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Abstract. We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos
expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic
Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance
probabilities). We assume that the random diffusion coefficient is given as a smooth transformation
of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which
lacks an analytic TT representation. To construct its TT approximation numerically, we develop
the new block TT cross algorithm, a method that computes the whole TT decomposition from
a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive
cross approximation in the TT format but is more efficient when several tensors must be stored
in the same TT representation, which is the case for the PCE. In addition, we demonstrate how
to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation
and its postprocessing, staying in the TT format. We compare our technique with the traditional
sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos,
the polynomial degree is bounded for each random variable independently. This provides higher
accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the
tensor product set grows exponentially with the number of random variables. However, when the
PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor
product polynomial set become possible. In the numerical experiments, we confirm that the new
methodology is competitive in a wide range of parameters, especially where high accuracy and high
polynomial degrees are required.
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1110 DOLGOV, KHOROMSKIJ, LITVINENKO, AND MATTHIES

1. Motivation. Situations in which one is concerned with uncertainty quantification often
come in the following guise: we are investigating physical models where inputs are not given
precisely but instead are random quantities or random fields, or depend on a set of parameters.
A classical example is the Darcy flow model with a random diffusion coefficient,

(1.1) −∇κ(x, ω)∇u(x, ω) = f(x, ω), x ∈ D ⊂ R
d,

where d is the spatial dimension, and κ(x, ω) is a random field dependent on a random
parameter ω in a probability space (Ω,A,P). The solution u(x, ω) belongs to H1(D) w.r.t. x
and the same probability space w.r.t. ω. There is an established theory about the existence
and uniqueness of the solution to (1.1) under various assumptions on κ and f ; see, for example,
[2, 21, 23, 44, 47].

In [21, 23] it is shown that under additional assumptions on the right-hand side f and
special choices of the test space the problem (1.1) is well-posed. The case where the Lax–
Milgram theorem is not applicable (e.g., upper and lower constants κ, κ in 0 < κ < κ < κ < ∞
do not exist) is also considered in [47]. In [21] the authors analyze assumptions on κ which
were made in [2] to guarantee the uniqueness and the existence of the solution and to offer
a new method with much weakened assumptions. If the expansion for κ is truncated, it is
not guaranteed that the truncated κ will be strictly bounded from zero. As a result the
existence of the approximate solution to (1.1) is questionable, unless precautions are taken as
in [44]. The approach in [21] avoids this from the outset as the permeability coefficient κ is the
exponential of smoothed white noise, and, as a result, the ellipticity condition is maintained.

To solve (1.1) we need to discretize the random field κ. This requires some knowledge
of the probability space Ω and the probability measure. A widely used approach relies on
two assumptions: κ is defined as an invertible smooth function of another random field with
known distribution (e.g., normal), and the covariance function of either of those fields is
given. After that κ(x, ω) can be expanded to a series of functions, depending on x and
a set of new parameters θ = (θ1, θ2, . . .). Typically used are polynomials of θ, which are
hence called the polynomial chaos expansion (PCE) [67, 68] family of discretizations. Another
approach is the collocation on some grid in θ [1, 3]. Each of θ is a random quantity depending
on ω, but the domain of θ is known deterministically. Introducing a discretization for θ,
we turn the stochastic problem (1.1) into a high-dimensional deterministic one. However,
its straightforward numerical solution suffers from the curse of dimensionality : even if θ
contains a finite number of variables (say, M), the number of discrete degrees of freedom
grows exponentially with M .

To surmount this issue, a data-sparse approximation is needed. During recent years, low-
rank tensor product techniques were successfully applied to the solution of high-dimensional
stochastic and parametric PDEs. A recent literature survey of low-rank tensor approximation
techniques can be found in [27]. The tensor product approach involves a format, in which
the data are represented, and a set of algorithms to manipulate the data in the format. The
algorithms can be roughly separated into three classes: methods performing basic approximate
algebra (additions, products, and simple iterative methods) of data within the format; methods
constructing the formatted representation from a few entries of the initial data; and methods
aiming to solve equations, e.g., linear systems, ODEs, or eigenvalue problems, keeping all data
in the format.D
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To some extent, these methods have already been applied to parametric problems. Non-
intrusive (black box) tensor methods for multiparametric problems, i.e., “class 2,” were devel-
oped in [4, 5, 15]. In particular, in [4] the authors follow the stochastic collocation approach
and compute functionals of the solution of multiparametric PDEs. Since the stochastic col-
location allows solving uncoupled deterministic problems for different collocation points, the
functional of the solution (e.g., the average value) can be approximated straightforwardly via
the black box hierarchical tensor interpolation algorithm. To compute the whole stochastic
solution is a more difficult problem, especially in the stochastic Galerkin framework, where
deterministic problems are coupled.

In [36, 37, 46, 61, 70] the authors develop iterative methods and preconditioners to solve
numerically discretized multiparametric problems. Several manipulations of the PCE with a
low-rank approximation have been considered. In [19] the authors assume that the solution has
a low-rank canonical polyadic (CP) tensor format and develop methods for the CP-formatted
computation of level sets. In [45, 18] the authors analyzed tensor ranks of the stochastic opera-
tor. The proper generalized decomposition was applied for solving high-dimensional stochastic
problems in [50, 51]. In [33, 34, 35] the authors employed newer tensor formats, the tensor
train (TT) and quantized TT (QTT), for the approximation of coefficients and the solution of
stochastic elliptic PDEs. The theoretical study of the complexity of the stochastic equation
was provided, for example, by means of the analytic regularity and (generalized) polynomial
chaos (PC) approximation [68] for control problems constrained by linear parametric elliptic
and parabolic PDEs [38].

Other classical techniques to cope with high-dimensional problems are sparse grids [28,
10, 49] and (quasi) Monte Carlo methods [26, 62, 39]. Nevertheless, tensor product methods
are more flexible than sparse grids, as they avoid severe reductions of the model from the very
beginning and adapt a suitable structure on the discrete level. Compared to Monte Carlo
methods, tensor techniques work implicitly with the whole solution, and even a construction
of a tensor format for entrywise given data in a black box manner uses less randomness than
the Monte Carlo approach.

In this article we approximate the PCE of the input coefficient κ(x, ω) in the TT format.
After that we compute the solution u(x, ω) and perform all postprocessing in the same TT
format. The first stage, computation of the PCE of κ, involves a lengthy formula, defining
each entry of the discretized coefficient. To perform this computation efficiently, we develop
a new block cross approximation algorithm, which constructs the TT format for κ from a
few evaluations of the entrywise formula. This formula delivers several tensors that are to be
summed and approximated in a TT format. We show that the new algorithm is more efficient
than several runs of a previously existing cross method [58] for each tensor separately. As soon
as the coefficient is given in the TT format, it becomes very easy to construct the stiffness
matrix, derived from the stochastic Galerkin discretization of (1.1). We apply the alternating
iterative tensor algorithm to solve a large linear system arising from (1.1) and finally use the
cross algorithm again to compute the exceedance probability from the solution.

In the next section, we outline the general Galerkin, polynomial chaos expansion (PCE),
and Karhunen–Loève expansion (KLE) discretization schemes for a random field. An intro-
duction to the TT methods and the new block cross interpolation algorithm are presented in
section 3. Some details of how to apply the block cross algorithm to the PCE calculationsD
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1112 DOLGOV, KHOROMSKIJ, LITVINENKO, AND MATTHIES

are given in section 4.1. We start with the TT approximation of the multidimensional input
coefficient κ. After that, in section 4.2, we construct the stochastic Galerkin matrix in the
TT format. Section 4.4 is devoted to the efficient postprocessing (computation of the mean
value, covariance, and probability of a particular event) in the TT format. Numerical results
in section 5 demonstrate the practical performance of the TT approach in the outlined tasks.

2. Discretization and computation. For brevity, we follow [43, 44], where more references
may be found. See also the recent monograph [40] to study more about KLE, PCE, and multi-
indices. In [17, 61, 64, 65] the authors discuss the stochastic Galerkin matrix, its sparsity, and
preconditioners.

To discretize (1.1), we follow the Galerkin approach. The finite element method (for
example, with piecewise linear functions) is a natural way to discretize the spatial part. We
choose a finite dimensional subspace

(2.1) VN = span{ϕ1(x), . . . , ϕN (x)} ⊂ V,

where V = H1(D) ∩ L0
2(D̄) is the Hilbert space of functions on x. For simplicity, we impose

the homogeneous Dirichlet boundary conditions.
Discretization in the probability space (Ω,A,P) is less trivial. We use the KLE to deter-

mine a finite set of independent parameters, defining κ(x, ω). This set of independent param-
eters (random variables) and polynomials in them generate the finite dimensional Galerkin
subspaces for the stochastic discretization. The full spaces for the formulation, which depend
on the coefficient and right-hand side, are given in [21, 23]. In these spaces, the stochastic
PDE is represented by a self-adjoint positive definite operator, and the problem is well posed.

2.1. Discretization of the input random field. We assume that κ(x, ω) may be seen as
a smooth transformation κ = φ(γ) of the Gaussian random field γ(x, ω). In this section, we
explain how to compute the KLE of γ if the covariance of κ is given. For more details see [70,
sections 3.4.1, 3.4.2] or [29].

A typical example is the log-normal field with φ(γ) = exp(γ). Expanding φ in a series of
the Hermite polynomials gives

(2.2) φ(γ) =

∞∑
i=0

φihi(γ) ≈
Q∑
i=0

φihi(γ), φi =

∫ +∞

−∞
φ(z)

1

i!
hi(z) exp(−z2/2)dz,

where hi(·) is the ith Hermite polynomial, and Q is the number of terms after the truncation.
Note that this expansion and further manipulations are performed at this point purely to find
the relevant independent parameters. In the differential equation κ is unchanged.

The Gaussian field γ(x, ω) can be written as the KLE. First, given the covariance function
of κ(x, ω), we may relate it with the covariance function of γ(x, ω) as (see details in [70,
sections 3.4.1, 3.4.2])

(2.3) covκ(x, y) =

∫
Ω
(κ(x, ω)− κ̄(x)) (κ(y, ω)− κ̄(y)) dP (ω) ≈

Q∑
i=0

i!φ2
i cov

i
γ(x, y),
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where κ̄(x) is the expectation of κ(x, ω). Solving this implicit Q-order equation, we derive
covγ(x, y) [70]. Now, the KLE can be computed as follows:

(2.4) γ(x, ω) =
∞∑

m=1

gm(x)θm(ω), where

∫
D
covγ(x, y)gm(y)dy = λmgm(x).

Here we assume that the eigenfunctions gm absorb the square roots of the Karhunen–Loève
eigenvalues. The stochastic variables θm are normalized (they are uncorrelated and jointly
Gaussian).

The initial coefficient κ depends nonlinearly on θm. In the discrete setting, we truncate
the PCE and write it for M random variables,

(2.5) κ(x, ω) ≈
∑

α∈JM

κ(x,α)Hα(θ(ω)), where Hα(θ) := hα1(θ1) · · · hαM
(θM )

is the multivariate Hermite polynomial, α = (α1, . . . , αM ) is a multi-index (a tuple of multi-
nomial orders), hαm(θm) is the univariate Hermite polynomial, θ = (θ1, . . . , θM ) is a tuple
of random variables, and JM is a set of all multinomial orders (see definition below). The
Galerkin coefficients κ(x,α) are evaluated as follows:

(2.6) κ(x,α) =
(α1 + · · ·+ αM )!

α1! · · ·αM !
φα1+···+αM

M∏
m=1

gαm
m (x),

where φα1+···+αM
is the Galerkin coefficient of the transform function in (2.2) and gαm

m (x)
means just the αmth power of the KLE function value gm(x).

In practice, we restrict the polynomial orders in (2.5) to finite limits, which can be done
in different ways.

Definition 2.1. The full multi-index set is defined by restricting each component indepen-
dently,

JM,p = {α = (α1, . . . , αM ) : αm = 0, . . . , pm, m = 1, . . . ,M} ,
where p = (p1, . . . , pM ) is a shortcut for the tuple of order limits.

The full set provides high flexibility for the resolution of stochastic variables [18, 19, 61].
However, its cardinality is equal to

∏M
m=1(pm + 1) ≤ (p + 1)M if pm ≤ p. This may become

an enormous number even if p and M are moderate (p ∼ 3 and M ∼ 20 are typical). In
this paper, we do not store all (p+ 1)M values explicitly but instead approximate them via a
tensor product representation.

Another approach is to preselect the set of polynomials with the moderate cardinality
[63, 44, 9, 11].

Definition 2.2. The sparse multi-index set is defined by restricting the sum of components,

J sp
M,p = {α = (α1, . . . , αM ) : α ≥ 0, α1 + · · ·+ αM ≤ p} .

The sparse set contains O( M !
p!(M−p)!) = O(Mp) values if M � p, which is definitely less

than (p + 1)M . However, the negative side is that for a fixed p some variables are resolvedD
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worse than others, and the approximation accuracy may suffer. It may also be harmful to
increase p since in the sparse set it contributes exponentially to the complexity.

The low-rank tensor approximation allows reduction of the storage of the coefficient with
the full set JM,p from O(pM ) to O(Mpr2), where r is a data-dependent tensor rank. Theo-
retical estimates of r are under development; numerical studies reflect that often r does not
depend on p and depends linearly (or even more mildly) on M [33]. When M is moderate, and
p is relatively large, the low-rank approach with the full index set (Definition 2.1) becomes
preferable. Also, as soon as the coefficient κ is computed in a tensor product form, to assemble
the Galerkin matrix of the stochastic PDE is a much easier task than with the sparse set.

Some complexity reduction in formula (2.6) can be achieved with the help of the KLE for
the initial field κ(x, ω). Consider the expansion

(2.7) κ(x, ω) = κ̄(x) +

∞∑
�=1

√
μ�v�(x)η�(ω) ≈ κ̄(x) +

L∑
�=1

√
μ�v�(x)η�(ω),

where v�(x) are eigenfunctions of the integral operator with the covariance as the kernel (see,
e.g., [70, 29, 44]). We know that the set V (x) = {v�(x)}L�=1, where L is the number of KLE
terms after the truncation, serves as an optimally reduced basis. It can hence be used for
dimension reduction. Therefore, instead of using (2.6) directly, we project it onto V (x):

(2.8) κ̃�(α) =
(α1 + · · ·+ αM )!

α1! · · ·αM !
φα1+···+αM

∫
D

M∏
m=1

gαm
m (x)v�(x)dx.

Note that the range � = 1, . . . , L may be much smaller than the number of discretization
points N in D. After that, we restore the approximate coefficients (2.6):

(2.9) κ(x,α) ≈ κ̄(x) +

L∑
�=1

v�(x)κ̃�(α).

This will be inserted into (2.5). But we stress that the expansions (2.4), (2.5), and (2.7) which
give rise to the truncations (2.5) and (2.9) a priori only converge in L2(D × Ω). Equation
(1.1), on the other hand, is only stable to perturbations in L∞, and therefore on the continuous
level we do not approximate κ by (2.5), and in (1.1) κ is unchanged. These approximations
are computed here primarily to find the relevant random parameters for the discretization of
the solution, and only then to obtain a representation of κ after the discretization has been
performed.

2.2. Discretization of the stochastic operator equation. The same PCE ansatz of the
coefficient (2.5) may be adopted to discretize the solution u and ultimately the bilinear form
and operator associated with problem (1.1); see [18, 19, 43, 44]. For brevity, we illustrate the
procedure in the case of a deterministic right-hand side f = f(x).

The positive definite operator corresponding to (1.1) with coercivity constant, say, Cc > 0
is thereby represented on the finite dimensional discretization subspaces by its positive definite
Bubnov–Galerkin projection, where the coercivity constant cannot decrease. Observe that
as now this is an operator on a finite dimensional space, it is itself an element of a finiteD

ow
nl

oa
de

d 
12

/1
0/

15
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

PCE IN THE TT FORMAT 1115

dimensional space, and on finite dimensional spaces all norms are equivalent—with possibly
dimension dependent constants.

It is now that the approximation (2.9) of κ is used and inserted into the discretized
operator. As noted before, the KLE (2.7) only converges in L2. But now this is on a finite
dimensional space. In view of the norm-equivalences mentioned before, this means that for any
of the discretization spaces and for any ε > 0 such that Cc − ε > 0, one may find a truncation
L = Lε in the KLE (2.7), (2.9), such that the discretized and KLE truncated operator has
coercivity constant larger than Cc − ε [44, Theorem 20]. In a way the KLE truncation is thus
a “variational crime” similar to numerical integration in the normal finite element method,
and the first Strang lemma applies for error estimates.

Given the KLE components (2.7) and the spatial discretization basis (2.1), we first assem-
ble the spatial Galerkin matrices,

(2.10) K
(x)
0 (i, j) =

∫
D
κ̄(x)∇ϕi(x) · ∇ϕj(x)dx, K

(x)
� (i, j) =

∫
D
v�(x)∇ϕi(x) · ∇ϕj(x)dx,

for i, j = 1, . . . , N , � = 1, . . . , L. Now we take into account the PCE (2.5), and, assuming
that u is discretized the same way as (2.5) with the same JM,p or J sp

M,p, we have to compute

the integral in (2.11) over stochastic coordinates θ and compute the stochastic parts K
(ω)
� ∈

R#JM×#JM of the Galerkin matrix as follows (see also [29, 70, 43]):

(2.11) K
(ω)
� (α,β) =

∫
RM

Hα(θ)Hβ(θ)
∑

ν∈JM

κ̃�(ν)Hν(θ)ρ(θ)dθ =
∑

ν∈JM

Δα,β,νκ̃�(ν),

where ρ(θ) = ρ(θ1) · · · ρ(θM ) is the probability density with ρ(θm) = 1√
2π

exp(−θ2m/2), and

(2.12) Δα,β,ν = Δα1,β1,ν1 · · ·ΔαM ,βM ,νM , Δαm,βm,νm =

∫
R

hαm(θ)hβm(θ)hνm(θ)ρ(θ)dθ

is the triple product of the Hermite polynomials, and κ̃�(ν) is according to (2.8). Observe
that the sum in (2.11) over the infinite set JM is in fact only finite [44, Theorem 18], because,
except for a finite number of multi-indices ν, the polynomial Hν is orthogonal to the product
HαHβ, and the integral vanishes. Let us denote Δ0(α,β) = Δα1,β1,0 · · ·ΔαM ,βM ,0, i.e., Δ0 ∈
R#JM×#JM . Putting together (2.9), (2.10), and (2.11), we obtain the whole discrete stochastic
Galerkin matrix,

(2.13) K = K
(x)
0 ⊗Δ0 +

L∑
�=1

K
(x)
� ⊗K

(ω)
� ,

which is a square matrix of size N ·#JM , and ⊗ is the Kronecker product.
For the sparse index set, we need to compute O((#J sp

M,p)
3) entries of Δ explicitly. For the

full index set and κ̃�(ν) given in the tensor format, the direct product in Δ in (2.12) allows
us to exploit the same format for (2.13) and to simplify the procedure; see section 4.2.

The deterministic right-hand side is extended to the size of K easily,

(2.14) f = f0 ⊗ e0, f0(i) =

∫
D
ϕi(x)f(x)dx, i = 1, . . . , N,
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1116 DOLGOV, KHOROMSKIJ, LITVINENKO, AND MATTHIES

and e0 is the first identity vector of size #JM , e0 = (1, 0, . . . , 0)�, which assigns the deter-
ministic f(x) to the zeroth-order Hermite polynomial in the parametric space.

2.3. Solution of the stochastic equation. Now the discrete equation writes as a linear
system

(2.15) Ku = f ,

where u ∈ RN ·#JM is the vector of the Galerkin coefficients for the solution, with elements
enumerated by u(i,α).

In [61] the authors propose two new strategies for constructing preconditioners for the
stochastic Galerkin system to be used with Krylov subspace iterative solvers. The authors
also research the block sparsity structure of the corresponding coefficient matrix as well as the
stochastic Galerkin matrix. In [64, 65] the authors develop and analyze a Kronecker-product
preconditioner.

In many cases it is sufficient to use the mean-field preconditioner K
(x)
0 ⊗ Δ0, which is

easy to invert due to the Kronecker form. We follow this approach. To solve the system in a
tensor product format, we employ alternating optimization methods [14].

3. Tensor product formats and low-rank data compression. We see that the cardinality
of the full polynomial set JM,p may rise to prohibitively large values (p+1)M . In this paper,
we study two ways to alleviate this problem. First, we can fix the basis set a priori. This is the
case with the sparse set J sp

M,p. Due to particular properties of the stochastic elliptic equation,
it is possible to derive a posteriori error indicators and build the sparse set adaptively [16, 11].

Another approach, which is applicable to a wider class of problems, is to use the full
discretization set but approximate already discrete data, via a low-rank tensor product format.
For stochastic PDEs, low-rank approximations were used in, e.g., [8, 15, 19, 33, 46, 51].
This approach requires specific computational algorithms, since the data are represented in
a nonlinear fashion. In this section we suggest such an algorithm to construct a data-sparse
format of the stochastic coefficient and quantities of interest.

3.1. Tensor train decomposition. To show the techniques in the briefest way, we choose
the so-called matrix product states (MPS) formalism [20], which introduces the following
representation of a multivariate array, or tensor :

(3.1) u(α1, . . . , αM ) =

r1∑
s1=1

r2∑
s2=1

· · ·
rM−1∑

sM−1=1

u(1)
s0,s1(α1)u

(2)
s1,s2(α2) · · ·u(M)

sM−1,sM (αM ).

Surely, in the same form we may write κ(α). In numerical linear algebra this format is
known as tensor train (TT) representation [53, 55]. Each TT core (or block) is a three-
dimensional array, u(m) ∈ Rrm−1×(pm+1)×rm , m = 1, . . . ,M , where pm denotes the mode size,
the polynomial order in the variable αm, and rm = rm(u) is the TT rank. The total number
of entries scales as O(Mpr2), which is tractable as long as r = max{rm} is moderate.

We still have not specified the border rank indices s0 and sM . In the classical TT definition
[53] and in (3.1), there is only one tensor u(α) in the left-hand side; therefore s0 = sM = 1,
and also r0 = rM = 1. However, the left-hand side might contain several tensors, such asD
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κ̃�(α) in (2.8). Then we can associate s0 = � or sM = � and approximate all tensors for
different � in the same shared TT representation.

High-dimensional matrices (cf. K in (2.13)) can be also presented in the TT format,

K =
∑

s0,...,sM−1

K(0)
s0 ⊗K(1)

s0,s1 ⊗ · · · ⊗K(M)
sM−1

.

The matrix by vector product Ku is then recast to TT blocks of K and u. Similarly, using
the multilinearity of the TT format, we can cast linear combinations of initial tensors to
concatenations of TT blocks.

The principal benefit of the TT format in comparison with the canonical polyadic (CP)
decomposition (which is also popular; see, e.g., [18, 19]) is a stable quasi-optimal rank reduc-
tion procedure [53] based on singular value decompositions (SVDs). The complexity scales as
O(Mpr3), i.e., it is free from the curse of dimensionality, while the full accuracy control takes
place. This procedure can be used to reduce unnecessarily large ranks after the matrix by
vector product or the linear combination in the TT format, and to compress a tensor if it is
fully given as a multidimensional array and fits into the memory. However, in our situation
this is not the case, and we need another approach to constructing a TT format.

3.2. Cross interpolation of matrices. If M = 2, the left-hand side of (3.1) can be seen
as a matrix. For simplicity we consider this case first. The basic assumption is that any entry
of a matrix (or tensor) can be evaluated. However, to construct a TT approximation, we do
not want to compute all elements, but only few of them.

The principal ingredient for this is based on the efficiency of an incomplete Gaussian
elimination in an approximation of a low-rank matrix, also known as the adaptive cross ap-
proximation (ACA) [6, 7]. Given is a matrix U = [U(i, j)] ∈ Rp×q; we select some “good”
columns and rows to approximate the whole matrix,

(3.2) U(i, j) ≈ Ũ(i, j) = U(i, J) · Û−1 ·U(I, j),

where Û = U(I, J), and I ⊂ {1, . . . , p}, J ⊂ {1, . . . , q} are sets of indices of cardinality r, so,
e.g., U(i, J) ∈ R1×r. It is known that there exists a quasi-optimal set of interpolating indices
I, J.

Lemma 3.1 (maximum volume (maxvol) principle [25]). If I and J are such that det U(I, J)
is maximal among all r × r submatrices of U , then

‖U − Ũ‖C ≤ (r + 1) min
rank(V )=r

‖U − V ‖2,

where ‖ · ‖C is the Chebyshev norm, ‖X‖C = maxi,j |Xi,j|.
In practice, however, the computation of the true maximum volume submatrix is infeasible,

since it is an NP-hard problem. Instead one performs a heuristic iteration in an alternating
fashion [24]: we start with some (e.g., random) low-rank factor U (1) ∈ Rp×r, determine indices
I yielding a quasi-maxvol r × r submatrix in U (1), and compute U (2) as r columns of U of
the indices I. Vice versa, in the next step, we find quasi-maxvol column indices in U (2) and
calculate corresponding pr elements, collecting them into the newer U (1), which hopefully
approximates the true low-rank factor better than the initial guess. This process continues
until the convergence, which appears to be quite satisfactory in practice.D
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1118 DOLGOV, KHOROMSKIJ, LITVINENKO, AND MATTHIES

3.3. TT-cross interpolation of tensors. In higher dimensions we recurrently proceed in
the same way, since the TT format constitutes a recurrent matrix low-rank factorization. Let
us merge the first m and the last M −m indices from α. The corresponding TT blocks will
induce the following matrices.

Definition 3.2. Given a TT format (3.1) and an index m, define the left interface matrix
U<m ∈ R(p1+1)···(pm−1+1)×rm−1 and the right interface matrix U>m ∈ Rrm×(pm+1+1)···(pM+1) as
follows:

U<m
sm−1

(α1, . . . , αm−1) =

r1∑
s1=1

· · ·
rm−2∑

sm−2=1

u(1)
s1 (α1) · · ·u(m−1)

sm−2,sm−1
(αm−1),

U>m
sm (αm+1, . . . , αM ) =

rm+1∑
sm+1=1

· · ·
rM−1∑

sM−1=1

u(m+1)
sm,sm+1

(αm+1) · · ·u(M)
sM−1

(αM ).

Such matrices are convenient to relate high-dimensional TT expressions with their two-
dimensional analogues. For example, the TT format (3.1) can be written in the following
form:

(3.3) u(α) ≈ U<m(α1, . . . , αm−1) · u(m)(αm) ·U>m(αm+1, . . . , αM ).

The TT-cross algorithm [56] assumes that the above expansion is valid on some rm−1(pm +
1)rm indices and can thus be seen as a system of equations on elements of u(m). Let us be
given rm−1 left indices (α̂1, . . . , α̂m−1) ∈ I(m−1) and rm right indices (α̂m+1, . . . , α̂M ) ∈ J(m+1).
For the single index αm we allow its full range {αm} = {0, 1, . . . , pm}. Requiring that (3.3) is
valid on the combined indices

(α̂1, . . . , α̂m−1, αm, α̂m+1, . . . , α̂M ) ≡
(
I
(m−1), αm, J(m+1)

)
,

we obtain the following computational rule for u(m):

(3.4) u(m)(αm) = Û−1
<m · u

(
I
(m−1), αm, J(m+1)

)
· Û−1

>m,

where Û<m = U<m(I(m−1)) and Û>m = U>m(J(m+1)) are the submatrices of U<m and U>m

at indices I(m−1) and J(m+1), respectively.
Of course, these submatrices must be nonsingular. In the previous subsection we saw

a good strategy: if indices I(m−1) and J(m+1) are chosen in accordance with the maxvol
principle for U<m and U>m, the submatrices are not only nonsingular, but also provide a
good approximation for (3.3). However, U<m and U>m are too large to be treated directly.
Instead, we use the alternating iteration over the dimensions and build nested index sets.

The alternating iteration means that we loop over m = 1, 2, . . . ,M (the so-called forward
iteration) andm = M,M−1, . . . , 1 (backward iteration). Consider first the forward transition,
m−1 → m. Given the set I(m−1), the nested indices I(m) are defined as follows. We concatenate
I(m−1) and αm, i.e., consider rm−1(pm + 1) indices (α̂1, . . . , α̂m−1, αm) ∈ {I(m−1), αm}, and
select rm indices I(m) only from {I(m−1), αm}, not from all O(pm) possibilities. It can be seen
that the next interface U<m+1, restricted to {I(m−1), αm}, can be computed as a product ofD
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the previous submatrix Û<m and the current TT block u(m). To formalize this, we need the
following definition.

Definition 3.3. Given a three-dimensional tensor u(m) ∈ Rrm−1×(pm+1)×rm , introduce the
following reshapes, both pointing to the same data stored in u(m):

• Left folding: u|m〉(sm−1, αm; sm) = u
(m)
sm−1,sm(αm), u|m〉 ∈ Rrm−1(pm+1)×rm .

• Right folding: u〈m|(sm−1; αm, sm) = u
(m)
sm−1,sm(αm), u〈m| ∈ Rrm−1×(pm+1)rm .

Then the restriction of U<m+1 writes as follows:

V 〈m| = Û<mu〈m| and U<m+1
(
I
(m−1), αm

)
= V |m〉 ∈ R

rm−1(pm+1)×rm .

Thus, it is enough to apply the maximum volume algorithm [24] to the matrix V |m〉, deriving
local maxvol indices îm ⊂ {1, . . . , rm−1(pm + 1)}, and obtain both I(m) and Û<m+1 by the
restriction

I
(m) = {I(m−1), αm}(̂im), Û<m+1 = V |m〉(̂ik) ∈ R

rm×rm .

The backward transition m + 1 → m for J(m) and Û>m can be written analogously. We
show it directly in Algorithm 1 below. In total, we need only O(nitMpr2) entries of u to be
evaluated, where nit is the number of alternating iterations, typically on the order of 10.

3.4. Rank-adaptive DMRG-cross algorithm. A drawback of the TT-cross method is that
the TT ranks are fixed; they have to be guessed a priori, which is also a problem of expo-
nential complexity in M . A remedy is to consider larger portions of data in each step. The
Density Matrix Renormalization Group (DMRG) algorithm was developed in the quantum
physics community (see [66]; see also the review [59] and the references therein) to solve high-
dimensional eigenvalue problems coming from the stationary spin Schrödinger equation. It is
written in an alternating fashion similar to that of the TT-cross procedure described above.
The crucial difference is that instead of one TT block as in (3.4), we calculate two neighboring
TT blocks at once.

In the DMRG-cross [58] interpolation algorithm, this is performed as follows. Given
I(m−1), J(m+2), we compute

u(m,m+1)(αm, αm+1) = Û−1
<m · u

(
I
(m−1), αm, αm+1, J

(m+2)
)
· Û−1

>m+1.

Then we need to separate indices αm and αm+1 to recover the initial TT structure. This
can be done via the SVD. The four-dimensional array u(m,m+1) is reshaped to a matrix
U (m,m+1) ∈ Rrm−1(pm+1)×(pm+1+1)rm+1 , and the truncated SVD is computed,

U (m,m+1) ≈ VΣW�, s.t.
∥∥∥U (m,m+1) − V ΣW�

∥∥∥
F
≤ ε
∥∥∥U (m,m+1)

∥∥∥
F
,

where V ∈ Rrm−1(pm+1)×r̂m , Σ ∈ Rr̂m×r̂m, W ∈ R(pm+1+1)rm+1×r̂m, and ‖ · ‖F is the Frobenius
norm. The new TT rank r̂m is likely to differ from the old one rm. After that, we rewrite
u(m) and u(m+1) with V and W , respectively, replace rm = r̂m, and continue the iteration.

To ensure that the perturbations introduced to u(m,m+1) and the whole tensor u coincide,
we need to ensure that the interfaces U<m and U>m+1 have orthonormal columns and rows,
respectively. Fortunately, this requires only small-sized QR decompositions of matrices u|m〉

D
ow

nl
oa

de
d 

12
/1

0/
15

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1120 DOLGOV, KHOROMSKIJ, LITVINENKO, AND MATTHIES

and u〈m| [53, 59] in the first iteration. Later, the SVD will provide orthogonal factors in u(m)

and u(m+1) automatically.
This algorithm allows a fast adaptation of TT ranks toward the requested accuracy thresh-

old. The price is, however, a larger degree of p in the complexity, since we perform a full search
in both αm and αm+1 in each step. The greedy-cross method [57] avoids this problem by max-
imizing the error over only O(rp) random entries among all O(r2p2) elements in u(m,m+1).
Here, instead of the neighboring block u(m+1), it is the error that provides additional in-
formation and improves the approximation. However, for the KLE-PCE coefficient (2.8), a
rank-adaptive procedure that does not involve the error or doubled blocks is possible.

3.5. Block TT-cross interpolation algorithm. Note that each call of (2.8) throws L
values, corresponding to different � = 1, . . . , L. We may account for this in various ways.
Since � has the meaning of the reduced spatial variable, we may feature it as an additional
dimension. But when we restrict the indices

{
I(m−1), αm

}
(̂im) = I(m), we will remove some

values of � from consideration. Therefore, a vast majority of information cannot be used: we
evaluate L values, but only a few of them will be used to improve the approximation. Another
way is to run L independent cross (e.g., DMRG-cross) algorithms to approximate each κ̃�(α)
in its own TT format. Yet, this is also not very desirable. The TT ranks for the whole κ
are usually comparable to the ranks of individual TT formats. Therefore, L cross algorithms
consume almost L times more time than the single run.

A better approach is to store all κ̃�(α) in the same TT representation, employing the idea
of the block TT format [13]. The resulting method has a threefold advantage: all data in each
call of (2.8) are assimilated, the algorithm adjusts the TT ranks automatically according to
the given accuracy, and the output is returned as a single optimally compressed TT format
convenient for further processing.

Assume that we have a procedure that, given an index α1, . . . , αM , throws L values u�(α),
� = 1, . . . , L. When the tensor entries u�(I

(m−1), αm, J(m+1)) are evaluated, we modify (3.4)
as follows:

(3.5) y(m)(αm, �) = Û−1
<m · u�

(
I
(m−1), αm, J(m+1)

)
· Û−1

>m.

Now y(m) is a four-dimensional tensor in the same way as in the DMRG-cross. We need
to find a basis in α that is best suited for all u�. Hence, we reshape y(m) to the matrix
Y (m) ∈ Rrm−1(pm+1)×Lrm and compute the truncated SVD

(3.6) Y (m) ≈ u|m〉ΣW�, u|m〉 ∈ R
rm−1(pm+1)×r̂m , Σ ∈ R

r̂m×r̂m, W ∈ R
Lrm×r̂m.

Again, the new rank r̂m satisfies the Frobenius-norm error criterion and replaces rm for the
next iteration. In the backward iteration, we reshape y(m) to Y (m) ∈ RLrm−1×(pm+1)rm and
take the right singular vectors to the new TT block,

(3.7) Y (m) ≈ WΣu〈m|, W ∈ R
Lrm−1×r̂m, Σ ∈ R

r̂m×r̂m , u〈m| ∈ R
r̂m×(pm+1)rm .

The whole procedure is summarized in the Block TT-Cross algorithm, Algorithm 1.D
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Algorithm 1. Block cross approximation of tensors in the TT format.

Require: A function to evaluate u�(α1, . . . , αM ), initial TT guess u(1)(α1) · · ·u(M)(αM ), rel-
ative accuracy threshold ε.

Ensure: Improved TT approximation u
(1)
� (α1)u

(2)(α2) · · ·u(M)(αM ).

1: Initialize I(0) = [], Û<1 = 1, J(M+1) = [], Û>M = 1.
2: for iteration = 1, 2, . . . , nit or until convergence do
3: for m = 1, 2, . . . ,M − 1 do {Forward sweep}
4: if iteration > 1 then {All indices are available; assimilate the information}
5: Evaluate the tensors at cross indices and compute the common block by (3.5).
6: Compute the truncated SVD (3.6) with accuracy ε.
7: else {Warmup sweep: the indices are yet to be built}
8: Find QR decomposition u|m〉 = q|m〉R,

(
q|m〉)∗ q|m〉 = I.

9: Replace u〈m+1| = Ru〈m+1|, u|m〉 = q|m〉.
10: end if
11: Compute the prerestricted interface V 〈m| = Û<mu〈m|.
12: Find local maxvol indices îm = maxvol

(
V |m〉).

13: New indices I(m) =
{
I(m−1), αm

}
(̂im), interface Û<m+1 = V |m〉(̂im) ∈ Rrm×rm .

14: end for
15: for m = M,M − 1, . . . , 2 do {Backward sweep}
16: Evaluate the tensors at cross indices and compute the common block by (3.5).
17: Compute the truncated SVD (3.7) with accuracy ε.
18: Compute the prerestricted interface V |m〉 = u|m〉Û>m.
19: Find local maxvol indices ĵm = maxvol((V 〈m|)�).
20: Restrict J(m) =

{
αm, J(m+1)

}
(ĵm), Û>m−1 = V 〈m|(ĵm) ∈ Rrm−1×rm−1 .

21: end for
22: Evaluate the first TT block u

(1)
� (α1) = u�

(
α1, J

(2)
)
Û−1

>1 .
23: end for

4. TT-structured calculations with PCE.

4.1. Computation of the PCE in the TT format via the cross interpolation. Equipped
with Algorithm 1, we may apply it to the PCE approximation, passing formula (2.8) as a
function u�(α) that evaluates tensor values on demand. The initial guess may even be a
rank-1 TT tensor with all blocks populated by random numbers, since the cross iterations will
adapt both the representation and TT ranks.

The complexity estimate can be written straightforwardly.
Statement 4.1. The cost to compute κ̃�(α) via the block TT-cross algorithm, Algorithm 1,

is
O(r2p(MN +NL) + r3pL+ r3pL ·min{p, L}).

The first two terms come from formula (2.8), and the last one is the complexity of SVDs
(3.6) and (3.7).

Remark 4.2. It is unclear in general which term will dominate. For large N , we are
typically expecting that it is the evaluation (3.5). However, if N is moderate (below 1000),D
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but the rank is large (∼ 100), the SVD consumes most of the time. For the whole algorithm,
assuming also L ∼ M , we can thus expect the O(nitM

2Npr3) complexity, which is lower than
O(MpL3), which we could receive if we run independent cross algorithms for each �.

As soon as the reduced PCE coefficients κ̃�(α) are computed, the initial expansion (2.9)
comes easily. Indeed, after the backward cross iteration, the � index belongs to the first TT
block, and we may let it play the role of the “zeroth” TT rank index,

(4.1) κ̃�(α) =
∑

s1,...,sM−1

κ
(1)
�,s1

(α1)κ
(2)
s1,s2(α2) · · ·κ(M)

sM−1
(αM ).

For � = 0 we extend this formula such that κ̃0(α) is the first identity vector e0; cf. (2.14).
Now we collect the spatial components from (2.7) into the “zeroth” TT block,

(4.2) κ(0)(x) =
[
κ
(0)
� (x)

]L
�=0

=
[
κ̄(x) v1(x) · · · vL(x)

]
;

then the PCE (2.5) writes as the following TT format:

(4.3) κ(x,α) =
∑

�,s1,...,sM−1

κ
(0)
� (x)κ

(1)
�,s1

(α1) · · ·κ(M)
sM−1

(αM ).

4.2. Stiffness Galerkin operator in the TT format. With the full set JM,p, we may
benefit from the rank-1 separability of Δ, since each index αm, βm, νm varies independently
of the others.

Lemma 4.3. Given the PCE TT format (4.3) for the coefficient κ with the TT ranks r(κ),
the Galerkin operator (2.13) can be constructed in the TT format with the same ranks.

Proof. Given the PCE (4.3) in the TT format, we split the whole sum over ν in (2.11)
into the individual variables,∑

ν∈JM,p

Δα,β,νκ̃�(ν) =
∑

s1,...,sM−1

K
(1)
�,s1

(α1, β1)K
(2)
s1,s2(α2, β2) · · ·K(M)

sM−1
(αM , βM ),

K(m)(αm, βm) =

pm∑
νm=0

Δαm,βm,νmκ
(m)(νm), m = 1, . . . ,M.

(4.4)

A similar reduction of a large summation to one-dimensional operations arises in quantum

chemistry [30]. Agglomerate K
(x)
� (i, j) from (2.10) to the “zeroth” TT block for the operator;

then the TT representation for the operator writes with the same TT ranks as in κ̃,

(4.5) K =
∑

�,s1,...,sM−1

K
(x)
� ⊗K

(1)
�,s1

⊗ · · · ⊗K(M)
sM−1

∈ R
(N ·#JM,p)×(N ·#JM,p).

One interesting property of the Hermite triples is that Δα,β,ν = 0 if, e.g., ν > α + β.
That is, if we set the same p for α, β, and ν, in the assembly of (2.13) we may miss some
components, corresponding to α > p/2, β > p/2. To compute the Galerkin operator exactly,
it is reasonable to vary νm in the range {0, . . . , 2p} and hence assemble κ̃ in the set JM,2p.
While in the sparse set it would inflate the storage of Δ and K significantly, in the TT format
it is feasible: the TT ranks do not depend on p, and the storage grows only linearly with p.D
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4.3. Computation of the solution function. Having solved the system (2.15), we obtain
the PCE coefficients of the solution in the TT format,

(4.6) u(x,α) =
∑

s0,...,sM−1

u(0)s0 (x)u
(1)
s0,s1(α1) · · ·u(M)

sM−1
(αM ).

Some statistics are computable directly from u(x,α), but generally we need a function in the
initial random variables, u(x,θ). Since JM,p is a tensor product set, u(x,α) can be turned
into u(x,θ) without changing the TT ranks, similarly to the construction of the Galerkin
matrix in the previous subsection:

(4.7) u(x,θ) =
∑

s0,...,sM−1

u(0)s0 (x)

(
p∑

α1=0

hα1(θ1)u
(1)
s0,s1(α1)

)
· · ·
(

p∑
αM=0

hαM
(θM )u(M)

sM−1
(αM )

)
.

4.4. Computation of statistics. In this section we discuss how to calculate some statis-
tical outputs from the solution in the TT format, such as the mean, the (co)variance, and the
probability of an event.

The mean value of u, in the same way as in the case of κ, can be derived as the PCE
coefficient at α = (0, . . . , 0), ū(x) = u(x, 0, . . . , 0). It requires no additional calculations.

The covariance is more complicated and requires both multiplication (squaring) and sum-
mation over α. By definition, the covariance reads

covu(x, y) =

∫
RM

(u(x,θ)− ū(x)) (u(y,θ)− ū(y)) ρ(θ)dθ

=
∑

α,β 
=(0,...,0),
α,β∈JM,p

u(x,α)u(y,β)

∫
RM

Hα(θ)Hβ(θ)ρ(θ)dθ.

Knowing that
∫
Hα(θ)Hβ(θ)ρ(θ)dθ = α!δα,β, we take us0(α) = u

(1)
s0 (α1) · · ·u(M)(αM ) from

(4.6) and multiply it with the Hermite mass matrix (TT ranks do not change),

(4.8) ws0(α) := us0(α)
√
α! =

∑
s1,...,sM−1

(
u(1)
s0,s1(α1)

√
α1!
)
· · ·
(
u(M)
sM−1

(αM )
√

αM !
)
,

and then take the scalar product C = [Cs0,s′0 ], where Cs0,s′0 =
〈
ws0 ,ws′0

〉
with w defined in

(4.8). Given the TT rank bound r for u(x,α), we deduce the O(Mpr3) complexity of this
step. After that, the covariance is given by the product of C with the spatial TT blocks,

(4.9) covu(x, y) =

r0∑
s0,s′0=0

u(0)s0 (x)Cs0,s′0u
(0)
s′0

(y),

where u
(0)
s0 is the “zeroth” (spatial) TT block of the decomposition (4.6). Given N degrees

of freedom for x, the complexity of this step is O(N2r20). Note that a low-rank tensor ap-
proximation of a large covariance matrix is very important, for example, in Kriging [52]. The
variance is nothing else than the diagonal of the covariance, varu(x) = covu(x, x).D
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Other important outputs are the characteristic, level set functions, and the probability of
a particular event [19].

Definition 4.4. Let S ⊂ R be a subset of real numbers.
• The characteristic function of u at S is defined pointwise for all θ ∈ RM as follows:

(4.10) χS(x,θ) :=

{
1, u(x,θ) ∈ S,
0, u(x,θ) /∈ S.

• The level set function reads LS(x,θ) := u(x,θ)χS(x,θ).
• The probability of S reads PS(x) =

∫
RM χS(x,θ)ρ(θ)dθ.

The characteristic function can be computed using either the cross algorithm, Algorithm 1
(see also [5, 4]), which takes formula (4.10) as the function that evaluates a high-dimensional
array χ at the indices in x,θ, or the Newton method for the sign function [19]. In both
cases we may face a rapid growth of TT ranks during the cross or Newton iterations: the
characteristic function is likely to have a discontinuity that is not aligned to the coordinate
axes, and some of the singular values in the TT decomposition will decay very slowly. We
face the same problem with increasing ranks during computing the level set functions and
exceedance probabilities.

However, the probability is easier to compute, especially if it is relatively small. Using
the same cross algorithm, we can directly compute the product χ̂S(x,θ) = χS(x,θ)ρ(θ). The
probability (at a fixed x) is then computed as a scalar product with the all-ones vector in the
TT format, PS(x) = 〈χ̂, 1〉. But if P is small, it means that most of the entries in χ̂ are small
and do not inflate TT ranks, which might be the case for χ. Typically, the computation of
small probabilities is used to predict the failure risk of a technical system. The event set has
the form S = {z ∈ R : z > τ}, and the probability is called the exceedance probability. This
will be studied in numerical experiments.

5. Numerical experiments. We verify the approach on the elliptic stochastic equation
(1.1) in a two-dimensional L-shape domain, x = (x1, x2) ∈ D = [−1, 1]2\[0, 1]2. We pose zero
Dirichlet boundary conditions and use the deterministic right-hand side f = f(x) = 1. The
stochasticity is introduced in the diffusion coefficient κ(x, ω); we investigate log-normal and
beta distributions for κ.

To generate the spatial mesh, we use the standard PDE Toolbox in MATLAB. We consider
from 1 to 3 refinement levels of the spatial grid, denoted by R. The first refinement R = 1
yields 557 degrees of freedom, R = 2 gives 2145 points, and R = 3 corresponds to 8417 points.
Since we have to store the stiffness matrices in a dense form, we cannot refine the grid further.

The KLE of both κ and γ is truncated to the same number of terms L = M .
All utilities related to the Hermite PCE were taken from the sglib [69], including discre-

tization and solution routines in the sparse polynomial set J sp
M,p. However, to work with the

TT format (for full JM,p), we employ the TT-Toolbox [54]. The same polynomial orders are
chosen in all variables, p = (p, . . . , p). We use the modules of sglib for low-dimensional stages
and replace the parts corresponding to high-dimensional calculations by the TT algorithms.
The block TT-cross Algorithm 1 is implemented in the procedure amen cross.m from the
TT-Toolbox, and the linear system (2.15) was solved via the Alternating Minimal Energy
(AMEn) method [14], the procedure amen solve.m from the companion package tAMEn [12].D
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Computations were conducted in MATLAB R2012a on a single core of the Intel Xeon X5650
CPU at 2.67GHz, provided by the Max Planck Institute in Magdeburg.

The accuracy of the coefficient and the solution was estimated using the Monte Carlo
method with Nmc simulations. We approximate the average L2-error as follows:

Eκ =
1

Nmc

Nmc∑
z=1

√∑N
i=1 (κ(xi,θz)− κ∗(xi,θz))2√∑N

i=1 κ
2∗(xi,θz)

≈
∫
RM

‖κ(x,θ) − κ∗(x,θ)‖L2(D)

‖κ∗(x,θ)‖L2(D)
ρ(θ)dθ,

where {θz}Nmc
z=1 are normally distributed random samples, {xi}Ni=1 are the spatial grid points,

and κ∗(xi,θz) = φ (γ(xi,θz)) is the reference coefficient computed without using the PCE for
φ. The same definition is used for the solution u, with u∗(x,θz) being the solution of the
deterministic PDE with the coefficient κ∗(x,θz).

In addition we compare the statistics obtained with our approaches and the Monte Carlo
method. For the mean and variance we use the same discrete approximation to the L2-norm,

Eū =
‖ū− ū∗‖L2(D)

‖ū∗‖L2(D)
, Evaru =

‖varu − varu∗‖L2(D)

‖varu∗‖L2(D)
.

To examine the computation of probabilities, we compute the exceedance probability. This
task can be simplified by taking into account the maximum principle: the solution is convex
w.r.t. x. We compute the maximizer of the mean solution, xmax : ū(xmax) ≥ ū(x) ∀x ∈ D.
Fix x to xmax, and consider only the stochastic part umax(θ) = u(xmax,θ), and û = ū(xmax).
Now, taking some τ > 1, we compute

(5.1) P = P (umax(θ) > τû) =

∫
RM

χumax(θ)>τû(θ)ρ(θ)dθ.

By P∗ we will also denote the probability computed from the Monte Carlo method, and we
estimate the error as EP = |P− P∗| /P∗.

5.1. Log-normal distribution. Let

κ(x, ω) = exp

(
1 + σ

γ(x, ω)

2

)
+ 10,

where γ ∼ N (0, 1) is the standard normally distributed random field. The covariance function

is taken Gaussian, covκ(x, y) = exp(−‖x−y‖2
2l2c

), where lc is the (isotropic) correlation length.

The default parameters are the following: number of KLE terms M = 20, polynomial
order p = 3, correlation length lc = 1, dispersion σ = 0.5, refinement level of the spatial grid
R = 1, tensor approximation accuracy ε = 10−4, and the number of Monte Carlo samples
Nmc = 10000. Below we will vary each of these parameters, keeping the others fixed. For the
computation of the probability (5.1) we use τ = 1.2.

5.1.1. Verification of the block cross algorithm. Formula (2.8) can be evaluated for
each KLE index � independently, using existing cross approximation algorithms. We compare
with the so-called DMRG cross method [58], which is conceptually the closest approach to ourD
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Table 1
Performance of the block cross Algorithm 1 versus the DMRG cross [58].

M Block cross DMRG crosses ‖κDMRG − κBlock‖F
CPU time, sec. rκ CPU time, sec. rκ ‖κBlock‖F

10 4.908 20 31.29 20 2.77e-5
15 10.36 27 114.9 27 2.24e-5
20 19.11 32 286.2 33 1.83e-4
30 49.89 39 1372.0 50 2.52e-4

Table 2
Detailed CPU times (sec.) versus p, log-normal distribution.

TT (full index set JM,p) Sparse (index set J sp
M,p)

p Tκ Top Tu Tκ Top Tu

1 9.6166 0.1875 1.7381 0.4525 0.2830 0.6485
2 14.6635 0.1945 2.9584 0.4954 3.2475 1.4046
3 19.1182 0.1944 3.4162 0.6887 1027.7 18.1263
4 24.4345 0.1953 4.2228 2.1597 — —
5 30.9220 0.3155 5.3426 9.8382 — —

Table 3
Performance versus p, log-normal distribution.

p CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

1 11.54 1.38 0.23 32 42 1 3.75e-3 1.69e-1 9.58e-3 1.37e-1 0
2 17.81 5.14 0.32 32 49 1 1.35e-4 1.10e-1 4.94e-4 4.81e-2 0
3 22.72 1046 83.12 32 49 462 6.21e-5 2.00e-3 2.99e-4 5.29e-4 2.75e-4
4 28.85 — 69.74 32 50 416 6.24e-5 — 9.85e-5 — 1.21e-4
5 36.58 — 102.5 32 49 410 6.27e-5 — 9.36e-5 — 6.20e-4

Algorithm 1. In Table 1 we show the performance of the single run of Algorithm 1 (which gives
the coefficient for all � simultaneously) and of L DMRG crosses, followed by the summation
of individual terms to the common representation. The last column in Table 1 presents the
relative difference in Frobenius norm between the final coefficients of the form (4.3) (with x
discretized), computed by the DMRG and block cross algorithms. We see that even if the TT
ranks of the output are exactly the same, the times differ dramatically. This is because the
ranks of individual components and of the whole coefficient are comparatively the same, and
the DMRG approach requires roughly L times more operations. However, both approaches
deliver the same data up to the approximation tolerance.

5.1.2. Experiment with the polynomial order p. First, we provide a detailed study of the
computational time of each of the stages in the TT and sparse methods: construction of the
coefficient (Tκ), construction of the operator (Top), and the solution of the system (Tu). The
results are shown in Table 2, and times are measured in seconds. The complexity of the cross
algorithm, employed for the computation of κ in the TT format, grows linearly with p, since
the TT ranks are stable w.r.t. p (see Table 3). However, it is much slower than the direct
evaluation of the coefficients in the sparse set. This is mainly due to the SVDs, involving
matrices whose sizes are on the order of hundreds.D
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Table 4
Performance versus M , log-normal distribution.

M CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

10 6.401 6.143 1.297 20 39 70 2.00e-4 1.71e-1 3.26e-4 1.45e-1 2.86e-4
15 12.15 92.38 22.99 27 42 381 7.56e-5 1.97e-3 3.09e-4 5.41e-4 2.99e-4
20 21.82 1005 67.34 32 50 422 6.25e-5 1.99e-3 2.96e-4 5.33e-4 2.96e-4
30 52.92 48961 136.5 39 50 452 6.13e-5 9.26e-2 3.06e-4 5.51e-2 2.78e-4

Nevertheless, for the computation of the Galerkin matrix the situation is the opposite. In
the TT format, the computations via formula (4.4) are very efficient, since they involve M
products of p2 × 2p matrices. In the sparse representation, we have to perform all (#J sp

M,p)
3

operations, which is very time-consuming. Since #J sp
M,p grows exponentially with p, we had

to skip the cases with large p.
The solution stage is more simple, since the mean value preconditioner is quite efficient,

both for the standard CG method with the sparse set and the AMEn method for the TT
format. Again, the complexity of the TT solver grows linearly with p. The sparse solver works
reasonably quickly as well, but it cannot be run before the matrix elements are computed;1

hence it is also skipped for p = 4, 5.
In Table 3 we present the total CPU times required in both methods to find the solution

u, the time for computing χ̂, maximal TT ranks of the coefficient (rκ), the solution (ru), and
the weighted characteristic function (rχ̂), as well as statistical errors in the coefficient (Eκ)
and the solution (Eu). The probability P is presented only for the TT calculation. Since
P ∼ 10−4, 10000 simulations may be not enough to compute P with the Monte Carlo method.
Below we present a dedicated test of the Monte Carlo approach.

5.1.3. Experiment with the KLE dimension M . The length of the truncated KLE is
another crucial parameter of the stochastic PDE. The results are shown in Table 4.

We see that the accuracy of the TT approach is stable w.r.t. M , and the complexity grows
mildly. Note, however, that the correlation length lc = 1 is quite large and yields a fast decay
of the KLE, such that M = 20 is actually enough for the accuracy 10−4. The TT approach
demonstrates stability w.r.t. the overapproximation at M = 30. This is not the case for the
sparse approach: at high M the accuracy is lost. This is because p = 3 is not enough to
transform the covariance (2.3) accurately. Since eigenvalues of the covariance decay rapidly,
higher eigenpairs become strongly perturbed (the eigenvalues can even become negative), and
a large error propagates to the PCE. In the full set, the maximal polynomial order is equal
to pM , and the error of the covariance transform is negligible.

5.1.4. Experiment with the correlation length lc. The Gaussian covariance function
yields an exponential decay of the KLE coefficients [60, 42], but the actual rate is highly
dependent on the correlation length [32, 41]. In this experiment, we study the range of
lengths from 0.1 to 1.5. In order to have a sufficient accuracy for all values of lc, we fix the

1It is sometimes advocated to avoid a construction of the matrix and to compute its elements only when they
are needed in the matrix-vector product. It saves memory, but the computational time will be comparatively
the same, since it is proportional to the number of operations.D
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Table 5
Performance versus lc, log-normal distribution.

lc CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

0.1 216 55826 0.91 70 50 1 1.98e-2 1.98e-2 1.84e-2 1.84e-2 0
0.3 317 52361 41.8 87 74 297 3.08e-3 3.51e-3 2.64e-3 2.62e-3 8.59e-31
0.5 195 51678 58.1 67 74 375 1.49e-4 2.00e-3 2.58e-4 3.10e-4 6.50e-33
1.0 57.3 55178 97.3 39 50 417 6.12e-5 9.37e-2 3.18e-4 5.59e-2 2.95e-04
1.5 32.4 49790 121 31 34 424 3.24e-5 2.05e-1 4.99e-4 1.73e-1 7.50e-04

Table 6
Performance versus σ, log-normal distribution.

σ CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

0.2 15.93 1008 0.348 21 31 1 5.69e-5 4.76e-5 4.19e-5 1.30e-5 0
0.4 18.72 968.3 0.341 29 42 1 6.88e-5 8.04e-4 1.40e-4 2.14e-4 0
0.5 21.23 970.1 79.96 32 49 456 6.19e-5 2.02e-3 3.05e-4 5.45e-4 2.95e-4
0.6 24.08 961.5 24.72 34 57 272 9.12e-5 4.42e-3 6.14e-4 1.16e-3 2.30e-3
0.8 31.69 969.1 67.93 39 66 411 4.40e-4 8.33e-2 2.02e-3 2.90e-2 8.02e-2
1.0 50.67 1071 48.44 44 82 363 1.73e-3 4.10e-1 4.96e-3 3.08e-1 9.17e-2

dimension M = 30. The results are presented in the same layout as before in Table 5.
In the TT approach, we see a clear decrease of the computational complexity and the error

with growing covariance length. This is because the SVD approximation in the TT format
automatically reduces the storage w.r.t. the latter (less important) variables if the KLE decay
is fast enough. The TT errors reflect the amount of information discarded in the truncated
KLE tail, which is large for small lc and small otherwise.

The errors in the sparse approach behave similarly until lc = 0.5, but for lc = 1, 1.5 the
dimension M = 30 is too large, and the instability w.r.t. the overapproximation occurs.

With fixed M , the exceedance probability is very sensitive to the correlation length. Trun-
cating the KLE, we reduce the total variance of the random field. For a (quasi)-Gaussian
distribution, a small perturbation of the variance has a small effect on the integral over the
peak region but may have a very large relative effect on the tail region, which corresponds to
the small exceedance probability.

5.1.5. Experiment with the dispersion σ. The variance of the normally distributed field
γ(x, ω) is equal to σ2. Since it enters κ under the exponential, it influences the variance of κ
significantly. In Table 6 we vary σ from 0.2 to 1 and track the performance of the methods. As
expected, the computational complexity grows with σ, as does the contrast in the coefficient.
However, we were able to perform all computations for each value of σ.

5.1.6. Experiment with the spatial grid refinement R. Since the efforts of dealing with
the full spatial matrix grow significantly with the grid refinement, in this test we limit ourselves
to M = 10. The principal observations from Table 7 are that the TT rank and the accuracy2

2Note that the errors are estimated via the Monte Carlo method on the same grids; thus they show the
accuracy of the PCE approximation—not the spatial discretization.D
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Table 7
Performance versus R, log-normal distribution. The left column shows the number of spatial degrees of

freedom (#DoF) for R = 1, 2, 3.

#DoF CPU time, sec rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

557 6.40 6.09 1.29 20 39 71 2.00e-4 1.71e-1 3.26e-4 1.45e-1 2.86e-4
2145 8.98 13.7 1.17 20 39 76 1.74e-4 1.89e-3 3.33e-4 5.69e-4 2.90e-4
8417 357 171 0.84 20 40 69 1.65e-4 1.88e-3 3.24e-4 5.64e-4 2.93e-4

Table 8
Verification of the Monte Carlo method, log-normal distribution.

Nmc TMC , sec. Eū Evaru P∗ EP TT results

102 0.6398 9.23e-3 1.49e-1 0 ∞ Tsolve 96.89 sec.
103 6.1867 1.69e-3 5.97e-2 0 ∞ Tχ̂ 157.0 sec.
104 6.1801·101 5.81e-4 7.12e-3 4.00e-4 5.53e-1 rκ 39
105 6.2319·102 2.91e-4 2.91e-3 4.10e-4 5.15e-1 ru 50
106 6.3071·103 1.23e-4 9.76e-4 4.60e-4 3.51e-1 rχ̂ 432

P 6.214e-4

are stable w.r.t. the grid refinement. Therefore, we may expect that the TT approach will
also be efficient for finer grids if we find an efficient way to deal with the spatial dimension.
Research on nonintrusive stochastic Galerkin methods, addressing this issue, has recently
begun [22], and we plan to adopt it in the TT framework in the future.

5.1.7. Comparison with the Monte Carlo method. For the Monte Carlo test, we prepare
the TT solution with parameters p = 5 and M = 30. The results are presented in Table 8. In
the left part of the table we show the performance of the Monte Carlo method with different
numbers of simulations: total CPU time (TMC), errors in the mean and variance of u, and
a small exceedance probability with its error. The right part contains the results of the TT
approach: the aggregated CPU time of construction of the coefficient, operator and solution
(Tsolve), the time to compute the weighted characteristic function (Tχ̂), TT ranks of all data,
and the probability calculated from χ̂.

We see that the cost of the TT method is comparable with the cost of 40000 Monte Carlo
tests. Although the Monte Carlo method with 40000 realizations provides a sufficiently good
approximation of the mean, the accuracy of the variance, and especially the exceedance prob-
ability, is much worse than in the TT approach. Therefore, the tensor product methods can be
recommended as a competitive alternative to classical techniques for computing exceedance
probabilities.

5.2. Beta distribution. The Hermite expansion (2.2) of the exp function in the log-normal
case yields the coefficients of the form φi =

c
i! . Therefore, the PCE coefficient formula (2.6)

resolves to a direct product of univariate functions of α1, . . . , αM , and the tensor format of the
PCE can be constructed explicitly [18]. To demonstrate the generality of the cross algorithm,D
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Table 9
Performance versus p, beta distribution.

p CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

1 21.40 1.382 0.059 64 49 1 2.24e-3 5.13e-2 1.14e-2 2.50e-2 0
2 39.87 5.301 0.100 65 50 1 1.92e-4 5.50e-3 7.67e-4 1.28e-3 0
3 57.16 1000 70.98 65 50 445 9.07e-5 1.76e-3 5.01e-4 1.06e-3 1.88e-4
4 76.22 — 21.18 65 50 416 8.81e-5 — 1.41e-4 — 9.84e-5
5 100.6 — 119.7 65 50 428 8.89e-5 — 1.10e-4 — 1.23e-4

Table 10
Performance versus M , beta distribution.

M CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

10 9.777 5.796 0.942 34 40 39 1.70e-4 1.65e-3 5.18e-4 1.08e-3 1.95e-4
15 26.46 90.34 25.16 50 48 374 1.03e-4 1.73e-3 4.96e-4 1.08e-3 1.94e-4
20 56.92 986.2 59.57 65 50 413 9.15e-5 1.80e-3 5.08e-4 1.09e-3 1.88e-4
30 156.7 55859 147.9 92 50 452 7.75e-5 7.01e-2 5.12e-4 4.53e-2 1.85e-4

Table 11
Performance versus lc, beta distribution.

lc CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

0.1 665.8 55923 0.91 90 48 1 8.7e-3 8.77e-3 7.9e-3 7.92e-3 0
0.3 2983 53783 1.49 177 74 1 1.5e-3 2.02e-3 1.2e-3 1.30e-3 0
0.5 1138 54297 100 132 74 403 1.5e-4 1.71e-3 2.9e-4 8.21e-4 2.47e-23
1.0 158.8 56545 153 92 50 463 7.8e-5 6.92e-2 5.1e-4 4.47e-2 1.96e-04
1.5 62.20 55848 89.5 75 42 409 6.9e-5 7.85e-2 8.3e-4 4.56e-2 2.20e-03

Table 12
Performance versus R, beta distribution.

#DoF CPU time, sec rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT

557 9.73 5.94 0.94 34 40 39 1.70e-4 1.65e-3 5.21e-4 1.08e-3 1.95e-4
2145 36.2 12.7 0.77 34 41 41 1.56e-4 1.64e-3 5.19e-4 1.08e-3 1.97e-4
8417 378 162 1.12 34 40 43 1.53e-4 1.62e-3 5.07e-4 1.06e-3 1.96e-4

we also consider a more exotic beta-distributed coefficient,

κ(x, ω) = B−1
5,2

⎛⎝1 + erf
(
γ(x,ω)√

2

)
2

⎞⎠+ 1, where Ba,b(z) =
1

B(a, b)

∫ z

0
ta−1(1− t)b−1dt.

For the purpose of computing φi, the function B5,2(z) is inverted by the Newton method.

Again, the covariance function is covκ(x, y) = exp(−‖x−y‖2
2l2c

).

Since this distribution varies more strongly than the log-normal one, for the computation
of the probability (5.1) we use larger τ = 1.4. All other parameters are the same as in the
experiments with the log-normal coefficient. The performance of both the TT and sparseD
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Table 13
Verification of the Monte Carlo method, beta distribution.

Nmc TMC , sec. Eū Evaru P∗ EP TT results

102 0.9428 9.12e-3 1.65e-1 0 ∞ Tsolve 278.4014 sec.
103 9.5612 1.04e-3 6.04e-2 0 ∞ Tχ̂ 179.4764 sec.
104 8.849·101 4.38e-4 5.56e-3 0 ∞ rκ 92
105 8.870·102 2.49e-4 3.06e-3 7.00e-5 6.80e-1 ru 50
106 8.883·103 8.16e-5 8.56e-4 1.07e-4 9.94e-2 rχ̂ 406

P 1.1765e-04

approaches in the case of the beta distribution is shown in Tables 9, 10, 11, 12, and 13 for p,
M , lc, the spatial grid level, and the Monte Carlo tests, respectively.

We see the same behavior as in the log-normal case. The only significant difference is the
lower error of the sparse method in the case M = 10, Rl = 1, which is 1.08e-3 for the beta
distribution and 1.45e-1 for the log-normal one.

6. Conclusion. We have developed the new block TT cross algorithm to compute the TT
approximation of the polynomial chaos expansion of a random field with the tensor product
set of polynomials, where the polynomial degrees are bounded individually for each random
variable. The random field can be given as a transformation of a Gaussian field by an arbitrary
smooth function. The new algorithm builds the TT approximation of the PCE in a black box
manner. Compared to the previously existing cross methods, the new approach assimilates
all KLE terms simultaneously, which reduces the computational cost significantly.

The uncertain (diffusion) coefficient in the elliptic PDE is approximated via PCE. We show
that the tensor product polynomial set allows a very efficient construction of the stochastic
Galerkin matrix in the TT format, provided the coefficient is precomputed in the TT format.
Interestingly, we can even compute the Galerkin matrix exactly by preparing the coefficient
with two times larger polynomial orders than those employed for the solution. In the TT
format, we can store the Galerkin matrix in the dense form, since the number of the TT
elements O(Mp2r2) is feasible for p ∼ 10. This also means that other polynomial families,
such as the Chebyshev and Laguerre, may be used straightforwardly.

The Galerkin matrix defines a large linear system on the PCE coefficients of the solution
of the stochastic equation. We solve this system in the TT format via the alternating minimal
energy algorithm and calculate the postprocessing of the solution, such as the mean, variance,
and exceedance probabilities.

We demonstrate that with the new TT approach we can go to a larger number of random
variables (e.g., M = 30) used in the PCE (larger stochastic dimension) and take a larger
order of the polynomial approximation in the stochastic space (p = 5) on a usual PC desktop
computer. For all stages of numerical experiments (computation of the coefficient, operator,
solution, and statistical functionals) we report the computational times and the storage costs
(TT ranks) and show that they stay moderate in the investigated range of parameters.

In particular, the TT ranks do not grow with the polynomial degree p. This remains in
sharp contrast to the traditional sparse polynomial approximation, where the total polynomial
degree is bounded. The cardinality of this sparse polynomial set grows exponentially with
p, but the tensor product decomposition is not possible anymore. This renders the totalD
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computational cost of the sparse PCE approach higher than the cost of the TT method.
Besides, the tensor product PCE is more accurate than the expansion in the sparse set due to
a larger total polynomial degree. Comparison with the classical Monte Carlo method shows
that the TT methods can compute the exceedance probabilities more accurately, since the TT
format approximates the whole stochastic solution implicitly.

Several directions of research can be pursued in the future. Currently, we store both the
matrix and the inverted mean-field preconditioner in the dense form. This imposes rather
severe restrictions on the spatial discretization. The spatial part of the Galerkin matrix must
be dealt with in a more efficient way.

The characteristic function is difficult to compute in the TT format, since it requires
rather large ranks to achieve a satisfactory accuracy. However, the TT approximation might
be useful for the reduction of variance (e.g., as a control variate) in Monte Carlo methods.
Such an approach has already been applied in the framework of sparse grids [48] and showed
its computational advantages.

With the tensor product methods the stochastic collocation approach seems very attractive
[33]. We may introduce quite large discretization grids in each random variable θm: additional
data compression can be achieved with the QTT approximation [31]. It is important that the
deterministic problems are decoupled in the stochastic collocation. The cross algorithms can
become an efficient nonintrusive approach to stochastic equations.

Acknowledgment. We would like to thank Elmar Zander for his assistance in the usage
of the stochastic Galerkin library sglib.
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