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Tunnel Magentoresistance scan of a pristine three-dimensional topological insulator
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Though the Fermi-surface of surface states of a 3D topological insulator (TI) has zero magnetisa-
tion, an arbitrary segment of the full Fermi surface has a unique magnetic moment consistent with
the type of spin-momentum locking in hand. We propose a three-terminal set up which directly
couples to the magnetisation of a chosen segment of a Fermi surface hence leading to a finite tunnel
magnetoresistance (TMR) response of the non-magnetic TI surface states, when coupled to spin
polarised STM probe. This multi-terminal TMR not only provides an unique signature of spin-
momentum locking for a pristine TI but also provides a direct measure of momentum resolved out
of plane polarisation of hexagonally warped Fermi surfaces relevant for BixTes which could be as
comprehensive as spin resolved ARPES. Implication of this unconventional TMR is also discussed
in the broader context of 2-D spin-orbit (SO) materials.

PACS numbers:

Introduction: The two popular probes used to scan
the surface states of [I, [2] 3-D TIs are spin polarised
ARPES[3] or STM[4, [5]. Spin polarised ARPES seems
to have an edge over the STM as it couples more directly
to the spin texture of the Fermi surface. In this paper we
propose a multi-terminal set up involving spin-polarised
STM (SPSTM) which directly couples to the spin texture
of the Fermi surface leading its straightforward read read-
out . This read out is theoretically understood in terms
of a new kind of TMR [6] response between the magne-
tised STM and the non-magnetic T1 surface which relies
crucially on its multi-terminal character as described be-
low.

Proposed set up: The proposed set up comprises of two

contact pads placed diametrically opposite to each other

on the surface of the TI while electrons are injected from
the SPSTM placed at the centre of the sample as shown
in Fig.[l} The surface can be imagined to be divided into
two halves by a line through the centre of the sample
perpendicular to the direction joining the two contacts,
(for future reference, we mention that the angle made by
this partitioning line with the x-axis is denoted by =, see
Fig.|1). Each contact measures the current flowing in the
surface in its own half. We show that the total current
Iy = I+ IR is insensitive to current anisotropy discussed
above owing to zero magnetisation of Fermi surface but
Al = I, — IR is very sensitive to the current anisotropy
and leads to a finite TMR response with the spin po-
larised STM which oscillates as a function of v. Note
that v can be changed simply by rotating the sample
with respect to the tip about z-axis. We show that AT
measured as a function of « leads to a direct reconstruc-
tion of in-plane spin texture in the momentum space,
i.e., we can extract the angle of spin-momentum locking
(01,) and the chirality; left chiral or right chiral from this
study. Then we extend the calculation to include warping
effects and show how a similar measurement can uniquely
reconstruct the six fold symmetric out-of-plane spin tex-

FIG. 1: A schematic of the setup. The colour density shows
the current density profile on the surface of the TI consistent
with the polarisation direction of the tip shown by red arrow
pointing along y-axis and the spin-momentum locking angle,
0, = /2. Dotted curve is a polar plot of the tunnelling
current amplitude at the point of injection showing the profile
of the current anisotropy. Ir,p are the current (in arbitrary
units) carried by the left and right contact.

ture of the warped Fermi surface too.
Model: We start with the generic Hamiltonian for the
3D TI surface state given by

-,

Moo = hop ) Whi(R)(@ x k). Up(R), (1)
k

where W (k) = 1/v2(1, ' (x0T ¢z and ¢ is the anni-
hilation operator with momentum k. op = tan~t(ky /ky)
is the polar angle of the momentum vector. For
Eq. (1), the spin-momentum locking angle 6, is /2,
consistent with popularly known TI materials[7].
Assuming a flat density of states, a model Hamilto-
nian for a fully spin-polarised STM tip is written as

_ T3 .
Hstm = D of EEdE,TdE,T’ where the STM electron anni-

hilation operator in real space is given by Ugry(7) =
fdl;:‘e"k'77(cos(¢9STM/2),sin(HSTM/2)624‘7)5“‘4)TCZET and

ep = vstMm|k| where vgry is the Fermi velocity of



the STM and fstm(¢sTm) is the polar (azimuthal)
angle of the STM spin. The STM tip is assumed to
be weakly coupled to the TI surface by a tunnelling
Hamiltonian, Hyuun = J (UL (F = 0)Ugpy (F = 0) + h.c.)
which upon Fourier transforming gives Hiynn =
Ik Zﬁé;r?dl?w + h.c., where

1 0 0 ,
zp = 7 <cos S;M —isin S2TMe’(¢STM¢E)> . (2)
has the information about the overlap of the STM spinor
and the TT spinor for each momentum mode k which ulti-
mately decides how much injection happens in each k and

hence the current anisotropy discussed above. The cur-
rent operator is defined as I = dNSTM/dt = %[H, NSTM}
where Ngpy = deczg TCZET and H = Hr1 + Hst™m +
Hivnn. The expectationyvalﬁe of the current at some time
tis given by (I(t)) = (G| et [ e~ | G), where | G) is
the ground state of H in presence of a chemical potential
bias (usT™m # 1) between STM and TT. Treating Hiunn
perturbatively, we get

0) = 1 [ a1 s ). 1O 9. (3)

—00

where the I in the subscript stands for the interaction
picture and | g) = | g )71 ® |g)sTm is the non-interacting
ground state with Hiun, is treated as interaction. De-
composing the current in momentum space we obtain,

<[> = %def dE/‘Z;;‘PXE)EI(S(ESTM(EI) — ETI(E)), where
|z,;|2 (Eq. (2)) has the information of the spinor over-
laps, Xj 5 = = dr Im[Gri (K, 0; k, 7)Gsrm (K, 73 K, 0)]
has the Green’s functions, where G denotes the standard
time ordered Fermionic Green’s functions and the delta
function ensures energy conservation. Hence we obtain a
momentum resolved current given by

(IF) = Tl 4)

where xz = fjooj dE/X;; E,J(ESTM(E’) —er1(k)). The total

-,

tunnelling current is just a sum over ( I(k)) for all possi-
ble k living in the bias window. The angular distribution
of the injected current in real space is same as the angu-
lar distribution of momentum resolved current about the
tunnelling point. As a consistency check for this, we eval-
uate the expectation Valuis of the current vector operator
for a pristine TT surface 7(7) = (o¥(7), —o*(7)) at ¥ =0
perturba:cively to second order in tunnel Hamiltonian and

obtain (j(F = 0)) = ZE<I(E) )7z which reconfirms our
interpretations of (I(k)) being the real space angular
distribution of current about the injection point. Here
N is a unit vector pointing along k. Owing to the az-
imuthally symmetric (in k—space) Fermi surface, ( I(k)),

turns out to be separable in its dependence on \E | and ¢
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FIG. 2: Left:The angular profile of the current as obtained
from Eq.(5) for 6sra = 7/2 and different values of s
as mentioned in the legend. Right: The resulting current
asymmetries as function of « as obtained from Eq. @

as (I(k)) = Iz 14, with

Iy, = 1+sinOsrarsin(gpsrar — ¢5) - (5)

It is clear from the above result that the total in-
jected current which is obtained by summing over all
possible momenta in the bias window leads to a cur-
rent which is independent of the direction of STM tip
magnetisation[T5] (zero TMR) consistent with TRS in
TI. But the current asymmetry defined as AI = I —
Ip = ([ = [7727)dgp T4, [ k|d|R|Tz which could be
measured directly in the set up depicted in Fig. [I] shows
a finite TMR as function of  given by

deJ?

Al = ————
ﬁ4UJQc’USTM

.FCOS(d)STM — ’}/) sin GSTM , (6)

where F = fj;o dE E(ng! — n§™) is obtained from

the \E| integral by appropriately putting in the density
of states, where np(E, u,T) denotes the Fermi function.
Reconstructing spin texture: We will now demonstrate
that the above expression can be directly exploited to
uniquely identify the spin-momentum locking angle and
the chirality. At this point it is important to note that
all the in-plane angles like v and ¢g7; are measured
with respect to the positive direction of z-axis along the
anti-clock wise direction. For the case of ¢grar = 7/2 ob-
serving a zero in A at v = 0 (see Fig.(2)) implies that
the momentum modes pointing towards the left and right
contact starting from the tip position have a locked-spin
which is pointing perpendicular to the STM polarisation
pointing along y-axis (see Fig. so that the injected
current gets symmetrically distributed between left and
right contact. Assuming a planar spin texture, it di-
rectly tells us that the spin momentum locking angle
|0 = /2. Of course this conclusion relies on the as-
sumption that the Fermi-surface is circular in shape so
that spin on each half can be added up symmetrically .
Now we are left with two possibilities; the two oppositely
directed momentum modes discussed above pointing to-
wards left and right contact have a locked-spin either
pointing parallel and anti-parallel to the z—axis or the




other way round respectively. And this information is
nothing but the spin chirality of the Fermi surface. To
settle the chirality, we observe that AT is maximally neg-
ative for v = w/2. This implies that maximal share of
the injected current is flowing to the right contact (as
depicted in Fig. implying that the momentum mode
pointing towards right starting from the tip position has
a locked-spin which is parallel to the tip magnetisation
direction. Hence the study of AI also implies that the
momentum mode pointing along x-axis has a locked-spin
pointing along y-direction hence reading out the spin chi-
rality of the Fermi surface in hand. So its leads to con-
clusion that the spin-momentum locked spin is uniquely
given by < G(k) >= (—sin ¢y, cos ¢;). Hence our claim
of reconstructing the Fermi-surface spin texture using
the proposed three-terminal TMR data is clearly demon-
strated. For an arbitrary spin-momentum locking angle
01, AI ~ sin(y — ¢stm + 01); the maxima in its magni-
tude occurs at v = ¢grm — 0L + 7/2 and hence the spin-
momentum locking angle can be extracted. The sign of
the first maxima of Al as we increase 7 from zero gives
the chirality.

TMR and I;,/r: The next step is to recast Ir,,r or equiv-

alently AI in an explicit TMR form[6] which puts our
idea on a firm footing and adds further transparency to
the discussion above. Note that a net spin polarisation
vector can be obtained by performing a vector sum of spin
polarisations of each momentum mode living on half of
the Fermi surface of TI surface states, where the Fermi
surface bipartition is done along the line defining . This
quantity for each half of the Fermi Surface is given by
Shatg,1yr(7: 1) = F(pL1 /) (cos 7 + sinvj) which sums
to zero due to TRS. Here pl' = 2mp/(hvp)? is the den-
sity of states (DOS) of TT at chemical potential ;1 where
is measured from the neutrality point. Then, by extend-
ing Eq. @ to include finite polarisation of the STM tip,
in linear response limit we obtain,

,n_J262pl’1:IpSTM

Ijr = =—5——[1F ~Snatp(v.0) - S5l V (7)

STM ig the spin averaged DOS of the tip, p is the

where p
polarisation of the tip given by (prM - prMV(PfTM +

piTM)

TI. S'half and S'STM are unit vectors along ghalf and
magnetisation direction of the tip. We see that indeed the
left and right contact shows a standard TMR response[6]
having opposite signs (due to TRS) with the magnetised
STM and the pure magnetic response can be extracted
from it simply by taking an anti-symmetric combina-
tion of the two which is nothing but AI. Hence spin-
momentum locking together with multi-terminal set up
leads to this exotic situation where large TMR response is
extracted out of a non-magnetic material which is shown
to be useful for characterising the material itself. This is
the central finding of this paper. It is important to the

and V is the applied voltage bias between tip and

FIG. 3: The energy spectrum in units of eV (left) and the out
of plane magnetisation (right) in the momentum space for
the Hamiltonian with the warping term. The white contours
depict the Fermi surface at Fr = 0.1,0.2 and 0.3 eV respec-
tively. The momentum magnitudes in the polar plots are in
units of A™ .

note that the expression for Iy, /r obtained above remains
valid as long as spin-momentum locking is protected by
TRS independent of the fact that the spin lives in the
x-y plane or has components along the z-direction. The
only necessary change in Eq. is, we need to replace
ghal 7,L/r(7, ) for the present case with its correspond-
ing counterpart. This observation is crucial for applica-
tion of Eq. to the next case (warped case) where we
have out of plane spin-momentum locking.

Warping case: Next, we consider a hexagonal warping
term[§] in the Hamiltonian of the TI given by Hw =
S A (KL + k2 )0%; Hrr = hop 1(3 x k), + Hw, which
gives rise to a spin texture on the Fermi surface whose
out-of-plane polarisation has a staggered structure in
the k- space with six symmetric regions of alternat-
ing positive and negative out-of-plane magnetisation (see
Fig.). The increasing strength of the TMR signal
(with STM magnetization pointing along the z- direc-
tion) with increased doping of the TI surface state pro-
vides a direct measure of the magnitude of out-of-plane
magnetization of the Fermi surface. The TMR signal
strength is observed to grow monotonically with the
chemical potential of T1 surface state measured from the
neutrality point.

Reconstructing out of plane spin texture: In this case we
keep the SPSTM magnetisation either parallel or anti-
parallel to the z-axis. Electrons injected from spin po-
larised STM pointing along positive z-direction see six al-
ternating regions with positive and negative out-of-plane
polarisation on the Fermi surface leading to alternating
high and low overlap of the wavefunctions in momentum
space. This leads to a high current density in three re-
gions and low current density in the rest of the three.
This pattern reverses itself as the STM magnetisation
is reversed. This pattern of the current distribution is
evaluated using Eq. and is shown in Fig. |4l This cur-
rent pattern can be measured by the same three-terminal
current measurements setup defined above but there is a
crucial difference. In the previous case rotating the orien-
tation of the contacts (i.e. changing ) was equivalent to
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FIG. 4: Top: The current distributions in the momentum
space with the STM magnetisation being up (left) and down
(right). The momentum magnitudes in the polar plots are
in units of A™". Bottom: AT as a function of 7. The three
different vertical lines at 7 /6, /3 and /2 correspond to the
three different bipartition of the top panel (corresponding line
styles).

rotating the sample about z-axis owing to azimuthal sym-
metry of the Fermi surface but in this case the contacts
are to be engineered separately for each ~ while keep-
ing the orientation of underlying lattice on the x-y plane
fixed as the hexagonal warping of the spectrum is a direct
reflection of the underlying lattice. Hence a minimal set
up requires multiple samples with identical orientation of
underlying lattice in the x-y plane with contact pads ro-
tated with respect to each other. The 3-fold symmetry of
the lattice, which gives rise to the 3-fold symmetry of the
out of plane spin polarisation causes a periodicity of 27/3
in Al measured as a function of 7 (see Fig. . It can
be seen from the figure that if the line partitioning the
sample into two halves goes through the corners of the
hexagonal pattern of the Fermi surface, then the asym-
metry is extremal, on the other hand if it goes through
the centre of the sides of the hexagon, the asymmetry is
zero. A periodicity of 27/3 in Al as we vary v implies
that there is a 3-fold symmetry in the texture. Three suc-
cessive peaks (dips) turning into dips (peaks) as we flip
the STM magnetisation direction from positive z-axis to
negative z-axis implies the presence of three regions with
positive out-of-plane magnetisation and three others with
negative. The symmetry in magnitude of the dip and
peak indicates the up and down polarised patches being
equal in length on the Fermi surface. This demonstrates
that AT could be used for uniquely reconstructing the out
of plane polarisation of the Fermi surface in the warped
case.

Experimental feasibility: Implementation of our pro-
posed set up requires the TI surface state to be in bal-
listic limit. BisTes, a 3D TI material has a reported
elastic mean free path of 235nm[9] and hence a micron

by micron sized sample could be considered reasonable
and is an experimentally feasible sample size[d]. As our
proposal strongly depends on the spin degree of freedom,
spin-relaxation length is also a very relevant length scale.
Though there are no clear estimates for this quantity, it
is clearly bounded from below by the elastic mean free
path[I0] in the absence of magnetic impurities. Our pro-
posal relies strongly on the existence of almost reflection-
less contacts. This fact could be of concern because such
reflections could suppress the amplitude of the proposed
current asymmetry, however the important point to note
here is the fact that a contact should be largely reflection-
less due to the spin-momentum locked nature of the sur-
face states. Any reflection from the contact will require
flipping the spin and hence will be suppressed for non-
magnetic contacts. This indeed seems to be the case from
experimental results reported in Ref.[11] where contacts
with resistance as low as 1 m£) were implemented.

Discussion and outlook: In this paper we have shown

that a TMR response can be obtained even from a non-
magnetic material like a TI surface when weakly cou-
pled to a ferromagnet, provided we subscribe to a multi-
terminal set up. Proximity induced magnetism in a non-
magnetic material has been used to study TMR in earlier
works[I2] T3], however in our proposal the weak coupling
ensures that the response obtained is indeed of the pris-
tine non-magnetic material which gives it a clear advan-
tage over its predecessors. The fundamental physics in
our proposal which is responsible for extracting TMR re-
sponse from a non-magnetic material is spin-momentum
locking which is generic to any strong SO coupled mate-
rial, for example a 2D Rashba SO coupled material which
has two circular Fermi surfaces with their individual spin-
momentum locking akin to that of a strong 3D TI sur-
face, except for, the relative chirality of the spin texture
between the two Fermi surfaces of the Rashba material
being opposite to each other. Hence, a TMR response
can be extracted as before by calculating AI/Ij in a set
up identical to Fig. using our formulation which turns
out to be

E =0 {%) S Be) Serat | ®
0 ™

where dp is given by (pout — pin)/(Pout + Pin)s Shaif 1S
the unit vector pointing along the total magnetisation
of half of the Fermi surface of the outer Fermi surface
for Rashba spectrum and poyue(in) is the DOS for outer
(inner) Fermi surface for the Rashba Hamiltonian. Note
that the TMR response for the 2D Rashba material is
similar to that of the TI apart from the suppression fac-
tor of dp which could be optimised by varying Frp. A
similar calculation for the case of arbitrary 2D spin orbit
Hamiltonian is straight forward though could be tedious
if the Fermi surfaces are not circular. Hence this new con-
cept of multi-terminal TMR, introduced in this article is
of direct relevance for studying Fermi surface topology



and spin texture of arbitrary 2D spin orbit materials in
general.
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