Permafrost‐Affected	soils	

2.1 Trace	elements	in	terrestrial	ecosystems	

2.1.1 Introduction	

Until present in scientific literature the term “heavy metal” is often used in association with 

pollution and toxicity, although no consistent definition of this term exists. Several definitions of 

“heavy metals” are based on the density of the elemental form of the metal (e.g. Morris, 1992; 

Parker, 1994), on atomic weight or mass (e.g. Bennet, 1986; Lewis, 1993; Rand et al, 1995), or 

on atomic number (e.g. Lyman, 1995). However, according to Duffus (2002) no relationship 

exists between density or any other foregoing physicochemical concepts and the toxicity or 

ecotoxicity applied to the term “heavy metal”. Some authors brought attention to the fact that this 

term comprises a wide array of elements which possess various chemical and biological 

properties (e.g. Nieboer & Richardson, 1980) and therefore, proposed a classification related to 

atomic properties and the solution chemistry of metal ions. In geochemical classification 

presented by Ivanov (1994-1997) the elements are divided into several groups in relation to the 

electronic structure of atoms. According to this classification the groups comprise elements of s- 

and p-sublevels (e.g. As, Ba, Ga, Pb), the transition elements of a d-sublevel (e.g. Cr, Cu, Zn), 

and so-called rare elements of f-sublevel (e.g. La, Pr, Y), where the type of a sublevel reflects the 

atomic reactivity of chemical elements. 

The term “heavy metal” may alternatively be replaced with a term “trace metal”. This term 

comprises a diverse range of elements which depend on the kind of investigation. For example, 

from a geological point of view the group of trace metals includes the elements which occur in a 

diffused state although the concentrations of some of them in rocks differ significantly 

(Alekseenko, 1990; Il’yin, 1991). In biological element classification, metals like Co, Cu, Mn, Ni 

and many others were considered as microelements (Alekseev, 1987; Davies, 1994) because they 

are essential for living organisms. In fact, they may affect biota by occurring not only in high 

concentrations, but also in low concentrations, or due to disorder of the elemental ratio 

(Motuzova, 2013). In the current work the term “trace metal” is used to refer the group of the 

following elements considered as the most commonly encountered in soil chemistry studies and 
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those elements are often used for the assessment of anthropogenic influence on terrestrial 

ecosystems: As, Cd, Co, Cu, Hg, Fe, Mn, Ni, Pb, and Zn. 

In studies of soil chemistry, in particular, of the migration and accumulation of elements in soils, 

the geological element classification is used (Goldschmidt, 1937). However, Vodyanitsky (2008) 

took notice of the shortcomings mentioning that this classification can only be used when 

considering the background environments but not the areas affected by human activity. He 

stressed the importance of soil properties when considering the behavior of trace elements in 

landscape environments. Soil is a polycomponental formation which comprises diverse groups of 

compounds which tend to bind trace elements in soil. At the same time, within this formation one 

element can be bound by several soil media such as organic matter or oxides/hydroxides. While 

in the geological element classification the majority of metals belong to a chalcophile group, in 

the soil element classification proposed by Vodyanitsky (2008) groups such as silicatophile, 

manganophile, and organophile were included (Tab. 1). So far, efforts to develop soil element 

classifications to be used it in environmental monitoring are complicated by the lack of the 

knowledge about the behaviour of certain elements in soils. 

Table 1: Chemical relation of metals according to geological element classification developed by Goldschmidt 

(1937) and soil element classification proposed by Vodyanitsky (2008). 

 Element 
 As Cd Co Cu Hg Mn Ni Pb Zn 
Geological classification 
(Goldschmidt, 1937) 

C C S C C S S C C 

Soil classification 
(Vodyanitsky, 2008) 

S O, M M O, M C, O, A ME M, S O, S, M 
Sil, M (1); 
O, S (2) 

S – siderophile; 
C – chalcophile; 
O – organophile; 

M – manganophile; 
ME – ore-forming element; 
A – amalgamophil; 

(1) – Automorphous soils; 
(2) – Hydromorphous soils 

2.1.2 General	properties	of	trace	metals	and	their	behaviour	in	soils	and	plants	

Trace metals are of natural origin. They are present in parent rock and occur in soils in the form 

of sulphides, oxides, silicates, and carbonates. The element abundance significantly varies in 

different types of parent rock material and depends on the mineralogical composition of rocks. 

The weathering processes of bed rocks lead to changes in their chemical composition. As a result 

of weathering processes, secondary minerals, hydroxides, and oxides tend to be the major 
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sources of trace metals (Il’yin, 1991). After being released into the environment, they can be 

adsorbed or chemically bound to natural substances, which influences the elements’ ability to 

migrate (Dube et al, 2001). The mechanisms of leaching and migration of trace metals in soils 

vary depending on the element properties (e.g. ionic mass, ionic radius) (Bogdanovsky, 1994; 

Niskavaara et al, 1997). These mechanisms also depend on environmental conditions, in 

particular, on pH and soil redox potential (Fortescue, 1980). The migration intensity of trace 

metals in landscapes can be changed not only due to seasonal variation of local environmental 

parameters but also due to anthropogenic influence. 

Plants are an important component of the biogeochemical cycle. The metal uptake by plants can 

be both external and internal. The first one is evident as deposition of the element on the leaves 

and stalks of plants. The internal metal input is caused by metals entering through the root 

system (Il’yin, 1991). The trace metal input to higher plants depends on the vascular tissues 

(phloem and xylem) as well as on evapotranspiration rate. Chelating ligands play an important 

role in transporting of trace elements in plants (Kabata-Pendias & Pendias, 2001). The element 

mobility is also determined by factors such as acidity, oxidation-reduction potential, element 

concurrence, hydrolysis, insoluble salt formation, plant species, and the stage of plant 

development. An excess of trace elements can be toxic in plants. Phytotoxicity can be expressed 

by plant growth inhibition, morphological changes such as chlorosis and necrosis, suppression of 

biomass accumulation, metabolic imbalance, reduction of photosynthesis processes and 

transpiration (Il’yin, 1991). However, some kinds of plant species are resistant to high amount of 

trace elements even without evident morphological changes (Isaev, 2004). Since the behaviour of 

trace elements depends on their properties and how they interact with the rock-soil-plant system, 

they are described in more detail in the following subsections. 

Arsenic (As) 

The natural sources of As in soils are mainly oxysalts and sulphur- containing minerals (O’Neil, 

1995). Most arsenic containing minerals may be classified into one of five groups: elemental, 

arsenides, arsenosulfides, arsenites, and arsenates (Henke & Hutchison, 2009). The background 

levels of As in top soils are generally low and do not reach values higher than 10 mg kg-1, 

although they exceed those in rocks several times. The lowest As levels are found in sandy soils 

and, in particular, in those derived from granites, whereas higher As concentrations are related 



Chapter 2. State-of-the-Art 

10 

most often to alluvial soils and to soils rich in organic matter (Kabata-Pendias & Pendias, 2001). 

Although As minerals and compounds are readily soluble, As migration is greatly limited due to 

the strong sorption by clays, Fe, Al, or Mn oxy/hydr/oxides, and organic matter (Henke, 2009). 

Concentrations of As in terrestrial plants are generally low. Phytoavailability of As varies in 

different plant species and depends on the concentration of soluble As in soils (O’Neil, 1995; 

Kabata-Pendias & Pendias, 2001). Soil properties play a significant role in As plant uptake as 

well. Low soil pH values suggest an increase of As availability for plants when, for example, As-

binding Fe and As oxycompounds become more soluble. However, more intensive uptake of As 

by plants may occur in higher soil pH (O’Neil, 1995). The most common symptom of As toxicity 

is growth reduction of plants. Other symptoms of As toxicity are described as leaf wilting, violet 

coloration (increased anthocyanin), root discoloration, and cell plasmolysis (Kabata-Pendias & 

Pendias, 2001). 

Cadmium (Cd) 

Cadmium is closely associated with Zn in its geochemistry. Both elements have similar ionic 

structures and both are strongly chalkophile, although Cd has a higher affinity for S than Zn 

(Alloway, 1995). Sedimentary rocks show a greater range of Cd concentrations than other rock 

types. Phosphorites and marine black shales are found with the highest Cd content. Both types of 

rocks are formed from organic-rich sediments under anaerobic conditions where trace metals 

accumulated as sulphides and organic complexes (Alloway, 1995). Most soils are expected to 

contain less than 1.0 mg kg-1 of Cd, except those contaminated by discrete sources or developed 

on parent materials with exceedingly high Cd contents (Alloway, 1995). Cd is known to be most 

mobile in acidic soils within the pH range of 4.5 to 5.5, whereas Cd is rather immobile in 

alkaline soils (Kabata-Pendias & Pendias, 2001). Within soil profiles, Cd is found being 

concentrated in the top horizon. In the zone with the highest organic matter content trace metals 

may be retained in this strongly adsorptive horizon after reaching it either as a result of cycling 

through vegetation or by wet and dry deposition from the atmosphere. It is suggested that Cd has 

no essential biological function (Adriano, 1986). However, being a trace element, it is readily 

translocated to the top of plant after sorption through the roots. pH is one of the major soil 

properties controlling both the total and a relative uptake of Cd (Kabata-Pendias & Pendias, 

2001). Elevated Cd concentrations in plants can retard growth and damage root system. The 
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phytotoxicity of Cd can also show inhibitory effects on photosynthesis, disturb transpiration and 

CO2 fixation, and alter the permeability of cell membranes (Kabata-Pendias & Pendias, 2001). 

Cobalt (Co) 

In the Earth’s crust, the highest Co abundance is found in ultramafic rocks and to a lesser extent 

in sedimentary and acid rocks (Kabata-Pendias & Pendias, 2001). Co is allied to Fe and Mn in 

geochemical cycles. This element commonly has two oxidized states Co+2 and Co+3. Under 

weathering conditions Co is relatively mobile in oxidized acidic media. Additionally, Co 

mobility in most soils is governed by Mn oxides and by pH-Eh soil properties (Kabata-Pendias 

& Pendias, 2001). However, it can be bound by Fe and Mn oxides, as well as by clay minerals 

(Isaev, 2004). Therefore, this element does not migrate in a soluble phase (Kabata-Pendias & 

Pendias, 2001). Co distribution in a soil profile is similar to Fe distribution in soil genetic 

horizons. However, in some cases the domination of Mn governs Co distribution in soils 

enriched by Mn minerals (Kabata-Pendias & Pendias, 2001). Organic matter and clay minerals 

are important factors controlling Co behaviour and distribution in soils as well. Clay minerals 

like montmorillonite and illite play a particularly important role in Co sorption (Kabata-Pendias 

& Pendias, 1989). Bound by organic matter, Co can easily be transported in soils in forms of 

organic chelates which can be available to plants. Soil pH seems to be a significant factor 

governing Co phytoavailability (Smith & Paterson, 1995). 

Copper (Cu) 

Cu in the Earth’s crust is most abundant in mafic and intermediate rocks and has a tendency to be 

excluded from carbonate rocks (Baker & Senft, 1995; Kabata-Pendias & Pendias, 2001). It forms 

several minerals of which the common primary minerals are simple and complex sulphides. 

These minerals are easily soluble in weathering processes and release Cu ions, especially in acid 

environments. Cu cations tend to interact chemically with minerals and organic soil components, 

therefore Cu is one of the least mobile elements in soils (Baker & Senft, 1995). The most stable 

forms of Cu in soils can be formed due to binding of this element with hydroxides of Al and Fe. 

In addition, a great number of organic compounds, particularly humic and fulvic acids are likely 

to form stable complexes with Cu when it is present in small amounts. The common 

characteristic of Cu distribution in soil profiles is its accumulation in the top horizons. Among 
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other functions, Cu concentration in surface soils reflects the bioaccumulation of the metal 

(Kabata-Pendias & Pendias, 2001). Transport of Cu to plants occurs in low amounts. The 

distribution of this element in plants is not clearly predictable as well. For example, forms of Cu 

in plant roots are immobile and found in cell walls. The highest concentration of Cu is always 

observed along with the phase of intensive growth (Kabata-Pendias & Pendias, 1989). The 

phytotoxicity of Cu in plants is shown, for example, as chlorosis and tip necrosis of leafs and 

changes in the permeability of the cell membranes (Alloway, 1995). 

Iron (Fe) 

Fe is one of the abundant elements in the lithosphere and concentrates primarily in igneous 

rocks. Thus, Fe content in soils is determined by its presence in the parent material and 

additionally by the nature of soil processes. Fe behaviour in soils is strongly associated with 

oxygen, sulphur, and carbon geochemical cycles. Oxidation and alkaline conditions facilitate Fe 

precipitation whereas reduction and acidic conditions lead to solubility of Fe compounds 

(Vodyanitsky, 2003).  Oxides and hydroxides of Fe are the predominant compounds of this 

element occurring in forms of small particles in organic-rich soil horizons. In the form of 

hydroxides and oxides Fe can replace Mg and Al in other minerals and form complexes with 

organic ligands. Mineral and organic forms of Fe can easily be transformed in soils. However, 

organic matter significantly affects the formation of Fe oxides. At the same environmental 

conditions, these compounds can occur in amorphous, semi-crystalline and crystalline forms 

(Kabata-Pendias & Pendias, 2001). Occurrence of oxides/hydroxides of Fe in the soil matrix in 

humid landscapes is a very important factor which affects the gleying processes development 

and, therefore governs physical and chemical soil properties (Vodyanitsky, 2010).  Fe is essential 

for most organisms. Oxidation or reduction of Fe-ions or its compounds, as well as formation of 

Fe complexes are effective in biochemical reactions without changing the valence of Fe (Murad 

& Fischer, 1988; Vodyanitsky & Dobrovol’sky, 1998). Uptake of Fe by plants and its transport 

in vegetative organs depend on plant development and environmental factors such as pH, 

calcium and phosphorus content, and trace element relationship. At neutral soil pH levels, Fe 

organic complexes play an important role in plant nutrition. Fe is not readily transported in plant 

tissues. Therefore, its deficiency appears first in younger plant parts. Fe tolerance of plants is 

often associated with oxidation and immobilization and/or exclusion of soluble Fe by roots. 
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Plants adapted to waterlogged conditions are commonly more tolerant to high Fe levels than 

plants grown in well-aerated soils (Kabata-Pendias & Pendias, 2001). 

Mercury (Hg) 

Abundance of Hg in the Earth’s crust is uncertain. Hg occurs in several ionic forms. However, it 

is not very mobile during weathering. Affinity to be bound with S (e.g. HgS), formation of stable 

organomercury compounds in aqueous media, and volatility of Hg are the most important 

geochemical characteristics of this element (Kabata-Pendias & Pendias, 2001). Hg occurs 

naturally in soils at concentrations ranging from a few mg kg-1 to few hundred mg kg-1. Below the 

surface level, Hg is fairly mobile in the soil profile, and it tends to accumulate in the surface 

horizons. The Hg content of a given soil horizon could be related to clay content and/or the 

organic matter of that horizon (Adriano, 1986). Sorption of Hg by clays in soils seems to be 

relatively limited and varies little with soil pH (Steinnes, 1995). The accumulation of Hg is 

controlled by organic complex formation and by precipitation (Kabata-Pendias & Pendias, 

2001). In general, the phytoavailability of Hg is low. However, the root system tends to 

accumulate Hg acting as a chemical barrier (Steinnes, 1995). 

Manganese (Mn) 

Mn is one of the most abundant elements in the lithosphere. The cation Mn+2 is the most 

common form in rock-forming silicate minerals. This cation tends to displace some bivalent 

cations in silicates and oxides. Mn can form a variety of oxides and hydroxides which create 

continuous series of compounds with stable and unstable atomic configuration. Mn compounds 

play a significant role in the soil properties because this element regulates the behaviour of other 

micronutrient elements. Besides, Mn affects soil properties such as the pH-Eh equilibrium. The 

reducing and acidification of Mn compounds may be very fast and depends on soil properties. 

Therefore, oxidizing conditions can significantly decrease the uptake of Mn, whereas reducing 

conditions may increase the element uptake and Mn concentrations in plants up to toxic amounts 

(Kabata-Pendias & Pendias, 1989). Mn is an important microelement for plants. The element 

participates in photosynthesis reactions, increases sugar content, and intensifies plant respiration 

rates (Vodyanitsky, 2009; Vodyanitsky et al, 2012). Plant uptake of Mn occurs via metabolic 

processes in the form of other bivalent cations. Plants tolerant to excess amount of Mn can 
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accumulate this element in root tissues or precipitate it in the epidermis in form of MnO2 

(Kabata-Pendias & Pendias, 1989). Toxicity of Mn is developed under water-saturated and low 

redox potential conditions. The most common effects of toxic Mn concentrations are ferrous 

chlorosis, necrotic dark spots on leaves, corrugation of a limb, and random distribution of 

chlorophyll in leaves. 

Nickel (Ni) 

According to its geochemical properties Ni is a siderophile element and therefore, strongly 

associated with Fe. Its concentration decreases with increasing acidity of rocks (Kabata-Pendias 

& Pendias, 2001). In terrestrial rocks, Ni occurs primarily in sulphides, arsenides, and 

antimonides. Under weathering conditions Ni is easily mobilized and co-precipitated with Fe and 

Mn oxides (McGrath, 1995). Ni distribution in soil profiles is related either to organic matter 

content or to amorphous oxides and clay fractions, depending on soil types. Organic matter has a 

strong ability to adsorb Ni. Therefore, this metal is likely to be concentrated in coal and oil 

(Kabata-Pendias & Pendias, 2001). However, soil pH seems to be the most important factor 

affecting the distribution of Ni between the solid and liquid phases in soils rather than the clay 

content and the amount of Fe and Mn oxides and hydroxides (McGrath, 1995). Ni content varies 

significantly in plants that grow on background areas and depends on biological and 

environmental factors. The tendency to uptake this element depends on both soil and plant 

characteristics. However, the soil pH plays the most important role in Ni uptake. This element 

can easily be removed from soils by plants and concentrated either in leaves or in seeds. This 

element can likely be toxic for plants growing on acidic soils. Excess amount of Ni may result in 

damage of plants. Before the symptoms of toxicity become evident, high amounts of Ni inhibit 

processes of photosynthesis and transpiration, and slowdown molecular nitrogen fixation by 

plants (Kabata-Pendias & Pendias, 1989). 

Lead (Pb) 

Among trace metals regardless Fe and Mn, Pb is one of the most abundant in the earth’s crust. Pb 

occurs mainly as Pb+2, although it may also be found in the oxidation state Pb+4, and it forms 

several other minerals which are quite insoluble in natural waters. This metal has highly 

chalcophilic properties (Goldschmidt, 1937; Adriano, 1986). During weathering, Pb sulphides 
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slowly oxidize and have the ability to form carbonates and also to be incorporated in clay 

minerals, in Fe and Mn oxides, and in organic matter. The natural Pb content of soil is inherited 

from parent rocks. Pb is mainly associated with clay minerals, Mn oxides, Fe and Al hydroxides, 

and organic matter. A high soil pH may cause Pb precipitation as hydroxide, phosphate, or 

carbonate forms, as well as promote the formation of rather stable Pb-organic complexes. 

Increasing acidity may increase Pb solubility, but this mobilization is usually slower than the 

accumulation in the organic-rich layer of soils (Kabata-Pendias & Pendias, 2001). The 

characteristic accumulation of Pb near the soil surface in most soil profiles is primarily related to 

the accretion of organic matter in the surface soil layer. Therefore, organic matter should be 

considered as an important sink of Pb in polluted soils (Bolshakov et al, 1978; Kabata-Pendias & 

Pendias, 2001). Pb is neither an essential nor a beneficial element for plants. Methods of Pb 

uptake by plants are passive. Despite poor solubility of Pb in soils, this element is taken up by 

root fibrils and bound in cell walls (Davies, 1995). 

Zink (Zn) 

The most abundant sources of Zn are the ZnS minerals. The total Zn content of soils largely 

depends on the composition of the parent rock material. In sedimentary rocks, the highest Zn 

contents are found in shales and clayey, while sandstones, limestones, and dolomites have 

generally lower contents. In soils, Zn is associated with hydroxides of Fe and Al (14 – 38 % of 

the total Zn content), and with clay minerals (24 – 63 % of the total Zn content). Mobile forms 

and organic complexes of Zn in soils contribute only 1 – 20 % and 1.5 – 2.3 %, respectively. 

Therefore, accumulation of this element is observed in organic-rich horizons and peat material 

where Zn occurs mainly in colloidal forms (up to 60% of the total element content) (Kabata-

Pendias & Pendias, 2001). The common and less specific indications of Zn toxicity for plants are 

growth inhibition, suppression of biomass accumulation, leaf chlorosis and necrosis (Alekseeva-

Popova, 1991). 

2.1.3 Assessment	methods	of	trace	metal	background	levels	in	soils	

Background monitoring of the environment is an important part of the global scale monitoring 

(Izrael, 1982; Izrael & Rovinsky, 1988). The knowledge about background levels of trace 

elements in soils plays a key role in estimating possible changes of the environment caused 
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mainly by human activity. At present, background areas are considered to be zones where 

anthropogenic impact is minimal (Fig. 2). 

 

Figure 2: Importance of zonal and azonal factors in biogeochemical cycles for areas which 

undergone various extend of anthropogenic influence: (a) – background areas, (b) – undisturbed 

areas with natural geochemical anomalies, (c) – weakly disturbed areas undergone local pollution 

sources, (d) – disturbed areas with technogenic anomalies, and (e) – metropolitan agglomerations 

(slightly modified after Movchan & Opekunova, 2002). 

In order to estimate background levels of trace metals in natural landscapes, many studies 

proposed to use the average composition of the upper continental crust (so-called “clarke 

values”; Taylor, 1964; Alekseenko, 1990; Il’yin, 1991; Kabata-Pendias & Pendias, 2001). In 

several publications it is suggested to compare the analytical soil data with published global or 

world soil average values (Vinogradov, 1957; Bowen, 1979). This method requires knowledge of 

the total element content in soils. However, the investigations of Caritat et al (2012) showed that 

the comparison of the data with average crustal values and world soil averages may lead to 

errors. The authors found substantial differences between the published world soil averages and 

their median element concentrations observed on two continents. They stated that little relation 

exists between the spatial distribution of lithological units and the observed soil chemistry. The 
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authors pointed out that trace metal background levels in soils depend not only on mineralogic, 

petrographic, and geochemical characteristics of parent rock material but also on the climatic 

characteristics and related processes which are often not taken into account. Another approach is 

based mainly on studies of the element distribution in soils, features of element migration and 

accumulation in a landscape. The criteria of the assessment of the background element 

distribution were described in studies of Perel’man (1975) and Glazovskaya (1988) and include 

so-called coefficients of radial and lateral disparity, coefficients of biological uptake and other. 

However, since various methods are used to estimate the element background levels, a 

comparison among different datasets remains difficult. 

Many authors point to the necessity of environmental monitoring on regional and local scales 

(Il’yin, 1991; Prokhorova & Matveev, 1996; Motuzova, 2001; Motuzova & Bezuglova, 2007, 

Motuzova & Karpova, 2013). So far, one of the ecosystem approaches of environmental 

monitoring which has been developed in Russia is a conceptual design of ecological 

standardization. Within the framework of this approach, so-called approximate permissible 

concentrations (APC) were developed (Hygienic standards, 2009). The aim of this 

standardization is to receive a more complete idea of soil contamination by inorganic pollutants. 

Values of APC for chemical elements of natural origin were calculated for three groups of soils 

with different physical and chemical properties. To some degree, these values help to determine 

a buffer capacity of soils and consequently, a soil resistance to pollution (Tab. 2). However, 

some authors note (e.g. Dabakhov et al, 2005; Vodyanitsky, 2013) that this method cannot serve 

as a flexible way for estimating the extent of soil pollution because these values are established 

only for certain elements and do not take into account the entirety of soil properties. Therefore, 

the method may serve only as a guideline in estimating background levels of trace metals in 

soils. Another approach in environmental assessment of soils was developed in Germany by the 

Ministry for the environment and consumer protection (LABO, 2003). According to this method, 

background element values in soils (so-called “Hintergrundwerte”) are determined for all 

territorial districts taking into account background concentrations (so-called “Hintergrundgehalt” 

defind as paternt material and nonpoint element input), type of soil horizon, and land use. These 

values are statistically verified. For example, Table 3 shows the background element values in 

various soil materials of the forested area in northeast Germany. 
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Table 2: Approximate permissible concentrations (APC) of selected trace elements and metalloids in soils 

with various physical and chemical properties (Hygienic standards, 2009). 

Soil group (based on soil texture) APC with account of background (mg kg-1) 
As Cd Cu Ni Pb Zn 

1 2.0 0.50 33 20 32 55 
2 5.0 1.0 66 40 65 110 
3 10 2.0 132 80 130 220 

1 - Soils of sandy and sandy loam texture 
2 - Acidic soils (sandy loam and clay) with pH < 5.5 
3 - Soils inclined to neutral (sandy loam and clay) with pH > 5.5 

Table 3: Average background concentrations of the selected elements (percentile of 90) determined for soils of 

northeast Germany. The data is shown for the surface and bottom horizons of various types of soil material 

(LABO, 2003). 

 Element concentration  in mg kg-1 (AR) 
Cd Cu Ni Pb Zn 

Surface horizons 

Sand (Forest soils, northeast Germany) 0.32 8.5 6.9 41 25 

Peat (Greenland organic-rich soils, northeast 
Germany) 

0.40 26 10 48 50 

Bottom horizons  

Sand  0.24 7.0 9.4 12 24 

Peat 0.49 18 22 22 33 

A further approach of environmental monitoring is based on statistical methods. Some studies 

suggest (e.g. Motuzova, 2001) that background levels of an element in an environmental media 

can be considered as a sum of the natural element content inherent the area, and a contribution 

due to long-range atmospheric transport. The statistical technique, so-called “three-sigma rule”, 

can be applied when one considers that the element distribution in soils of background areas is 

governed by the Gaussian probability law. This technique allows estimating the maximum 

natural element concentrations in soils. The upper boundary of an average element concentration 

in soils is the value which exceeds the average regional background level on three-sigma limits 

(µ+3σ). It covers 99 % of the studied components. The aim of this method is to determine the 

regional natural contents of chemical elements in soils taking into account their natural variation. 

The significant exceedance of the upper boundary of an average element concentration is 

determined as the deviation from the average element content. In studies of Reimann et al (2005) 

using the concept in exploratory geochemistry the element background concentrations were 

correspondent to the values ranging from “median ± 2 maximum absolute standard deviation 
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(MAD)”. In this method the value of “median + MAD” is determined as the upper limit of the 

geochemical background called “threshold level”. 

2.1.4 Sources	and	pathways	of	trace	metals	in	the	Arctic	

The Arctic environment is affected by various pathways of trace element input (AMAP, 2005). 

Considerable amounts of pollutants can reach the Arctic through the atmosphere as the fastest 

and the most direct transport way. The majority of trace elements enter to the atmosphere from 

natural sources such as aeolian dust, chemical and biological volatilization, geothermal activity, 

volcanic eruptions, and others. Volcanic releases to the atmosphere can contribute 40 to 50 % of 

Cd and Hg, and 20 to 40 % of the As, Cu, Ni, and Pb of the total emission (Kiekens, 1995). 

However, some studies showed that aerosols containing trace elements of anthropogenic origin 

can be transported within air masses from the midlatitudes (e.g. Jaworowski et al, 1981; Barrie, 

1990; Klaminder et al, 2011) and be trapped in the atmosphere of the Arctic region, particularly 

during the winter period (Ottar, 1981; Djupström et al, 1993). Three trace elements, namely Hg, 

Pb, and Cd mainly contribute to emissions of anthropogenic origin to the atmosphere (e.g. 

Macdonald et al, 2000; AMAP, 2005; Fitzgerald et al, 2005; Liu et al, 2012). Local 

anthropogenic sources in the Arctic region significantly contribute to trace metal deposition from 

the atmosphere. The direct anthropogenic influence on Arctic ecosystems was demonstrated in 

many studies which were conducted in the Russian Arctic and sub-Arctic. Metal levels in 

environmental media were determined around or nearby big industrial complexes such as the 

Norilsk copper-nickel industry in western Siberia (Gytarsky et al, 1995; Ziganshin et al, 2011), 

industrial complexes in Kola Peninsula (Nikonov & Lukina, 1996; Boyd et al, 1997; Reimann et 

al 1999; Opekunova et al, 2006, 2007), and Pechora River Basin (Walker et al, 2006). These and 

many other sources of industrial pollution do not only have a local environmental impact but 

they also contribute to the global long-distance pollution of the atmosphere brought to the Arctic 

(Vinogradova, 2000; Liu et al, 2012). In studies mentioned in AMAP assessment report (AMAP, 

2005) the riverine input and sea ice were pointed out as other possible pathways for metal 

transport to the Arctic. In particular, Hölemann et al (2005) reported the significance of the 

spring freshet of arctic rivers which increases dissolved trace metal fluxes to the Arctic Ocean. 

According to Pokrovsky et al (2012) the majority of the metal flux which occurs during the 

spring flood may contribute up to 60 to 80 % of the total water discharge to the Arctic Ocean. In 



Chapter 2. State-of-the-Art 

20 

the opinion of Dobrovol’sky (2004) insoluble compounds play the crucial role in the metal 

transport by rivers, in particular fine-grained soil particles. Nevertheless, metal fluxes in Siberian 

rivers are comparable or even less than those found in most major rivers worldwide (Alexeeva et 

al, 2001; Gordeev, 2009). Some authors (e.g. Lisitzin, 1994; Khlebovich et al, 1997) draw 

attention to the study of estuarine ecosystems particularly the Arctic river deltas as the mixing 

zones are prone to contaminant accumulation and dissipation. Pfirman et al (1995) noted the 

importance of sediments and organic matter incorporation into sea ice as a contributor to 

pollutant transport in the Arctic. 

It was reported in the AMAP assessment report (AMAP, 2005) that possible changes in trace 

metal pathways may occur due to predicted climate change. The reconstruction of the climatic 

impact of Pb pollution in lake sediments at Spitsbergen was done by Liu et al (2012). The 

authors assumed that the absence of a signal of Pb pollution in the surface lacustrine sediments 

could be due to enhanced climate-sensitive processes such as surface erosion, precipitation and 

others caused by a warming effect in Arctic regions. Pokrovsky et al (2012) concluded that 

among several factors affecting the increase of trace element fluxes in high latitudes due to 

climate warming, the plant productivity and community composition would play the most 

important role. 

2.2 Permafrost‐Affected	soils	

2.2.1 Introduction	

The most important effect of the continental climate is a distribution of permafrost within the 

Arctic region. It is found under approximately 25 % of the land surface of the Northern 

Hemisphere (Turner & Marshal, 2011). According to Soil Survey Staff (2010) permafrost is 

defined as the temperature regime, in which soils and sediments remain at or below 0 °C for at 

least two consecutive years. It was initially applicable to perennially frozen ground. However, 

this definition is given only on the basis of the temperature but not on the freeze-thaw state or a 

composition of the ground. Permafrost can be divided into continuous, discontinuous, sporadic, 

and isolated (Brown et al, 1998). This division is based on the permafrost occurrence within the 

areas of the northern circumpolar region (Fig. 3). Beside the high latitudes, permafrost is also 

found in mountainous regions and plateaus of high altitudes in middle and low latitudes. In the 
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Antarctic, permafrost zones are restricted to coastal lowlands of the Antarctic Peninsula and its 

offshore islands and occupy only 0.35 % of the region (Bockheim et al, 2008). 

 

Figure 3: Different types of permafrost in the northern circumpolar region (Brown et al, 1998). 

Violet and brown colours represent the distribution of continuous permafrost of lowlands and 

mountain areas, respectively. 
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Permafrost-affected soils cover approximately 180 × 106 km2 of the global land area of the 

Northern Hemisphere (Soil Survey Staff, 2010). Relief features, discontinuity of the snow cover, 

wind pattern, and soil water regime result in a great variety of permafrost-affected soils 

(Vasilyevskaya et al, 1993; Goryachkin, 2010). Apart from the factors mentioned above, a wide 

variety of parent materials contributes to a great diversity of these soils developed in the Arctic 

region. The following soil forming processes dominate in the Arctic zone and affect the soil 

profile development: (1) organic matter accumulation, (2) cryogenesis, and (3) gleization. A 

large amount of organic carbon in both the active and deeper perennially frozen horizons is one 

of the unique properties of permafrost-affected soils (Tarnocai, 2006; Ping et al, 2008). In 

permafrost-affected soils, the total organic carbon pool amounts to 1024 Pg (Tarnocai et al, 

2009). According to investigations carried out in the Lena River Delta of northeast Siberia, the 

mean soil organic carbon stock for the upper 1 m of soils of the Holocene terrace has been 

estimated to be 29 kg m−2 ± 10 kg m−2 (Zubrzycki et al, 2013). 

2.2.2 Physical	and	chemical	properties	of	permafrost‐affected	soils	

Permafrost-affected soils show a great variety of physical and chemical properties which was 

described in detail for soils of the Alaskan (e.g. Everett & Brown, 1982; Ping et al, 1998), 

Canadian (e.g. Pettapiece, 1975; Walker, 2012), and Russian Arctic (e.g. Vasilyevskaya et al, 

1986; Lupachev & Gubin, 2008). Permafrost plays a significant role in landscape morphology 

formation as well as in processes of soil formation. The main soil forming processes which 

specify the surface morphology of permafrost-affected landscapes are freezing and thawing, 

cracking, frost heave, frost stirring, mounding, fissuring, and solifluction. As a result of 

cryopedogenesis, patterned ground such as non-sorted circles, stripes, so-called medallion spots, 

hummocks, and ice wedge polygons occur (Fig. 4). The repeating cycles of freezing and thawing 

lead to cryoturbation (frost churning) that includes irregular or broken horizons (Fig. 5) and an 

incorporation of organic matter and other inorganic compounds, especially along the top of the 

permafrost table (Tarnocai & Smith, 1992; Bockheim & Tarnocai, 1998). The permafrost 

occurrence in the deepest mineral soil horizons often results in waterlogging of the permafrost-

affected soils. Under these conditions, the processes of gleying and other redoximorphic 

properties are predominant. 
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Figure 4: Examples of permafrost patterned ground governed by individual natural and climatic 

characteristics of the Arctic region: (a) – Hummocks and (b) – frost cracks (landscapes of Samoylov 

Island, the Lena River Delta); (c) – sorted and (d) – non-sorted circles as the result of the frost 

heaving on the area of Tiksi. Own photos (2011). 

Most permafrost-affected soils display a wide range of pH from strongly acidic to slightly 

alkaline reaction, from low to high basic saturation, the dominance of carbonates and 

exchangeable ions. In studies of Tedrow (1968) and Ugolini (1986) was mentioned that the 

existence of gradients in environmental characteristics and related chemical processes may result 

in pronounced soil zonation in the Arctic region. Occurrence of permafrost, and thus a complex 

system of the soil forming processes developed in Arctic soils under the influence of climatic 

conditions, affects the features of geochemical processes that occur there. Sokolov et al (1997) 

suggested that hydrogenic conditions of permafrost-affected soils are the most important factor 

which results in washout of soil-forming components (i.e. soil mineral particles, exchangeable 

ions). Studies of Chagué-Goff & Fyfe (1997) showed a strong influence of permafrost 
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occurrence on the element distribution within the peat profile. An enrichment of all analysed 

trace elements was observed directly above the permafrost table and a depletion directly below, 

independent of their association with the mineral or organic compounds. The authors suggested 

that the seasonal freezing and thawing processes affected the solute redistribution within the soil 

profile. The investigation of Schuster et al (2004) showed that the presence of permafrost greatly 

influences on the transport of dissolved organic matter (DOC) which is capable to bind many 

elements and moreover, enhances their transport. 

 

Figure 5: The soil profile of a cryoturbated soil of the polygon rim at the first terrace of Samoylov 

Island (the Lena River Delta, northeast Siberia). Scheme composed from field observations 

(17.09.2010). Soil horizon indexes identified according to the US Soil Taxonomy (Soil Survey Staff, 

2010) where the index “A” indicated a mineral horizon which was formed at the soil surface or 

below an organic horizon, the index “B” indicated subsurface mineral horizons. The suffix “jj” 

indicated the cryoturbation occurrence. The suffix “g” characterizes the horizons with gleying 

properties. 

2.2.3 Mechanisms	of	trace	element	distribution	in	permafrost‐affected	soils	

Trace metals in soils occur in both mobile and bound forms. The migration of soluble elements 

in soils is governed by a number of physical and chemical processes, including advection, 
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diffusion, and dispersion. Further processes influencing the distribution of dissolved and 

particulate metals in soils are precipitation, adsorption, organic complex formation and ligand 

exchange (Fig. 6). For example, the mass transfer can be a potentially important mechanism for 

Hg and As. These elements can be moved out of the system by leaching to ground water, 

volatilization, or plant uptake (McLean & Bledsoe, 1992). The behaviour of trace metals in soils 

may differ from the free ion migration because of the ability of metals to form soluble complexes 

with other soil compounds (e.g. organic and inorganic ligands). The presence of complexes in 

the soil solution may strongly affect the element transport in soils. Because the metal complexes 

may be of varied valency (positively/negatively charged or electrically neutral), the adsorption of 

these complexes by soil may be weaker or stronger relative to the free metal ion (McLean & 

Bledsoe, 1992; Robinson et al, 2005). 

 

Figure 6: A scheme of processes which control free trace metal concentration distribution in soil 

solution (Mattigod et al, 1981). 
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It is necessary to note that in permafrost-affected soils, apart from the processes mentioned 

above, the freezing process may significantly influence on the element distribution within the 

soil profile. Many studies, focused on the physical processes occurring in permafrost-affected 

soils, showed that the occurrence of a strong temperature gradient affects the heat and water 

transfer within the soil profile (Hoekstra, 1966; Hoekstra, 1967; Cary & Mayland, 1972; Cary, 

1987; Shoop & Bigl, 1997; Sheshukov & Egorov, 1998; Boike et al, 2008; Nagare, 2012). 

The mechanism of the soil water transport in freezing soils is based on the capillary model and 

shown in Figure 7. The main idea of this model is based on the relationship between cryosuction 

and water content in frozen soils which reflects the pore size distribution in soils. The cryogenic 

suction can be called a pressure deficit or a negative pressure and it is determined as a function 

of the latent heat of fusion (amount of heat energy which is released when the change of water 

state occurs at the freezing point 0 °C) and the temperature. The temperature gradient in 

permafrost-affected soils remains regardless of the seasonal change of its direction during 

autumn and spring. During autumn the decrease of the heat input to the surface soil horizons 

permits not only the downward freezing from the top soils but also the upward freezing of the 

active layer from the permafrost table. Within the soil profile, water begins to migrate along the 

water films adsorbed to the soil particles from the unfrozen side to the frozen side. When the soil 

begins to freeze, the water that is least attached to the soil particles by capillary forces and 

adsorption freezes first. The freezing of water leads to ice crystal formation in the soil pore 

spaces (Hoekstra, 1966; Konrad & Morgenstern, 1980; Sheng et al, 1995). The ice lenses grow 

through the supply of liquid water from the unfrozen soil area. The advance of the freezing front 

in the soil profile depends on the soil particle pore size distribution and the relevant radius of 

capillaries at the ice-water interface (rice-water). If the radius rice-water is smaller than the 

minimum pore space size rpore, the ice lens continues to grow, otherwise the freezing halts (Fig. 

7b). 

In frozen soils, the movement of water occurs mainly through water films adsorbed by the soil 

particles therefore, the water films may transport metal ions. A survey of literature showed that 

there are in situ studies dedicated to redistribution of soluble components in permafrost-affected 

soils (Panin & Kazantsev, 1986; Ostroumov et al, 1998; Ostroumov et al, 2001; Streletskii et al, 

2003). The processes of water and salt migration and interactions between freeze-thaw processes 

and selected chemical elements in soils were studied in detail (Cary & Mayland, 1972; 
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Chamberlain, 1983; Henry, 1988; Marion, 1995). A few experiments focused on transport and 

fate of trace metals in frozen soils and were demonstrated in studies of Chuvilin et al (1998) and 

Lund & Young (2005). Therefore, experimental studies are required to understand the processes 

of the metal transport in soils affected by frost. 

 

Figure 7: A schematic diagram showing the capillary model of segregation ice formation.  

According to this model, segregation ice forms when the freezing front halts – (a); ice would 

penetrate through the soil particles if rice-water < rpore. The freezing front would halt if rice-water > rpore – 

(b);According to the Clausius-Clapeyron equation, the increase of suction can be determined as 

difference between the ice pressure (Pi) and the water pressure (Pw) and causes the water 

migration to the freezing front (modified after Davis (2001) and Woo (2012)). 

2.2.4 Different	approaches	of	classification	of	permafrost‐affected	soils		

The processes indicated above contribute to the variety of classification approaches of 

permafrost-affected soils. At present, four schools of soil science are developed and used to 

classify permafrost-affected soils: the Russian, Canadian, American (US Taxonomy), and the 

World Reference Base for Soil Resources (FAO/UNESCO). Each of them is based on its own 

system of soil diagnostics and classification. The features of each classification system are 

described in following subsections. 
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Russian soil classification 

About 65 % of the land area in Russia is occupied by permafrost-affected soils (Makeev, 1993; 

Brown et al, 1998). Despite the wide spatial distribution and early studies of Russian scientists as 

Docuchaev, V. V., Sibirtsev, N. M, Krasuyk, A. A., Zolnikov, V. G., and others on permafrost-

affected soils, they were not included in the official soil classifications of the former Soviet 

Union called “Guidelines for classification and diagnostics of soils” (Rozov & Ivanova, 1967) 

and “Classification and diagnostics of USSR soils” (Egorov et al, 1977) because of soil data 

limitation for northern regions. According to Dobrovol’sky & Trofimov (1996) and Goryachkin 

(2003), one of the important drawbacks of the official Soviet Union soil classification was that it 

disregarded the soils developed on the so-called areas of risk farming. At the same time, 

taxonomies of permafrost-affected soils were developed on a nationwide scale (Ivanova, 1976; 

Elovskaya, 1987; Kovda & Rozanov, 1988) and were based on the same fundamental approaches 

used in the soil classification of the Soviet Union: factors of soil formation, processes, and 

characteristics of soils. The latest Russian classification system was considerably improved when 

compared to the previous edition. To describe permafrost-affected soils, in this Russian soil 

classification (Shishov et al, 2004) two orders were defined: (1) cryometamorphic soils and (2) 

cryoturbated soils instead of one order called Cryozem. The first order joins the groups of soils 

which are developed primarily on sandy and medium-textured loam deposits and characterized 

by occurrence of both an organic horizon and a cryometamorphic horizon which differs from 

parent material by a particular powdery structure (Russian Academy of Agricultural Sciences, 

2008). The second order includes the soils which were formed under the influence of cryogenic 

processes and do not have a gleyic horizon, despite a perennial waterlogging. Thus, all other 

soils developed in permafrost-affected environments are attributed to other soil orders. 

According to Bezuglova (2009) the new Russian soil classification, in spite of improvements in 

comparison with the soil classification system of 1977 (Tonkonogov et al, 2005), is still based 

the soil classification of 1977, and therefore has some limitations for the practical use. It was 

noted by Bockheim et al (2006) that the Russian soil classification system of 2004 does not have 

a taxon to reflect cryoturbation and permafrost occurrence in the soil. Some difficulties appear 

when permafrost-affected soils are described by Russian soil classification (Shishov, 2004). 

Lupachev & Gubin (2008) pointed out that a diagnostic horizon for permafrost-affected soils 

such as suprapermafrost gleyic horizon is not included to the Russian soil classification system. 
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Additionally, cryosol group does not include the organic horizons that are not developed at the 

soil surface (Lupachev & Gubin, 2012). 

US Taxonomy 

More than other soil classifications, the US soil taxonomy is considered to be soil survey-

oriented. The structure of this taxonomy comprises the following levels: order, suborder, great 

group, subgroup, family, and series. Permafrost-affected soils occupy approximately 90 % of the 

Alaskan exposed land surface (Jones et al, 2010). In nomenclature, permafrost-affected soils 

were included only in the 8th edition of the US Soil taxonomy and defined as Gelisols (from 

Greek gelid, “very cold”) (Soil Survey Staff, 1998). The soils are considered to be Gelisols if 

they contain permafrost within 100 cm of the soil surface or gelic material within 100 cm of the 

soil surface and permafrost within 200 cm of the soil surface where the frozen layers comprise 

ice lenses, vien ice, segregated ice crystals, and ice wedges (Soil Survey Staff, 2010). One of the 

prerequisite for Gelisols is the occurrence of permafrost or soil temperature of 0 °C which does 

not reduce the characterization to a diagnostic soil horizon, like in the Russian soil classification, 

but to the occurrence of cold environment. However, Krasilnikov & Arnold (2009) and 

Tonkonogov et al (2009) emphasized that the distinction of this soil order by soil climatic 

condition criteria may result in a limitation of the significance of other soil-forming processes. 

Canadian Soil Classification 

The Canadian soil classification system was developed in accordance with geographical settings 

of the country and used the terminology and conceptions applicable for the local environment. 

The system has a hierarchical structure and consists of five categories: order, great group, 

subgroups, family, and series (Canadian Soil Classification Working Group, 1998). Permafrost-

affected soils cover approximately 50 % of Canada (Jones et al, 2010). In the Canadian soil 

classification, permafrost-affected soils are described as Cryosols. They can be both mineral and 

organic and are characterized by features of cryogenic processes. The Cryosols order includes 

three great groups: Turbic Cryosol, Static Cryosol, and Organic Cryosol. The Canadian soil 

classification system is not based directly on soil genesis as in case of the Russian Soil 

classification but on soil-forming processes. Many soil scientists noticed certain similarities of 

the Canadian Soil Classification with the US Soil Taxonomy (e.g. Buol et al, 2003; Tarnocai & 

Bockheim, 2011). In both systems permafrost occurrence is recognized as the major factor, 
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which drives the cryogenic processes and therefore, permafrost-affected soils development. 

Close correlation was also found between the great groups of Cryosols of the Canadian Soil 

Classification and suborders of Gelisols of the US Soil Taxonomy (Soil Survey Staff, 2010).  

This classification has fewer similarities with the World Reference Base for Soil Resources 

(WRB) soil groups (Tarnocai & Bockheim, 2011). 

WRB soil classification 

The World Reference Base for Soil Resources (WRB) soil classification system was developed 

by two international groups which originated from the World Soil Map legend and an 

International Reference Base. The system of WRB classification was developed in order to 

bridge all national classifications from across the globe. Additionally, it was aimed to be used as 

a base for the global soil resources assessment (FAO, 2006). In 2007, the WRB soil classification 

was translated into Russian (Targul’yan & Gerasimova, 2007) prompting many Russian soil 

scientists to acquaint oneself with the soil classification system and discuss advantages and 

disadvantages of other existent soil classifications (Tonkonogov, 2008). The WRB soil 

classification has a pronounced hierarchical structure which comprises two levels of the 

classification system: (1) reviewing soil groups and (2) compositions of the reviewing soil 

groups with qualifiers - prefixes and suffixes. This hierarchical structure is similar to the 

structure of the new Russian soil classification despite the critical distinction in the concept of 

soil as a subject of studies and the determination of diagnostic horizons between these soil 

classification systems (Tonkonogov et al, 2008). According to the WRB soil classification 

permafrost-affected soils are identified as Cryosols where the diagnostic cryic horizon (from 

Greek kryos - cold, ice) is described as a perennially frozen soil horizon in mineral or organic 

materials. The diagnostic criteria of permafrost-affected soils are similar to the criteria proposed 

for the US soil taxonomy (Soil Survey Staff, 2010). This fact makes easier to compare the 

studies of permafrost-affected soils to each other where the international and national approaches 

were used to define a soil taxa. 

2.2.4.1 Correlation of soil classification systems 

Many studies have been dedicated to correlating the different soil classification systems (e.g. 

Rozanov, 1974; Stolbovoy, 2000; Krasilnikov & Arnold, 2009; Jones et al, 2010). The 

importance of the correlation of soil units provided by different classification systems was 
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mentioned by Gerasimova et al (2009). In particular, further development of soil database and 

soil mapping should provide a key for the soil information exchange between the scientists. 

Some studies of permafrost-affected soils provided a correlation between soil names of Canadian 

soil classification and the US soil classification (e.g. Smith et al, 1995), and the Russian soil 

classification and the WRB soil classification (e.g. Pastukhov & Kaverin, 2013). Cryoturbation 

of soil material is used as a diagnostic criteria in classification systems including the soil 

taxonomy of Russian soil classification (Shishov et al, 2004), the US soil taxonomy (Soil Survey 

Staff, 2010), the Canadian soil classification (Canadian Soil Classification Working Group, 

1998), and the World Reference Base for Soil Resources (WRB) (FAO, 2006). However, the 

factor of permafrost occurrence is disregarded only in the Russian soil classification. The 

different soil classification systems are based on different methodological approaches and 

therefore, the correlation between them may lead to controversial results. 

Besides two correlation methods (pedogenic and substantive), Gerasimova et al (2009) suggested 

the cartographic method, i.e. overlapping of maps created by different soil classifications as a 

further approach in correlating the soil classifications. Figure 8 shows the mapping of the highest 

taxonomic units determined in three national soil classifications (Russian, American, and 

Canadian) and the international soil classification (WRB). It is immediately visible that Russian 

Cryozems appear to correlate well with American Gelisols, Canadian Cryosolic soils, and 

Cryosols of the WRB soil classification. However, these maps cannot fully depict the diversity of 

permafrost-affected soils. The contradictions in correlation of soils arise on a local scale. The 

results of these contradictions are shown using the example of the delineation of permafrost-

affected soil types classified according to the US Soil Taxonomy (top) and Russian soil 

classification (bottom) (Fig. 9). Because soil classification and soil mapping are intended for 

different purposes, the result of these approaches is different. The taxonomic system classifies 

the soils as a single class everywhere, whereas the soil mapping distinguishes several classes of 

soils (Stolbovoy, 2000). 
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As it was shown, difficulties of correlation of soil classification systems are primarily related to 

differences in methods applied to classify permafrost-affected soils. These differences may lead 

to incongruence in soil type landscape distribution (Gerasimova, 2007; Jones et al, 2010). 

Besides the different approaches used in classification of permafrost-affected soils, the 

complexity of soil correlation is embodied in the dynamic development of national and 

international soil classifications (Samofalova, 2013). Some studies suggested the use of certain 

soil criteria common for various soil classifications as a base for the comprehensive and effective 

classification delineation of permafrost-affected soils (e.g. Everett & Brown, 1982; Smith et al, 

1995). Each group of soil classification systems developed the key to soils, in order to simplify 

the processes of soil classification working in the field, (FAO, 2006; Russian Academy of 

Agricultural Sciences, 2008; Soil Survey Staff, 2010). 
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Figure 9: Soil units of permafrost-affected soils on Samoylov Island (Lena River Delta, northern 

Siberia). Soils described according to: (a) – the US Soil Taxonomy (Soil Survey Staff, 2010) and (b) 

– Russian Soil Classification (Elovskaya, 1987). Data taken from Pfeiffer et al (2000), Pfeiffer et al 

(2002), and Yakshina (1999a). 
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3. Investigation	area	

The investigation area is located in the northern part of the Yakutia region (Republic of Sakha) 

between 73.5° N and 69.5° N (Fig. 10). It covers the delta of the Lena River in the north and its 

nearby hinterland to the south which belongs to the Lena River drainage basin. The area belongs 

to a continuous permafrost region with permafrost depths ranging from 500–600 m and deeper 

(Gvozdetsky & Mikhaylov, 1978; Makunina, 1985; Zhang et al, 1999). 

The study area belongs to the arctic-subarctic climate zone with continental and severely 

continental type climate. The continentality of climate is more evident going inland. It depends 

not only on domination of continental air mass and their circulation characteristics in this area 

but also on distance from the Arctic Ocean and mountain groups on the side of the Pacific Ocean 

(Makunina, 1985). This area of northern Siberia experiences a monsoonal change in wind 

direction (Sechrist et al, 1989). During winter period an intense, semi-permanent, cold Siberian 

High anticyclone is dominant. The regional particularities of the wind distribution occur over the 

investigation area. The prevailing winds are of south-western (inland section) and south-eastern 

(deltaic section) directions, being strongest over the coast and light or calm in the interior part of 

the area. During summer the central Lena Delta region undergoes varying weather fluctuations 

due to the change between the advection of cold and moist air masses from the Arctic Ocean, and 

warm and dry air masses from the Siberian mainland (Kutzbach et al, 2007). At this period winds 

of south-eastern, eastern, and north-western directions are prevailing. As it was shown by Ivanov 

et al (2009) the dominant winds in the Tiksi area, which is around 110 km away from the central 

part of the Lena River Delta (Samoylov Island), have southern, south-western, and western 

directions in the cold period whereas in the warm period the winds of northern and north-eastern 

direction are dominant. During the cold period strong winds could be observed only for 

dominant directions. In the warm period the strong winds come from almost all directions. 

The region is generally characterized by high annual air temperatures amplitudes of warm and 

cold seasons, and low and unequal precipitation distribution during and among years. The 

topographic features have a great influence on all local climatic elements of the study area. The 

analysis of the archive meteorological data (Russian’s Weather Center, 2013) also showed that 

temperature and precipitation amplitudes increase from the deltaic area in the north to the land 

area southward. Thus, the mean annual air temperature measured during the period 1998-2012 at 
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the climate station Dunai (71° 56' N, 124° 30' E) was -14.6 ºC, -12.6 ºC at the station Stolb 

Island (72° 24' N, 126° 21' E) , -12.5 ºC at the station Tiksi (71.6° N, 128.9° E) was, and -11.5 ºC 

at the southernmost station Dzhardzhan (68° 49' N, 123° 59' E). The mean precipitation 

measured at the Dunai northernmost station during the period of 2000-2004 was 228 mm, 

whereas at the climate reference site in Dzhardzhan the annual precipitation was 330 mm 

measured during the same period (Fig. 11). 

 

Figure 10: An overview map of study site locations. The studied sites 1T, 2T, and 3T belong to the 

first, second, and third Lena River Delta terrace, respectively. The studied sites “H” belong to the 

hinterland. Photos of representative landscapes are provided by S. Zubrzycki (Zubrzycki et al, 

2012). 
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Figure 11: Mean annual temperature and mean annual precipitations observed at the stations: (a) - 

Dunai, (b) – Stolb, (c) – Tiksi, and (d) – Dzhardzhan during the period 1998 – 2012 for temperature 

data and 2000 – 2004 for precipitation data, respectively. Data are provided by Roshydromet (2011) 

and Russian’s Weather Center (2013). 

Over the whole study area the winter period lasts 6-7 months. Polar night lasts from November 

to January. The snowmelt typically starts in the beginning of June and the growing season lasts 

from the middle of June to the middle of September. Polar day lasts from May to the beginning 

of August. The summer period is short with drizzling rain and sometimes with snow in the north 

(Isachenko, 1985). About 45% of the precipitation falls as rain during the growing season. 

Because of a strong continental climate in the study area, the summer period is longer and 

warmer in the south regions. Luybomirov (2005) noted that accumulated summer air 

temperatures can vary from 4-5 °C in the north to 25-40 °C in the south of the northern Yakutia 

region. However, accumulated winter temperature isotherms are not governed by the same trend. 
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3.1 Study	sites	of	the	Lena	River	Delta	Region	and	its	Hinterland	

The Lena River Delta has an area of around 28.000 km2 and is situated on the shallow Laptev 

Sea shelf. The plain was formed down to the water gap between Chekanovkiy and Tuara-Sise 

Ridges (Makunina, 1985). The delta falls into islands by 880 channels which are mottled with an 

abundance of thermokarst lakes. The Lena River is one of the largest rivers in the Arctic that 

flows northward from mid-latitudes to the Arctic Ocean. The drainage area of the Lena River 

basin is 2.430.000 km2 and it contributes about 15% of total freshwater flow into the Arctic 

Ocean (Yang et al, 2002). The river carries from 15×106 to 21×106 tons of suspended sediments 

out to the delta per year (Makunina, 1985; Gordeev & Sidorov, 1993; Yang et al, 2002). The 

Lena River has a very low winter flow and a very high peak flow in June, about 55 times greater 

than the minimum discharge. The interannual variation of the Lena River monthly discharge is 

generally smaller in the cold season and larger in summer months mainly due to floods 

associated with snowmelt and rainfall storm events (Yang et al, 2002). 

The ID names, location, and landscape description of the studied sites of the Lena River Delta 

are shown in Appendix (Tab. I). According to Grigoriev (1993), the Lena River Delta area can 

be subdivided into three terraces of various floodplain levels and different ages. The highest third 

terrace (30 – 55 m a.s.l.) was formed during the late Pleistocene and is exposed in the western 

and fragmentarily in the southern part of the delta (Schirrmeister et al, 2003). The deposits of 

that terrace consist of so-called Ice Complex enhanced by peat and sand accumulations overlying 

sequences of sandy sediments with a high content of segregated ice (Strauss et al, 2012). This 

geomorphological unit is represented by the Khardang-Sise Island in the west (site 3T-1) and the 

Sardakh Island (site 3T-2) in the south-east of the Lena River Delta. Being located at the 

southern part of the Trofimovskaya channel, Sardach Island was considered to be a relic part of 

the third terrace of the Lena River Delta. This unit is characterized by typical polygonal sedge-

moss tundra with the dominant species Carex sp, Dryas punctata, and Poaceae family in herbs 

layer that occupies up to 60 % of the total vegetation coverage. The moss cover reaches 90%. 

The study site of Khardang-Sise was located at the eastern part of the island sidewise the 

Olenekskaya channel. Topographically the area around was composed of relatively smooth 

surface plains 800 m south-west from the Mutnoe Lake. The moss layer was dominant and 

amounted to 90 % of total vegetation cover. The herbs layer consisted mainly of Dryas punctata 

and Poaceae family species and contributed up to 50 % of the foliage cover. 
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Arga Island (site 2T-1) is the northernmost site of the study area. It is located in the north-

western part of the Lena River Delta and represents a major part of the second terrace (20 - 30 m 

a.s.l.) of the delta (Schwamborn et al, 2002). This unit is characterized by coarse-grained sandy 

sediments, which were formed from the late Pleistocene to late Holocene (Schwamborn et al, 

2002; Kuzmina et al, 2003; Wagner et al, 2007). The vegetation of the studied site comprised 

mosses covering 90 % and herbs with the dominant species Carex sp, Cassiope tetragona, and 

Luzula sp occupying 30 % of the total vegetation cover. 

The first terrace including active floodplains (1-12 m a.s.l.) formed during the early Holocene 

and covers the main part of the eastern delta sector between the Tumatskaya and the Bykovskaya 

channels (Schwamborn et al, 2002). It is assumed to represent the “active” delta within the study 

locations on Samoylov Island (72° 22' N, 126° 31' E) and on Tit-Ary Island (site 1T-1) which is 

situated in the main Lena River channel south-east of Samoylov. Polygonal tundra is typical for 

the landscape units on both islands and is characterized by two different forms: polygon centres 

that are water saturated and contain a large amount of organic matter due to accumulation under 

anaerobic conditions, and polygon rims that show evidence of cryoturbation in more or less all 

horizons of the active layer. The polygon rims show a distinctly lower water table and less 

accumulation of organic matter (Pfeiffer et al, 2002; Fiedler et al, 2004; Kutzbach et al, 2004). 

The Tit-Ary Island belongs to the northernmost places of tree-limit in the Russian Arctic. The 

canopy layer at the studied site was sparsely distributed and occupied around 5 % of the total 

vegetation coverage. The moss layer played a dominant role in forming the sparse forest floor 

and amounted to 80 % of the total vegetation coverage. Shrubs comprising Ledum Palustre (H.) 

and Betula nana (L.), and herbs with the dominant species Carex sp, Eriophorum medium 

(Andersson), Luzula sp, Pedicularis sp. contributed 70 % and 30 % to the total vegetation cover, 

respectively. The studied units of Samoylov Island are described in details in the following 

subsection below. 

The region of the north slope of Chekanovkiy Ridge represents a transitional zone between the 

Lena River Delta and the Siberian mainland. The investigation sites of the nearby hinterland 

were located on the slopes of the Chekanovskiy Ridge on the western side of the Lena River 

(Fig. 10). In regard to lithological structure the sites of the hinterland represented the eastern 

margin of the Siberian platform westward the Lena River. The studied sites falling within the 

Central Siberian Plateau represented patches of pronounced visible changes in vegetation cover. 
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According to Isachenko (2002) this region pertains to Sub-Arctic southern tundra landscapes, 

low land forest tundra Siberian landscapes, and partially to northern taiga east-Siberian boreal 

landscapes further to the south. The site H-1 (71° 10' 26.29" N, 124° 34' 29.80" E) representing 

southern tundra was situated on a relatively flat plain with an elevation of 160 m a.s.l., 50 m 

north to the El’gene-Kuele Lake. It was characterized by smaller percentage of moss coverage 

(up to 50 %) in comparison with a typical tundra zone, but predominant by herbs and shrubs (up 

to 60 %) among which were the species Betula nana and Ledum Palustre. 

The site H-2 (70° 55' 22.76" N, 125° 33' 3.13" E) belonged to the forest tundra zone.  This 

forested area had sparsely distributed species of Larix Sibirica (Ledeb.). As a “drunk” forest 

area, it was characterized by a slightly inclined landscape with small-size elevated hills which 

developed due to heaving processes. This site was dominated by moss species covering up to 100 

% of the area. The coverage by shrubs and herbs amounted to 60 % and 20 %, respectively. 

The site H-3 (69° 23' 56.83" N, 123° 49' 33.96" E) was the southernmost unit of the pilot study. 

It belonged to the northern taiga vegetation zone and was located around 100 m south-west to the 

Sysy-Kuel’ Lake. The vegetation diversity in the tree layer comprised 5 to 7 m height Larix 

Sibirica and was characterized by relatively high tree coverage (up to 50 %). The foliage cover 

by herbs was small and amounted to 1% of the total vegetation coverage, whereas shrubs with 

dominant species Betula nana, and Alnus crispa composed up to 70 % of the coverage. 

Samoylov	Island	

The investigations of the soils were mainly carried out on Samoylov Island in the southern-

central Lena River Delta (Fig. 10). Since 1998 the research station has been functioning on 

Samoylov Island and serving as the base for multi-disciplinary studies (Hubberten et al, 2006; 

Grigoriev & Hubberten, 2012; Bolshiyanov et al, 2013). The geomorphology of the island was 

studied in detail in previous years (Boike et al, 2013; Bolshiyanov et al, 2013). This site is 

representative of the younger delta areas including a Holocene estuarine terrace and various 

flood-plain levels (Fig. 12). The western part of the island represents the floodplain (site middle 

floodplain MF-1). Frequent changes of the river water level create different periods of 

sedimentation and result in the formation of stratified soils and sediment layers which are 

dominated either by mineral substrates with allochthonous organic matter or pure autochthonous 

peat (Boike et al, 2013). The site MF-1 (72° 22' 51.61" N, 126° 28' 28.37" E) was chosen as 
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representative for this part of the island. It was located on a gently inclined floodplain at an 

elevation of 3 m a.s.l. The vegetation coverage comprised mainly Poaceae family species 

(Dischampsia caespitose L. and Arctophilla fulva) and amounted to 60 %. Presence of moss 

species was estimated to be no more than 2 % of the total vegetation cover. 

 

Figure 12: A map of Samoylov Island showing: (a) – geomorphological units of the island (shown by 

colours) and (b) – location of site investigated during field expeditions in 2009 (denoted by a 

triangle sign), 2010 (denoted by a quadrate sign), and 2011 (denoted by a circle sign). Own photos 

of the investigated sites (2010). 

The high flood-plain is fragmentarily situated between the east coast of the island and the 

western border of the estuarine terrace above the middle floodplain. This area could be described 

as a thermokarst depression of the terrace above the floodplain, because it is composed of the 

same layered plant detritus-sand deposits of the ancient delta floodplain. It is inundated only 

during exceptional annual floods (Akhmadeeva et al, 1999; Kutzbach, 2006). The sites HF-Rim2 

and HF-Ce2 belonged to polygon rim and polygon centre, respectively. These two micro relief 

forms developed a polygon of a hexagonal form with slightly pronounced edges. The vegetation 

of the polygon rim was dominated by Salix sp., Arctagrostis sp. with hummocks of 
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Arctostaphylos Alpina (L.). The coverage of mosses was prevailing and amounted to up to 97 %.  

Even with a small elevation gradient between two forms of relief, the difference in vegetation 

cover was expressed by a dominance of hygrophilous Carex species in the polygon centre site. 

In contrast to the accumulative floodplain site, erosion processes dominate the eastern shores of 

the island and form an abrasion coast. This part is represented by an ancient estuarine (river-

marine) terrace, which covers about 70% of the total area of the island (Akhmadeeva et al, 

1999). The sites 1T-Rim1 and 1T-Ce1 represented two micro relief forms - a notably elevated 

polygon rim and water saturated polygon centre, respectively. The polygon rim was 

characterized by presence of moss and lichen species (cvg. 90 %). The coverage of herbs was 

dominated by Carex aquatilis, Dryas octopetata (Linn.), Pedicularis lapponica (L.), scattered 

Luzula sp. and Arctagrostis sp. The polygon centre was composed of an abundance of small 

hummocks comprising Carex aquatilis (Wahlenb.) species and covered by mosses 100 %. On the 

skirts of the centre Eriophorum species and shrubs (Salix reticulata (L.)) were dominant among 

others. The additional site with the name ID 1T-d represented hummocky microrelief forms of 

the ancient estuarine terrace near the Fish Lake. At that small site a diesel generator which 

supplied the micro-meteorological eddy covariance measurement system was located. After 

demounting the diesel generator together with the measuring system, the vegetation and soil 

cover of this site were disturbed by diesel fuel spill. 

3.2 Tiksi	area	and	investigated	sites	

The area of Tiksi is located between the Lena River and the Kharaulach River mouths. It covers 

parts of Primorsky Ridge and Kharaulach Mountains which is a part of the Verkhoyansk Range. 

The area belongs to the Verkhoyano-Kolymanorogenic system of Mesozoic time. Its bedrock 

was formed by disturbed Palaeozoic terrigenous rocks and composed of hard Permian 

aleurolites, mudstones, and sandstones, and much softer Carboniferous sandstones, mudstones, 

and shales, all striking north-south (Grosswald et al, 1992). The deeply eroded surface of 

Palaeozoic is covered by deposits of a Cenozoic complex which formed intermontane troughs. 

The lowest stratum of these formations is composed of sands and clays of Paleocene and Eocene 

age. More unconsolidated sediments of Oligocene and Miocene age cover these deposits which 

were found out also in the Lena Delta on the Sardahk Island. The younger stratum belongs to the 

Pliocene-Quaternary period. It is composed of gravels, sands and aleurites together with peat 
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material. The youngest geological layer is composed of unconsolidated sediments of Pleistocene 

and Holocene age (Grosswald & Spektor, 1993). 

The observation sites were investigated across the area in the immediate vicinity and at a 

distance to Tiksi settlement to get a first idea about the geochemical composition of permafrost-

affected soils and to evaluate possible anthropogenic influences on the surrounding area of the 

settlement. The remote sites were situated very close to the Lake Sevastian which is the largest 

reservoir of the Tiksi area. It is located 10 km south of the Tiksi settlement. The landscapes 

which are located west to the lake comprised of sandstones of the Permian period whereas the 

eastern part of this area and the lake margins were formed by soft shales of the Tiksian suite 

(Grosswald & Spektor, 1993). 

Figure 13 shows an overview map with locations of 15 investigated sites with ID index “TH”. 

North of Tiksi, the investigations of four sites TH9, TH10, TH11, and TH14 were carried out 

(referred as northern sites). The unit TH9 was located on a slightly sloping plain in front of the 

Bulunkan Gulf 50 m from the road to the “Tiksi” airport in the west and 150 m from the power 

transmission line in the east. The investigation sites TH10 and TH11 were located on typical 

tundra polygon landscape near the Melkoe Lake. The study site TH14 was located next to the 

Bulunkan Gulf, on the inundated area 35 m from the water level. This micro relief was composed 

of narrow cracks and an abundance of hummocks. A small transect composed of three 

observation points TH3, TH4, and TH5 in the south-western direction from the Tiksi settlement 

(referred as western sites) was located on the slope southward Stolovaya Mountain, parallel to a 

winter road, downslope to the innominate lake north-north-eastward to the Diring Kuel’ Lake. 

The land presented a slightly developed polygon structured landscape. The studied sites TH8, 

TH12, and TH13 (referred as eastern sites) were situated on the eastern and north-eastern slopes 

of Lel’kina Mountain, 800 m south-west from a petroleum storage depot. They represented a 

hummocky tundra plain inclined sideward the Tiksi bay. The site TH15 belonged to a low-lying 

waterlogged land north-west to the Lel’kina Mountain. The remote sites TH1, TH2, TH6, and 

TH7 (referred as southern sites) were located 8-10 km south from the Tiksi settlement, alongside 

the Kopchik-Yuryage River which runs into the Sogo Gulf. The sites TH6 and TH7 were situated 

in immediate proximity to the Sevastian Lake. The area comprised typical moss-lichen tundra 

with poorly developed polygons (Appendix, Tab. II). The relief changed often to fenlands and 

patchy to elevated areas with aleuroite sediment exposures. 
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The study area belongs to the zone of the East Siberian sub-Arctic tundra. In this environment, 

grasses and mosses contribute to the modern vegetation (Andreev et al, 1987). Moss coverage for 

all studied sites, except for TH9 and TH14, amounted to 70 to 90 % of the total vegetation 

coverage. The dominant species Carex sp, Eriophorum sp, and Salix sp. were found at the sites 

TH1, TH5, TH6, and TH15, that belong to depression microrelief forms. The sites TH7, TH11, 

and TH14 are located on an elevated part of a plain and were characterized by dominance of 

Carex sp, Salix sp, Polygonum sp, and Poaceae family species. The rest of the investigated sites 

belong to a sloping plain micro morphological unit. The dominant plants Carex sp, Cassiope 

tetragona (D.Don), Dryas sp, Betula nana (L.), Vaccinium vitis-idaea (L.), and Pedicularis sp 

were found. 

The settlement Tiksi (71° 38´ 12.61´´ N, 128° 52´ 04.56´´ E) is located on the coast of the same-

named bay in the Laptev Sea to the south-east from the Lena River mouth. From the opposite site 

of the bay the settlement is surrounded by several moderately high mountains from 200 to 300 m 

height. Tiksi is the administrative centre of the Bulunsky district of the Sakha Republic 

(Yakutia). It was founded in 1933 as one of the stations of the Northern Sea Route. One of the 

northernmost maritime ports is located on the western coast of the Laptev Sea in close vicinity to 

the village. The port is specialized on transport of food and architectonic cargo, coal, round 

timber, and petroleum items. Because of adverse climatic conditions navigation lasts for only 90 

days per year. The polar meteorological station “Polyarka” (Fig. 13) founded in 1932 and the 

polar geocosmic observatory “Tiksi” founded in 1957 are located 7 km south of Tiksi. The Tiksi 

Airport of federal significance is located 7 km to the north of the settlement. The population of 

the settlement has substantially decreased over the last years. A considerable amount of 

abandoned houses was observed in the settlement. A vast household waste deposit was located 

several kilometres west of Tiksi near the foot slope of Stolovaya (Stollakch-Khaya) Mountain 

(319 m a.e.l.) (Fig. 14a). The settlement area and its neighbourhood were also characterized by 

considerable littering of old steel, fuel tanks, and rubbish (Fig. 14b). An old stone-pit was located 

approximately 600 m south from Melkoe Lake (Fig.13 and 14c). 
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Figure 13: An overview map of investigation sites of the Tiksi area. Remote sites are represented by 

TH1, TH2, TH6, and TH7; Western sites are represented by TH3, TH4, and TH5; Eastern sites are 

represented by TH8, TH12, TH13, and TH15; Northern sites are represented by TH9, TH10, TH11, 

and TH14. The diagrams in the bottom of the figure represent the long-term average monthly wind 

rose for the cold period (September - February) with prevailing winds of southern, south-western 

directions and the warm period (March-August) with prevailing winds of northern and north-

eastern directions, respectively. Based on the data provided by Russia’s Weather Server (2013) for 

the period of 1998 – 2012. Own photos of representative landscapes (2011). 
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Figure 14: General view of: (a) – a waste landfill on the downslope of the Stolovaya Mountain, (b) – 

old fuel tanks found on an exposed district and a road-side in immediate vicinity of the town Tiksi, 

and (c) – an old stone-pit. Own photos (2011). 
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4. Materials	and	methods	

4.1 Field	investigations	

Field investigations were carried out in Northern Siberia in 2009-2011 covering the Lena River 

Delta region, its hinterland, and an area near settlement of Tiksi. Detailed description of the 

investigation area is performed in the Section 2.2.4. 

4.1.1 Soil	survey		

During field work representative sites for each unit of the study area were chosen. Macro- and 

micro-relief forms, vegetation cover with dominant species, and visible anthropogenic changes 

were described. Each horizon of the investigated soil profiles was characterized using the 

following parameters: soils depth, soil colour, texture shape and size, humus content, 

decomposition stage of organic matter, inclusions, and root penetration (AG Boden, 2005). The 

soil order and soil type were determined for each soil profile using the Russian soil classification 

(Elovskaya, 1987), US soil taxonomy (Soil Survey Stuff, 2010), and the results are presented in 

the Section 5. 

Soil samples were collected in autonomous (elevated areas), transit (slopes), and accumulative 

(depressions) forms of a (micro)-relief. This approach allowed the observation of migration and 

accumulation processes of trace elements in the studied landscapes. The samples were taken 

from each genetic soil horizon within the active layer. On Samoylov Island, soils samples were 

collected also cm-wise in order to determine features of the vertical element distribution within 

the profile. Additionally, mixed top soil samples were collected from polygon rim sites (5 

subsamples from one polygon) to detect possible metal atmospheric transport of trace metals. 

The collected samples were stored in plastic bags, and analysed at the Institute of Soil Science 

(University of Hamburg, Germany). 

4.1.2 Vegetation	survey	

One of the most easy-to-use and informative methods of environmental assessment is 

bioindication. This method is based on the analysis of the chemical composition of indicator 
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species and helps to determine the features of translocation and transformation of pollutants in 

environmental components. An adequate choice of indicator species plays an important role in 

the method’s efficiency. Therefore, they must meet several requirements as: (1) a vast 

geographical distribution, (2) a possibility to assess environmental pollution in a very short time, 

and (3) an explicit and quick reaction to contact with toxic substances (Dołęgowska et al, 2012).  

Shrubs (Vaccinium vitis-idaea (L.)), mosses Aulacomium sp. and Hylocomium splendens 

(Hedwig.), and lichen Cetraria cucullata (Bellardi.) species were used in this study (Fig. 15), 

since they meet the requirements described above. Cowberry is a chimochlorous shrub of the 

Vaccinium genus. The species morphology is characterized by scleroid and leather-like leafs. In 

undisturbed environments, a cowberry species has an epidermic tissue with a thicker layer of 

scarfskin (cuticles) on the adorsal side of the leaf compared to underneath. A bloom wax covers 

the dorsal side of the leaf and probably limits the input of toxic gases decreasing harmful effect 

on the species. Vaccinium vitis-idaea species thrive on dry, moist, and strong swamped soils of 

different texture, on rocky hills, and sometimes on relatively well drained parts of bogs (Yudina, 

1986). This species is capable to take up the available forms of some metals from the soil. 

However, high metal concentrations can cause not only morphological changes appearing in 

form of chloroses, but also internal damages to anatomic structure of the plant (Balaganskaya & 

Kudrjavtseva, 1998; Opekunova, 2004). Mosses and lichen species are often used as indicators 

of terrestrial ecosystem trace metal atmospheric pollution (Carlberg et al, 1983; Glooschenko & 

Arafat, 1988; Grodzinska & Godzik, 1991; Steinnes at al, 1992; Berg et al, 1995; Nash & Gries, 

1995a; Nash & Gries, 1995b; France & Coquery, 1996; Berg & Steinnes, 1997; Minger & 

Krähenbühl, 1997; Fernández et al, 2000; Walker et al, 2006a; Walker et al, 2009; Aboal et al, 

2010; Blagnyte & Paliulis, 2010; González-Miqueo et al, 2010; Harmens et al, 2010; Valeeva & 

Moskovchenko, 2011; Salo et al, 2012). Both mosses and lichens have no root system, so they 

take up essential elements directly from the air (Rühling & Tyler, 1970; Wolterbeek et al, 2003; 

Dołęgowska et al, 2012). The morphology of these species does not vary with seasons. This fact 

encourages an accumulation of pollutants throughout the year (Sloof, 1993). The cell walls of 

mosses can easily be penetrated by metal ions due to the lack of natural protective barriers, i.e. 

epidermis and cuticule. Porous structure of lichens formed due to a symbiosis of fungal and algal 

components  also results in their capture of pollutants falling from the atmosphere (Klein & 

Vlasova, 1992). As in bryophytes, the uptake of metal ions by lichens occurs mainly or partly 

due to passive ion exchange (Tyler, 1989). 
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Figure 15: Individual plant species groups chosen as bioindicators of environmental state: (a) - 

Vaccinium vitis-idaea (L.), (b) - Aulacomnium sp., (c) - Hylocomium splendens (Hedwig.), and (d) - 

Cetraria cucullata (Bellardi.). Own photos (2011). 

The vegetation survey was carried out during the summer of 2011. The vegetation coverage, the 

amount of species, and the morphological structure of indicator plant species (such as chlorosis) 

were determined on representative sites within an area of 10 × 10 m. At each representative site 

mosses (Hylocomium sp. and Aulacomnium sp.), lichens (Cetraria cucullata), and shrubs 

(Vaccinium vitis-idaea) were collected. For each species several sub-samples were taken and 

combined to one sample. The samples were dried at room temperature and kept in polyethylene 

bags in a dark case until analyses. 
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4.2 Laboratory	analyses	of	physical	and	chemical	properties	of	permafrost‐

affected	soils	

4.2.1 Sample	preparation	

Prior to analyses, all soil samples were air-dried to constant weight. All inclusions were removed 

from the soil matrix. The soil samples were passed through a 2 mm sieve and homogenized. 

Parts of the sieved fraction were grained to a powder using a tungsten-carbide-cartridge 

(Scheibenschwingmühle-TS, SIEBTECHNIK GmBH, Mülhheim an der Ruhr, Germany) in a 

vibration disk (1.5 min for mineral samples, and 30 sec for organic-rich samples), and were used 

for the determination of total carbon and nitrogen content, and trace metal content. Plant samples 

were first air-dried, than freed from inclusions, and cleaned from dust. The obtained material was 

chaffed, and grained to a powder using a tungsten-carbide-cartridge in a vibration disk for 30 

sec. Ground soil and plant samples were dried in an oven at 105 °C and at 40 °C, respectively. 

4.2.2 Soil	texture	analysis	

The soil grain-size composition was determined using the DIN ISO 11277 standard method. The 

dispersive state of soil material was detected by the proportions of various soil fractions and 

expressed as weight percentage. Prior to the analysis, soil samples which contain more than 2 % 

of organic carbon were treated with H2O2 (30 %) to avoid particle cementation with organic 

matter. For the soil texture determination, 30 g of dried soil material were mixed with 25 mL of 

sodium pyrophosphate Na4P2O7 (0.4 M), to improve dispersion of particles, and 100 mL of 

distilled water. The samples were shaken for 18 h in an overhead shaker. The suspensions 

obtained were put into a glass cylinder and filled up to 1000 mL. The grain sizes of soils within 

the fractions less than 63 µm were analysed with a SEDIMAT 4-12 (UGT GmbH, Müncheberg, 

Germany). Before the analysis the samples were stirred, in order to obtain statistically well 

distributed suspensions in the water column. After predetermined intervals, aliquots of 10 mL 

were taken by an auto sampler, with depth and time being based on Stokes’ law. To avoid 

adsorbing effects between glass and sample material, the aliquot was filled into a bromosilicate 

glass, dried at 105 ºC, and weighted. Determination of the granulometric spectra in the fractions 

greater than 63 µm was carried out by dry screening method using sieves of 63, 125, 200, and 
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630 µm cell diameters, respectively. The obtained sample at each sieve size was weighted. The 

grain size distribution of the sample was calculated and given in %. Soil texture classes were 

given according to AG Boden (2005). 

4.2.3 Water	content		

The soil water content is the mass of water in a soil expressed in per cent of the dry soil mass. 

The determination of the soil water content was carried out using the gravimetric method 

according to DIN 18121-1. 10 g of a moist soil sample were weighted, dried at a temperature of 

105 °C for 24 hours, and then weighted again. The soil water content of the sample was then 

calculated using equation 1. 

ଶܱܪ	% ൌ ൬
mass	HଶO

mass	oven	dry	soil
൰ ∗ 100 % (Eq. 1) 

4.2.4 Organic	matter	content	in	soils	and	ash	content	in	plants	

The analysis of organic matter content of soil samples was carried out by the determination of 

weight loss during combustion in a muffle furnace at 550°C for 4-5 hours (McKeague, 1978). 

The organic matter content was calculated using equation 2, where mass C is the difference in 

mass before and after combustion, the so called loss on ignition (LOI). The accuracy of the 

method was 0.05 %. 

ܥ	% ൌ ൬
ܥ	ݏݏܽ݉

݀݁ݐݏݑܾ݉݋ܿ	݊݁ݒ݋	ݏݏܽ݉ ݈݅݋ݏ
൰ ∗ 100 % (Eq. 2) 

Ash content in plant materials was determined by the same method. The substance remaining 

after this procedure is ash. Its content is presented in % of the mass oven-dried sample (equation 

3). 
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௔௦௛ܥ	% ൌ ൬
݄ݏܽ	ݏݏܽ݉

ݐ݈݊ܽ݌	݀݁݅ݎ݀	݊݁ݒ݋	ݏݏܽ݉
൰ ∗ 100 % (Eq. 3) 

4.2.5 Soil	pH	

Soil reaction (pH) using H2O and 0.01M CaCl2 extracts was measured according to Bassler 

(1997) and DIN ISO 10390 by potentiometric method. Two soil suspensions with soil-water ratio 

1:2.5 for soils with low organic carbon content, and ratio 1:25 for organic-rich soils were made. 

The obtained suspensions were stirred and after 1 hour of stirring measured with a pH-electrode 

(Type CG 820; Schott Geraete GmbH, Germany). The pH-meter was calibrated with standard 

buffer solutions of pH 7, pH 9, and pH4, prior to measurement. 

4.2.6 Electrical	conductivity	

The electrical conductivity (EC) was detected in soil solutions according to DIN ISO 11265. To 

make the solution, 20 g air-dried fine-grained material (< 2 mm sieved) were mixed with 100 mL 

water (maximum conductivity 0.2 mS m-1 at temperature 25 °C), and shaken for 30 min. In case 

of organic soils, 25 mL organic material was mixed with 75 mL water and stirred several times. 

After the extraction, the electrical conductivity in the obtained solutions was measured with a 

conductivity meter (Model WTW, LF 90, Germany). 

4.2.7 Total	carbon	and	nitrogen	contents	

The measurement of total carbon and nitrogen contents was based on gas chromatography using 

C/N analyser (Vario MAX CNS, Elementar Analysis System, Hanau, Germany). Fine-grained 

soil and plant material (600-800 mg of mineral samples, and 245-280 mg of organic-rich and 

plant samples) was combusted at 900 °C temperature (DIN ISO 10694).The released gases were 

dried and passed over a copper oxide catalyst where CO was oxidized to CO2 and NOx was 

reduced to N2. Both CO2 and N2 were measured by thermal conductivity. The results of C/N 

analysis were given in % of the dry soil sample weight. Analytical error of this measurement was 

less than 0.5 %. 
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4.2.8 Cation	exchange	capacity	(CEC)	

The exchangeable cation contents were extracted with a 1M ammonium chloride solution 

according to DIN EN ISO 11260. For the extraction procedure, 5 g air-dried fine-grained soil 

material and 25mL solution were mixed, shaken, centrifuged at 3000 rpm for 10 min, and the 

obtained supernatant was decanted in a 200 mL volumetric glass flask. These steps were 

repeated 3 times. After, the samples were mixed with 25 mL ammonium chloride solution, 

centrifuged, and stored for 24 hours. Later, the solutions were decanted to volumetric glass flasks 

and filtered through blue band filters (pore size of 2 μm) to polyethylene jars. The filtrates were 

measured with a flame atomic absorption spectrometer (AAS Varian AA 280 Series, Varian BV, 

Germany) to determine the concentration of the exchangeable cations Ca+2, K+2, Mg+2, Na+2. The 

base saturation (BS) was calculated using equation 4. 

ܵܤ	% ൌ
100 ∗ ∑ሺܰܽ ൅ ܭ ൅ ܽܥ ൅݃ܯሻሺ݈݉݉݋௖ ݇݃ିଵሻ

௖݈݋ሺ݉݉	ܥܧܥ ݇݃ିଵሻ
 (Eq. 4) 

4.2.9 Oxalate‐soluble	 and	 dithionite‐soluble	 iron	 and	 manganese	 compounds	

content	

The pedogenic iron and manganese compounds were extracted and fractioned by dithionite- and 

oxalate solutions according to Mehra and Jackson (1960), and DIN 19684-6. To extract oxalate-

soluble iron and manganese, 2 g air-dried fine material were mixed with 100 mL of oxalate 

solution (17.60 g (COOH)2 + 28.40 g (COONH4)2 + 1000 mL bidistilled H2O), and shaken in the 

dark for 1 h. The obtained suspensions were filtered and decanted into Erlenmeyer flasks. The 

extraction of dithionite-soluble iron and manganese with replicates was carried out using 2 g 

fine-grained material after combustion for 4 h at 550 °C and 50 mL of complex solution A 

(70.58 g C6H5O7Na3 + 16.80 g NaHCO3 L
-1+1000 mL bidistilled H2O). After heating in a water 

bath to 85 °C, 1 g Na2S2O4 was added to the suspensions and stirred for 15 min. The obtained 

extractions were centrifuged (3000 rpm for 10 min) and decanted in 250 mL volumetric flasks. 

The residue of the extractions were washed with 20 mL of complex solution B (12.325 g MgSO4 

7 H2O L-1 + 1000 mL bidistilled H2O) centrifuged, and supernatant liquids were added to the 

flask. Afterwards, the volumetric flasks were made up to 250 mL volume with distilled water, 
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and the extracts were filtered. Calibrating solutions of Fe and Mn with concentrations from 1 to 5 

ppm were used for quality control. The resulting extracts of oxalate- and dithionite-soluble iron 

and manganese were measured with the flame atomic absorption spectrometer (Varian AA 280 

Series, Varian BV, Germany). 

4.2.10 Trace	metal	content		

The extraction of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg was performed using a microwave 

method (Mars Xpress, CEM GmbH, Germany; DIN ISO 11466). Sample lots of fine grained and 

dried soils (1.5 g of mineral material, 0.5 g of organic-rich material) were put into Teflon vessels 

and treated with aqua regia solution (13.4 mL of HCl 30%, and 3.5 mL of HNO3 60%). The 

extraction of elements Fe, Mn, Zn, Cu, Ni, and Pb from the plants was done by treating 0.25 g of 

the material, prior oven-dried at temperature 40 °C, with 8 mL of HNO3 60%. Extracted 

solutions were decanted to glass flasks of volume 50 mL for soil samples, and 25 mL for plant 

material, and made up to the volume by bidistilled water. The obtained extracts were flown 

through the blue ribbon ashless filters (Whatman, 125 mm, Cat No. 10 300 211) and stored in 50 

mL plastic jars for analysis. 

The extraction of plant available element fractions of Cd and Pb was carried out according to 

DIN ISO 19730:2009-07. Air dried, homogenized soil sample was taken in an amount of 10 g, 

placed into a shaking sample bottle and treated with 25 mL NH4NO3 (1 M, of temperature 20 ± 2 

°C). The suspension was shaken for 2 h and after, centrifuged (3000 rpm). After 10 min 

centrifugation, the obtained solution was immediately flown through a membrane cellulose 

acetate filter (45 µm, VE 100) under vacuum, and collected in polyethylene carboys. Afterwards, 

the filtered solution was preserved by adding of HN03 (1 % from the extracted solution volume). 

The element content of Cd, Ni, Cu, As, and Pb was analysed using the AAS Varian AA 280 

Series (Germany) with a graphite tube. The elemental content of Fe, Mn, and Zn was detected by 

flame AAS Varian AA 280 Series (Germany). The content of Hg was detected by a Flow 

Injection Mercury System (FIMS) (Perkin Elmer AS 90, Shelton, USA; DIN ISO 16772:2005-

06). Results are expressed in mg kg-1 of dry weight (dw). 
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4.2.10.1 Quality control 

Data quality was examined on a batch-by-batch basis for each element using standards, 

laboratory replicates and reagent blanks. The quantification limits of each element (in mg kg-1) 

are given in Table 4. Two blanks were run in each series of samples. 

Table 4: Quantification limits (QL) of the measured trace metals (in mg kg-1). 

Element As Cd Co Cu Fe Hg Mn Ni Pb Zn 
QL 0.13 0.008 0.05 0.04 8.3 0.016 3.33 0.10 0.27 1.33 

4.2.11 Data	analysis	

4.2.11.1 EDA approach for analysis of the compositional data and data performance. 

Boxplot and scatterplot graphing was performed with SPSS package version 20.0 based on 

methods of the exploratory data analysis (Tukey, 1977). The exploratory data analysis (EDA) 

methods are often used when dealing with environmental data (Aitchison, 1982; Aitchison, 

2003) and well performed in studies of Reimann et al (2008). Prior to plotting, the element 

concentrations were log-transformed since the data were strongly right-skewed for the majority 

of the elements. Spearmen’s rank correlation analysis was used to determine a relation between 

detected elements. Non-parametric Mann-Whitney U test was used to reveal the differences of 

element contents in surface soils, plant species, and between species, respectively. The graphs 

were produced using the Origin Lab package version 8.6. The maps were produced with the 

ArcGIS package version 9.3. 

4.2.11.2 Calculation of trace element volumetric concentrations. 

The volumetric trace metal concentrations TMvol (g m-3) were calculated in 1 cm-thick slices of 

the top and bottom horizons of the studied units using equation 5. 

BDCTMvol   (Eq. 5) 

Where C is trace metal concentration in soil genetic horizon (mg kg-1), and BD is the bulk 

density of the soil which was calculated as a ratio of the dry mass of an unsaturated soil sample 

and the volume of the soil sample cup. 
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4.2.11.3 Calculation of a coefficient of buffer capacity of top soils 

In case of aerial pollution, a considerable part of contaminants precipitates to the top soil 

horizon, which is usually organic rich. Trace elements differ from each other in their ability to 

bind to organic matter. Higher buffer soil capacity shows the decrease of the element migration 

ability. Vodyanitsky et al (2012) suggested to estimate the buffer capacity of an organic rich 

horizon Bf (%) as the ratio of concentration of a bound element to its content in a soil profile 

(equation 6). 

݂ܤ	% ൌ 100 ∙
ሺܥ஺ ∙ 	݄஺ሻ
௜ܥ∑ ∙ 	݄௜

 (Eq. 6) 

Where CA and Ci are element contents (in mg kg-1) in the top organic rich (A) and i- horizons, hA 

and hi are the horizon depths. The following gradations of buffer capacity are suggested to use: 

(0-10 %) – very low, (10-20 %) – low, (20-30 %) – middle, (30-40 %) – high, and (> 40 %) – 

very high. 

4.2.11.4 Calculation of a bioaccumulation coefficient 

The bioaccumulation coefficient (BC) is defined as the ratio of trace element content in plant 

material (Cp) (in mg kg-1) to the trace element concentration in soils in 0-10 cm depth (Cs) (in mg 

kg-1 dw) (Adriano, 2001). 

ܥܤ ൌ 	
௣ܥ
௦ܥ

 (Eq. 7) 

Coefficient of bioaccumulation BC > 1 suggests that the element accumulation by plant species 

occurs. If BC < 1, the element content in plant species is in deficit. 
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4.3 Experimental	 setup	 to	 study	 trace	metal	 distribution	 in	 soil	 columns	

affected	by	unidirectional	freezing	

4.3.1 Soil	material	for	the	experiment	

For the experiment, soil material at Harburger Berge from a forest site near Harburg (Hamburg) 

(53° 21' 59 " N, 10° 01' 58" E) without evident influence of trace metal pollution was selected. 

The sandy material was collected in July of 2012 and stored in plastic bags at 5 °C. Prior to the 

analyses, a part of the soil material was air-dried and sieved through a 2 mm sieve. The results of 

laboratory analyses, using methods described in the Subsection 4.2, are shown in Table 5. The 

preparatory work was initiated by determining the water content in the field-moist sandy 

material. The grain-size analysis showed that the sandy fraction was dominant in the 

experimental material. The material was characterized by low organic carbon content, which was 

favourable for the experiment, because the adsorption capacity of metal ions by organic 

compounds in the soil material was low. The concentrations of Cd and Pb were low and lay in 

the same range as the element contents found in sandy soils of the middle floodplain in the Lena 

River Delta, northern Siberia. 

Table 5: Physical and chemical properties of the soil material used in the lab experiment and alluvial soils of 

the middle floodplain in the Lena River Delta, northern Siberia (Samoylov Island 72° 22' N, 126° 31' E). 

Soil characteristics 
Experimental soil 
(Harburger Berge) 

Soil of the floodplain 
(Samoylov Island ) 

Water content [ %] 12.8 ― 

Texture Index (AG Boden, 2005) Ss Ss 
Sand (63 < µm < 630) [%] 89.0 91.4 
Silt (2 < µm < 63) [%] 8.2 5.8 
Clay (µm < 2) [%] 4.6 2.8 

pH 5.0 7.2 

C [%] 0.3 0.5 

Pb[mg kg-1 dw] 8.0 7.0 
Cd [mg kg-1 dw] 0.07 0.05 
Fe [mg kg-1 dw] 11426 18624 
Mn [mg kg-1 dw] 281 229 
Zn [mg kg-1 dw] 25.1 49.1 
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4.3.2 Soil	contamination	procedure	and	column	preparation	

The experiment was based on the contact method of interaction between contaminated and 

uncontaminated soil material. The experimental column consisted of two polymethylmethacrylat 

(PMMT) cylinders (PERIGLAS XT, EVONIK Industries) with inner diameters of 5 cm and 

heights of 3 and 5 cm which were joined during the experiment by means of a cylinder of a 

bigger diameter. The lower part of the column (5 cm height) was filled with uncontaminated soil 

material mixed with bidistilled water. The gravimetric water content of the wetted soil was 

adjusted to an average value of 12.3 %. The upper part of the soil column (3 cm height) was 

filled with contaminated soil material and afterwards, compacted (Fig. 16a). 

 

Figure 16: Conceptual scheme of the experimental columns showing: (a) – their design and mode of 

the column layer slicing shown by horizontal dashed lines and  (b) – initial  soil bulk density 

calculated for each soil cylinder of soil columns without freezing (UFC) and soil columns affected 

by unidirectional freezing (FC) after column construction. 

For contamination of the soil material with metals, two standard solutions of lead nitrate 

(Pb(NO3)2 in H2O: 1000 mg of Pb per ampoule; standard ID 10 9969, Titrisol) and cadmium 
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chloride (CdCl2 in H2O: 1000 mg of Cd per ampoule; standard ID 10 9960, Titrisol) were 

chosen. The experimental soil material was mixed with Pb and Cd solutions. After mixing, the 

average concentrations in the soil material reached 52.9 ± 0.8 mg kg-1 of Cd and 534 ± 7.9 mg 

kg-1 of Pb, respectively (n = 8). It is necessary to note, that such high concentrations of Cd and 

Pb, as used in the experiment, are unlikely to be found in natural environments. High 

concentrations of Pb and Cd were taken to ensure that the metal concentrations within whole soil 

column depth after the experiment would be detectable using flame AAS. 

The equilibrium pH of the soil after contamination was 3.7. The average gravimetric water 

content of contaminated soil material was 13.2 %. After packing the columns, the tops and 

bottoms were sealed by laboratory film (Parafilm M, 4’’ × 125’, Bemis) to prevent water loss. 

For the column test, 12 soil columns were constructed. Two of them were used only for 

temperature measurements. After the column preparation, soil bulk density was calculated for all 

experimental columns and ranged from 1.63 to 1.71 g cm-3 (soil dw) for the upper soil cylinders 

and from 1.78 to 1.80 g cm-3 (soil dw) for the lower soil cylinders (Fig. 16b). 

4.3.3 Column	experiments	

The experimental setup consisted of two insulated wooden boxes (Fig. 17). Each box contained 

six identical soil columns which were fixed between two brass plates, thus providing good 

contact between the plates and the upper and lower face of the soil columns (Fig. 16a). One of 

the six columns in each box was equipped with three temperature sensors at 2, 4, and 6 cm depth. 

These instrumented columns were not used in later analyses. Therefore, each experiment 

comprised five replicates. The soil columns of the control BOX 1 were set between two brass 

plates at room temperature over the experiment time. The lower brass plate of the BOX 2 was 

cooled by means of a closed cycle cooling system (JULABO F-32-HE, Seelbach, Germany). The 

coolant flow rate was controlled manually, and the coolant temperature was controlled by a 

programmable thermostat of the cooling system. The temperature was gradually decreased, 

starting at room temperature and decreasing to +4 °C in step one at the interval of 3 h, to -3 °C in 

step two of the interval of 1 h, and finally, to -5 °C in step three of the interval of 12 h and lasted 

until the end of the experiment (Fig. 18). At the same time, the soil columns of BOX 1 were kept 

at room temperature. The soil temperature was recorded each 10 min and saved on a DL2 data 

logger (DELTA-T DEVICES Ltd, Cambridge, UK). The duration of the experiment was 443 h. 
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Figure 17: A scheme showing the experimental setup of two simultaneous column experiments. The 

experiment consisted of two thermally insulated wooden boxes each comprising six identical soil 

columns. One column of each box was instrumented for temperature measurements and was not 

used for laboratory analyses. During the experiment, soil columns of BOX 1 were kept at room 

temperature and the columns of BOX 2 underwent the unidirectional freezing from the bottom 

upwards. 
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Figure 18: Stepwise decrease of the coolant temperature controlled by a programmable thermostat 

of the cooling system JULABO. 

4.3.4 Soil	sampling	after	the	experiment	

After the experiment, the soil columns from BOX 2 were sampled in a cooling room at the 

temperature of +5 °C, and the columns from BOX 1 were sampled at room temperature. The 

upper and lower parts of soil columns were separated and of the soil columns were removed 

from the PMMT cylinders. The soil columns were cut into slices of 0.5 cm and 1.0 cm width, 

respectively (Fig. 16a). The sampled soil layers were analysed for water content and trace metal 

concentrations by the methods described in Subsections 4.2.3 and 4.2.10, respectively. 
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4.3.5 Mass	balance	calculation	

The mass balance calculation was carried out to estimate the accuracy of the laboratory analyses. 

It has been performed by calculating the deviation D (in %) of the sum of the initial metal 

content (࢏࢓
࢏࢓) and the sum of the element content (࢕

 ሻ after the experiment within the whole soilࢌ

column (in mg), where i is a number of soil layer in a column equal to 10 (equation 8). 

ܦ	% ൌ 100 ∙
൫∑ ݉௜

଴ െଵ଴
௜ୀଵ ∑ ݉௜

௙ଵ଴
௜ୀଵ ൯

∑ ݉௜
଴ଵ଴

௜ୀଵ
 (Eq. 8) 

According to the mass balance calculation results, the average percentage of loss of elements in 

experimental columns without freezing (UFC) amounted to 3.2 % for Cd and 2.7 % for Pb which 

could be explained by the loss of soil material during sectioning, while for soil columns affected 

by unidirectional freezing, the deviation varied from 4.5 % for Cd to 1.3 % for Pb, respectively. 

4.3.6 Calculation	of	relative	element	concentration	decrease	in	soil	columns	

A relative decrease of element concentrations in soil columns (ε) is determined as the percentage 

ratio of the difference between the initial (࢏࡯
૙) and final (࢏࡯

 element concentrations and the (ࢌ

initial element concentration (࢏࡯
૙) at i-soil layer (equation 9). 

%	ε ൌ 100 ∙
௜ܥ
଴ െ ௜ܥ

௙

௜ܥ
଴  (Eq. 9) 

4.3.7 Calculation	of	available	trace	metal	fraction	

In order to shed light on metal migration ability in soils without and under the influence of 

freezing, available fractions of Cd and Pb were calculated for each column layer. The 

concentrations were calculated as a ratio of the element concentrations (rc) resulting from two 

extraction procedures: (1) digestion by aqua regia (CAR) and (2) by ammonium nitrate (CAN) (Eq. 

10). The digestion method by aqua regia solute represents the extraction of nearly total element 
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content from the soil matrix, while the digestion method by ammonium nitrate provides the 

information about the content of potentially plant available element forms in soils. 

஼ݎ ൌ
஺ேܥ	
஺ோܥ

 (Eq. 10) 
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5. Results	and	discussion	

5.1 Characterization	of	permafrost‐affected	soils	of	the	investigated	area	

5.1.1 Soils	of	the	Lena	River	Delta	Region	and	its	hinterland	

According to the Soil Taxonomy Classification (Soil Survey Staff, 2010), all studied soils were 

described as Gelisols (Tab. 6). They belong to the following great groups: (1) Turbel suborder 

which comprises Histoturbels, Aquiturbels, and Psammoturbels, (2) Orthel suborder which 

consists of three great soil groups: Aquorthels, Historthels, and Haplorthels, and (3) Histel 

suborder which includes only one great soil group called Fibristels. According to the Russian 

classification of Elovskaya (1987), all soils of the units between 73° and 70° N (H-2) belong to 

the Permafrost type (Tab. 6) (Elovskaya, 1987; Desyatkin & Teterina, 1991; Pfeiffer et al, 2000; 

Desyatkin et al, 2009; Ivanova et al, 2012). The soil suborder at the southernmost site of the 

hinterland (H-3) was determined to be a Cryogenic soil (Elovskaya, 1987). The soil properties of 

this unit differ from other soils of the Lena River Delta and the area of the Chekanovsky Ridge 

slopes as it was developed underneath a forested area. The investigation sites, being developed 

on various geomorphological formations, differed from each other in terms of the thawed layer 

depth. The minimum soil thaw depth of 24 cm (on 18.8.2009) was determined for Typic 

Aquorthel / Permafrost Silty-Peat-Gley developed on the Sardakh Island. The thaw depth of the 

Typic Aquorthel / Permafrost Alluvial Turfness Typical on the floodplain of Samoylov Island 

reached a maximum of 91 cm on 20.9.2010 (Tab. 6). 

Soil properties of the selected soil profiles of the Lena River Delta and its hinterland are shown 

in Figure 19. The studied soils were characterized by slightly acidic and neutral conditions 

excluding two units – of the third terrace (3T-1) and floodplain (MF-1) (Appendix, Tab. III). For 

these sites, the pH was determined to be slightly alkaline. The grain-size composition within all 

geomorphological units comprised mainly fine-grained sand fractions (Appendix, Tab. III). The 

majority of studied profiles were characterized by gleying properties within the mineral horizons. 

The highest median value of the sand fraction was found on the second terrace (site 2T-1) (Fig. 

19b). The site 3T-2 of the third terrace showed the lowest fine-grained sand fraction content but 

significantly high silt fraction content. The southernmost unit H-3 of the latitudinal transect was 

similar to the 3T-2 study site in terms of texture composition, as both consist primarily of the silt 
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fraction. The data of pH and grain-size composition were similar to data reported for soils of the 

Lena River Delta by Desyatkin & Teterina (1991). 

Table 6: Soil classification of investigation sites of the Lena River Delta and its hinterland according to Soil 

Survey Staff (2010) and Russian soil classification (Elovskaya, 1987). 

Sites ID Thaw depth, cm The US Soil Taxonomy (Soil 
Survey Staff, 2010) 

Russian Soil Classification 
(Elovskaya, 1987) 

3T-1 39 Folistic Haplorthel Permafrost tundra Turfness-Gley Typical 

3T-2 24 Typic Aquorthel Permafrost tundra Silty-Peat-Gley 

2T-1 57 Typic Psammoturbel Permafrost tundra Alluvial Turfy Typical 

1T-1 30 Typic Aquiturbel Permafrost tundra Peatish-Gley Typical 

1T-Rim1 61 Typic Aquiturbel Permafrost tundra Turfness-Gley Typical 

1T-Ce1 40 Typic Fibristel Permafrost Peat 

1T-d 36 Typic Historthel Permafrost tundra Peat-Gley 

HF-Rim2 40 Typic Histoturbel Permafrost tundra Peatish-Gley 

HF-Ce2 50 Typic Histothel Permafrost tundra Peat-Gley 

MF-1 91 Typic Aquorthel Permafrost Alluvial Turfness Typical 

H-1 26.5 ± 3.5 Ruptic Historthel Permafrost tundra Peat 

H-2 39 Typic Aquorthel Permafrost tundra Silty-Peat-Gley 

H-3 49 Typic Haplorthel Cryogenic Soil 

The organic carbon content showed a high spatial variability among all investigated units 

(Appendix, Tab. III) which has been also reported in other studies of the Arctic region (e.g. 

Bockheim et al, 2003). Median contents of carbon varied from 1 % on the second terrace to 40 % 

on the H-1 study site. The C/N ratio was higher for the sites located in the Hinterland which 

could suggest a higher organic matter accumulation due to a slow process of organic matter 

decomposition because of the different plant species composition in comparison with the deltaic 

region (predominance of shrubs) and a presumably higher biomass production during the warm 

period. 
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Samoylov	Island		

The results of standard soil parameters on Samoylov Island showed differences in their 

distribution on different micro-relief forms. Polygon centres had a more acidic soil reaction than 

polygon rims. This difference is most evident for advanced stages of polygon development found 

on the first terrace (Fig. 20a). All values of pH obtained in this study were in agreement with 

data published for the soils of Samoylov Island previously (Yakshina, 1999b; Kutzbach, 2000; 

Sanders, 2011). 

The highest median values of organic carbon content as well as of the C/N ratio were observed 

for polygon centres also indicating lower rates of organic matter decomposition there (Fig. 20a 

and 20b). The lowest contents of organic carbon were observed in alluvial soils developed in the 

middle floodplain at the depth 8 – 29 cm (soil horizons A2, Bg1, and Bg2) (Fig. 20c). The values 

of OC in these horizons varied from 0.3 to 0.8 %. The dominant fraction of mineral horizons of 

the studied profiles was fine-grained sand. The polygon rim 1T-Rim1 was of exceptional interest 

because the processes of cryoturbation were clearly pronounced. Here, median contents of clay 

and silt material within the soil profile were higher in comparison to the other study sites. 

The soil profile of the study site 1T-d of Samoylov Island located nearby the Fish Lake (Fig. 12) 

was determined as Typic Historthel. Physical and chemical analysis of soil core (taken in 

summer of 2009) of this studied sited showed, that it differed from the other sites by notably high 

OC contents in the surface layers. The OC content in average amounted to 22 % at the first 6 cm 

depth of the investigated soil profile. With increasing depth, the values for OC gradually 

decreased and reached the minimum values of 2 % in Bhsg horizon at the depth of 17-20 cm. 

The soil pH acidity of the surface horizon was distinctly less than the underlying soil layers 

dropping from values of 5.3 in Oi horizon to 6.9 in Oe horizon (Fig. 20d). The highest of C/N 

ratio were also found in the surface horizon and reached the maximum value at 3-6 cm depth. 
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A detailed study of the soil profiles located on the first terrace (site 1T-Rim1) and middle 

floodplain (site MF-1) were carried out. The electrical conductivity (EC), cation-exchange 

capacity (CEC), abundance of basic cations (in cmolc kg-1), were determined in cm-wise soil 

layers of these profiles. High electrical conductivity (EC) was observed in the surface soil layers 

of both Typic Aquiturbel and Typic Aquorthel (Fig. 21). In both soil profiles, EC gradually 

decreased with the depth being higher in 1T-Rim1. The minimum values of EC were observed in 

sand-dominant layers of the soil profile MF-1. The minimum values of EC for the soil profile of 

the first terrace were found in layers composed from silty-sand fraction and starting from the 

depth of 20 cm the values of EC again increased progressively for both profiles but especially for 

Typic Aquorthel. Thus, the values of EC clearly reflect the soil texture of investigated soil 

profiles. 

 

Figure 21: Vertical distribution of the electrical conductivity in soil profiles of Typic Aquorthel (MF-

1 of the middle floodplain) and Typic Aquiturbel (polygon rim 1T-Rim1 of the first terrace) on 

Samoylov Island. 
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The abundance of water soluble ions for both soil profiles composed the following range: Ca2+ > 

Mg+2 > K+ > Na+ (Fig. 22). Typic Aquorthel of the middle floodplain was characterized by higher 

concentrations of all base ions in comparison with Typic Aquiturbel developed on the first 

terrace. Significant differences were found only for sodium content (non-parametric Mann-

Whitney U test, p < 0.05). The median value of CEC for the site of the middle floodplain was 

slightly less than for the site of the first terrace (the values for these sites amounted to 10.9 and 

11.1 cmolc kg-1, respectively). Variations of vertical distribution of CEC and the base cation 

abundance were observed for both studied soil types. Minimum values of all base cations in soil 

profile of the middle floodplain were observed at the depth of 6 – 24 cm. The soil layers at that 

depth were formed by fine-to-middle sand fraction which usually has no capacity to exchange 

cations because of a low ability of sand particles to have an electrical charge. With increasing 

depth, the abundance of all base cations also increased, reaching the maximum values at the 

depth of 43-45 cm. The flushing regime and the texture of Typic Aquorthels probably play a key 

role in leaching of bases from the surface layers downwards to the bottom horizons where they 

can precipitate. The soil of MF-1 was characterized by high values of base saturation (BS) (100 

%) and pH (> 7.0), which can indicate the predominance of carbonates in these soils. As it was 

noted by Ping et al (2005), high values of pH and BS characterize soils which are carbonate 

saturated and calcium carbonate buffered. It may be possible, that annual inundation events serve 

as an additional source of carbonates for these soils. According to Chetverova et al (2013) the 

waters of the Lena River belong to hydrocarbonate-calcium type of water (classification of 

Alekin, 1970). The dominant ions of Ca+2 in the Lena River water reached mean concentrations 

of 12.3 mg L-1. Elevated values of CEC in the surface soil layers of Typic Aquiturbel (10 – 12 

cmolc kg-1) were changed to the minimum values at the depth of 20-30 cm. At that layer which 

was characterized by a dominance of loamy-to-silty sand fractions, the pH value dropped from 6 

to 4.9. However, BS was not changed significantly (from 100 % to 98 %). The maximum values 

of CEC were observed for the bottom horizons overlying the permafrost table and amounted to 

18.0 cmolc kg-1. This finding may suggest that the ions contained in the water solution were 

excluded from water during the ice lens formation and accumulated above the permafrost table 

(Hallet, 1978; Ostroumov et al, 1998). 
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Figure 22: Vertical distribution of water soluble ions and cation exchange capacity (CEC) in two 

soil profiles Typic Aquiturbel (polygon rim 1T-Rim1 of the first terrace) and Typic Aquorthel (MF-1 

of the middle floodplain) on Samoylov Island. 

Figure 23 shows a relationship between CEC and organic matter (OM) content for the soil 

profiles of the middle floodplain and the first terrace. For both soil profiles a tendency of 

increase of CEC values with increase of OM content was observed. It is especially evident for 

the study site MF-1 which was not affected by the processes of cryoturbation. In both soil 

profiles a significant correlation was found between soil CEC and the content of organic matter 

(Spearmen’s rank correlation, r = 0.91, p < 0.01, for both profiles). Similar relationship between 

these two soil characteristics were found in Ping et al (2005) for the southern foothills of the 

Arctic Alaska Range. 
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Figure 23: Scatterplot which shows the relationship between CEC and OM content for two soil 

profiles: Typic Aquiturbel (polygon rim 1T-Rim1 of the first terrace) (green circle) and Typic 

Aquorthel (MF-1 of the middle floodplain) on Samoylov Island (blue criss-cross). Spearmen’s rank 

correlation, r = 0.91, p < 0.01. 

5.1.2 Soils	of	the	Tiksi	area	

Figure 24 shows the diversity of the selected soil profiles studied around the Tiksi area. All 

investigated soil profiles of the Tiksi area were developed on eluvial argillaceous shale. Most 

soil profile depths were relatively shallow (20 – 30 cm). Only several soil profiles, located to the 

north from Tiksi settlement, reached the depth of 40 cm and deeper (Tab. 7). The Tiksi area was 

characterized by a variety of soil types. According to the US Soils Taxonomy (Soil Survey Stuff, 

2010) most of soils being developed in depressed micro relief forms were described as Orthels 

and Histels. Soils of slopes and elevated forms of a micro relief belonged mainly to Turbel 
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suborder. The major organic horizons were defined as: Oi and Oie depending on the stages of 

decomposition of organic material. According to the Russian soil classification (Elovskaya, 

1987), all investigated soils of the Tiksi area belonged to permafrost type. Cryoturbation 

processes were clearly defined for soils of slopes and elevated forms of micro-relief. Comparing 

the US soil classification with Russian soil classification by Elovskaya (1987) no evident 

consistencies in soil type diagnostics for all soils could be found. However, some similarities for 

study sites TH4 and TH11 (highlighted in green), and TH5 and TH15 (highlighted in red) were 

observed (Tab. 7). 

The detailed description of all soil profiles is shown in Appendix (Tab. IV). Texture classes 

derived from the laboratory analysis ranged from sandy loam to silty clay. In many cases, the 

loam fraction was dominant for the most of soil profiles of this area. Mineral horizons of the 

study sites TH1 and TH4 were dominated by silty clay fraction. The study site TH6 distinguished 

from other site by dominance of more light sandy loam fraction in its profile. 

The median pH of the studied soil profiles ranged from 4.5 to 6.8. Generally, most of the soils 

were characterized by reducing conditions having acidic or neutral environmental reaction. The 

lowest pH median value was found at the TH11 study site. The highest median value of pH was 

found at the TH12 study site. The investigation sites were arranged into four groups located in 

northern (TH9, TH10, TH11, and TH14), western (TH3, TH4, and TH5), eastern (TH8, TH12, 

TH13 and TH15), and southern directions (TH1, TH2, TH6, and TH7) from the Tiksi settlement. 

Boxplots with pH values for four determined soils groups showed that eastern sites differed 

significantly from southern, western, and northern sites (Fig. 25). The soil profiles of this site 

were characterized by slightly acidic and neutral soil conditions, which is likely due to input of 

sea aerosols. Generally, low median values of EC were found for the southern sites. The surface 

horizons of all studied sites showed distinctly high electrical conductivity ranging from 86 µS 

cm-1 to 320 µS cm-1. With increasing depth, EC values gradually decreased and ranged in B-

horizons from 10 µS cm-1 to 54 µS cm-1. The site TH14 which was located in vicinity to the 

Bulunkan Gulf was an exception with a higher value of reached 116 µS cm-1 for the bottom B-

horizon. 



Chapter 5. Results and Discussion 

76 

Table 7: Soil classifications of investigated sites of the Tiksi area according to Soil Survey Staff (2010) and 

Russian soil classification (Elovskaya, 1987). 

Sites ID Thaw depth, 
cm 

Micro-relief 
form 

Soil Survey 
Staff (2010) 

Russian Soil Classification 
(Elovskaya, 1987) 

TH1 23 Depression Lithic Aquorthel Permafrost tundra peat-gley soil on 
eluvial argillaceous shale 

TH2 30 Slope Lithic Haploturbel Permafrost tundra cryoturbated soil on 
eluvial argillaceous shale 

TH3 25 Upper slope  Ruptic Histoturbel 

 

Permafrost tundra gleyic soil 
cryoturbated on eluvial argillaceous 

shale 

TH4 22 Slope Ruptic-Histic 
Aquiturbel 

Permafrost tundra peat-gley 
cryoturbated soil on eluvial argillaceous 

shale 

TH5 22 Depression Lithic Historthel Permafrost tundra silty peatish-gleyic 
soil on eluvial argillaceous shale 

TH6 22 Depression Typic Historthel Permafrost tundra turf–gleyic soil on 
eluvial argillaceous shale 

TH7 23 Depression Ruptic Historthel Permafrost tundra silty peatish-gleyic 
soil on eluvial argillaceous shale 

TH8 26 Slope Ruptic-Histic 
Aquiturbel 

Permafrost tundra peatish-gley 
cryoturbated soil on eluvial argillaceous 

shale 

TH9 12 Depression Lithic Umbrorthel Permafrost tundra turf soil on eluvial 
(sedentary) argillaceous shale 

TH10 37 Elevation  Lithic Histoturbel Permafrost tundra turf-gleyic 
cryoturbated soil on eluvial argillaceous 

shale 

TH11 46 Elevation Ruptic-Histic 
Aquiturbel 

Permafrost tundra silty-gley 
cryoturbated soil on eluvial argillaceous 

shale 

TH12 28 Slope Ruptic-Histic 
Aquorthel 

Permafrost tundra cryoturbated peat-
gley soil on eluvial argillaceous shale 

TH13 38 Slope Lithic Aquiturbel Permafrost tundra turf-gley cryoturbated 
soil on eluvial argillaceous shale 

TH14 44 Elevation Lithic Aquorthel Permafrost tundra turf-gley cryoturbated 
soil on eluvial argillaceous shale 

TH15 16 Depression Lithic Historthel Permafrost tundra silty peatish –gleyic 
soil on eluvial argillaceous shale 
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No particular difference in carbon and nitrogen content between the sites was found. The surface 

soil horizons were generally enriched by organic matter. Minimum carbon content in surface 

soils was found for study sites TH2, TH6, TH9, and TH14, and amounted to 8 – 12 %. Surface 

soils of southern sites (remote from Tiksi settlement) were characterized by the lowest carbon 

content, whereas the surface horizons of eastern and western sites had particularly high in 

carbon. The median value of total organic carbon for these sites was 28 %. At the northern sites, 

B-horizons were characterized by higher median values of carbon content (Fig. 26). Similar 

results were found for the nitrogen content in the surface and B-horizons. The highest median 

values of nitrogen were found in surface soils for groups of eastern and western sites amounted 

to 1.2 % and 1.5 %, respectively. The highest median value of nitrogen in B-horizon was 

observed for soils of the northern sites group. Generally, the C/N ratio for all groups of 

investigation sites was higher in surface horizons than in B-horizons suggesting a higher 

abundance of organic matter and lower rates of its decomposition in the top soils. The highest 

variability of C/N ratio was found at the northern sites, which reflects the cryoturbation process 

development. 

 

Figure 25: Boxplot comparison of pH values in surface soils of four study groups located around 

the town Tiksi. Note that pH values were log-transformed prior to plot. 
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Figure 26: Boxplot comparison of carbon content in: (a) – surface soil horizons and (b) – bottom 

soil horizons of four study sites located around the town Tiksi. Note that values of carbon content 

were log transformed prior to plot. 

Significant difference for total organic carbon (TOC) and nitrogen content in the surface 

horizons (non-parametric Mann-Whitney U test, p < 0.05) were found between all sites of the 

Tiksi area and the Lena River Delta region suggesting higher carbon and nitrogen contents in the 

hinterland area (Fig. 27). Study sites of the Lena River Delta also differed from the Tiksi area 

site by higher median values of pH, which is probably due to differences in geological setting 

between these two investigated areas. 

 

Figure 27: Boxplot comparison of carbon and nitrogen contents (in %), and pH values in 

investigation sites of the Lena River Delta region and the Tiksi area. Note that values for carbon 

and nitrogen contents and pH were log-transformed prior to plot. 
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5.2 Features	of	trace	metal	distribution	in	soils	

5.2.1 Landscape	 distribution	 of	 trace	 metals	 in	 the	 Lena	 River	 Delta	 and	 its	

Hinterland	

Results of trace element concentrations (median, minimum and maximum values) for all 

investigated geomorphological units are summarized in Appendix, Tab. V. The lowest median 

and minimum values of Fe, As, Cu, Ni, Pb, and Zn were found at the study site 2T-1 of the 

second terrace. The southernmost site H-3 of the north-south transect was characterized by the 

highest median values of Pb, Cu, and Zn. Geographical environments (vegetation cover, 

temperature and precipitation) might affect the soil formation and development processes and 

influence on element distribution within the soil profile of this studied area. High median 

concentrations of these elements were also observed in the units located on the first and the third 

terrace. The study sites of the third terrace were notably different from the other units by 

showing the highest median contents of Mn suggesting more advanced soil development 

processes. Cd content was under the detection limit for the study site of the third terrace (3T-2) 

whereas the highest median was detected for the study site H-1 of the hinterland area. All 

investigated sites were characterized by very low concentrations of Hg which were close to the 

detection limit. 

The comparison of the results with studies reported for other northern regions (Appendix, Tab. 

VII) showed higher median values of Fe, As, Co and Zn concentrations for all our study sites 

except for study site of the second terrace (2T-1). Median contents of Mn for the units of the 

third terrace were higher than for Gleysols (FAO, 2006) reported by Salminen et al (2004).  

However, the range of Mn content in all investigated units coincided with the reported values of 

other studies. A wider range and higher medians of Ni, As, and Zn were comparable to the data 

reported by Rovinsky et al (1995) for Tundra Gleysols of the Lowest Lena River area. For study 

sites of the first terrace (site 1T-Ce1) and hinterland (site H-1), which were characterized by an 

accumulation of organic matter in their profiles, the median concentrations of Cu were higher 

than the values found for Histosols (FAO, 2006) of the Eastern Barents region (Salminen et al, 

2004), and organic soil layers in Eastern Baltic region (Salminen et al, 2011). Because of limited 

geochemical data for the Siberian region, and despite different approaches of trace element 

extraction methodology, results were compared with the data given by Zhulidov et al (1997a, 
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1997b). The maximum contents of Cu in the investigated units were lower than values reported 

for pristine wetlands of northeast Siberia. The maximum concentrations of Cd, Cu, Pb and Zn for 

all studied soils were much lower than the values reported for anthropogenically affected areas of 

western Siberia. The minimum concentrations of Cd coincide with the values reported for 

polygon bog peat of the background area in western Siberia (Appendix, Tab. VII, data source 5). 

However, the minimum contents of Cu, Pb, and Zn for all soil profiles except for studied site of 

the second terrace (2T-1) were higher than the data reported by Zhulidov et al (1997a). 

Concentrations for the majority of metal elements in soils of this study were similar to element 

levels in soils of remote areas in the Usa River Basin (Walker et al, 2003), and the Pechora River 

Basin, northeast European Russia (Walker et al, 2006a; Walker et al, 2006b; Walker et al, 2009). 

Resembling values for Cu, Hg, Mn, Pb, and Zn were found in soils of this study as well when 

compared to concentrations in pristine soils from the sub-Arctic region of Labrador, Canada 

(Walker, 2012). 

Effects from human activity can be substantial in close vicinity to contamination sources (Jaffe et 

al, 1995; Zhulidov et al, 1997b; Ziganshin et al, 2011) but also remote from them (Thomas, 

1992; Akeredolu et al, 1994). To detect presumable anthropogenic element additions to soil 

ecosystems, the ratio of trace elements in top and bottom soil horizons is used. However, as 

some studies show (Reimann et al, 2008; Sucharova et al, 2012) this technique cannot be 

beneficial in all cases. Usually the top layers are organic-rich and reflect the biogeochemical 

cycle at the earth surface. They differ significantly from the minerogenic layers which mainly 

reflect mineralogical developments during weathering, and, as in our investigation area, frost 

processes. In order to provide a clear idea of the vertical distribution of trace metals within the 

soil profiles of the north-south transect, the trace metal concentrations per soil volume in the top 

and bottom soil horizons were calculated (Fig. 28). In all cases, the bottom soil horizons 

contained slightly higher volumetric amounts of all measured trace elements in contrast to the 

top soils (except the element Cu for the study site 2T-1). This finding was most evident in Fe 

distribution for studied sites of the third terrace, first terrace (site 1T-1), and the hinterland (site 

H-3). The western side’s valley belt along the Lena River between 72° and 67° N belongs to the 

so-called litho-chalcophile structural-formational complex (Geological Atlas of Russia, 1996). 

This area is characterized by high content of sulphide minerals (elements including Pb, Zn, Cu, 

Hg, and As) and by high element accumulation coefficients (Rk) which ranged from 2.5 to 5. 

These observations support the hypothesis of a geological origin for those trace elements at the 
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study sites. The volumetric concentrations of elements Ni, Cu, Co, and Pb in the top 1 cm layers 

found to be very close to the values observed for watersheds of the Yenisey River Delta area 

distant around 300 km far from the Norilsk mining industry (Korobova et al, 2003). 

 

Figure 28: Volumetric concentrations of trace elements in 1 cm of top and bottom soil horizons of 

investigated sites of the north-south transect in northern Siberia (g m-3). Symbols with centred dot 

point out the sites of the third terrace (3T-1) and the latitudinal transect (H-3), respectively. 

5.2.1.1 Element distribution within the great soil groups 

To reveal differences in trace elements distribution in studied soils, we combined the great soil 

groups for each of the determined soil suborders of the US Soil Taxonomy (Soil Survey Staff, 

2010) according to the organic carbon content. Figure 29 shows a log-boxplot graph of the 10 

trace elements distribution for each of the determined soil group. The first combined group 

which includes Historthels and Fibristels (Fig. 29a) with a higher organic matter content (up to 

40 %) was characterized by higher medians and smaller ranges of values for Ni and Cu, and by a 

higher median value and bigger range of the Mn content. The second group shown in Figure 29b 

represents the soils of the Aquorthels and Haplothels with median carbon content of 8 %. In this 

group, the distribution of Fe was characterized by high variability similar as in the first group 

described above. However, the distribution of Co, Cu, and Cd concentrations had a wider range 
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than the organic-rich soils. The third combined group including all kinds of Turbels with the 

median value of 2 % organic carbon was generally characterized by higher scatter of element 

contents except for Mn and especially Fe. A notably higher median value of Fe concentration 

was detected in the Turbels suborder. Comparison of the great soil groups of permafrost-affected 

soils investigated in this study showed some consistencies of the element distribution within 

these groups. However, the group division greatly depends on the soil properties of the studied 

soils. Thus, as it was also noted by Baize (2010), content and distribution of trace metals in soils 

does not depend on the soil name but on soil properties (organic matter content, chemical 

composition of parent material, soil texture and other important physical and chemical soil 

properties). 

 

Figure 29: Log-boxplot comparison of gravimetric concentration levels (in mg kg-1) and variations 

of 10 elements in soil great groups based on three soil suborders Turbels, Histels and Orthels. Note 

that concentrations for all elements were log-transformed prior to plot. 
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5.2.2 Distribution	of	trace	metals	in	topographic	units	of	Samoylov	Island	

The amount and distribution of iron oxides in soils are known to influence soil properties such as 

anion adsorption, surface charges, specific surface area, aggregate formation, nutrient 

transformation and pollutant retention in soils. In permafrost-affected soils, Fe is accumulated in 

the unfrozen soil horizons (Boike & Overduin, 1999; Fiedler et al, 2004), and is likely to be 

discharged with water during freezing and thawing processes to Fe-rich streams. Later, these 

processes might cause the mobilization of other elements and their further migration and 

accumulation within the active layer of the soil profile (Fiedler et al, 2004; Mahaney et al, 2010). 

The ratio of different Fe‐oxide	fractions can be used to evaluate environmental conditions and 

the processes of modern pedogenesis in permafrost-affected soils (Zonn, 1982; Zubrzycki et al, 

2008). Higher values of the Fe-oxide ratio were found in the bottom part of the investigated 

profiles on Samoylov Island. This finding is probably related to less pronounced processes of 

pedogenesis due to the prevalence of anoxic conditions. The ratio between the so-called “active” 

Fe-oxide, the oxalate-soluble part - Feo, and well crystallized forms of Fe-oxides, the dithionite-

soluble fraction - Fed, was higher in the bottom part of the polygon rim 1T-Rim1 (Fig. 30). This 

higher ratio could be explained by intensive mixing of mineralogical particles and organic 

compounds within the soil profile of the polygon rim due to cryoturbation. As a result, with the 

increase of the organic matter content within the sub-soil the amorphous forms of Fe-oxides 

(Feo) could form stable Fe-organic complexes. 

The results comparing element levels within and between the soil profiles are displayed 

graphically by boxplots in Figure 31 using trace metal values from Appendix (Tab. V). The 

highest median values of Fe, Co, and As were found for the studied site of the middle floodplain 

(MF-1). Higher content of iron could be explained by additional input of allochthonous material 

during annual flooding. According to Adriano (1986), Co is an element that accumulates in the 

hydrous oxides of Fe, as well as As which usually has a tendency to form insoluble compounds 

with iron. The site of the middle floodplain was also characterized by higher variability of Fe, 

Zn, Ni and Cd. As the element Co, Zn and Ni are found to be easily adsorbed by Fe hydroxides 

(Salminen et al, 2004). An enrichment of the elements Mn, Fe, As, and Co at the cryoturbated 

polygon rim (site 1T-Rim1) was found in the layer of a distinct visible band of Fe accumulation. 

This accumulation was caused by element redistribution at the capillary fringe in these 

groundwater-affected soils (Fiedler et al, 2004). 
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Figure 30: Vertical distribution of iron in soils of: (a) – polygon rim 1T-Rim1 of the ancient 

estuarine terrace and (b) – alluvial soils of the middle floodplain MF-1, where Fed is well 

crystallized forms of Fe-oxides, Feo is poorly crystallized forms of Fe-oxides, and Fetotal is amount of 

iron in soil extracted by aqua regia. 
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Detailed comparison of polygonal landscape micro-forms revealed differences in element 

distribution between the polygon rims and polygon centres. Higher median values and less 

variability of Mn content were found within the elevated part (site 1T-Rim1) of polygons in 

contrast to low-centred parts (site 1T-Ce1) of the first terrace polygon. Such a difference may be 

explained by redox and hydraulic gradient as described in detail by Fiedler et al (2004) (upward 

translocation). The maximum content of Mn was detected on studied site of the high floodplain 

(HF-Rim2) at a poorly elevated polygon rim. Manganese nodules found at the depth of 29-35 cm 

could indicate the occurrence of seasonal redox changes (precipitation of Mn ions as Mn hydro-

/oxides with increasing oxygen level). It is interesting to note that the highest median content and 

the smallest range of Cu were observed for the most organic-rich soil of 1T-Ce1 belonging to the 

low-centred part of a polygon. It was shown in several studies (Adriano, 1986; Kabata-Pendias & 

Pendias, 2001) that organic-enriched surface soil horizons contain higher concentrations of Cu 

than lower soil horizons which contain less organic matter. The investigated sites at the high and 

middle floodplains were characterized by a much higher range of Cu distribution within the 

profiles compared to the first terrace soil profiles. A smaller range of Cu in 1T-Rim1 soil profile 

was likely caused by more pronounced homogeneity (mixing of organic matter with 

mineralogical material) within the soil layers. The polygon centre 1T-Ce1 also differed from 

other sites by having a high median and the widest variability of Pb content. The maximum Pb 

content for this soil was observed in the sub-surface soil horizon. A clear-cut interpretation of 

this phenomenon cannot be provided, but different processes might cause this distribution: Pb 

compounds, found in soils are quit immobile (Salminen et al, 2004). However, some 

investigations showed that solubilization of Pb could be attributed to soluble chelate complex 

formation with organic matter (Stevenson & Welch, 1979). So the observed distribution of Pb 

might be caused by a combination of the dominant species (Carex Aquatilis, Wahlenb.) root 

uptake and downward movement as soluble chelate complexes with organic matter. Another 

reason might be the cumulative influence of seasonal freezing and thawing cycles and formation 

of ice lens (Overduin & Young, 1997). As a result, a solute is excluded from soil matrix and, due 

to convective water transport to the freezing front, accumulates in sub-surface soil horizons. 
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Relationships between the trace metal contents and soil properties were evaluated by means 

scatterplots (Reimann et al, 2008). Some selected examples of element distribution dependence 

from the observed soil characteristics are given in Figure 32. The elements As and Cu showed a 

tendency to associate with well crystallized Fe-oxide forms. Evans (1989) claimed that Cu has a 

stronger tendency to form associations with oxide forms of Fe, relative to other metals. It also 

holds true for the behaviour of As mediated by Fe-oxides presence (Adriano, 1986; Selim, 2011). 

A positive correlation of element concentrations with increasing organic matter content was 

found for the elements Cu (study sites MF-1, 1T-Rim1, 1T-Ce1) and Cd (sites MF-1 and 1T-

Ce1). The elements Zn and Pb mainly coincided with clay content in soils. However, the role of 

insoluble organic materials (in case of polygon centre sites) and the oxides of Fe and Mn cannot 

be ignored. A tendency to positive correlation between Ni-Fe, Ni-Pb, Ni-Zn, and Ni-Cd was 

observed. The scatterplots for the last two couples of elements are shown in Figure 32d. 

All investigated sites were characterized by a slight concentration increase of the majority of 

trace metal above the permafrost table in a gleyic layer. This was more pronounced for the 

elements Zn and Ni at the study site 1T-Rim1 and for Mn, Fe, and As in the soil profile of the 

middle floodplain MF-1. A similar trend for the distribution of elements was observed for peat 

cores of a Canadian peat (Chagué-Goff & Fyfe, 1997), permafrost-affected soils of tundra 

landscapes in the Yenisei River Delta (Korobova et al, 2003), and in soils of the polygonal 

tundra in northern Siberia (Fiedler et al, 2004). This similarity supports the suggestion that the 

presence of the permafrost table could cause this increase by acting as a geochemical barrier to 

further trace metal dislocation within the soil profile. 
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Figure 32: Scatterplots showing the interrelation between the selected elements and the general soil 

properties in the soil profiles of Samoylov Island: (a) – correlation between the elements and well 

crystallized form of Fe-oxide, (b) – the elements and organic carbon content, (c) – the elements and 

clay content, and (d) – correlation between the elements. 
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The vertical distribution of selected elements and some soil properties (pH and OM) in the soil 

profile 1T-d are shown in Figure 33. Maximum concentrations of Co and Cu were found in the 

surface soil horizon and amounted to 181 mg kg-1 and 65 mg kg-1, respectively. Cu 

concentrations for this study site were two times higher than for other sites located in different 

geomorphological units of Samoylov Island, although other elements (e.g. As, Cd, Fe, Pb, Mn, 

and Zn) were similar to the data obtained for other studied sites. Regardless of the fact that 

similar maximum values of Cu were found in hydric soils, and sedge-moss peats of northeast 

Siberia investigated by Zhulidov et al (1997a), the content of this element in the surface soils (0-

10 cm) of Samoylov Island (n=7) were considerably less than the values for the 1T-d study site 

(Fig. 34). The concentrations of Cu in 1T-d surface soils were nearly two times higher than the 

average background concentrations of this element in peat soils of Germany (LABO, 2003). 

Evaluated total organic carbon (TOC) in the surface layers of 1T-d soil core probably reflects not 

only the inclusion of the vegetation but an occurrence of diesel fuel products on the surface. 

Additional input of Cu on the surface together with residuals of Cu-contained material (e.g. 

wires) led to the accumulation of Cu in the surface soil horizons. Thus, elevated organic matter 

content and acidic soil reaction possibly governed the intensive accumulation of Cu in the sub-

surface soil horizons of 1T-d study site. With pH values increase in subsurface horizons, Cu 

likely migrated downwards being a part of fulvic and humic acid compounds (Kovalskiy & 

Andrianova, 1970). 
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5.2.3 Trace	metal	distribution	in	soils	of	Tiksi	area	

Element concentrations (median, minimum and maximum values) for all study sites around the 

settlement Tiksi are shown in Appendix, Tab. VI. The highest median concentrations for Cd, Co, 

and Cu were observed in soils of the eastern site (TH15). The western sites differed significantly 

from eastern and northern sites by higher median concentration of Ni in the surface soils (Fig. 

35). Southern sites, which are remote from the town Tiksi, were characterized by a scatter of Ni 

content. The highest median concentration of Ni, but low median values for Cd and Cu were 

found at TH1 study site. High median contents for Zn were found in soil profiles of eastern site, 

whereas its low median values were detected for soil profiles of the northern site. The maximum 

concentration of Pb was found at TH9 study site in the surface horizon when compared to the 

concentrations in surface soil horizons at all other studied sites. 

 

Figure 35: Boxplot comparison of Ni content at four studied sites of the Tiksi area. Note that the 

values of Ni are log-transformed. 

Stratigraphic plots of base soil characteristics with selected element concentrations of the soil 

profiles at western and northern sites are given in Figure 36 and Figure 37, respectively. 
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Generally, western and northern sites differed from southern and eastern sites by higher 

abundance of Cd in the surface soil horizons. The western site which is represented by TH3, 

TH4, and TH5 forms a system of geochemically associated landscapes. They were described as 

upper slope, downslope, and depression site, respectively. It is interesting to note that within the 

confines of this associated landscape a consistency in some element distribution was observed. 

With increasing soil depth the organic carbon content gradually decreased in all three observed 

soil profiles. The vertical distribution of Cd, Cu, and Ni concentrations within the soil profiles 

TH3, TH4, and TH5 also had resembling features. Moving down the hill from the site TH3 to the 

TH5 through the site TH4, concentrations of Cd, Cu, and Ni in the surface horizons being the 

highest for the upper slope (TH3) were less in the surface soils of the downslope TH4 and far 

less in the surface soils of the depression site TH5. The opposite distribution of these elements 

was observed for the bottom horizons. Cd, Cu, and Ni formed the following order of their 

distribution in bottom horizons: TH5 > TH4 > TH3. 

 

Figure 36: Stratigraphic plots at each of three sites on the western direction from the settlement 

Tiksi. The carbon content is expressed in %; the element concentrations are expressed in mg kg-1. 
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In contrast to TH4 and TH5 studied sites, the soil profile of TH3 site located on the upper slope 

was characterized by the maximum concentrations of Cd, Cu, Ni, and, Zn as well as the 

maximum carbon content in the surface layer. This observation may suggest strong association 

of all these elements with organic matter and as a consequence, the formation of chelate 

complexes in the surface soil horizon. Different behavior of As and Fe was observed for this 

landscape facie. Low concentrations for As and Fe were observed in the surface horizon of the 

site TH3. At the same time, the element concentrations in the surface horizons of the depressed 

site TH5 were the highest. The values of As and Fe for the site TH4 were intermediated between 

the values for TH3 and TH5. Accumulation of As and Fe occurred more intensively in bottom 

horizons of the upper slope TH3 than in bottom layers of the sites TH4 and TH5. Comparatively 

lower acidic nature in the surface horizons of TH3 and TH4 soil profiles in comparison with B-

horizons were likely the main cause of the leaching of Fe and associated with it As into the 

underlying soil horizons and their further lateral downslope migration to adjacent forms of a 

landscape. 

 

Figure 37: Stratigraphic plots of three sites on the northern direction from the settlement Tiksi. 

The carbon content is expressed in %; the element concentrations are expressed in mg kg-1. 
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The site TH10, which is located to the north from the settlement, notably differed from all other 

soil profiles by the lowest abundance of the majority of metals such as Fe, Mn, Ni, and Zn in the 

bottom horizon BCjj (Fig. 37). However, the maximum concentrations of Cd, Cu, Pb, as well as 

Mn and Zn were found for the surface soil horizon Oie which was characterized by a higher soil 

pH in comparison with the sub-surface soil horizons. The accumulation of these elements was 

likely caused by the formation of so-called alkaline barrier which was formed at the surface 

horizon. The maximum concentration of Zn amounted to 440 mg kg-1 and greatly exceeded the 

values which were found for all other investigated sites around Tiksi (Fig. 38). The micro- and 

meso-relief of the study site TH10 (i.e. the elevated rim surrounded by argillaceous schist) 

ranges from east and west and the dominant seasonal wind directions suggested that the 

abundance of Zn may be due to aerial transport of dust particles from the mining operations 

located 600 m south-east right of TH10. Although this elevated concentration of Zn exceeded the 

maximum values reported for organic layer soils in Eastern Baltic region (total extraction) 

(Salminen et al, 2011) (Appendix, Tab. VIITable VII), for hydric soils in the northeast Siberia 

(Zhulidov et al, 1997a), and the average Zn concentrations reported for peat soil in Germany 

(LABO, 2003), it was still two times less the maximum concentrations reported for the areas of 

the western Siberia affected by anthropogenic pollution (Zhulidov et al, 1997b). The study site 

TH14 notably differed from the investigated sites of northern direction by features of vertical 

distribution for Cd, Cu, Pb, Ni, and Zn. High concentrations of these elements were observed in 

the bottom soil B-horizons, whereas in other soils of the Tiksi area the highest values for these 

metals were found in the surface soil layers. Concentrations of Cd, Cu, and Pb, abundance of 

which is usually associated with higher amounts of organic matter, gradually increased with 

increasing depth (Fig. 37). The maximum values of Cd, Cu, and Pb were found for the Bhsjj soil 

horizon of TH14 site which was characterized by the lowest pH value and the maximum organic 

carbon content. These concentrations amounted to 0.68 mg kg-1 for Cd, 39.0 mg kg-1 for Cu, and 

38.9 mg kg-1 for Pb, respectively. The maximum concentrations of these elements did not exceed 

the maximum values reported for the hydric soils of the northeast Siberia (Zhulidov et al, 1997a), 

but were higher than the maximum values of these metals of in C-horizons of the southern 

Norway (Reimann et al, 2009) and average background concentrations in the German peat-

formed bottom soil horizons (LABO, 2003). The values of Cu reported for the Lower Lena River 

area (Rovinsky et al, 1995) were six times smaller than the concentrations presented for this 

study site. The study site TH14 was located in immediate neighbourhood of the Bulunkan Gulf 
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probably could be affected by intermittent inundations, and as a consequence – polluting agent 

input. It is entirely possible a mechanical impact on this area in the past. 

Differences in the element content were found for various relief forms (depressions, slopes, and 

elevations). The coefficient of buffer capacity (Bf) for the surface soils showed that the majority 

of elements (Cd, Co, Cu, Mn, Ni, and Zn) accumulated in depressions (Bf is high and very high). 

The hill slopes of the study area were characterized by a middle-to-high coefficient of Bf for Cd 

and Mn, and low for As, Cu, and Pb. Low-to-very low coefficients of buffer soil capacity were 

found for Cu, Pb, Ni, and Zn in elevated parts of a relief. Based on these results, it could be 

concluded that Fe, Mn, Zn, and Cd migrate more actively in geochemically adjacent landscapes 

(Fig. 39). Thus, Fe could be leached out from soils of eluvial and downslope facies 

(Glazovskaya, 1988) and precipitate on oxic barriers of soils developed in depressions 

(superaqual landscapes). Mn and Co had similar behaviour in lateral distribution in 

geochemically associated landscapes. Lateral distribution of Zn was not uniquely defined. 

Possibly in autonomous landscapes, Zn actively leached from soils which contained less organic 

matter. Therefore, higher Zn concentrations were found mainly in depressed landscape forms. In 

cases when soils were developed on plane and poorly drained terrain, higher Zn concentrations 

could be found in the top horizons of these soils with higher content of organic matter. Zn is 

capable to form stable organic complexes. However, it is not usually included to humus 

compounds being mainly associated with oxides (e.g. Mn hydr/oxides). Increased concentrations 

of Pb, Cu, and Cd were observed in depressed relief forms, which is likely due to organic matter 

accumulation linked with an occurrence of acidic environmental soil conditions in the depression 

in the most of cases. 
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Figure 39: Coefficients of soil buffer capacity (Bf) for trace metals in the surface soil horizons of 

soils around the town Tiksi developed on elevated landscape forms, hill slopes, and depressions. 

Statistical comparison the soil data of the Tiksi area and the Lena River Delta region is shown in 

Table 8. Compared to the Lena River Delta region, the surface horizons of the Tiksi area were 

generally higher in As, Cd, Cu, Mn, and Pb. No significant differences between the study regions 

were found for Co, Fe, and Ni in their abundance in the surface horizons. B-horizons of the Tiksi 

area differed significantly from the same pattern of the Lena River Delta area by higher 

concentrations of most elements (As, Cd, Cu, Ni, Pb, and Zn). No significant difference between 

two investigated regions in Fe and Mn abundance in B-horizons was found. Significantly higher 

concentrations of Co were observed for the B-horizons of the Lena River delta when compared 

with the Tiksi area. Differences in soil chemistry of these two investigated areas indicate the 

diversity of their landscape geochemical structures and therefore the mechanisms of element 

distribution in studied soils. 
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Table 8: Statistical comparison of soil data of the surface and bottom soil horizons in the Tiksi area to similar 

data obtained from the Lena River Delta (non-parametric Mann-Whitney U test). The name of a particular 

region indicated on the table suggests the occurrence of significantely higher metal concentrations found for a 

particular soil horizon. 

Element Surface horizons B-horizons 
As Tiksi* Tiksi* 
Cd Tiksi* Tiksi* 
Co NS Delta* 
Cu Tiksi* Tiksi* 
Fe NS NS 
Mn Tiksi* NS 
Ni NS Tiksi* 
Pb Tiksi* Tiksi* 
Zn Tiksi* Tiksi* 

* p < 0.05 

NS, not significant 

Spearmen’s rank correlation analysis between the elements and base soil properties (pH and OC) 

for the soil layers of the Lena River Delta region and the Tiksi area is shown in Table 9. Positive 

correlation in the surface soils of both study areas was observed between Cu and organic carbon 

content, Ni and Mn. Positive correlation with As were shown for Fe and Pb. Negative 

correlations with OC content occurred for As, Fe, and Pb. Positive correlations with carbon 

content were observed for both study areas for Cu and Cd suggesting a strong relationship of 

these metals with organic-rich material. Negative correlations with Cu occurred for As and Fe in 

B-horizons of the Tiksi area in contrast to the mineralogical soil horizons of the Lena River Delta 

region, where the correlations between these elements were positive. Positive correlation with 

pH and Mn was shown for the Tiksi area indicating the dependence of this element from the 

changes of environmental soil conditions. Many elements showed more interactions to each 

other in B-horizons of the Lena River Delta region soils when compared with the underlying 

horizons of the Tiksi area. The area of the Lena River Delta is comparatively flat in contrast to 

the Tiksi area which, as a periphery of the Verkhoyansk, is characterized by relatively high 

altitudes mountain system. Regardless of the fact that soils of both investigated areas developed 

primarily in reducing conditions, the soils of the deltaic area were considerably more 

waterlogged. These conditions resulted in dominance of amorphous Fe forms which are strongly 

related with the organic matter, and as a consequence, the strong relationship with other metals 

occurs. The topographic features in the Tiksi area favoured more intensive development of 

reducing conditions in the depressions due to downward water drainage. One might assume that 
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also more acidic soil conditions likely favoured more intensive element migration capacity in the 

mineralogical soils of the Tiksi area and binding some of them with fine-grained soil particles 

(loam or clay). 

Table 9: Selected significant Spearmen’s rank correlation coefficients (r) between trace elements, soil OC, and 

soil pH in the surface and B-horizons of studied soils in the Lena River Delta region and the Tiksi area. 

Components r Components r Components r Components R 
Surface horizons 

The Lena River Delta n = 16 
Pb – Cu 0.66** Pb – Fe 0.62* Pb – As 0.60* Pb – Mn 0.53* 
Ni – As 0.72** Ni – Mn 0.69** Ni – Fe 0.58*   
Zn – Fe 0.70** Zn – Ni 0.62* Zn – As 0.53*   
C – Cu 0.84**       
Fe – As 0.71**       
Tiksi area n = 15 
C – Cd 0.72** C – As -0.90** C – Fe -0.70** C – Cu 0.53* 
As – Fe 0.82** As – Cd -0.71** As – Pb 0.62*   
Ni – Mn 0.61*       
Cd – Cu 0.59*       
Pb – C -0.58*       

B - horizons 
The Lena River Delta n = 21 
Pb – Ni 0.98** Pb – Zn 0.96** Pb – Fe 0.91** Pb – Cu 0.87** 
Fe – As 0.95** Fe – Ni 0.91** Fe – Cu 0.80** Fe – C 0.56** 
Zn – Ni 0.95** Zn – Fe 0.85** Zn – As 0.80** Zn – Cu 0.80** 
C – Cu 0.87** C – Pb 0.63** C – Zn 0.59** C – Cd 0.56** 
As – Pb 0.85** As – Ni 0.84** As – Cu 0.77**   
Mn – As 0.56** Mn – Pb 0.56**     
Ni – Cu 0.83**       
Tiksi area n = 18 
C – Cu 0.80** C – Cd 0.74** C – Fe -0.76**   
Mn – pH 0.74** Mn – Zn 0.69**     
Cu – Cd 0.76** Cu – As -0.71**     
Fe – As 0.71** Fe – Cu -0.71**     
** p < 0.01 
*  p < 0.05 

The data obtained for O-horizons of this study was compared with the data reported for pristine 

soils of Labrador, Canada (Walker, 2012), and southern Norway (Reimann at al, 2009) 

(Appendix, Tab. VII). Median concentrations for the majority of elements (As, Co, Cu, Fe, Mn, 

Ni, and Zn) exceeded the values of background soil data reported by the above studies. Median 

concentrations of Cu, Pb, and Zn in the surface soil horizons around the settlement Tiksi were 

higher than the values for these metals in O-horizons reported for the Usa River Basin and 
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Pechora River Basin, and northeast European Russia (Walker et al, 2006a; Walker et al, 2006b; 

Walker et al, 2009), although the median contents of Cd and Pb were notably less when 

compared with the soil data reported by Reimann et al (2009). Chemical data from all 

investigation sites of the Lena River Delta region, its hinterland, and the Tiksi area were 

compared with the Approximate Permissible concentrations (Hygienic standards, 2009; Tab. 2, 

Section 2.1.3). The investigated soils of the Tiksi area with required properties (silt, loam, and 

silty clay with pH values less than 5.5) and soils of the Lena River Delta region with required 

properties (sandy loam with pH values more than 5.5) were characterized by smaller 

concentration values for all elements except for As in soils of the Tiksi area when compared with 

the approximate permissible levels in soils of sandy loam and clay texture with pH < 5.5. 

Comparison of the element concentrations in the surface soils of this study with the average 

background element concentrations determined for the peat soils of Germany (Tab. 3, Subsection 

2.1.3) showed smaller concentrations of Cd, Cu, and Pb but higher contents of Ni and Zn for the 

Lena River Delta region and the Tiksi area. The concentrations of Cd, Cu (except for TH15), Fe, 

Mn (except for TH10), Pb, Ni, and Zn in the top soil horizons of all studied sites around the Tiksi 

area were much smaller than the metal contents in the top soils of the Khatanga area in northern 

Siberia (72° N, 102° E) reported by Negoită & Ropotă (2000). The variability of chemical 

composition of soils of the Tiksi area can be explained by a particular composition of underlying 

deposits (clay shale), roughness of the landscape, and prevalence of acidic and reducing soil 

conditions. It can unlikely be related to pollution caused by long-range atmospheric transport, as 

for the majority of the Arctic regions in Russia (Goryachkin et al, 1998; Glazov et al, 2006). 

5.3 Features	of	chemical	composition	of	plants	

5.3.1 Element	composition	of	plant	species	of	the	Lena	River	Delta	Region	

The collected vegetation species were present at all study sites of the Lena River Delta and 

covered more than 50 % of the area. The trace metal median contents notably differed among 

vegetation groups of the Lena River Delta (Appendix, Tab. VIII). The highest median 

concentrations of Cu, Fe, Ni, and Pb were found for mosses, whereas the lowest median values 

of Fe, Ni, and Pb were observed in shrubs. The lowest median values of Mn were found in lichen 

species. Significant differences in Fe, Mn, Ni, and Pb concentrations were found between mosses 



Chapter 5. Results and Discussion 

106 

and lichens (non-parametric Mann-Whitney U test, p < 0.05). This finding suggests that these 

plant species have different behaviour in the element uptake with respect to these compounds, 

especially Cu and Pb. These elements presumably form stable organic complexes and chelates in 

the top organic-rich horizons. A combination of this process together with the great cation 

exchange capacity of the mosses tissues creates conditions favourable to sorption of trace metals. 

The capability of metal uptake by mosses was shown to decrease the order Cu > Pb > Zn and Mn 

(Blagnyte & Paliulis, 2010). This result supports the findings for our study region. 

The comparison of the trace metal concentrations in surface soils and the vegetation species 

showed significant differences for Ni, Mn, and Zn (non-parametric Mann-Whitney U test, p < 

0.05). Significant differences for Fe and Pb (non-parametric Mann-Whitney U test, p < 0.05) 

were found between the metal contents in the surface soils and lichens, but not the surface soils 

and mosses. No significant difference for Cu was found between the surface soils and both plant 

species. All individual vegetation groups of the Lena River Delta region were characterized by 

lower median concentrations for Cu, Mn, and Zn in comparison with contents for these elements 

in dry phytomass worldwide, although lichen and moss species had higher median values for Ni 

and Pb than the data given by Dobrovol’sky (2003). Median concentrations for Fe, Cu, Ni, and 

Zn found in moss species were higher compared to the values reported for mosses of the 

background areas in northern Eurasia (Evseev, 2003) (Appendix, Tab. VIII). 

5.3.2 Element	composition	of	plant	species	of	the	Tiksi	area	

In the Tiksi area, median concentrations of Cu, Mn, and Zn were less in C. cucullata in 

comparison with Vaccinium vitis-idaea (Appendix, Tab. VIII), whereas median values of Fe and 

Pb were higher for lichens than for shrubs. The northern study sites differed significantly from 

eastern and western study sites by a higher median concentration of Zn in lichens (non-

parametric Mann-Whitney U test, p < 0.05). The maximum value of Zn was found at the study 

site TH11 and amounted to 60.5 mg kg-1. The highest contents of Fe, Pb, and Ni were found in 

lichen species of TH9 in comparison to all other sites. This study site was located in the 

immediate vicinity to the road leading to Tiksi airport. 

Differences in chemical composition for individual vegetation groups (lichens and shrubs) were 

found depending on the relief forms inhabited (slope, depression) or between the plant species. 

Considering the western direction area, the lichens of TH3 study site were characterized by 
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higher concentrations for Fe, Pb, Cu, and Ni when compared to the same species grown in TH4. 

Mn content in lichens of both sites had the same value. No difference in concentrations for Pb, 

Cu, and Ni in Vaccinium vitis-idaea species inhabited in TH3 and TH5 study sites were found. 

However, the plants grown in the depressed form of a relief contained higher Fe and Mn than the 

same species grown in the upper slope. When compared the individual vegetation groups, it was 

found that all elements were more intensively accumulated by shrubs than by lichens both grown 

in TH3 study site, except for Pb, the concentration of which has higher in lichens. The study site 

TH3 was located nearby a winter road. This finding suggests that emissions of fuel combustion 

from motorized vehicles could be a potential source of these element found in lichen tissues. 

Additionally, the waste deposit on the eastern exposure of Stolovaya Mountain located north of 

the study site TH3 could serve as a potential pollution source. In summer 2011, several 

hypothetic sources of pollutants were observed at the west deposit location area. Combustion 

products including ash with various kinds of pollutant particles could likely be transferred by 

dominant winds (south and south-west directions) and precipitated on surrounding territories 

including the study site TH3. All trace metal contents in surface soils differed significantly from 

the element contents in lichens (non-parametric Mann-Whitney U test, p < 0.05). This finding 

indicates that soil substrate is not a significant source of trace metals to the lichen species, as it 

was shown in some studies (e.g. Chiarenzelli et al, 1997). 

Higher concentrations of Fe, Mn, Zn, Cu, and Ni were found in mosses at the study site TH7 in 

comparison to the site TH4. The topography of the investigated area could be a key factor 

determining differences in metal distribution for vegetation groups of these two sites. Mosses of 

TH7 study site were growing on the soil substrate which was developed in the depression and 

characterized by higher content of the total organic carbon but no significant differences in soil 

acidity (slightly acid for both sites) when compared to soils of TH4 which were developed on the 

slope site. Presumably, a part of water-soluble metal forms, being not bound by biogeochemical 

cycle, was involved to water migration process. Less content of organic carbon and low pH value 

in soils of TH4 likely contributed to the lateral element migration downslope which, finally, 

affected the metal uptake by moss species. Median values for Cu, Mn and Zn were smaller, but 

for Pb and Ni slightly higher in lichen species when compared to the data of Dobrovol’sky 

(2003). Higher median values of Zn were observed in the shrubs in comparison with values of 

Zn in dry phytomass worldwide (Dobrovol’sky, 2003) (Appendix, Tab. VIII). 
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5.3.3 Comparison	of	vegetation	chemical	composition	 in	 the	Lena	River	Delta	and	

the	Tiksi	area.	

The ash content of plants is an indicator for the intensity of the mineral turnover in plants within 

an environment. The average ash content of plants worldwide ranges from 3 to 5 %. Herbaceous 

plants can accumulate double the amount of mineral elements (up to 5 – 7 %) (Opekunova et al, 

2002). The majority of tundra plants are characterized by a relatively low so-called actual ash 

content (amount of elements integrated to plant tissue) of 1.5 – 2 % (Dobrovol’sky, 2003; 

Moscovchenko, 2006; Protasova, 2008). Results of ash content analysis for different plant 

species grown in landscapes of the Lena River Delta region and the Tiksi area are shown in 

Table 10. With 16.4 to 30.0 %, the mosses of the Lena River Delta region showed the highest 

values of ash content, whereas in mosses of the Tiksi area ash content values ranged from 5.23 % 

to 8.04 %. Although the median values of the total carbon content in this vegetation group for 

both investigation sites was similar. This notable variation in ash content in mosses was probably 

due to a redistribution of aeolian deposits of mineral matter which was transported likely from 

the surrounding sand banks. According to Dobrovol’sky (2003), a considerable amount of solids 

in mosses can vary from the total ash content by 40 to 80 %. The median values of ash content in 

lichens amounted to 6.4 % which was higher than the values found for the lichens of the Tiksi 

area. The minimum median values for ash content in the lichen species amounted to 1.8 %. As in 

the deltaic region, shrubs were characterized by similar values for ash content showing a median 

value of about 3 %. Thus, the differentiation in processes of mineralization is perceptible among 

the individual vegetation groups which may affect their specific ability of metal uptake. 

Table 10: Ash content in vegetation species (in %) grown in the Lena River Delta region and in the Tiksi area. 

Study unit The Lena River Delta Tiksi area 

Plant species 
Mosses Lichens Bushes Mosses Lichens Bushes 
(n = 12) (n = 7 ) (n = 3) (n = 2) (n = 10) (n = 3) 

Ash content 
(in %) 

16.4 – 29.9 
26.7 

5.8 – 8.6 
6.4 

2.7 – 2.9 
2.9 

5.23 – 8.04 
− 

0.76 – 15.4 
1.71 

2.9 – 3.6 
3.1 

Differences among the individual vegetation groups in terms of element accumulation are 

evident as various accumulation rates and shown in Figure 40. The relative concentrations for 

mosses and bushes were reported in terms of ratio to the element concentrations for lichens equal 
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to 1. Small differences between mosses and lichens were observed in ratios of individual 

elements (e.g., in Fe ratios). In contrast to mosses, the ratio of Fe, Mn, Ni, and Pb contents in 

shrubs in the deltaic area and additionally Zn concentrations in the Tiksi area significantly 

differed from these to vegetation groups. This difference is likely due to morphological 

organization of these three vegetation groups. 

 

Figure 40: Comparison of element composition of individual vegetation groups inhabited in: (a) – 

the Lena River Delta region and (b) – the Tiksi area relative to C. cucullata (=1). 

Calculation of bioaccumulation coefficients (BC) for vegetation groups of the Tiksi area and the 

deltaic region showed consistency in some trace metal accumulation by plants. Vaccinium vitis-

idaea species were characterized by a high bioaccumulation coefficient suggesting a tendency to 

accumulate considerable amounts of Mn. This fact was shown in the studies of Ramenskaya 

(1974), and Chernenkova (2002), confirming that Vaccinium vitis-idaea species is a habitual 

concentrator of Mn. Intensive Mn uptake by this species could possibly be caused by this 
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element availability to the plants growing on soils with more acidic environmental reaction. 

Median concentrations of Fe in the Lena River Delta region mosses species were in a large 

excess over the maximum concentration in the same species of the area near the town Tiksi. 

Moss species of the Delta region also tended to accumulate chalocophile elements - Cu and Pb. 

No consistency to metal accumulation was determined in lichen species for both study regions 

because of no clear relation of these species with the chemical composition of the soil substrate. 

Thus, selective metal uptake is governed by the type of the elementary landscape, as well as the 

plant species. The results of this study are in agreement with the study of Perel’man (1975), who 

stated at his studies that Fe and Mn significantly contribute to the biogeochemical turnover of 

tundra landscapes. 

All data from all sites of investigated areas (the Lena River Delta and Tiksi area) were used to 

determine significant differences in trace metal concentrations between vegetation groups 

applying non-parametric Mann-Whitney U test. Statistical comparison of the Tiksi vegetation 

data with the data of the Lena River Delta region is shown in Table 11. Significant differences 

between two areas were found for Cu and Fe (p < 0.05) using in the analysis C. cucullata. 

Median values of these elements were higher in the Delta in comparison with the Tiksi area. 

Significant differences for Cu, Mn, Ni, and Zn between study sites were found using in the 

analysis Vaccinium vitis-idaea species. No significant difference for Mn, Ni, Pb, and Zn was 

determines between sites using C. cucullata, and for Fe and Pb using Vaccinium vitis-idaea in 

the analysis. 

A number of publications devoted the attention to vegetation chemical composition of the Arctic 

region and were used in order to compare the data of this study (Appendix, Tab. IX). 

Comparison of metal concentrations in mosses for this study showed that concentrations of Mn, 

Pb, and Zn were in the same range as reported for background area in Norway (Berg and 

Steinnes, 1997; Reimann et al, 2001). The range of Pb values in moss species was similar or 

even less than element concentrations found in Hylocomium sp. inhabited in the Faroe Island 

(Melnikov et al, 2002), the Pechora River Basin, and Taimyr Peninsula (Ford et al, 1997). 

However, the ranges of Pb and Zn concentrations showed higher variation than ranges of the 

element concentrations in mosses of Canadian Arctic areas (Wilkie & La Farge, 2011). Median 

concentrations of Cu and Ni for mosses fallen within the ranges referred for areas on Taimyr 

Peninsula (Allen-Gil et al, 2003), Spitsbergen (Jozwik, 1990; Grodzhinska et al, 1991), and areas 
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including Nordic countries and a part of Russia (Kola Peninsula) (Äyräs et al, 1997). Although 

ranges of Cu and Ni concentrations in moss species of the Canadian Arctic had smaller 

variations than ranges of the element concentrations in mosses of this study. The range of Cu 

concentrations in mosses inhabited in the Lena River Delta region showed also slightly wider 

variation in comparison with mosses of the Norwegian background area (Berg and Steinnes, 

1997; Reimann et al, 2001). 

Table 11: Statistical comparison of the vegetation data of theTiksi area with similar data obtained from the 

Lena River Delta region (non-parametric Mann-Whitney U test). The name of the particular region indicated 

on the table suggests the occurrence of significantely higher element concentrations found for the particular 

vegetation group. 

Element Highest groups 
C. cucullata Vaccinium vitis-idaea 

Cu Delta* Tiksi* 
Fe Delta* NS 
Mn NS Tiksi* 
Ni NS Tiksi* 
Pb NS NS 
Zn NS Tiksi* 

* p < 0.05 

NS, not significant 

Pb concentrations in C. cucullata of this study were comparable to the values reported for this 

lichen species from Chukotka Peninsula, Russian Far East (Melnikov et al, 2002), Kola 

Peninsula, Taimyr Peninsula, and Alaska (Ford et al, 1997). The median concentration of Fe in 

lichens inhabiting in the Tiksi area lied in the range determined for the same species in Taimyr 

Peninsula (Allen-Gil et al, 2003). Although Fe content in all vegetation groups of the Lena River 

Delta were characterized by higher values when compared to all previous studies in Taimyr 

Peninsula (Allen-Gil et al, 2003), Finland, and Norway (Äyräs et al, 1997). 

Vaccinium vitis-idaea species of this study had higher concentrations for Zn and especially, for 

Mn when compared to the values reported by Ramenskaya (1974) and Opekunova et al (2007) 

for Kola Peninsula. Median concentrations of Cu and Ni for shrubs fallen within the ranges 

referred for areas on Taimyr Peninsula (Allen-Gil et al, 2003), Spitsbergen (Jozwik, 1990; 

Grodzhinska et al, 1991), and areas including Nordic countries and a part of Russia (Kola 

Peninsula) (Äyräs et al, 1997). Metal concentrations in shrubs were compared with the mean 

concentrations detected in berries of the same species inhabited in the background area in the 
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northern Finland (Pöykiö et al, 2005). For areas of this study, the concentrations of Ni and Pb 

were low but concentrations of Zn were higher in comparison with concentrations in berries. The 

difference in the element concentration could likely be explained by features of metal 

accumulation in various vegetation organs, as well as the properties of soil substrate where these 

species have been grown. 

5.4 Summary	

1) The first measurements of trace metal concentrations in permafrost-affected soils of fluvial 

landscapes of the Lena River Delta and its hinterland in northern Siberia generally showed a high 

variability in landscape element distribution. It was found that this distribution is presumably 

caused by differences in the landscape geological structure which reflects therefore, the soil 

textural composition. Low values of the majority of measured trace metals were found in fine-to-

middle grained sand of the northernmost site (second terrace), whereas the sites composed of 

clayey silt and loam (first and third terraces and the site H-3 of the hinterland) were characterized 

by higher amounts of most trace elements. Differences in trace metal distribution between the 

soil suborders showed that the study of chemical composition should be referred primarily to soil 

genesis which determines the main physical and chemical soil properties. 

2) The key feature of studied landscapes in northern Siberia is considerable amounts of Fe and 

Mn in permafrost-affected soils and peat-forming vegetation. As many studies showed (e.g. 

Perel’man, 1975; Moskovchenko, 2006; Moskovchenko, 2010), under the humid climatic 

conditions the elements Fe and Mn are primarily accumulated in tundra landscapes being more 

sensitive to changes of environmental conditions. The abundance of Fe and Mn contributes 

significantly to soil chemical composition and likely govern the distribution of trace elements in 

tundra landscape soils of northern Siberia. 

3) It was revealed that micro- and macrorelief features can influence metal distribution in natural 

permafrost-affected soils. For example, comparison of the polygon rims and polygon centres 

showed that values of the elements Cu and Pb were higher in polygon centres which were 

characterized by an accumulation of organic matter and more moist environments. Higher 

concentrations of some elements (e.g. Fe, Mn, Ni, As, and Zn) were detected in most soil profiles 

in the deeper minerogenic soil horizons compared to the top soil. This supported a suggestion 

that the permafrost table, acting as a geochemical barrier, retarded further migration of elements 
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into deeper horizons. Higher concentrations of most metals were observed in soils of the middle 

flood-plain compared to the other sites of Samoylov Island. This finding suggested that 

carbonates and allochthonous material accumulated in alluvial soils during annual inundation are 

the determining factors controlling sorption of the majority of trace metals at the middle flood-

plain. 

4) Investigation of biotopes around the settlement Tiksi showed local variations in their soil 

chemistry for four study units. The eastern sites significantly differed from all other sites by a 

higher pH suggesting the input of sea-side aerosols and their deposition to the soil surface. No 

significant variation in metal distribution among studied sites was revealed, except of western 

sites which were characterised by the highest median values of Ni. Studies of spatial element 

distribution in geochemically adjacent landscapes of the Tiksi area showed that Fe, Mn, Zn, Cd, 

and Co migrate more actively than other metals. Most of these elements are leached from gleyic 

horizons of soils at elevated relief forms and precipitate on oxidizing barriers in soils of slopes 

and depressions. 

5) Soils around the settlement Tiksi differed markedly from the studied soils of the Lena River 

Delta region by higher values of carbon and nitrogen contents, and enhanced concentrations of 

the majority of trace elements (As, Cd, Cu, Pb, and Zn) in soils in the presence of more acid 

reaction in the soil matrix. Element interactions in soils of the Tiksi area were poorly represented 

than in soils of the Lena River Delta region, in spite of consistent patterns for some elements 

(e.g. positive correlation As-Fe for both surface and B-horizons, and C-Cu for the surface soil 

horizons). Differences in acidic soil conditions, lithology, topography, and therefore, features of 

water migration for the Tiksi area soils in comparison with the deltaic soils likely governed more 

intensive element migration to adjacent landscapes and their accumulation on acid-base barriers. 

6) Chemical composition of individual vegetation groups fully reflects the features of landscape 

geochemical structure as well as features of biogeochemical element migration in a tundra zone. 

It is important to note that the intensity of metal accumulation in plants depends not only on the 

type of a landscape where they grow but also on plant species composition. In this study a 

combination of these two conditions regulating plant chemistry was shown on the example of 

three vegetation groups – mosses, lichens, and shrubs, all widely spreading in the landscapes of 

two investigated geomorphological units. The mosses and lichen species inhabited in the deltaic 
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region accumulated Fe and Cu more actively than these species in the Tiksi area whereas the 

shrubs of the Tiksi area were apt to accumulate Cu, Mn, Ni, and Zn when compared to the Lena 

River Delta region. A considerably high amount of Mn was accumulated by Vaccinium vitis-

idaea species in comparison to other individual vegetation groups. This finding reflects strong 

relation with soil chemical composition as well as their biogeochemical specifity which 

coincides with the studies in other northern areas. 

7) In a regional scale the studied area in northern Siberia including the Lena River Delta and its 

hinterland is pristine and can serve as a reference region for determining human influences on 

permafrost-affected landscapes or comparing similar pristine areas in the Arctic region. 

However, an early indicator of local human impact was determined at one studied site on 

Samoylov Island. The area Tiksi was also considered as pristine except for some individual sites, 

where there were signs of a local impact. The enrichment of Pb and Zn in the surface horizons 

and vegetation samples of selected study sites around the town Tiksi can indicate local pollution 

related to fuel emission (for Pb) and mining operations north of the town (for Zn). However, lack 

of the data makes this conclusion difficult to sustain and the existing dataset needs to be 

expanded. 

5.5 Laboratory	 experiment.	Trace	 element	distribution	 in	 soils	 caused	by	

freezing.		

In further description of the experiment results, the terms “unfrozen soil columns (UFC)” and 

“frozen soil columns (FC)” refer to the columns from the experimental BOX 1 and BOX 2, 

respectively. 

5.5.1 Temperature	regime	and	water	distribution	in	soil	columns	

The soil temperatures of the unfrozen columns were positive during the whole period of the 

experiment (Fig. 41a) and averaged 20.0 ± 2.3 °C. In spite of the temperature variation during 

the experiment, the average temperature difference within the soil column depth was negligible 

and varied from 0.01 °C between 6 cm and 4 cm to 0.05 °C between 4 cm and 2 cm of the soil 

column depth. The period of a freezing experiment was accomplished in three stages: (I) 

constantly and relatively slow decreasing of the soil temperature from bottom upwards, (II) 
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continuously but relatively fast decreasing of the soil temperature, and (III) fluctuating soil 

temperature within the freezing columns (Fig. 41b). During stage I, a temperature gradient was 

propagated upward through the columns and varied from 0.14 °C/mm to 0.19 °C/mm between 6 

cm and 2 cm depth of the soil column. The average soil temperature in the lower part of the 

columns was negative during the whole experiment. The average soil temperatures in soil layers 

between 2 and 6 cm depths varied from -0.79 ± 0.33 °C in the lower part to 5.87 ± 0.40 °C in the 

upper part of the column, respectively. During stage II, the average soil temperatures dropped 

down being approximately from 4 °C to 2 °C less in soil layers between 2 cm and 6 cm of a 

column depth, respectively. The temperature gradient varied from 0.07 °C/mm to 0.17 °C/mm 

being propagated upward between 2 and 6 cm of a soil column depth. The average freezing rate 

accounted for approximately 0.6 mm/h. The minimum soil temperatures at the measured depths 

were observed between 139 and 157 h after starting the experiment (shaded area). In stage III, 

the soil temperature regime was characterized by instability because of technical reasons. The 

average temperatures varied from 2.78 ± 1.24 °C at 2 cm to -1.78 ± 0.52 °C at 6 cm of the soil 

column depth.The final vertical distribution of gravimetric water content in unfrozen and frozen 

soil columns is shown in Figure 42. After the experiment, no evident changes in soil structure 

(homogeneity, colour) in soil columns without freezing were observed. In the absence of the 

vertical temperature gradient, no redistribution of gravimetric water content within these soil 

columns was found (Fig. 42a). In the frozen columns, the freezing front at the end of the 

experiment was detected at 4.3 ± 0.2 cm depth. In frozen soil layers between 6 and 8 cm depth, 

small ice crystals were observed. The gravimetric water content changed during the experiment: 

the maximum median gravimetric water content (n = 4; because of a technical problem, only four 

soil columns affected by freezing were used for laboratory analyses) was observed in the bottom 

part of the columns at depth of 5 – 6 cm and amounted to 24.5 ± 2.1 % (Fig. 42b). In the top soil 

layers, the gravimetric water content decreased downwards and varied from 5.9 % to 4.8 % 

within the upper 0 – 3 cm contaminated soil layers of columns affected by freezing. These values 

account for 48.3 and 63.3 % of water loss (in comparison with the initial gravimetric water 

content), respectively. 
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Figure 41: Soil temperature at column depths 2, 4, and 6 cm: (a) – in unfrozen soil columns (UFC) 

and (b) – in frozen columns (FC). Three stages of the freezing process are denoted by roman 

numerals. 



Chapter 5. Results and Discussion 

117 

 

Figure 42: Water content distribution after the experiment in soil columns: (a) – without freezing 

(UFC) and (b) – affected by freezing from bottom upward (FC). The solid line indicates the mean 

gravimetric water content and the hatched area denotes the standard deviation (SD) of soil column 

replicates (n = 5 for UFC; n = 4 for FC). Shaded area indicates a column part filled by 

contaminated soil material. The horizontal dashed dark blue line denotes the final average freezing 

front for frozen columns. Red-, black-, and blue-marked values indicate the depth of temperature 

sensors installation in control columns. 
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5.5.2 Vertical	redistribution	of	Cd	and	Pb	within	the	columns	

5.5.2.1 Cd redistribution 

The experimental results of the vertical redistribution of Cd and Pb within the soil columns are 

summarized in Figure 43. After the experimental run, the final element distributions within the 

unfrozen and frozen soil columns differed from the initial one. The final concentrations of Cd in 

the top (initially contaminated) column part had decreased and varied from 38.2 ± 2.0 mg kg-1 to 

28.6 ± 0.5 mg kg-1. These results accounted for approximately 70 and 54 % of the initial Cd 

content, respectively. In the lower (uncontaminated) column part, concentrations of Cd increased 

between 24.6 ± 0.9 mg kg-1 and 4.7 ± 0.9 mg kg-1 which are 415 and 72 times higher the initial 

Cd concentration of the uncontaminated soil layer, respectively. 

The variation of Cd concentrations was observed in soil layers between 0 – 4 cm depths of all 

frozen columns. The highest Cd concentrations were found in the top soil layers, they amounted 

to 65.5 ± 7.8 mg kg-1 which was about 25 % higher than the initial element concentration and 

almost two times more than the final Cd content in the top soil layers of columns without 

freezing. Cd concentrations were about 30 % less in soil layers between 1 – 2 cm and 20 % less 

in soil layers between 2.5 – 3 cm soil column depths than in unfrozen columns at the same 

depths. It should be noted that Cd penetrated deeper into the uncontaminated soil column part of 

the unfrozen columns compared to the frozen soil columns. In soil layers between 3 and 8 cm 

depth of frozen soil columns, Cd content decreased downwards varying from 17.3 ± 0.8 mg kg-1 

to 0.08 ± 0.04 mg kg-1. The deviation of Cd concentrations between the frozen and unfrozen 

columns varied from 14 % in the top of the initially uncontaminated column part to 0.1 % in the 

bottom of the columns. This finding suggests less extended penetration of Cd downwards within 

the frozen soil columns in comparison with the unfrozen soil columns. The final Cd 

concentrations significantly differed between soil layers of the soil columns without freezing and 

the soil columns affected by unidirectional freezing at the column depths between 0 and 4 cm 

and between 5 and 6 cm, respectively (non-parametric Mann-Whitney U test, p < 0.05). 
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Figure 43: Redistribution of cadmium and lead after the experiment in soil columns: (a) – without 

freezing effect (UFC) and (b) – affected by freezing from bottom upward (FC). The solid line 

indicates the mean gravimetric water content and the hatched area denotes the standard deviation 

(SD) of the soil column replicates. Shaded area indicates a column part filled by contaminated soil 

material. The horizontal dashed dark blue line denotes the final average freezing front for frozen 

columns 
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5.5.2.2 Pb redistribution 

The final concentrations of Pb in soil layers of columns without freezing decreased to a lesser 

degree than the final Cd concentrations. Within the upper soil column parts of 0 – 3 cm depth, Pb 

concentrations varied from 492 ± 22.7 mg kg-1 at the top of the soil columns to 389 ± 12.0 mg 

kg-1 in the layer nearest to the initially uncontaminated soil column part, which accounted for 92 

% and 74 % from the initial Pb content, respectively. Initially uncontaminated soil layers 

contained from 218 ± 16.0 mg kg-1 to 7.1 ± 0.3 mg kg-1 Pb decreasing downwards. The first 

concentration approximately 27 times exceeded the initial Pb concentration of the lower soil 

column part. 

Pb distribution within the upper part of frozen soil columns (FC) was similar to the element 

distribution in the control unfrozen soil columns (UFC). In the upper, (contaminated) soil 

column part, the concentration of Pb decreased with depth from 497 ± 24.2 mg kg-1 to 428 ± 34.8 

mg kg-1 which accounted for 93 % and 81 % of the initial element concentration, respectively. 

Similar to Cd, Pb penetration to the uncontaminated part of soil columns affected by freezing 

was less expanded than within control soil columns. The concentrations of Pb at 3.5 – 4 cm 

column depth were about 13 % less than in the unfrozen columns. A significant difference in the 

final Pb distribution was found between the freezing columns and the columns without freezing 

effect only for soil layers at 3 – 3.5 cm and 3.5 – 4 cm column depths (non-parametric Mann-

Whitney U test, p < 0.05). 

5.5.2.3 Relative element concentration decrease and available metal fractions in soil columns  

Relative element concentration decrease (ε) of Cd and Pb were calculated for soil layers of the 

initially contaminated soil column part of 0 – 3 cm depth and expressed in % (Tab. 12). These 

results showed that in initially contaminated layers of all experimental soil columns, median 

values of Cd were higher than values of Pb. This finding was shown to decrease of Cd 

concentrations in the initially contaminated soil layers to a greater extend in comparison with Pb 

concentrations. No remarkable difference between relative concentrations of Pb for soil layers of 

unfrozen and frozen columns was observed. In soil layers of columns without freezing, Pb 

median relative concentrations varied from 9 to 27 %, and in soil layers of columns affected by 

freezing, these values ranged from 7 to 19 %, in both cases increasing with the column depth. 

Relative concentrations of Cd in soil layers of frozen columns were half the values for Cd 
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observed in soil layers of unfrozen columns. A concentration decrease of this metal varied from 

65 to 66 % in 1 – 3 cm soil layers of columns affected by freezing, whereas relative 

concentrations ranged from 29 to 46 % in soil layers of columns without freezing at the same 

column depth. The negative value of Cd relative concentrarion indicated an increase of this 

element concentration in the top of the soil columns affected by freezing in comparison with the 

initial values. 

Table 12: Mean values of relative metal concentration decrease (ε) calculated for Cd and Pb in soil layers of 

initially contaminated column parts of 0 – 3 cm thickness, where UFC – soil columns without freezing and FC 

– soil columns affected by unidirectional freezing. 

Contaminated 
layer (cm) 

Relative element concentration decrease (%) 

εCd εPb 
UFC FC UFC FC 

0.0 – 1.0 28  -24 8.0  7.0  
1.0 – 2.0 36 64 13  13 
2.0 – 2.5 39 65 13  12 
2.5 – 3.0 46  66 27  20 

The vertical distribution of mean available fractions of Cd and Pb (rc) in the soil columns is 

shown in Figure 44. Additionally, a conceptual scheme of temperature conditions during the 

experiment is shown in Figure 44b for frozen soil columns. From both column experiments, it 

was found that the relative content of mobile forms of Cd is higher than relative concentrations 

of Pb. These results show also that Cd possessed a higher ability to penetrate downward through 

the soil matrix than Pb. In soil columns without the temperature gradient, a graduate decrease of 

mobile forms of Cd and Pb was observed starting from 3 – 4 cm column depth whereas only 

small variation of relative concentrations of these elements were observed in soil layers at 0 – 3 

cm column depth. Comparing these results with the results of the water content redistribution 

within the soil columns without freezing, no similarities between the redistribution of potentially 

mobile metal forms and water content was found. This finding suggests that element migration 

must have occurred independently from water content distribution. Concentrations of available 

fraction of Cd and Pb were slightly higher in the upper soil layers of columns that have 

undergone unidirectional freezing. The concentrations of these elements in the experimental 

columns affected by freezing (FC) did not change in the same way as in soil columns without 

temperature gradient (UFC). A higher variation of available fraction content of potentially 

mobile forms of Cd was evident in the transition zone of 0 – 4 cm depth of frozen soil columns. 
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In the zone of the frozen soil layers from 6 cm to 8 cm depth, the concentrations of Cd went 

down in comparison with results of unfrozen soil columns. The concentrations of available form 

of Pb also rapidly decreased in soil layers deeper than 3 cm when compared with unfrozen soil 

columns. Comparing both graphs, it is evident that the freezing affected the vertical metal 

distribution. 

 

Figure 44: A conceptual graph showing Cd and Pb available fraction distrubution versus soil 

column depth in: (a) – unfrozen soil columns (UFC) and (b) – soil columns (FC) affected by 

unidirectional freezing. The grey shaded area indicates the initially contaminated column part. The 

light blue shaded area indicates a soil layers with temperatures below zero during the experiment. 

The vertical line shaded area represents a transitional zone where temperature variation took place 

during the experiment. The dark blue dashed line indicates the approximate level of the final 

freezing front. 

Based on the experimental results, it was found that the moisture transfer process played a minor 

role in the vertical redistribution of metal ions in unfrozen soil columns. In the unfrozen soil 

columns, a notable migration of Cd and Pb into the uncontaminated column part occurred 

regardless of negligible changes in water content within the whole soil column depths. In the 
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experiments, the soil material was characterized by a coarse-grained texture and unsaturated 

conditions possessing a relatively low capillary conductivity. It suggests that a state of balance 

between soil matrix potential and gravitational potential energy gradient took place, which did 

not permit a notable movement of water in unfrozen soil columns. Therefore, it can be concluded 

that metal ions could move independently through water films along their concentration gradient 

and partly under the influence of the gravitational force. The obtained results supported the 

experimental studies of Cary & Mayland (1972) where they examined the movement of salt ions 

in the unsaturated soil system. 

The experiment showed that the penetration of Cd into deeper soil layers was more intensive in 

comparison with Pb penetration in all investigated soil columns. Because the soil comprised a 

low amount of organic carbon, the organic matter can be neglected as a factor governing the 

adsorption of Pb in the soil columns. A decreased mobility of Pb can be explained by occurrence 

of a high amount of Fe in the soil matrix. According to Ainsworth et al (1994), more than 90 % 

of Pb and only about 10 % of Cd are adsorbed by Fe hydroxides in a mineral soil matrix. 

Because of the individual chemical element properties, Vodyanitsky et al (2012) and 

Vodyanitsky (2013) considered Pb to be a less hazardous element in soils in comparison with 

more mobile metal ions (e.g. Cd). Therefore, it is necessary to note that sorption characteristics 

of a soil system together with individual chemical properties of potentially hazardous elements 

should be considered as an important mechanism which affects the ion transport in soils when 

estimating a risk of metal pollution. 

This experiment showed that the temperature gradient in frozen soil columns (FC) contributed to 

the Cd migration in addition to the concentration diffusion process along the concentration 

gradient in the soil columns. The Cd distribution in the frozen soil columns at the end of the 

experiment run may be described in the following way. On the one hand, a further penetration of 

Cd to deeper soil layers was restricted by a low permeability of the frozen soil layer. On the 

other hand, freezing process resulted in a relatively higher mobility of Cd in the upper part of the 

soil columns and expulsion of this mobile element upward. At the beginning of the experiment, 

the water contained in the bigger, uncontaminated part of the soil columns started to migrate 

towards the freezing front the upward movement of which was accompanied by initiation of the 

ice crystal formations as it was described in Subsection 2.2.3. 
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It can be assumed that during stage I of the experiment, the freezing front was still in the zone of 

the uncontaminated soil layers, and therefore, portions of water moving toward the freezing front 

came mainly from the uncontaminated parts of columns. At the same time, independent diffusion 

of metal ions along the chemical gradient could occur until the frozen soil layer, where its 

permeability was at the minimum level and delayed further ion migration. Several permafrost 

studies considered a frozen zone as a geochemical barrier (e.g. Ostroumov et al, 1998; 

MacGregor, 2000; Alekseev et al, 2003). However, the studies of Makarov (1988) and 

experiments of Ershov et al (1995) showed that ion migration of some elements occurs even in 

frozen soils. The dataset obtained from this experiment could neither support nor confute the 

findings of the previous studies. 

During stage II, the increase of the temperature gradient resulted in a further propagation of the 

freezing front upwards and therefore, further water migration towards the frozen area and the 

formation of new ice crystals. Two conjoined processes could occur during the ice crystal 

formation which could influence Cd migration: (1) frost heaving and (2) ion expulsion towards 

the unfrozen soil layers. The first process can be neglected in coarse-grained soil system: firstly, 

because bigger soil particle pore space in comparison with fine-grained soils may permit a 

further propagation of the freezing front. Secondly, the presence of soluble ions in water 

contained in the interporous space may lead to the following: during freezing of water which 

comprises soluble chemical compounds, the formed ice tries to exclude these compounds from 

its structure, therefore increasing the concentration of elements in the zone of unfrozen soils. 

Increased concentrations of water solutions may decrease the freezing point of water. Therefore, 

the unfrozen water can continue to migrate to the freezing front and in doing so, decrease the 

effect from frost heaving (Cary & Mayland, 1972; Cary et al, 1979; Chamberlain, 1983; Henry, 

1988). The ion expulsion in freezing soils results from the decrease of water film thickness and 

therefore, the pressure of the water film adsorbed by soil particles. At the same time, the pressure 

decrease may enhance so-called disjoining force between soil particles (Padday, 1970; Henry, 

1988). This mechanism of ion redistribution was observed in studies of Hallet (1978), Chuvilin 

et al (1998), Chuvilin (1999), and Ostroumov et al (2001) and described in experiments of Baker 

et al (1990), Gay & Azouni (2003), and Bing & He (2011). The degree of ion expulsion depends 

on the rate of freezing as well as on the soil material properties (Anisimova, 1973). The studies 

mentioned above showed that the ion expulsion effect occurs mainly in coarse-grained soil 
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material, whereas in fine-grained soils high concentration of water soluble ions is observed right 

above the freezing front. 

In this experiment, no significant ion redistribution has occurred in the upper part of the frozen 

columns during the stage III. The major part of water seemed to have migrated downwards and 

accumulated in the initially uncontaminated soil column parts. At the same time, in the initially 

contaminated soil column parts, the thickness of water films adsorbed by soil particles became 

smaller and therefore, could not serve as a media for the metal ion transport. Therefore, it was 

concluded that the ion redistribution occurred mainly during stages I and II of the experiment. 

5.6 Summary	

This experiment, performed with coarse-grained sand, showed that a number of transport 

mechanisms were involved in the soluble ion form migration in the soil system. At this stage of 

the study, the following conclusions can be drawn: 

1. In the frozen soil columns, no clear relation between water migration and the metal 

distribution was found. Diffusion along the concentration gradient was shown to be the most 

important mechanism controlling the migration of water soluble forms of Cd and Pb.  

2. Physical and chemical soil properties (e.g. soil texture, sorption ability properties) and 

differences of element characteristics of Cd and Pb (e.g. ionic charge, ionic radius) might be 

essential in controlling the mobility of these metals and therefore, played an important role in 

governing the metal redistribution in the soil columns. 

3. An accumulation of Cd in the upper soil layers was observed as a result of the expulsion of 

soluble Cd ions from the frozen soil interface. 

4. A decrease of the Cd mobility in the lower parts of the frozen columns in comparison with the 

unfrozen columns, suggests that frozen soils acted as a temporal geochemical barrier restricting a 

further diffusive transfer of Cd downwards. However, more experiments are required to confirm 

these results of the experiment. 

5. The obtained experimental data is still not enough to understand all mechanisms of mentioned 

processes that occur under the natural environments. To gain a better understanding of these 

mechanisms, further investigations are needed to provide quantitative explanations. Future 
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studies should focuse on the processes of ice lens formation and this effect on the behaviour of 

different contaminant substances. The interactions between contaminant solutes and freezing 

processes in soils should be considered, since the presence of soluble ions in freezing water may 

strongly affect the chemical potential of water and, by decreasing its freezing point, control the 

process of ice lens formation in soils. 
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6. Conclusions	and	Outlook	

The presented study contributes to the knowledge of the concentrations and the distribution of 

trace metals in permafrost-affected environments of the Siberian Arctic. The key findings are: 

 The landscape element distribution in soils of northern Siberia is characterized by a high 

variability being related to the factors such as lithology and relief characteristics, soil texture, 

organic carbon content, soil acidity, and temperature and water regimes. The variability of such 

elements as Cu and Cd is mainly controlled by the soil organic carbon content, whereas a 

variability of Zn and Pb depends on the occurence of fine-grained material of the studied soils. In 

most studied soil profiles, the abundance of Fe and Mn oxides and hydroxides governed the 

distribution of As and Ni. All factors mentioned above contribute to a high diversity of 

permafrost-affected soils as well as to a homeostasis of the natural tundra landscapes. 

 Permafrost conditions and cryoturbation processes play a particular important role in the 

metal distribution in the soil matrix by forming geochemical barriers which impede element 

migration. Enhanced concentrations of Fe, Mn, Ni, As, and Zn were observed right above the 

permafrost table in polygon structured soils. 

 Soils around the settlement of Tiksi were characterized by enhanced concentrations of the 

majority of trace elements (As, Cd, Cu, Pb, and Zn) compared to soils of the Lena River Delta. 

Element correlations in soils of the Tiksi area were, however, poorer represented than in soils of 

the Lena River Delta region. These differences are presumably caused by various composition of 

underlying deposits (clay shale), roughness of the landscape, acidic soil conditions, which 

resulted in potentially higher element mobility in soils of the Tiksi area. 

 The concentrations of the majority of metals in these studied environmental components 

(soils and plants) were similar to those reported for other northern regions. Therefore, obtained 

results can serve as a reference point to compare to other areas in the Arctic and to carry out a 

geoecological monitoring. 

The knowledge about the background levels of trace metals is important not only for an 

assessment of potential long-range anthropogenic effects on the investigated area but also for 

understanding the processes of biogeochemical turnover rates controlled by climatic factors. In 

order to gain more information about the regional geochemical characteristics of the studied area, 
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investigations on chemical composition of biotic and abiotic environmental components (e.g. 

rocks, sediments, surface and groundwater, and vegetation) should be carried out to a greater 

extend. A larger grid-like database, relying on the topography of the area, could then provide the 

basis for upscaling the results on a regional level with the application of geographical 

information system (GIS) analyses. 

Further investigations should focus on the processes of deposition, accumulation, leaching, 

translocation, and transformation of trace metals in permafrost-affected soils and need to be 

studied in greater detail in order to estimate possible risks from both climate change and 

anthropogenic pollution on the Arctic ecosystems. Because the soils of the northern Siberia 

region are characterized by occurrence of a huge amount of organic matter, future studies should 

address the role of soil organic matter (e.g. fulvic and humic acids), which contributes 

significantly to metal redistribution in permafrost-affected environments. To deepen the 

understanding of the role of permafrost as a geochemical barrier for various chemical elements, 

chemical characteristics of soils below the permafrost table together with factors affecting the 

seasonal variability of elements (upward and downward migration) should be studied as well. 

In order to understand the processes of contaminant migration in cold environments, a laboratory 

experiment was carried out. Comparing the results with the available literature, it was concluded 

that diffusion remains the major mechanism which controls vertical metal distribution in an 

unsaturated soil system. This study demonstrated that the effect of unidirectional freezing caused 

the expulsion of mobile Cd towards the unfrozen soil column part, whereas no similar effect of 

Pb redistribution was observed. This finding suggests that the element characteristics and their 

interactions with the soil matrix are one of the most important factors controlling the metal 

migration in freezing soils. A delay of the vertical distribution of Cd in frozen soil columns was 

explained by the decreasing permeability of frozen soil layers for metal ions. 

The following practical aspects should be considered and implemented in future experiments: 

a) The temperature conditions should be stabilized to get a clear effect of freezing on the 

contaminant redistribution. 

b) Different soil material types (e.g. clay, fine-grained silt, fine-grained sand, coarse sand) 

with various characteristics (e.g. low/high organic carbon, low/high cation exchange 

capacity, saturated and unsaturated conditions) as well as various metal concentrations 
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(low/high) should be used in the experiments to estimate the effect of freezing on the soil 

sorption capacity as well as to understand how the presence of contaminant solutes 

influences the processes of ice lens formation and frost heave. 

c) Future studies should include several freeze-thaw cycles in order to simulate annual 

thawing and freezing processes which occur in natural environments and may affect the 

redistribution of water soluble elements in soils. Furthermore, future experiments should 

focuse on effects of metal redistribution caused by propagation of freezing from the top 

and bottom of soil columns. 

The experimental studies have important implications for the fate and transport of contaminants 

in permafrost-affected environments. It is particularly important for estimating the ecosystem 

strengths in response to potential increase of human impact as well as to global warming in Polar 

Regions. The mechanisms which influence the redistribution of water soluble elements need to 

be studied to a larger extend. Furthermore, these processes, which occur in permafrost-affected 

environments, should be introduced into the existing models of contaminant transport in soils as 

well as to supplement the existing models of water, solute and heat transport. 
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Appendix	

Table I: General field information of investigation sites of the Lena River Delta and its nearby 
hinterland. 

Sites ID Sampling location Landscapes description 
3rd terrace 

3T-1 72°48'31.31" N 
124° 54' 43.89" E 

Sedge/moss tundra 
Dominant species: Carex aquatilis, Poa arctica, Eriophorum medium, Salix 
sp., Luzula sp., Saussurea sp. 

3T-2 72°34'24.04" N 
127° 14' 14.73" E 

Typical polygonal sedge/moss tundra 
Dominant species: Carex sp., Poaceae sp., Dryas punctata, Hyloconmium 
sp. 

2nd terrace 

2T-1 73°10'26.29" N 
124° 34' 29.80" E 

Typical moss/lichen tundra 
Dominant species: Carex sp., Cassiope tetragona, Luzula sp., Cladonia sp., 
Thamnolia vermicularis, Hylocomium sp. 

1st terrace 

1T-1 71°59'11.55" N 
127° 02' 35.29" E 

Forest herbs/lichen/moss tundra 
Dominant species: Ledum palustre, Betula nana, Carex sp., Eriophorum 
medium., Luzula sp., Pedicularis sp., Hylocomium sp., Aulacomnium sp. 

1T-Rim1 72°22'17.66" N 
126° 29' 11.66" E 

Elevated herbs/lichen/moss tundra, polygon rim 
Dominant species: Dryas octopetala, Salix glauca, Stereocaulon alpinum, 
Thamnolia vermicularis, Dactylina arctica, Hylocomium sp., Aulacomnium 
sp. 

1T-Ce1 72°22'17.66" N 
126° 29' 11.66" E 

Sedge/moss tundra,  polygon centre 
Dominant species: Cares aquatilis, Eriophorum medium, Hylocomium sp. 

1T-d 72°22'25.60" N 
126° 29' 44.30" E 

Sedge/moss polygon tundra 
Dominant spacies: Carex sp., Eriophorum sp., Hylocomium sp. 

High floodplain 

HF-Rim2 72°22'19.46" N 
126° 28' 42.74" E 

Herbs/moss tundra, poorly defined polygon rim 
Dominant species: Salix sp., Arctagrostis arctostaphulos, Aulacomnium sp. 

HF-Ce2 72°22'19.55" N 
126° 28' 41.77" E 

Sedge/moss tundra, polygon centre 
Dominant species: Carex sp., Arctagrostis arctostaphulos, Aulacomnium sp. 

Middle floodplain 

MF-1 72°22'51.61" N  
126° 28' 28.37" E 

Srub/sedge cover 
Dominant species: Dischampsia Caespitosa, Arctophila fulva, Salix sp. 

Hinterland 

H-1 71°10'26.29" N 
124° 34' 29.80" E 

Slope of Chekanovsky Ridge, herbs/moss southern tundra 
Dominant species: Betula nana, Ledum palustre, Cassiope tetragona, 
Vaccinium vitis-idaea, Polygonum viviparum, Hylocomium sp. 

H-2 70°55'22.76" N 
125° 33' 3.13" E 

Slope of Chekanovsky Ridge, shrub/moss forest tundra 
Dominant species: Betula nana, Ledum palustre, Eriophorum medium 

H-3 69°23'56.83" N 
123° 49' 33.96" E 

Slope of Chekanovsky Ridge, Larix/shrub/moss northern taiga 
Dominant species: Larix Sibirica, Betula nana, Alnus crispa, Salix sp., 
Empetrum nigrum, Ledum palustre, Hylocomium sp. 
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Table II: General field information of investigation sites of an area around the settlement Tiksi. 

Sites 
ID 

Sampling 
location 

Landscape description 

TH1 71° 33' 57.2'' N 
128° 50' 45.5" E 

Typical herb/lichen-moss tundra  
Dominant species: Salix sp., Betula nana, Eriophorum sp. Carex sp., Polygonum viviparum, 
Purola rotundifolia, Saxifraga punctata, Pedicularis sp., Dactilina arctica, Thamnolia 
vermicularis, Peltigera aphthosa, Aulacomnium sp. 

TH2 71° 33' 55.8" N 
128° 50' 42.0" E 

Typical herbs/moss-lichen tundra  
Dominant species: Ledum palustre, Cassiope tetragona, Polygonum sp., Vaccinium vitis-idaea, 
Vaccinium uliginosum, Cetraria cucculata, Alectoria sp., Aulacomnium sp. 

TH3 71° 37' 05.4" N 
128° 46' 29.0" E 

Typical shrubs/ herbs/moss-lichen tundra  
Dominant species: Salix sp., Betula nana, Carex sp., Cassiope tetragona, Pedicularis capitata, 
Dryas punctata, Polygonum sp., Vaccinium vitis-idaea, Eriophorum sp., Saxifraga sp., Alectoria 
ochroleuca, Cetraria cucullata, Aulacomnium sp. 

TH4 71° 37' 17.3" N 
128° 49' 43.9" E 

Typical herbs/ lichen-moss tundra  
Dominant species: Carex sp, Salix sp., Pedicularis sp., Pedicularis capitata, Dryas punctata, 
Merckia physodes, Dactilyna arctica, Cladonia sp., Alectoria sp., Cetraria cucullata, 
Aulacomnium sp., Hylocomium sp. 

TH5 71° 37' 26.1" N 
128° 48' 21.9" E 

Typical sedge/ moss tundra  
Dominant species: Carex sp., Salix sp., Betula nana, Polygonum sp., Polemonium coeruleum, 
Vaccinium vitis-idaea, Dactilina arctica, Aulacomnium sp. 

TH6 71° 32' 46,9" N 
128° 49' 39.8" E 

Typical sedge/ herb/ lichen-moss tundra  
Dominant species: Carex sp., Carex aquatilis, Salix sp., Polygonum sp., Stellaria sp., Polemonium 
coeruleum, Dactylina arctica, Peltygera sp., Aulacomnium sp., Hylocomium sp. 

TH7 71° 33' 03.0" N 
128° 50' 01.0" E 

Typical sedge/ lichen-moss tundra  
Dominant species: Salix sp., Carex nigra, Polygonum sp., Pedicularis sp., Cetraria cucullata, 
Aulacomnium sp., Hylocomium sp. 

TH8 71° 36' 47.2" N 
128° 55' 29.8" E 

Typical herbs/ moss-lichen tundra  
Dominant species: Salix sp., Betula nana, Carex nigra, Eriophorum vaginatum, Pedicularis sp., 
Saxifraga sp., Tephroseris tundricola, Cetraria cucullata, Dactilina arctica, Aulacomnium sp, 
Hylocomium sp. 

TH9 71° 38' 32.6" N 
128° 50' 10.3" E 

Grass/herbs/moss tundra 
Dominant species: Carex sp., Polygonum sp., Dryas punctata, Saxifraga sp., Cassiope tetragona, 
Minuartia sp., Oxytropis arctica, Vaccinium uliginosum, Cetraria cucullata, Hylocomium sp.  

TH10 71° 39' 04.8" N 
128° 49' 08.2" E 

Typical herbs/moss-lichen tundra 
Dominant species: Salix sp., Betula nana, Polygonum sp., Calamagrostis sp., Eriophorum sp., 
Dactylina arctica, Thamnolia vermicularis, Cetraria cucullata, Hylocomium sp., Aulacomnium sp. 

TH11 71° 38' 56.8" N 
128° 47' 24.0" E 

Typical sedge/ herbs/ moss tundra 
Dominant species: Salix sp., Carex sp, Carex nigra, Eriophorum sp., Polygonum sp., Luzula sp., 
Cetraria cucullata, Thamnolia vermicularis, Aulacomnium sp. 

TH12 71° 37' 37.8" N 
128° 53' 04.5" E 

Typical herbs/moss-lichen tundra 
Dominant species: Salix sp., Carex nigra, Polygonum viviparum, Polygonum sp., Luzula sp., 
Astragalus sp., Cassiope tetragona, Cetraria cucullata, Peltigera sp., Alectoria sp., Hylocomium 
sp., Aulacomnium sp. 

TH13 71° 37' 47.4" N 
128° 5' 08.9" E 

Typical shrubs/ herbs/moss-lichen tundra 
Dominant species: Salix sp., Carex sp., Vaccinium vitis-idaea, Pedicularis sp., Astragalus sp.,  
Cetraria cucullata, Hylocomium sp., Aulacomnium sp. 

TH14 71° 38' 58.2" N 
128° 50' 51.4" E 

Typical herbs/moss-lichen tundra 
Dominant species: Salix sp., Carex sp., Calamagrostis sp., Stellaria sp., Pedicularis sp., 
Astragalus sp., Aulacomnium sp. 

TH15 71° 37' 32.6" N 
128° 50' 17.1" E 

Typical sedge/moss tundra 
Dominant species: Carex sp., Polygonum viviparum, Polygonum sp., Eriophorum medium, Dryas 
punctata, Cetraria cucullata, Thamnolia vermicularis, Peltigera sp., Aulacomnium sp., 
Hylocomium sp. 
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Table III: Min-max range (numerator) and median values (denominator) of standard soil 
characteristics of all studied units along the north-south transect. 

Sites ID pH 
Texture (%) 

C (%) N (%) C/N ratio 
Clay Silt Sand 

3rd terrace        

3T-1 (n=21) o 6.0 – 7.0 
- 

20.0 75.0 4.7 2.50 – 8.40 
- 

0.20 – 0.57 
- 

12.6 – 14.8 
- 

3T-2 (n=2) o 
4.0 – 5.0 

- 
21.0 65.0 14.0 

2.50 – 8.32 
- 

0.15 – 0.50 
- 

16.6 – 16.7 
- 

2nd terrace        

2T-1 (n=41) t 
4.0 – 5.0 

5.0 
2.0 – 5.0 

4.08 
1.0 – 16.0 

4.54 
80.0 – 97.0 

91.1 
0.14 – 3.32 

1.06 
0.01 – 0.19 

0.68 
10.4 – 17.5 

15.5 

1st terrace        

1T-1 (n=3) t 4.0 – 5.0 
5.0 

22.0 – 27.0 
24.4 

44.0 – 46.0 
45.0 

27.0 – 34.0 
30.5 

1.46 – 8.03 
1.85 

0.10 – 0.38 
0.13 

14.5 – 21.4 
14.8 

1T-Rim1 
(n=6) t 

5.6 – 6.6 
6.2 

4.0 – 9.0 
6.6 

22.0 – 52.0 
27.9 

41.0 – 73.0 
65.5 

0.91 – 4.12 
2.80 

0.07 – 0.26 
0.18 

12.8 – 20.6 
15.2 

1T-Ce1  
(n=4) h 

5.4 – 5.5 
5.5 n.d. 2 n.d. n.d. 

9.64 – 16.1 
12.5 

0.26 – 0.54 
0.34 

29.9 – 39.1 
36.3 

1T-d (n=17) o 
5.4 – 6.9 

6.4 
n.d. n.d. n.d. 

2.1 – 23.4 
5.5 

0.08 – 0.21 
0.43 

18.7 – 54.7 
30.0 

High floodplain 

HF-Rim2 
(n=5) t 

5.6 – 6.9 
6.1 

2.0 – 6.0 
3.9 

5.0 – 27.0 
21.6 

66.0 – 94.0 
74.6 

0.30 – 11.3 
1.31 

0.03 – 0.34 
0.10 

10.4 – 33.5 
13.4 

HF-Ce2  
(n=4) o 

5.8 – 6.2 
5.9 

4.0 – 5.0 
4.2 

13.0 – 27.0 
20.0 

68.0 – 83.0 
75.8 

1.12 – 15.9 
6.75 

0.07 – 0.49 
0.26 

14.2 – 36.0 
20.5 

Middle floodplain 

MF-1  
(n=8) o 

7.0 – 7.4 
7.2 

2.0 – 10.0 
4.0 

1.0 – 60.0 
10.2 

30.0 – 97.0 
85.8 

0.30 – 4.01 
1.43 

0.03 – 0.22 
0.09 

11.3 – 22.2 
14.2 

Hinterland 

H-1 (n=5) o 3.0 – 4.0 
4.0 

n.d. n.d. n.d. 35.0 – 48.0 
40.0 

1.51 – 2.13 
1.83 

18.9 – 26.3 
19.3 

H-2 (n=5) o 
3.0 – 4.0 

4.0 
10.0 – 12.0 

11.1 
29.0 – 33.0 

31.1 
55.0 – 61.0 

57.7 
1.20 – 38.6 

7.1 
0.08 – 1.05 

0.38 
15.1 – 36.9 

18.5 

H-3 (n=3) o 
4.0 – 6.0 

5.0 
21.0 – 22.0 

21.5 
62.0 – 63.0 

62.6 
14.0 – 17.0 

15.9 
2.17 – 17.7 

2.21 
0.10 – 0.59 

0.12  
18.7 – 30.0 

21.7 

1 n – number of the measurements; 2 n.d. – not determined; o – Orthel soil suborder, t – Turbel soil suborder, h – 
Histel soil suborder. 
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Table IV: Min-max range (numerator) and median values (denominator) of standard soil 
characteristics of all studied units of area around the town Tiksi. 

Sites ID pH 
Texture (%) 

C (%) N (%) C/N ratio 
Clay Silt Sand 

Southern sites 

TH1 (n=31) o 
5.0 – 5.2 

5.1 
30.6 – 32.2 

- 
52.8 – 61.8 

- 
8.0 – 16.6 

- 
2.9 – 18.0 

5.8 
0.27 – 0.93 

0.45 
10.7 – 19.3 

12.8 

TH2 (n=3) t 
4.4 – 5.1 

4.8 
18.0 32.0 50.1 

3.0 – 11.3 
6.8 

0.31 – 0.64 
0.54 

9.9 – 17.8 
12.7 

TH6 (n=2) o 
4.1 – 5.4 

- 
17.2 49.1 33.7 

2.6 – 11.7 
 

0.21 – 0.42 
- 

12.6 – 27.7 
- 

TH7 (n=2) o 4.6 – 4.7 
- 

n.d.2 n.d. n.d. 
11.6 – 34.3 

- 
0.83 – 1.41 

- 
12.8 – 24.3 

- 

Western sites 

TH3 (n=31) t 
5.1 – 5.7 

5.5 
26.6 48.7 24.7 

3.2 – 30.1 
19.0 

0.28 – 1.56 
1.34 

11.3 – 19.3 
14.1 

TH4 (n=3) t 
4.8 – 5.1 

4.8 
34.6 56.1 9.4 

6.1 – 26.3 
16.8 

0.45 – 1.68 
1.29 

13.0 – 15.7 
13.7 

TH5 (n=2) o 
4.9 – 5.5 

- 
n.d. n.d. n.d. 

11.7 – 21.6 
- 

0.91 – 1.45 
- 

12.8 – 14.9 
- 

Eastern sites 

TH8 (n=3) t 
5.5 – 6.4 

5.7 31.2 45.9 22.9 
5.5 – 28.4 

20.0 
0.44 – 1.55 

1.45 
12.5 – 18.3 

13.8 

TH12 
(n=3) t 

6.4 -6.8 
6.8 28.4 50.6 21.0 

7.3 – 33.4 
17.6 

0.58 – 1.17 
0.98 

12.6 – 28.7 
18.0 

TH13 (n=4) t 
5.4 – 6.5 

5.9 29.7 54.5 15.9 
3.3 – 19.7 

12.0 
0.29 – 1.21 

0.89 
11.3 – 16.2 

13.5 

TH15 
(n=3) o 

6.1 – 6.6 
6.5 

n.d. n.d. n.d. 
5.6 – 40.0 

19.2 
0.52 – 1.17 

1.06 
10.8 – 34.3 

18.2 

Northern sites 

 TH9(n=2) o 
5.9 – 6.3 

- 
20.2 43.5 36.2 

6.2 – 9.3 
- 

0.49 – 0.61 
- 

12.7 – 15.2 
- 

TH10 (n=3) t 
4.5 – 5.2 

4.7 
n.d. n.d. n.d. 

20.9 – 33.5 
22.2 

1.28 – 2.46 
1.30 

13.6 – 17.0 
16.4 

TH11 (n=4) t 
4.1 – 4.8 

4.5 
28.0 51.7 20.4 

6.8 – 36.8 
26.1 

0.34 – 1.43 
1.19 

15.0 – 30.3 
22.3 

TH14 (n=4) o 
4.1 – 5.0 

4.8 
18.6 – 21.8 

- 
45.3 – 60.1 

- 
21.3 – 32.9 

- 
3.8 – 21.5 

10.2 
0.29 – 1.23 

0.73 
13.3 – 17.4 

13.9 

1 n – number of the measurements; 2 n.d. – not determined; o – Orthel soil suborder, t – Turbel soil suborder. 
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Table V: Min-max range (numerator) and median values (denominator) of the trace metals in mg 
kg-1 determined in the soils of investigated units in northern Siberia and quantification limits. 

Name 
Quantif. 

limit 

Third terrace Second terrace First terrace 
3T-1 

(n=21) 
3T-2 
(n=2) 

2T-1 
(n=4) 

1T-1 
(n=3) 

1T-Rim1 
(n=6) 

1T-Ce1 
(n=4) 

As 
0.1 

5.09 – 6.80 
- 

4.78 – 5.12 
- 

1.22 – 1.36 
1.29 

5.01 – 12.1 
11.3 

2.09 – 10.0 
2.95 

3.18 – 3.82 
3.35 

Cd 
0.01 

0.03 – 0.06 
- 

<QL – <QL 
- 

<QL – 0.36 
0.01 

<QL – 0.05 
<QL 

0.03 – 0.07 
0.05 

0.03 – 0.06 
0.04 

Co 
0.06 

19.1 – 21.0 
- 

20.9 – 26.3 
- 

11.9 – 28.4 
14.6 

23.1 – 28.4 
24.5 

40.0 -146 
48.8 

28.5 – 79.5 
43.5 

Cu 
0.04 

9.69 – 17.0 
- 

8.13 -10.9 
- 

0.6 – 6.85 
1.0 

7.17 – 28.2 
7.21 

2.74 – 7.91 
4.51 

9.70 – 12.0 
11.0 

Fe 
8.0 

33620 – 43850 
- 

22330 – 35770 
- 

5280 – 8000 
6300 

22200 – 49420 
44100 

17800 – 41200 
18900 

17000 – 21000 
18800 

Hg 
0.01 

0.011 – 0.016 
- 

0.022 – 0.024 
- 

<QL – 0.012 
0.010 

0.01 – 0.022 
0.013 

0.016 – 0.037 
0.018 

<QL – 0.019 
0.010 

Mn 
3.3 

585 – 627 
- 

397 – 721 
- 

142 – 186 
158 

173 – 301 
237 

224 – 1206 
334 

143 – 481 
187 

Ni 
0.1 

27.4 – 32.9 
- 

23.4 – 24.5 
- 

4.89 – 9.94 
5.12 

21.0 – 32.0 
28.3 

11.2 – 23.3 
21.7 

17.1 – 24.1 
18.5 

Pb 
0.3 

9.37 – 9.57 
- 

7.70 – 9.22 
- 

2.14 – 3.69 
2.41 

6.58 – 9.78 
9.16 

5.02 – 7.37 
6.84 

5.21 – 31.2 
7.55 

Zn 
1.3 

70.3 – 76.4 
- 

52.2 – 57.0 
- 

12.1 – 23.9 
12.4 

60.9 – 73.9 
72.8 

43.1 – 60.6 
59.3 

34.9 – 59.2 
49.0 

Name 
detection  

limit 

High floodplain Middle floodplain Hinterland 
HF-Rim2 

(n=5) 
HF-Ce2 

(n=4) 
MF-1 
(n=8) 

H-1 
(n=5) 

H-2 
(n=5) 

H-3 
(n=3) 

As 
0.1 

2.24 – 3.69 
3.15 

2.06 – 3.95 
2.80 

2.94 – 6.74 
4.99 

1.63 – 3.90 
3.13 

2.68 – 8.06 
4.75 

3.38 – 5.05 
4.48 

Cd 
0.01 

0.02 -0.04 
0.02 

0.01 – 0.08 
0.04 

0.02 – 0.11 
0.05 

0.02 – 0.09 
0.09 

<QL – 0.24 
<QL 

<QL – 0.18 
<QL 

Co 
0.06 

20-2 – 54.7 
40.9 

30.0 – 69.4 
40.2 

52.7 – 110 
92.1 

10.6 – 18.7 
14.1 

10.9 – 22.8 
11.9 

19.4 – 23.5 
21.6 

Cu 
0.04 

0.95 – 8.30 
4.49 

2.57 – 14.0 
7.81 

1.02 – 9.80 
3.43 

11.9 – 47.0 
20.6 

1.48 – 11.2 
8.09 

16.0 – 21.9 
17.8 

Fe 
8.0 

10700 – 18200 
15500 

12000 – 20000 
15650 

13000 – 38000 
25750 

8430 – 19780 
13210 

3190 – 50270 
17680 

25820 – 47050 
44850 

Hg 
0.01 

<QL – 0.019 
<QL 

0.010 – 0.017 
0.012 

0.015 – 0.050 
0.027 

<QL – 0.017 
0.01 

<QL – 0.049 
0.011 

<QL – 0.019 
<QL 

Mn 
3.3 

143 – 1385 
271 

139 – 633 
260 

185 – 503 
340 

10.93 – 78.6 
23.0 

65.5 – 230 
107 

202 – 342 
322 

Ni 
0.1 

11.7 – 20.2 
17.2 

12.3 – 23.7 
18.2 

11.8 – 32.6 
20.1 

9.10 – 21.4 
19.7 

7.15 – 23.2 
12.0 

16.2 – 27.1 
25.4 

Pb 
0.3 

3.55 – 5.44 
4.69 

4.00 – 6.63 
5.27 

4.60 – 9.96 
6.62 

2.29 – 12.6 
4.33 

3.01 – 6.79 
4.83 

10.0 – 13.3 
13.1 

Zn 
1.3 

23.9 – 47.5 
39.5 

29.9 – 55.0 
37.8 

28.3 – 84.0 
55.1 

14.4 – 28.7 
17.4 

24.8 – 72.9 
39.1 

74.3 – 81.0 
75.1 

1 n - number of the measurements 
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Table VI: Min-max range (numerator) and median values (denominator) of the trace metals in mg 
kg-1 determined in the soils of investigated units in the area around the settlement Tiksi. 

 Element mg kg-1 

As Cd Co Cu Fe Mn Ni Pb Zn 

Southern sites 

TH1 
(n=3) 

8.6 – 11.7 
10.6 

0.03 – 0.27 
0.05 

16.2 – 57.9 
32.2 

7.3 - 17.2 
9.8 

27834 – 43082 
34036 

85 – 2666 
374 

39.1 - 50.1 
42.4 

7.9 - 21.8 
20.2 

80.8 - 127 
90 

TH2 
(n=3) 

10.3 -20.5 
12.6 

0.05 – 0.3 
0.06 

15.0 – 24.0 
15.5 

7.8 - 9.3 
9.3 

27834 – 40773 
32343 

284 - 464 
412 

25.5 - 41.8 
32.8 

 

17.9 - 22.8 
21.6 

 

92.3 - 116 
99.4 

 
TH6 
(n=2) 

8.8 – 10.8 
- 

0.06 -0.1 
- 

22.1 – 26.6 
- 

6.7 - 7.0 
- 

17962 – 33420 
- 

316 -496 
- 

17.4 - 24.3 
- 

11.4 - 20.0 
- 

81 - 98.1 
- 

TH7 
(n=2) 

5.2 – 11.4 
- 

0.07 – 0.3 
- 

63.6 – 82.9 
- 

10.4 - 11.4 
- 

20403 - 22446  
- 

348 - 5374 
- 

21.2 - 34.2 
- 

10.5 - 17.2 
- 

56.8 - 142 
- 

Western sites 

TH3 
(n=3) 

6.2 – 13.4 
7.4 

0.02 – 0.71 
0.17 

13.6 – 30.3 
16.0 

5.6 - 22.7 
18.0 

13765 - 37899 
17937 

374 - 2306 
1062 

21.2 - 55.4 
33.9 

 

12.5 - 22.1 
15.1 

 

74.8 - 218 
80.5 

 
TH4 
(n=3) 

7.4 – 8.2 
8.0 

0.06 – 0.34 
0.13 

25.7 – 49.2 
32.5 

9.5 - 19.1 
18.6 

22068 - 28438 
23525 

174 - 2514 
338 

23.3 - 45.1 
30.2 

 

18.6 - 23.3 
22.0 

 

54 - 71.6 
62.8 

 
TH5 
(n=3) 

3.7 – 14.5 
9.1 

0.12 – 0.21 
0.16 

19.6 – 50.9 
35.3 

17.9 - 20.0 
19.0 

12722 - 30707 
21715 

185 - 2236 
1211 

28.6 - 40.4 
34.5 

 

24.0 - 25.2 
24.6 

 

52.6 - 82.9 
67.8 

 

Eastern sites 

TH8 
(n=3) 

4.8 – 8.0 
5.5 

0.12 – 0.35 
0.17 

13.1 – 20.6 
18.2 

17.2 - 25.2 
18.1 

13605 - 30011 
16753 

184 - 1889 
394 

28.2 - 34.3 
30.1 

 

14.0 - 26.8 
16.7 

 

53.7 - 166 
108 

 
TH12 
(n=3) 

6.0 – 11.4 
7.6 

0.10 - 0.40 
0.33 

19.0 – 65.0 
30.5 

11.2 - 16.6 
15.2 

 

12098 - 33972 
25590 

659 -3433 
1139 

12.0 - 33.1 
23.9 

 

14.8 - 20.9 
17.4 

 

94 - 106 
101 

 
TH13 
(n=4) 

5.7 – 10.6 
8.4 

0.05 – 0.32 
0.24 

23.9 – 117 
29.6 

9.2 - 20.3 
13.3 

20658 - 34745 
26179 

 

108 - 5242 
2146 

 

15.7 - 31.2 
28.1 

 

7.2 - 18.1 
15.3 

 

69.7 - 204 
156.5 

 
TH15 
(n=3) 

2.3 – 10.1 
6.1 

0.10 – 0.50 
0.42 

12.3 – 60.0 
59.2 

11.2 - 34.8 
32.2 

6494 - 29057 
22623 

288 - 1210 
429 

21.0 - 36.8 
23.6 

 

6.7 - 28.1 
19.2 

 

63.5 - 91.7 
90.6 

 

Northern sites 

TH9 
(n=2) 

11.3 – 14.4 
- 

0.10 – 0.26 
- 

22.2 – 24.8 
- 

10.7 - 11.4 
- 

24590 - 35620 
- 

687 – 947 
- 

24.1 - 28.2 
- 

27.6 - 29.7 
- 

114 - 121 
- 

TH10 
(n=3) 

3.1 – 5.5 
3.6 

0.10 – 0.60 
0.15 

12.0 – 17.4 
14.8 

13.9 - 26.9 
17.2 

9102 - 14080 
13222 

 

13 - 1826 
110 

 

0.9 - 15.9 
11.8 

 

14.7 - 21.5 
18.7 

 

16.3 - 440 
28.6 

 

TH11 
(n=4) 

4.6 – 13.8 
5.4 

0.05 – 0.63 
0.15 

10.3 – 53.2 
53.2 

10.8 - 20.3 
16.0  

17083 - 56084 
20838 

 

53 – 2321 
484 

 

8.2 - 27.4 
16.4 

 

8.7 - 21.0 
17.9 

 

32.6 - 69.9 
45.9 

 

TH14 
(n=4) 

4.8 – 12.4 
9.2 

0.04 – 0.68 
0.17 

17.0 – 32.2 
26.0 

9.2 - 39.0 
21.9 

18618 - 27874 
26784 

47 - 453 
152 

17.3 - 35.8 
24.5 

 

19.8 - 38.9 
24.4 

 

50.9 - 129 
66.7 
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Table VII: Min-max range (numerator) and median values (denominator) of the trace metal 
concentrations reported for soil types of Eastern Barents region, Baltic region, the Lower Lena 
River area, northeastern Siberia and western Siberia. 

Soil type Data 
source 

Element mg kg-1 dw 
As Cd Co Cu Fe 

Gleysols* 

1 

0.44 – 12.0 
4.50 

0.005 – 0.292 
0.063 

1.38 – 52.8 
8.31 

1.03 – 59.3 
9.42 

2690 – 47200 
16300 

Histosols 0.05 – 30.8 
1.04 

0.005 – 0.33 
0.027 

0.5 0 – 33.6 
4.70 

0.50 – 152 
8.80 

259 – 77000 
11300 

Fluvisols 0.05 – 15.1 
1.73 

0.005 – 0.34 
0.026 

0.50 – 23.0 
7.28 

0.50 – 28.0 
13.0 

646 – 34200 
13000 

Organic soil layer 2 
0.25 – 17.8 

1.56 
0.08 – 3.18 

0.40 
0.29 – 12.6 

1.16 
2.85 – 87.3 

7.60 
767 – 21400 

2890 
Tundra gleysols 3 

0.02 – 0.78 
0.22 

0.03 – 0.40 
0.12 

― 0.72 – 5.02 
2.50 

― 

Hydric soils 

4 

― 0.05 – 0.81 
- 

― 2.70 – 63.0 
- 

― 

Sedge-moss peat ― 0.03 – 0.48 
- 

― 3.0 – 62.0 
- 

― 

Hydric soils 

5 

― 0.05 – 56.0 
- 

― 1.70 – 664 
- 

― 

Polygonal bog peat ― 0.05 – 64.0 
- 

― 1.50- 442 
- 

― 

Organic soil layer 6 
― ― ― 2.0 – 18.0 

- 
500 – 17000 

- 
Organic soil layer 7 

― ― ― 3.9 – 24.0 
- 

― 

Soil type Data 
source 

Element mg kg-1 dw 
Hg Mn Ni Pb Zn 

Gleysols* 

1 

― 31.1 – 5020 
377 

2.82 – 682 
20.1 

0.52 – 8.55 
3.29 

0.50 – 87.9 
30.6 

Histosols ― 3.18 – 3280 
122 

1.00 – 49.5 
11.3 

0.30 – 15.8 
1.81 

0.50 – 93.6 
15.8 

Fluvisols ― 11.2 – 3480 
274 

1.00 – 73.4 
17.5 

0.43 – 8.88 
2.99 

2.65 – 65.5 
26.0 

Organic soil layer 2 
0.04 – 0.42 

0.20 
23.6 – 4880 

265 
1.54 – 131 

5.06 
6.52 – 361 

31.1 
7.70 – 90.9 

20.0 
Tundra gleysols 3 

0.01 – 0.04 
0.02 

― 0.72 – 4.96 
2.60 

― 6.80 – 18.9 
13.0 

Hydric soils 

4 

― ― ― 1.8 0 – 44.0 
- 

4.40 – 137 
- 

Sedge-moss peat ― ― ― 1.90 – 23.0 
- 

4.00 – 96.0 
- 

Hydric soils 

5 

― ― ― 1.90 – 288 
- 

4.6 0 – 920 
- 

Polygonal bog peat ― ― ― 1.5 – 274 
- 

12.0 – 878 
- 

Organic soil layer 6 
0.01 – 0.17 

― 
4.0 – 820 

― 
― 1.0 – 24.0 

- 
5.0 – 48.0 

- 
Organic soil layer 7 

0.09 – 0.29 
- 

9.0 – 123 
- 

― 16.0 – 29.0 
- 

43.0 – 81.0 
- 

1 – Salminen et al (2004), C-horizon, Eastern Barents region, aqua regia extraction; 
2 – Salminen et al (2011), Eastern Baltic region, total extraction; 
3 – Rovinsky et al (1995), Kyusur, the Lower Lena River area; denominator – mean value 
4 – Zhulidov et al (1997a), pristine wetalnds of the North-Eastern Siberia; 
5 – Zhulidov et al (1997b), wetlands in the Western Siberia tundra zone, minimum values are reported for background area, 

maximum values are reported for areas exposed to anthropogenic pollution; 
6 – Walker (2012), pristine soils from the sub-Arctic region of Labrador, Canada; 
7 – Reimann et al (2009), Norway. 

* – according to WRB soil classification (FAO, 2006). 
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Table VIII: Element composition of plant species (min-max - numerator, median - denominator) in 
the Lena River Delta region and the Tiksi area (in mg kg-1 dw). 

Vegetation species 
Element concentration (mg kg-1 dw) 

Cu Fe Mn Ni Pb Zn 
Lena River Delta 

Mosses (n = 13) 3.32 – 10.0 
7.02 

5420 – 21049 
11152 

108 – 280 
167 

4.82 – 12.3 
9.28 

2.19 – 4.83 
3.46 

14.1 – 36.2 
24.0 

Lichens (n = 7) 2.37 – 10.8 
3.75 

305 – 3264 
2338 

48.0 – 87.0 
75.0 

1.86 – 11.7 
3.80 

1.24 – 2.03 
1.67 

16.9 – 25.8 
20.9 

bush (n = 3) 3.41 – 5.04 
3.67 

208 – 410 
252 

750 – 1016 
962 

0.35 – 0.79 
0.77 

0.37 – 3.81 
0.45 

18.6 – 25.3 
25.2 

Tiksi 

Mosses (n =2) 4.07 – 5.34 
− 

1678 – 1977 
− 

282 – 372 
− 

6.38 – 15.2 
− 

1.76 – 3.26 
− 

78.6 – 82.5 
− 

Lichens (n = 10) 1.43 – 4.20 
2.80 

85.0 – 5850 
340 

18.0 – 556 
42.6 

0.79  -10.9 
2.43 

0.97 – 7.77 
1.76 

11.9 – 60.5 
17.5 

bush (n =3) 5.39 – 7.53 
5.45 

186 – 242 
206 

1730 – 2810 
2173 

1.58 – 3.46 
2.08 

0.55 – 0.69 
0.56 

35.7 – 49.4 
49.4 

Dobrovol’sky (2003)* 8.0 − 205 2.0 1.25 30.0 

Evseev (2003)** 3.0 800 − 4.0 4.0 20.0 

* Average element concentration in dry phytomass worldwide; 

** Background concentrations in mosses for areas of northern Eurasia. 
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Table IX: Ranges of the element concentrations (mg kg-1 dw) in individual vegetation groups from 
earlier studies of areas in the Arctic and sub-Arctic regions. 

Species Data 
source 

Cu Fe Mn Ni Pb Zn 

Mosses 
Hylocomium 
splendens 

1 2.60 – 83.0 535 - 7870 13.5 – 256 1.16 – 56.7 1.41 – 3.27 7.97 – 44.1 

 2 2.6 – 214 47 - 5140 − 0.97 - 396 0.8 – 29.4 12 – 82 

 4 5.50 – 6.30 530 – 890 270 – 510 2.6 – 2.80 11 – 15 42.0 – 72.0 

 11 2.63 – 3.55 46 - 5140 28.5 - 1170 0.96 - 396 0.84 – 29.4 11.7 – 81.9 

Hylocomium 
splendens 

5 3.07 – 9.09 − − 2.31 – 4.81 5.09 – 7.99 − 

 6 3.48 – 33.0 − 28.2 – 282 − 0.75 – 26.6 10.5 – 65.9 
Hylocomium 
splendens 

12 3.31 – 5.23  − − 1.91 – 4.13 0.93 – 1.97 9.06 – 24.8 

Lichens 

C. cucullata 1 1.10 – 12.8 290 - 1000 8.45 - 134 0.83 – 10.2 0.78 – 5.80 9.70 – 29.6 

 6 1.79 – 36.8 − 3.91 – 244 − 0.16 – 6.1 3.40 – 68.2 

C. Stellaris 7 1.74 – 1.92 253 - 308 33.7 – 40.1 0.81 – 0.91 4.1 – 4.9 16.3 – 18.7 

Bushes 
Vaccinium vitis-
idaea 

3 6.0 – 53.0 − − 2.0 - 97 1.1 – 2.3 − 
8 4.0 – 8.0 0.10-4.0 38.0 – 235 3.0 – 10.0 − 10.0 – 18.0 

9* − − − 58 2.1 1.6 

10* 2.59 61.6 451 1.98 − − 

1 – Allen-Gil et al (2003). Taimyr peninsula; 
2 – Äyräs et al (1997). Finland, Norway, and Russia (Kola peninsula); 
3 – Barcan et al (1998). Kola Peninsula (minimum element concentrations determined for species collected at a 
distance 83 km from the Smelter, maximum element contents determined in plants at 4 km distance from the 
Smelter (Monchegorsk); 
4 – Berg & Steinnes (1997). Norwegian station (Nordmoen); 
5 – Grodzhinska et al (1991). Southern Spitsbergen; 
6 – Jozwik (1990). Bellsund area, Spitsbergen; Ranges are given for the species groups; 
7 – Moskovchenko & Valeeva (2006). North-Western Siberia; 
8 – Opekunova et al, 2007 (Kola Peninsula Background area 40-45 km to the south from Monchegorsk); 
9* – Pöykiö et al (2005). Background area,  Northern Finland; Berries of Vaccinium vitis-idaea; 
10*– Ramenskaya (1974) Background area. Kola Peninsula;  
11 – Reimann et al (2001). Central Barents Region, Finland, Norway, and Russia; 
12 – Wilkie & La Farge (2011). Piper pass - 2007, Canada; 

* - Mean concentration 
 


