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Mycobacterium lepromatosis is an uncultured human pathogen
associated with diffuse lepromatous leprosy and a reactional state
known as Lucio’s phenomenon. By using deep sequencing with
and without DNA enrichment, we obtained the near-complete
genome sequence ofM. lepromatosis present in a skin biopsy from
a Mexican patient, and compared it with that of Mycobacterium
leprae, which has undergone extensive reductive evolution. The
genomes display extensive synteny and are similar in size (∼3.27Mb).
Protein-coding genes share 93% nucleotide sequence identity,
whereas pseudogenes are only 82% identical. The events that led
to pseudogenization of 50% of the genome likely occurred before
divergence from their most recent common ancestor (MRCA), and
both M. lepromatosis and M. leprae have since accumulated new
pseudogenes or acquired specific deletions. Functional comparisons
suggest that M. lepromatosis has lost several enzymes required for
amino acid synthesis whereas M. leprae has a defective heme path-
way. M. lepromatosis has retained all functions required to infect
the Schwann cells of the peripheral nervous system and therefore
may also be neuropathogenic. A phylogeographic survey of 227
leprosy biopsies by differential PCR revealed that 221 contained
M. leprae whereas only six, all from Mexico, harbored M. leproma-
tosis. Phylogenetic comparisons indicate that M. lepromatosis
is closer thanM. leprae to the MRCA, and a Bayesian dating analysis
suggests that they diverged from their MRCA approximately 13.9
Mya. Thus, despite their ancient separation, the two leprosy
bacilli are remarkably conserved and still cause similar
pathologic conditions.

Mycobacterium lepromatosis | genome sequencing | Mycobacterium
leprae | comparative genomics | reductive evolution

Nearly a quarter million new cases of leprosy (Hansen’s dis-
ease) are still recorded annually worldwide despite a re-

markable decrease in prevalence in the past decade (1). Leprosy
primarily affects the skin, peripheral nerves, and eyes, and
manifests as a spectrum of diverse clinical forms varying in ba-
cillary load and often accompanied by painful immunological
reactions (2–4). A severe form of leprosy known as diffuse le-
promatous leprosy (DLL) that is common in western Mexico and
the Caribbean region, first described by Lucio and Alvarado in
1852 (5), is referred to as Lucio’s leprosy. Such cases account for
a sizable proportion (more than 20%) of all leprosy cases in
western Mexico (5–8), Cuba (9), and Costa Rica (10) but are
rarely reported elsewhere. In 1948, Latapi and Zamora noted that
DLL cases had no dermal nodules and were characterized by
a generalized and diffuse infiltration of the skin by histiocytes and
acid-fast bacilli causing an appearance of swollen or “spotted”
skin, which they termed “pure and primitive diffuse lepromatosis.”
In addition, they reported that some patients developed acute
necrotic skin reactions, “erythema necroticans,” and differentiated

this condition as Lucio’s phenomenon (6). The most notable
clinical feature of DLL and Lucio’s phenomenon is the diffuse
mycobacterial invasion of endothelial cells surrounding small ves-
sels, often leading to vascular occlusion (8). The initial cyanotic
lesions, caused by poor blood supply and ischemia, gradually evolve
into black necrotic lesions (11, 12). Hence, these cases are often
associated with long-term morbidity (8) as well as a higher number
of fatalities if not managed adequately (5, 13).
Lucio’s phenomenon is usually observed among untreated or

inadequately treated nonnodular DLL cases 1–3 y after the ap-
pearance of their symptoms. Although rare, Lucio’s phenome-
non has also been reported among other forms of lepromatous
leprosy (6). Multidrug therapy (MDT) is currently the treatment
recommended by the World Health Organization for all forms of
leprosy, including DLL and Lucio’s phenomenon (14, 15). Until
recently, Mycobacterium leprae was considered the sole causative
agent of all forms of leprosy, including Lucio’s phenomenon,
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which is often referred to as a “form of leprosy reaction” (13,
16). The genome ofM. leprae has undergone reductive evolution,
with approximately half occupied by pseudogenes (17), and also
displays remarkably low levels of genetic diversity (18–20).
In 2008, a new mycobacterial species named Mycobacterium

lepromatosis was identified in a liver autopsy specimen from
a homeless Mexican who died with DLL in Arizona (21). Since
then, this species has been identified by PCR-based sequencing
in several Mexican patients (22) as well as in individual cases
from Singapore (23) and Canada (24). In addition, clinical pre-
sentations resembling Lucio’s phenomenon have been reported
elsewhere, i.e., Brazil (25, 26), India (27–29), Iran (30), and
Malaysia (31); however, molecular confirmation of the mycobac-
terial agent was not carried out. In addition, several cases of mixed
infection have been reported whereby both M. lepromatosis and
M. leprae were detected (22), which undermines confidence in
M. lepromatosis being the causative agent of DLL.
Knowledge about the biology and pathogenesis ofM. lepromatosis

is limited because this species remains uncultivated (21). To
date, the DNA sequences of 22.8 kb of selected PCR fragments
from M. lepromatosis are known, and these were sufficient
to reveal striking sequence similarity to M. leprae and a close
phylogenetic relationship, but this preliminary analysis provided
little biological insight. Thus, at this stage, genome sequencing is
the most efficient approach to investigate M. lepromatosis.
After the first description of M. lepromatosis by Han et al. in

2008 (21), we reported independent confirmation of this species
in a biopsy specimen from a DLL case (Mx1-22A) from Mon-
terrey, Mexico (32). Here, we combined various DNA enrich-
ment approaches and deep sequencing to unveil the genome
of M. lepromatosis directly from the archived biopsy specimen
from this patient. Genome-wide comparison of M. lepromatosis
and M. leprae provides deeper insight into the biology of
M. lepromatosis and discloses the evolutionary history of these
two closely related but clearly distinct species.

Results and Discussion
Genome Sequencing, Assembly, and Analysis. Because M. lepromatosis
cannot be cultured in vitro and an animal model is not yet
available, the only source of its DNA is infected human tissue.
Biopsy specimen Mx1-22A was used for DNA extraction and Illu-
mina library preparation as described previously (20). To overcome
the problem of host DNA, we used two methods to enrich
M. lepromatosis DNA: whole-genome array capture using the
M. leprae genome as bait (20) and removal of human DNA by
hybridization with a human genomic DNA bait library (Materials
and Methods). Illumina sequencing of the enriched as well as the
original libraries provided 55-fold coverage, which was more than
sufficient for the de novo whole-genome assembly (Table S1).

The genome assembly was obtained by relaxing the assembler
program’s parameters (Materials and Methods) to account for the
extremely biased read coverage from the array capture library.
Contigs were considerably longer compared with those obtained
with default assembly parameters, but at the cost of a higher
chance of misassemblies. To avoid assembly errors, we split those
contigs showing disrupted synteny with M. leprae so that, from the
initial 110 contigs of the de novo assembly, we obtained a final set
of 126 contigs. Most inconsistencies in the contigs were observed
around areas of repetitive DNA, with some exceptions. One such
exception was confirmed by PCR sequencing (as detailed later),
proving that there is at least one instance of genome rearrange-
ment between M. leprae and M. lepromatosis. However, we con-
sider that the overall level of rearrangement is low, given that only
a few contigs showed breaks in synteny with the reference genome
and the GC skew of the “syntenic” version of the M. lepromatosis
genome is virtually identical to that of M. leprae (Fig. S1).
A total of 3,206,741 bases of the M. lepromatosis Mx1-22A

genome were represented in the 126 contigs, and, with one ex-
ception, these all aligned to the 3.27-Mb circular genome sequence
of the Tamil Nadu (TN) reference strain of M. leprae (17). The
exception was a 2.3-kb contig bearing five mycobacterial pseudo-
genes. A graphical comparison revealing genome-wide synteny and
key features of the two genomes is presented in Fig. 1. In brief, the
genome of M. lepromatosis appears to harbor at least 1,477
genes encoding proteins [i.e., coding DNA sequence (CDS)] and
1,334 pseudogenes.

Repetitive DNA.Dispersed repeats were the major cause of breaks
in our de novo assembly. Interestingly, in most cases, the locations
of these repeats correspond to those of the four main families of
repetitive DNA in M. leprae: RLEP (37 copies), REPLEP
(15 copies), LEPREP (8 copies), and LEPRPT (5 copies) (33).
These shared 75–90% sequence identity, in segments as much as
350 nt in length, with the most conserved corresponding to
LEPREP and LEPRPT repeats and the lowest homology found
for the REPLEP repeats. From this analysis, it is evident that the
four repeat families were present in the most recent common
ancestor (MRCA) of M. leprae and M. lepromatosis and that the
levels of conservation between the repeats in the two species are
proportional to their copy number. No additional repetitive DNA
was detected in M. lepromatosis.

A Second Draft Genome. Using the M. lepromatosis genome se-
quence, we designed specific PCR primers and used them to
screen ∼260 biopsies from our collection, thereby identifying a sec-
ond case of M. lepromatosis in another Mexican patient (Mx177)
who presented with Lucio’s phenomenon. This sample, which
contained no M. leprae DNA, was shotgun-sequenced, without any
enrichment, and the resultant sequences were mapped against the
Mx1-22A genome assembly. Despite shallow coverage of the Mx177

M. lepromatosis

M. leprae

Size (Mb)
3.21

CDS
1,477
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tRNA
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Fig. 1. Genome synteny and salient features of M. leprae and M. lepromatosis. The 126 contigs of M. lepromatosis are distinguished with red and orange
colors. Links between M. leprae and M. lepromatosis are BLAST hits, with two shades of gray to distinguish individual contigs. White stripes indicate no BLAST
hits and account for 5–6% of each genome’s specific sequences. Light blue stripes indicate dispersed repeats in M. leprae. Black line indicates a confirmed
structural variation between M. leprae and M. lepromatosis.
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sample (80% of the genome at an average coverage of 5× after
excluding duplicate reads), we found only 12 SNPs in a 2-Mb
alignment where SNP calling was feasible. This very low SNP fre-
quency (1 in 167 kb) is reminiscent of the similarly low genetic di-
versity ofM. leprae strains from the same geographical area (34) and
in a set of worldwide M. leprae genomes in general (20).

Synteny and Conservation of the M. lepromatosis and M. leprae
Genomes. Ninety-four percent of the M. lepromatosis genome
assembly could be aligned to the M. leprae TN genome, and there
appears to be near-perfect collinearity and synteny, with 92% of the
genes and pseudogenes shared (Fig. 1). Details of (pseudo)genes
that have been deleted are provided in Dataset S1. In M. leprae,
there are tandemly arranged asparagine permease genes (ML1304c
ML1305c; ansP1 ansP2), but only one of these is present in
M. lepromatosis (MLPM_1304). Likewise, a duplicated cluster of
four genes in M. leprae (ML1053-ML1056; ML1180c-ML1183c)
is present as a single copy in M. lepromatosis (MLPM_1053-
MLPM_1056). This cluster encodes a member of the PE- and PPE-
protein families and the ESAT-6 proteins, EsxL and EsxK.
M. lepromatosis has intact orthologs for 95% of the CDS

present in M. leprae, but a further 132 CDS appear to have been
pseudogenized in M. lepromatosis (Table S2). It is noteworthy
that four of them (ilvX, proA, cysE, cysK) once encoded enzymes
required for amino acid biosynthesis. Twenty-six M. leprae
pseudogenes appear to have functional counterparts in M. lep-
romatosis (Table S3).
Levels of nucleotide sequence conservation for orthologous

CDS and pseudogenes from M. lepromatosis and M. leprae varied
between the functional categories, as may be seen from the violin
plot (Fig. 2). The most conserved genes code for the rRNA and
tRNA (sequence identity >95%), whereas the least conserved
were those for the PE/PPE proteins, as these display the hallmarks
of selective pressure (as detailed later). On average, CDS shared
93% nucleotide sequence identity between the two species, but
this value was only 82% for the pseudogenes. A wide distribution
of sequence conservation was seen among pseudogenes (Fig. 2),
and this may reflect their respective dates of pseudogenization, as
older pseudogenes will have had longer to diverge.

Species-Specific Sequences in M. lepromatosis and M. leprae. We
identified 84 genomic regions ofM. lepromatosis larger than 500 nt
that have no counterparts in M. leprae, accounting for a total
of 166 kb, or ∼5% of the genome. These regions (range, 0.5–9.6 kb

in size) consist essentially of pseudogenes (n = 163) except for
three intact coding sequences: a hypothetical gene (MLPM_5094),
a putative lipoprotein gene (MLPM_5098), and coproporphyri-
nogen III oxidase (hemN) (discussed later). Truncated remnants
of 57 of these 163 pseudogenes remain inM. leprae, revealing that
some of the reductive evolution in this leprosy bacillus stemmed
from deletions within, or encompassing, pseudogenes since di-
vergence from the MRCA.
Similarly, M. leprae has a total of 199 kb of sequences (>500 nt)

in its genome with no counterpart in M. lepromatosis. These
comprise 172 pseudogenes, of which 54 were partially present in
M. lepromatosis, and 24 protein-coding genes, all annotated as
encoding hypothetical or conserved hypothetical proteins, except
for ML0398c (possible D-ribose–binding protein), which is trun-
cated in M. lepromatosis.

Horizontally Acquired Genes. Several M. leprae genes have no
orthologs in other mycobacteria and appear to have been ac-
quired by horizontal gene transfer. Among those with predicted
functions are proS, encoding a eukaryotic-like prolyl tRNA
synthetase, and ML2177, coding for a uridine phosphorylase that
shows similarity to insect enzymes. Both these genes are conserved
in sequence and location in M. lepromatosis, indicating that they
were present in the MRCA. Likewise, there are two pseudogenes
(MLPM_5100 and MLPM_5101 encoding a β-lactamase and LysR
family transcriptional regulator) in a genomic island restricted to
M. lepromatosis that appears to have been horizontally acquired by
the MRCA and then lost by M. leprae.

Insight into Pathogenesis. The higher morbidity and mortality
reported to be associated with infection by M. lepromatosis and
the resulting DLL suggest the presence of new virulence functions
possibly borne by plasmids. For example, the pathogenesis of
Mycobacterium ulcerans has been attributed to the horizontally
acquired virulence plasmid encoding the mycolactone toxin (35,
36). However, despite intensive investigation of Illumina sequence
reads with no matches in M. leprae and database searches, we
found no evidence for plasmid or bacteriophage sequences.
To cope with iron limitation, intracellular pathogens often

scavenge heme from host tissue or produce and release side-
rophores, such as mycobactin, to capture iron (37, 38). Both
leprosy bacilli have retained the ESX-3 gene cluster that is in-
volved in iron and zinc uptake inM. tuberculosis. The mycobactin
(mbt) gene cluster is essential for the in vivo growth and viru-
lence of M. tuberculosis (39, 40), but this cluster is missing from
M. lepromatosis andM. leprae. InM. tuberculosis, hemN is located
downstream of the mbt cluster, and, with the hemABCDEKLYZ
genes, is required for heme biosynthesis. Interestingly, the hemN
gene is present in M. lepromatosis but not in M. leprae (Fig. 3),
indicating its loss occurred after separation from the MRCA and
suggesting that M. leprae may be limited for heme production.
Inspection of the genes least conserved betweenM. lepromatosis

and M. leprae (Fig. 2) revealed that these correspond mainly
to members of the PE and PPE protein families, charac-
teristic of pathogenic mycobacteria, and to the ESX (type 7)
protein secretion systems. Compared with M. tuberculosis and
Mycobacterium marinum, there are very few PE and PPE pro-
teins in leprosy bacilli. In M. leprae, ML0411 encodes a PPE
protein that acts as an immunodominant serine-rich antigen,
whereas the neighboring gene, ML0410, codes for a PE family
protein. Both genes are present in M. lepromatosis but have di-
verged extensively: there is only 68% nucleotide sequence identity
between MLPM_0411 and ML0411 (note that only half the genes
could be aligned) and 73% between MLPM_0410 and ML0410.
Interestingly, sequence comparison of ML0411 in a range of isolates
of M. leprae of different geographical origin revealed this to be the
most polymorphic gene in the genome, with the highest number of
nonsynonymous substitutions (20, 41). It appears that the marked
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Fig. 2. Nucleotide sequence identity between M. leprae and M. lepromatosis
orthologs. Numbers above violins represent the number of ortholog pairs
for that gene category. The most conserved are tRNA and rRNA genes,
followed by the CDS. Pseudogenes are the least conserved. Identity of genes
that are functional in one species but not in the other is between CDS
and pseudogenes.
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divergence in this locus is the consequence of selective pressure
imparted by the host’s immune system (20).
The ability to invade the endothelium distinguishesM. lepromatosis

from M. leprae. Because we found no evidence for the presence
of a novel virulence gene that could account for this phenotype,
we examined the gene clusters required to produce the five type
7 ESX secretion systems (T7Ss) for unusual features. Although
not essential for growth in vitro, the ESX-1 system is the major
virulence determinant in M. tuberculosis andM. marinum. ESX-1
mediates escape of the bacilli from the phagosome, thus allowing
further replication, cytolysis, necrosis, and intercellular spread
(42). The EsxA protein, a major substrate of ESX-1, ruptures
the phagosomal membrane, thus acting as a principal virulence
factor. Despite extensive conservation of the ESX-1 system
among other mycobacterial pathogens, several of its genes
encoding ESX-1 secreted proteins (Esp, Esx) are missing or
nonfunctional in M. leprae and M. lepromatosis. These include
espE, espB, espF, espG1, espH, espJ, espK, and pe35 in both, and,
additionally, ppe68 in M. lepromatosis. Of the remaining genes in
this locus, esxB, esxA, and espH are the least conserved (69–73%
protein identity) between M. leprae and M. lepromatosis, and
a similar trend was observed for the unlinked espACD operon
(espA, 78%; espC, 77%; and espD, 86% protein identity) that
regulates the expression and secretion of EsxA in a mutually
dependent manner in M. tuberculosis (43–45).
Of the four other T7Ss, ESX-2 and ESX-4 are predicted to be

nonfunctional in M. leprae and M. lepromatosis, whereas the
ESX-5 locus is highly conserved. However, compared with
M. tuberculosis, only the ESX-5 core genes (eccABCDE5 and
mycP5) remain intact in both leprosy bacilli, there are no esx
genes, and the PE protein gene (ML2534c/MLPM_2534) is non-
functional. On the contrary, ESX-3 is the most conserved T7S

system in mycobacteria and seems to fulfill an essential function in
metal homeostasis, although its role in virulence is less clear (45).

Neuropathogenesis. The ability to invade the Schwann cells of the
peripheral nervous system is a hallmark of M. leprae, and this
leads to the neuropathy and nerve damage associated with lep-
rosy. Adherence to Schwann cells (46) has been proposed to be
mediated by two cell wall components: the laminin-binding
protein (ML1683c) and the terminal trisaccharide moiety of
phenolic glycolipid 1 (PGL-1). To produce the trisaccharide,
several enzymes are required, namely a rhamnosyl transferase
(ML0128), a glucosyltransferase (ML2348), and four methyl-
transferases (ML0126, ML0127, ML23246c, and ML2347) (47).
The genes encoding both these adhesin systems are highly con-
served in M. lepromatosis, so invasion of Schwann cells is to be
expected. Given the paucity of well-defined cases of infection
with M. lepromatosis, studies of nerve involvement have not yet
been conducted, but this will be facilitated by the tools arising
from our investigation of the M. lepromatosis genome.

Disease Management and New Interventions. Until very recently,
recognition of M. lepromatosis as a separate species was ques-
tioned. Currently, M. lepromatosis can be identified by a nested
PCR technique that targets the 16S rDNA (22). Given the 98%
identity of theM. lepromatosis andM. leprae 16S rDNA sequences,
a possible source of confusion, it may be advisable to establish
a new method of identification that exploits sequences confined to
M. lepromatosis such as the species-specific PCR templates and
primers described here (Table 1 and Table S4). Immunodiagnostic
approaches for leprosy are being pursued by using the highly
specific trisaccharide from PGL-1 and LID1 (48), a fusion protein
that includes sequences from genes ML0405 (espA) and ML2331.
PGL-1-based tests should also detect M. lepromatosis, but tests
involving LID-1 may be less sensitive because of the extensive
variation in EspA reported earlier.
DLL cases resulting from infection with M. lepromatosis

have responded favorably to the standard MDT (49), and, on
examination of the drug resistance determining regions in the
genes coding for the targets of rifampin, dapsone, and fluo-
roquinolones, only drug-susceptible sequences were found. New
drugs developed to treat tuberculosis may also find application in
leprosy. Inspection of the M. lepromatosis and M. leprae gene
sequences for the targets of the experimental drugs bedaquiline,
benzothiazinones, and Q203 suggest that these should be active,
whereas the nitroimidazole prodrugs PA-824, TBA354, and
delamanid will not be effective because the ddn gene, coding for
the nitroreductase required for their activation, is missing.

Geographical Survey for M. lepromatosis. To gain more insight into
the global distribution of M. lepromatosis, a differential PCR test
was implemented by using species-specific primers targeting
hemN and RLEP (SI Materials and Methods). A total of 227
specimens from patients with leprosy were chosen (Table 1),
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Table 1. Geographical survey of leprosy bacilli by differential
PCR analysis

Country of
origin

Sample size
(suspicion of DLL/Lucio’s) M. lepromatosis M. leprae

Venezuela 77 0 77
Mexico 64 (4) 6 58
Mali 48 0 48
Brazil 33 0 33
Others 5 (2) 0 5

PCR was performed using primers specific for each species: LPM244F and
LPM44R forM. lepromatosis; RLEP-7 and RLEP-8 forM. leprae. Full details are
provided in SI Materials and Methods.
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including some with a history or suspicion of DLL or Lucio’s
reaction (n = 6). The largest patient groups were from Ven-
ezuela (n = 77), Mexico (n = 64), Mali (n = 48), and Brazil (n =
33); a small number of samples suspected of presenting with
Lucio’s reaction were obtained from elsewhere (Table 1). This
analysis revealed the presence ofM. lepraeDNA in 221 cases and
M. lepromatosis in only six, with no evidence for mixed infections.
All six M. lepromatosis cases were of Mexican origin. Among the
samples from DLL or Lucio’s reaction cases, two were positive
for M. lepromatosis and four for M. leprae.

On the Origin and Evolution ofM. lepromatosis. The results from the
genome-wide comparison ofM. leprae andM. lepromatosis indicate
that pseudogenization took place in their ancestral forms and that
the MRCA itself likely had a genome of reduced size compared
with all other known mycobacteria. Based on the rate of non-
synonymous substitution in pseudogenes, it was estimated that
a single massive pseudogenization event took place approximately
20 Mya (50). Since their separation from the MRCA, deletions and
more pseudogenes have appeared in both species. M. lepromatosis
shares the same repeat families with M. leprae, including their ge-
nomic locations, but these have diverged extensively in sequence.
In M. leprae, genome reduction and gene truncation have been
attributed to recombinational events between different repeat
copies, but these events likely occurred in the MRCA (17, 33).
To estimate the divergence times of M. lepromatosis and the

currently available M. leprae strains, substitution rates were cal-
culated in a Bayesian framework by using the software package
BEAST (Bayesian Evolutionary Analysis Sampling Trees). For
phylogenetic and divergence time analysis, the M. lepromatosis
genome was aligned with 18 modern and ancient M. leprae
genomes. On average, there were 90 nucleotide substitutions be-
tween two M. leprae strains and 275,518 substitutions between
M. leprae and M. lepromatosis. A substitution rate of 7.67−9 sub-
stitutions per site per year was estimated (Fig. S2A), similar to
previous estimates usingM. leprae genomes only (20). The resulting
divergence time from theMRCA (TMRCA) for allM. leprae strains
was calculated as 3,607 y ago [2,204–5,525 y ago 95% highest
probability density (HPD)], comparable to previous results (20)
(Fig. S2B). The TMRCA for M. leprae and M. lepromatosis was
estimated to be 13.9 Mya (8.2–21.4 Mya 95% HPD; Fig. S2C). In
this respect, the two leprosy bacilli differ quite markedly from the
species comprising the M. tuberculosis complex (MTBC), as, from
a recent paleomicrobiogical investigation that used two independent
dating approaches, it was concluded that the maximal TMRCA was
<6,000 y for the MTBC (51).
A phylogenetic comparison by maximum parsimony of

M. lepromatosis with various M. leprae strains of different geo-
graphic origins and SNP subtypes is shown in Fig. 4 and by
neighbor joining in Fig. S3. To gain further insight into the
phylogenetic placement of M. lepromatosis among other myco-
bacterial species, additional phylogenetic trees were generated
based on the concatenated amino acid alignments of GyrB,
RpoB, and RpoC (Fig. S4), as well as the alignments of the 16S
genes (Fig. S5). In all four phylogenetic trees, M. lepromatosis is
positioned between the mycobacteria used as outgroups and M.
leprae. The M. lepromatosis branch is closest to the M. leprae SNP-
type 3K strains, consistent with the very recent report of the 3K
strains (branch 0) being the most ancestral lineage of M. leprae
known to date (20). The geographic distribution of type 3K strains is
diverse, but sampling is insufficiently broad to predict a tentative
origin. On the contrary, the predominance of reported DLL and
confirmed cases of infection with M. lepromatosis in Mexico suggest
that this pathogen may have evolved in Central America. More ex-
tensive investigation is required to explore this possibility and to
retrace its origin.

Environmental Sources. M. leprae has long been considered an
obligate human pathogen with its primary route of transmission
being interhuman. In the past 30 y, the nine-banded armadillo
has been identified as a natural reservoir of M. leprae in the
southern United States, and evidence for zoonotic transmission to
humans is accumulating (34). The existence of nonhuman hosts or
natural reservoirs of M. lepromatosis has not yet been investigated,
but, recently, an apparent outbreak of M. lepromatosis infection in
red squirrels (Sciurus vulgaris) was reported in the United Kingdom
(52). Examination of infected squirrel tissue using the PCR-based
sequencing procedures for the hemN gene outlined here has con-
firmed this finding and thus provides evidence for a nonhuman
reservoir or intermediate host for M. lepromatosis. To date, the
most convincing human cases of M. lepromatosis infection, partic-
ularly those with DLL, came from Mexico. One of the regional
culinary traditions in rural Mexico is consumption of field rats
(Rattus rattus) (53). Because M. lepromatosis seems to naturally
infect rodents, such as squirrels, it is conceivable that field rats are
a host and may serve as a disease reservoir. When a retrospective
survey of confirmed cases of M. lepromatosis was conducted, two of
the six Mexican subjects admitted having consumed meat from
field rats. Availability of the M. lepromatosis genome sequence
will enable us to search systematically for its presence in other
potential animal reservoirs as well as in extant cases of leprosy.
As a result, deeper understanding will be obtained of the in-
cidence, etiology, epidemiology, clinical features, and patho-
genesis of leprosy caused by M. lepromatosis.

Materials and Methods
DNA Extraction and Sequencing. DNAwas extracted from the biopsy specimen
Mx1-22A (32), and the Illumina library was prepared as described elsewhere
(20). To overcome the problem of the high level of host DNA in the library,
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we used two methods for enrichment of M. lepromatosis DNA: (i) whole-
genome array capture using an M. leprae tiling array (20) and (ii) removal of
human DNA by hybridization with a human genomic DNA bait library.

Genome Assembly and Annotation. Reads mapping to the human genome
were discarded and duplicate reads were removed before the assembly. De
novo genome assembly was done in MIRA version 4.0rc4 (54). Contigs were
anchored to the M. leprae TN genome, and those contigs that did not match
were screened for contaminants and the presence of mycobacterial genes.
Genome sequence synteny between M. lepromatosis and M. leprae was vi-
sualized in ACT (Artemis Comparison Tool) (55) (Fig. 1).

PCR Procedures. To confirm the presence of the hemN gene and its flanking
sequence, including a genomic rearrangement, we designed PCR primers

(Table S4) to amplify overlapping genomic targets. Details of the procedures
used for the geographical survey are provided in SI Materials and Methods.

SNP Calling and Phylogeny. Genome sequences ofMycobacterium avium K10,
M. lepromatosis, and the published M. leprae strains were aligned against
the M. leprae TN genome. SNP alignments were analyzed in MEGA6
(Molecular Evolutionary Genetics Analysis version 6.0) (56). Further details of
bioinformatics procedures, Bayesian dating analysis, and phylogeny are
provided in SI Materials and Methods.
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