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We propose an analytical method to determine the shape of density profiles in the asymptotic
long time limit for a broad class of coupled continuous time random walks which operate in the
ballistic regime. In particular, we show that different scenarios of performing a random walk step,
via making an instantaneous jump penalized by a proper waiting time or via moving with a constant
speed, dramatically effect the corresponding propagators, despite the fact that the end points of the
steps are identical. Furthermore, if the speed during each step of the random walk is itself a random
variable, its distribution gets clearly reflected in the asymptotic density of random walkers. These
features are in contrast with more standard non-ballistic random walks.
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I. INTRODUCTION

Ballistic motion is ubiquitous and often lies at the ori-
gin of stochastic transport phenomena. Swimming bac-
terial cells, scattered photons, or atoms in optical lat-
tices [1–8] move with fixed speeds between tumbles and
collisions which reset their velocities to new values and
eventually lead to the randomization of the dispersal pro-
cess. However, there is a large class of diffusion processes
where the ballistic behaviour of particles between the re-
orientation events is retained at larger scales [3, 9–11].
Such ballistic diffusion processes can be modelled on the
stochastic level by certain classes of random walks, the so-
called Lévy walks, where the displacements and the time
intervals between the successive direction renewals are
coupled [12–15]. What all these ballistic random walks
do have in common is that the probability density func-
tion (pdf) of the time intervals has a slowly decaying
power law tail ψ(τ) ∝ t−1−γ with 0 < γ < 1. This pdf
lacks a typical scale (has a divergent mean) and gives
rise to the ballistic scaling of the whole density profile of
diffusing particles. Depending on the implementation of
the space-time coupling one has to distinguish between
jump and velocity models [16]. In velocity models a par-
ticle moves at a certain random but constant velocity
during the flight time and at each renewal a new velocity
and a new flight time are chosen from the corresponding
probability distributions. In the jump models [17], the
displacement of the particle takes place instantaneously
but is penalized by a certain waiting time – longer jumps
will require longer waiting before another jump may oc-
cur. In the wait-first model the particle jumps at the
end of the waiting time, whereas in the jump-first model
the particle jumps and then rests for the corresponding
waiting time. Such random walks were previously con-
sidered in the literature [18–26], and recently also with
a method of infinite densities [27] in the sub-ballistic su-
perdiffusive regime (flight or waiting times with finite
mean, 1 < γ < 2). However, in general the exact analyt-

ical solutions describing the density of random walking
particles are rare and can be obtained only for some par-
ticular values of γ [16, 28].

In this paper we suggest a method to compute ex-
plicitly the asymptotic densities of random walks in the
regime of ballistic scaling. We show that this approach
can be applied both to coupled jump models and to the
models with random velocities, the latter being related
to weak ergodicity breaking. Remarkably, the choice of
whether the particle jumps at the beginning or end of the
waiting time (jump models), as well as the distribution
of velocities (velocity models) has a dramatic effect on
the shape of the particles’ density, a result which could
not be obtained from the standard asymptotic analysis
routinely employed in random walks.

II. MODELS

Let us briefly recap the basic microscopic equations
of the models considered in the present paper. Here we
restrict ourselves to the one-dimensional case. In the
jump models the jumps are penalized by a waiting time.
For the jump-first model, the particle performs a jump
according to a jump length pdf f(x) and then waits for
a time τ drawn from an x-dependent waiting time pdf
ψ(τ |x). This process is then renewed. For the wait-first
model, the particle waits first for a time τ drawn from
the waiting time pdf ψ(τ) and then jumps over a distance
x given by f(x|τ) at the end of the waiting time (see Fig.
1). Thus it is easy to construct a balance equation for the
probability density of particles Qα(x, t) to end a step at
x at time t (α = “j” or “w”, denoting jump- or wait-first
models, respectively). The pdf that the step ends at x
at time t is determined by the joint pdf K(x′, τ) that the
actual jump had length x′ and duration τ , provided that
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the particle ended its previous jump at x− x′ at t− τ ,

Qα(x, t) =

∫ ∞
−∞

dx′
∫ t

0

Kα(x′, τ)Qα(x− x′, t− τ)dτ

+δ(x)δ(t). (1)

Here the coupled jump kernels for each model are Kw =
ψ(τ)f(x′|τ) and Kj = f(x′)ψ(τ |x′), and the last sum-
mand is the initial condition. Note that the distinction
between the Qα at this point is only a formal one. The
Qα are mathematically the same for both jump models.
Still, both models are qualitatively different, and the Kα

contain the information about which variables are depen-
dent or independent (and thus implicitly on what hap-
pens between the start and end of a jump) which comes
into effect in the following equations for the densities.
We assume that the process starts at x = 0 and t = 0
so that the beginning of the first waiting time interval
coincides for all sample trajectories. The expressions for
the density of particles are then:

pw(x, t) =

∫ t

0

Ψ(τ)Qw(x, t− τ)dτ (2)

pj(x, t) =

∫ ∞
−∞

dx′
∫ t

0

f(x′)Ψ(τ |x′)Qj(x− x′, t− τ)dτ

(3)

where Ψ(t) = 1 −
∫ t
0
ψ(τ)dτ and Ψ(τ |x) = 1 −∫ τ

0
ψ(τ ′|x)dτ ′ are the survival probabilities, which are

equivalent to the probabilities that no renewal occurs up
to time t.

The initial conditions for the jump first model must be
treated with some care. As stated in Eq. (1) at time t = 0
the system is prepared and the particle is at the origin.
We assume that a jump took place at t = 0+. In that
sense the process begins at the start of the measurement.
Thus, if taking t→ 0+ one finds with Eq. (1) for the wait-
first case Eq. (2) pw(x, 0) = δ(x) and for the jump-first
case Eq. (3) pj(x, 0) = f(x), as expected.

In particular, we will look at the linear coupling for the
jump models, meaning that the waiting time is linearly
proportional to the jump distance. This results in the
simple coupling functions [16]

f(x|τ) = δ(|x| − v0τ), (4)

ψ(τ |x) = δ(τ − v−10 |x|). (5)

We denote the proportionality constant by v0 as it has the
dimension of a velocity (and can indeed be considered as
the speed of the single particle if one measures the ratio
of the distance travelled to the duration of the step). The
particular form of the primary waiting-time pdf ψ(τ) and
jump-length pdf f(x) will be specified later when needed.
The following general considerations do not require such
specification yet.

A different scenario is a velocity model (see Fig. 1),
where during each step of duration τ drawn from ψ(τ) a
particle moves with a constant speed v drawn according

to a velocity pdf h(v). Equivalently to the loss flux in the
jump model, we now write down the balance equation
for the probability density ν(x, t), which describes the
frequency of velocity changes at point x at a given time
t

ν(x, t) =

∫ ∞
−∞

dv

∫ t

0

ν(x− vτ, t− τ)h(v)ψ(τ)dτ

+δ(x)δ(t). (6)

A velocity change can occur in x and at time t if the
previous velocity change to the value v took place at x−
vτ at the time t−τ . With this we get the particle density

pv(x, t) =

∫ ∞
−∞

dv

∫ t

0

ν(x− vτ, t− τ)h(v)Ψ(τ)dτ (7)

where Ψ(τ) = 1−
∫ τ
0
ψ(τ ′)dτ ′ is again the probability not

to have a renewal until τ .
Note that in the special case of the velocity

model (Lévy walk) with just one speed h(v) =
1/2 [δ(v − v0) + δ(v + v0)] [16, 18, 29] the starting points
and end points of the consecutive steps coincide with
those of the jump models with linear coupling, although
the paths in the (x, t)-plane are different (see Fig. 1).
Therefore these models differ only by their last, incom-
plete step. As we proceed to show, this seemingly mi-
nor difference leads to dramatic effects on particles’ pdf
p(x, t). Beyond the fundamental interest in the long time
limit of random walks, this issue is important also for
computer generated random walks, since in the normal
situation, these definitions of sample paths all converge
to unique behavior.

III. PROPAGATORS

A. General expressions in Fourier-Laplace space

Equations (1), (2) and (3) for the jump models and
Eqs. (6), (7) for the velocity model are solved with
the help of Fourier-Laplace transforms [30]. By setting
the initial distribution of particles to the delta function
p(x, t = 0) = δ(x) we can find the propagators G(x, t)
for all three models. For the jump models, in Fourier-
Laplace domain we get [32] (see Appendix A):

Gj(k, s) =
FL{f(x)Ψ(τ |x)}

1−FL{f(x)ψ(τ |x)}
; (8)

Gw(k, s) =
L{Ψ(τ)}

1−FL{f(x|τ)ψ(τ)}
; (9)

where F and L stand for Fourier- and Laplace trans-
forms, with k and s denoting the coordinates conjugate
to x and t, respectively.

Using Eqs. (6), (7) and convolution theorems for
Fourier and Laplace transforms, we get in accordance
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FIG. 1. (Color online) Trajectories of the three stochastic
models investigated in the text. Lévy walk (blue), wait-
first (green) and jump-first (red) models produce trajectories
which take different paths but pass through the same end
points on the (x, t) plane. Therefore, only the very last, un-
completed step distinguishes these three models. tn is the last
renewal event before the measurement time t, and t − tn is
called the backward recurrence time

with previous studies [28, 31] the propagator of the ve-
locity model Gv which is given by

Gv(k, s) =
L{Ψ(τ)h(kτ)}

1− L{ψ(τ)h(kτ)}
, (10)

where kτ is the Fourier variable conjugate to v and hence
the (spatial) Fourier transform of the velocity distribu-
tion F {h(v)} =

∫∞
−∞ e−ikτvh(v)dv = h(kτ).

Eq. (10) retains the form of the well-known Montroll-
Weiss [33] equation for the pdf of the (uncoupled) contin-
uous time random walk (CTRW) to find the particle at x
at time t, modified such that it applies to random jumps
taking place not in space but in velocity [34]. Eq. (9)
is a special case of an equation for CTRW introduced by
Scher and Lax [12], accounting for coupled waiting times
and jump lengths. Eq. (8) represents a further modi-
fication of the latter, reflecting the fact that there the
survival probability Ψ(τ |x) depends on the jump length.

The numerators in Eqs. (8-10) reflect the effect of the
last jump interval in the process on the final position of
the particle. This last incomplete time interval is called
backward recurrence time τb = t − tn, where tn is the
epoch of the last renewal (see Fig. 2). As we will see
later, this last interval has a crucial effect on the shape
of the asymptotic particle pdfs, unlike usual random walk
theories. Note that, though in a slightly different manner,
the statistics of the last jump event also plays an impor-
tant role in the description of transport of cold atoms in
optical lattices [35].

An analytical representation and a direct inversion of

Eqs. (8-10) is not feasible in most cases. As an al-
ternative, one has to resort to the asymptotic analysis
for large space and time scales x, t → ∞. Going to
Fourier/Laplace space using the Tauberian theorem [14],
this limit corresponds to (k, s)→ (0, 0), in our (ballistic)
case such that (k/s) = const. However, even then the ex-
plicit analytical Fourier - Laplace inversion is often not
possible and has to be performed numerically. In the fol-
lowing, we assume that the persistence time and jump
length pdfs fall off like a power law:

ψ(τ) =
1

τ0

γ

(1 + τ/τ0)1+γ
, 0 < γ < 1 (11)

for the waiting time of the wait-first model and for the
flight time of the velocity model, and

f(x) =
1

2x0

γ

(1 + |x|/x0)1+γ
, 0 < γ < 1, (12)

for the jump length distribution in the jump-first model.
Note that our final results are not sensitive to the specific
small τ or -x behavior. The power law tails completely
determine the long time behavior which is rooted in the
generalized central limit theorem, see for example [13].
Thus our results are valid for the general class of waiting
time or jump length pdfs that have the same asymptotic
limit as Eq. (11) or Eq. (12), respectively.

Via the coupling relations (4,5), the Eqs. (11,12) fully
determine also the step lengths of the wait-first, and time
intervals of the jump-first model, respectively. Thus in
the wait-first case the full coupled jump pdf is

Kw(x, τ) = ψ(τ)f(x|τ) =
1

τ0

γ

(1 + τ/τ0)1+γ
δ (|x| − v0τ) ,

(13)
from which we calculate the effective jump length pdf

fw(|x|) =

∫ ∞
0

Ψ(x, τ)dτ =
1

v0τ0

γ

(1 + |x|/(v0τ0))1+γ

(14)
which corresponds exactly to (12) if we set x0 = v0τ0. An
analogous derivation applies for the jump first model, so
that indeed Eqs. (4,5) together with (11,12) yield the
same effective jump length and waiting time distribu-
tions. Thus fw(|x|) = ψ(τ)|τ=|x| and ψj(τ) = f(|x|)||x|=τ
for x0 = v0τ0 which allows us to compare between the two
jump models. The construction of the simple Lévy walk
with two velocity states h(v) = 1/2[δ(v− v0) + δ(v+ v0)]
such that its steps all end in the same points in time and
space as in the jump models requires to choose the same
v0 for all models. Later we will also see what changes
in more complicated velocity models with distributed ve-
locities. The resultant (effective) waiting time pdfs of
all these models lack a typical time scale since the mean
waiting time diverges, and hence the overall motion of the
particle will be governed by a few very large (of the order
of the observation time) persistence time intervals dur-
ing which the particle’s state of motion does not change.
Therefore this regime is referred to as the ballistic one
[10, 36].
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B. Fourier-Laplace inversion in the ballistic scaling
regime

When stating that the propagator of a random walk
model has the ballistic scaling we imply that it can be
written in the following form:

G(x, t) ∼=
1

t
Φ
(x
t

)
, t→∞ (15)

where Φ is the scaling function. In Fourier-Laplace space
this would correspond to a similar relation

G(k, s) =
1

s
g

(
ik

s

)
. (16)

For the Fourier-Laplace inversion of this expression we
will follow a procedure similar to that given e.g. in [37].
By using the characteristic function and the definitions
of the integral transforms we can write (see Appendix D)

G(k, s) =

∫ ∞
0

e−st
〈
e−ikX

〉
dt

=
1

s

〈
1

1 + ik
s Y

〉
. (17)

Here, angular brackets denote the averaging with respect
to a random variable X which has a pdf P (X)

〈F (X)〉 =

∞∫
−∞

F (X)P (X)dX. (18)

In our case, X is the coordinate of the particle at time
t and therefore P (X) = G(X, t). In addition, we intro-
duced a scaled variable Y = X/t to obtain the second
line of Eq.(17). Now by comparing Eqs. (17) and (16)
we can identify the scaling function g in Fourier-Laplace
space as:

g(ξ) =

〈
1

1 + ξY

〉
; ξ ≡ ik

s
. (19)

We use the definition Φ(y) = 〈δ(y − Y )〉 and the
Sokhotsky-Weierstrass theorem [38] to write

Φ(y) = 〈δ(y − Y )〉 = − 1

π
lim
ε→0

Im

〈
1

y − Y + iε

〉
= − 1

π
lim
ε→0

Im

[
1

y + iε

〈
1

1− Y
y+iε

〉]
Finally, if we compare the above formula with Eq. (19)
we obtain the recipe to find the analytical expression of
the scaling function Φ(y) if its counterpart in Fourier-
Laplace space g(ξ) is known:

Φ(y) = − 1

π
lim
ε→0

Im

[
1

y + iε
g

(
− 1

y + iε

)]
. (20)

A similar method was used before in [37] for the inversion
of a double Laplace transform. Here it is generalized to
the case of time and two-sided space variables (as in [39]).
Below we demonstrate how it works in practice.

IV. RESULTS FOR JUMP MODELS

A. Two-sided jump models

We start with general analytical expressions for the
propagators of the jump models Eqs. (8) and (9), use
the simple coupling relations Eqs. (4,5) and proceed with
the asymptotic analysis. For a waiting time distribution
of the form as in Eq. (11) in the long-time limit, its
expansion in Laplace space is given by (and similarly for
the jump length pdf Eq.(12) in Fourier space)

ψ(s) ' 1− τγ0 Γ(1− γ)sγ (21)

After some algebra (see Appendix B) we find for the prop-
agators in Fourier-Laplace domain in the small k and s
limit

Gj(k, s) =
1

s

[
1− (ikv0)

γ
+ (−ikv0)

γ

(s+ ikv0)
γ

+ (s− ikv0)
γ

]
(22)

and

Gw(k, s) =
1

s

2sγ

[(s− ikv0)
γ

+ (s+ ikv0)
γ
]
. (23)

We indeed see that these expressions assume the scaling
form as in Eq. (16), from which we identify the scaling
functions

gj(ξ) = 1− (−ξ)γ + (ξ)
γ

(1− ξ)γ + (1 + ξ)
γ (24)

and

gw(ξ) =
2

(1− ξ)γ + (1 + ξ)
γ (25)

with ξ = iv0k/s so that the scaling variable becomes
y = x/(v0t). This allows us again to perform the Fourier-
Laplace inversion in the scaling regime. By Eqs.(20), (22)
and (23) we find the scaling solutions in original space-
time domain:

Φj(y) =
sin [πγ]

π
y−1 ×
signy

|y+1|γ+|y−1|γ 1 ≤ |y| <∞

|y+1|γ−|y−1|γ
|y+1|2γ+|y−1|2γ+2|y+1|γ |y−1|γ cos[πγ] 0 ≤ |y| < 1

(26)

Φw(y) =
2 sin [πγ]

π
|y|γ−1 ×
0 1 ≤ |y| <∞

(1−|y|)γ
|y+1|2γ+|y−1|2γ+2|y+1|γ |y−1|γ cos[πγ] 0 ≤ |y| < 1

(27)

where y = x/(v0t) is the scaling variable (see Fig. 3).
We also find from Eq. (23) a mean-squared displacement
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(MSD)
〈
x2
〉
w

= (1−γ)γv20t
2/2 or in terms of the scaling

variable
〈
y2
〉
w

= (1 − γ)γ/2. Although the pdf for the
jump-first model scales ballistically, it does not possess
a finite MSD. This is to be expected, since the variance
of the jump length diverges and the jump is performed
at the beginning of a waiting time - the last jump can
be very large when the corresponding last waiting time
is far from being completed.

B. One-sided jump models

The reason for the remarkable shape differences of the
scaled densities for the different models (see Fig. 3 )
becomes immediately clear if we consider the following
simplified example. In what follows we allow for jumps
only in the positive direction and indicate this in the scal-
ing functions by a superscript “+”. The scaling functions
become

g+j (ξ) = 1− ξγ

(1 + ξ)
γ ,

g+w (ξ) =
1

(1 + ξ)
γ .

Thus, the one-sided scaling solutions are

Φ+
j (y) =


sin[πγ]
π y−1 (y − 1)

−γ
1 < y <∞

0 −∞ ≤ y ≤ 1

(28)

Φ+
w(y) =


0 1 < y <∞

sin[πγ]
π (1− y)

−γ
yγ−1 −∞ ≤ y ≤ 1

(29)

as shown in Fig. 4. The MSD of the jump-first
model again diverges. For the one-sided wait-first model〈
x2
〉
w

= (1 + γ)γv20t
2/2 and thus

〈
y2
〉
w

= (1 + γ)γ/2,

or var(y)w = (1 − γ)γ/2, as 〈y〉w = γ. The propaga-
tors of the one-sided jump models are closely related
to the distributions of forward and backward recurrence
times τf and τb, i.e. the time interval from the measure-
ment time to the next renewal and the time interval that
passed since the last renewal, respectively (see Fig. 2).
The positions x in the jump and wait first models are
x(j) = v0(t+ τf ), x(w) = v0(t− τb) and thus

y(j) = 1 +
τf
t
, (30)

y(w) = 1− τb
t
. (31)

Indeed, the forward and backward recurrence time scal-
ing distributions of the variables y(f) = τf/t and y(b) =
τb/t are obtained by performing the above transforma-
tions Eqs. (30), (31) of the scaling variables y in Eqs.
(28), (29), respectively (see also [37, 40]). This example

demonstrates strikingly that the difference between the
models comes into effect only through the last renewal
period.

FIG. 2. Backward and forward recurrence times. Given a
measurement time t, the backward recurrence time τb is the
time elapsed since the time tn the last event took place. The
forward recurrence time τf is the time span between t and the
time tn+1 at which the next renewal will take place.
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FIG. 3. (Color online) Propagators of two jump models
in the ballistic scaling regime. The rescaled propagators for
(a) the wait first and (b) the jump-first model from (Eqs.
(27), (26)) are shown for different values of the exponent γ
determining the power-law tail of the waiting time and jump
length distributions.

V. RESULTS FOR THE VELOCITY MODELS

The propagator for the velocity model Eq. (10) can be
rewritten as

Gv(k, s) =

∫∞
−∞ dvΨ(s+ ikv)h(v)

1−
∫∞
−∞ dvψ(s+ ikv)h(v)

, (32)

where the Ψ(s + ikv) and ψ(s + ikv) are Laplace-
transforms and the shift theorem was used (see Ap-
pendix C). This result is exact, provided both integrals
in Eq.(32) converge. In the ballistic regime 0 < γ < 1
we use the expansion given in Eq. (21) to obtain the
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FIG. 4. (Color online) One-sided jump models. In this par-
ticular case only jumps to the right are allowed. One-sided
wait-first (a) and jump-first model (b) (Eqs. (29), (28)), are
shown for different values of the power-law tail exponent γ
governing the flight and jump length distributions. These re-
sults are related to the statistics of the backward and forward
recurrence times, as discussed in the text.

asymptotic version of this result

Gv(k, s) =
1

s

∫∞
−∞ (1 + ikv/s)

γ−1
h(v)dv∫∞

−∞ (1 + ikv/s)
γ
h(v)dv

. (33)

By comparing it with the scaling form of Eq. (16) we
obtain

gv (ξ) =

∫∞
−∞ (1 + ξv)

γ−1
h(v)dv∫∞

−∞ (1 + ξv)
γ
h(v)dv

. (34)

Finally, performing the inversion in the scaling regime
according to Eq. (20) yields

Φv(y) = − 1

π
lim
ε→0

Im

∫∞
−∞ (y + iε− v)

γ−1
h(v)dv∫∞

−∞ (y + iε− v)
γ
h(v)dv

. (35)

We should note that the problem of finding the prop-
agator in the velocity model corresponds to the problem
of time-averaging the position of a subdiffusing particle
subject to an external binding potential as investigated
in detail in [39]: Indeed, we can view the velocity model
as a decoupled CTRW in velocity space, and the infer-
ence of the particle position requires an integration over
time. The scaled (here v0 = 1) position y = x/t of the
single particle after a time t, provided it started at t0 = 0,
x0 = 0 is given by

y(t) =
1

t

∫ t

0

v(t′)dt′. (36)

Thus, for the time averaged CTRW, h(v) corresponds to
the Boltzmann equilibrium or steady state distribution
in space [39].

Let us now furnish the above result with some exam-
ples. We start with the two-state velocity pdf h(v) =
[δ(v − v0) + δ(v + v0)] /2. By repeating the same se-
quence of steps as for the jump models we arrive at

gv(ξ) =
(1− ξ)γ−1 + (1 + ξ)

γ−1

(1− ξ)γ + (1 + ξ)
γ , (37)

ξ = ikv0/s. With Eq. (20) the scaling form of the prop-
agator is found to be the Lamperti-distribution [41]

Φv(y) =
sinπγ

π
×

|y − 1|γ |y + 1|γ−1 + |y + 1|γ |y − 1|γ−1

|y − 1|2γ + |y + 1|2γ + 2|y − 1|γ |y + 1|γ cosπγ
(38)

where y = x/(v0t) and |y| < 1, and
〈
y2
〉

= (1− γ). This
distribution plays a role, for example, in the prediction
of the time averaged intensity of the light emitted by
a blinking quantum dot [9]. For γ = 1/2 this scaling
distribution assumes a particularly simple form,

Φv(y) =
1

π (1− y2)
1/2

, |y| < 1, (39)

the well known arcsine distribution [40]. It is instructive
to compare the propagator of this type of Lévy walk with
those of the two jump models. As it is clear from Fig. 1,
the trajectory of the walk passes through the same end
points as both jump models, yet it does it by a differ-
ent path in the (x, t) plane. As a result, the shape of the
propagator is very distinct, see Fig. 5. As before, the ori-
gin of the difference is in the last unfinished step: in case
of the corresponding one sided walk, i.e. the walk with
just one velocity h(v)+δ(v−v0), the position of the par-
ticle is given by a simple x(v) = v0t, different from both
jump models. We also use Fig. 5 to compare our analyt-
ical results with direct numerical simulations of random
walk models which show excellent agreement. Fig. 5
clearly demonstrates that the particles spread further in
the jump first model if compared with the velocity- and
wait first model, the latter being the slowest process.

The distinct feature of the velocity model is the ability
to include the velocity distribution of the random walk-
ing particles. Below, we show how different velocity pdfs
change the scaling shape of the corresponding propaga-
tor. For illustration, in addition to the two state velocity
pdf, we chose a uniform velocity distribution on a finite
interval, Gaussian, and Cauchy distributions.

For the uniform velocity pdf between ±v0,
θ(v0 − |v|)/(2v0) where θ is the Heaviside step function,
we find with ξ = v0ik/s

gv(ξ) =
(1 + γ)

γ

(
(1− ξ)γ − (1 + ξ)

1γ
)

(1− ξ)1+γ − (1 + ξ)
1+γ (40)

and

Φv(y) =
2(1 + γ) sinπγ

πγ
×(

1− y2
)γ

(1− y)
2+2γ

+ (1 + y)
2+2γ

+ 2 (1− y2)
1+γ

cosπγ
,(41)
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FIG. 5. (color online) Theory and simulations for the wait-
first model Eq. (27) (solid line, triangles, red), the jump first
model Eq. (26) (dotted line, diamonds, blue) and the two-
state velocity model Eq. (38) (dashed line, squares, green).
γ = 1/2, scaling variable y = x/(v0t).

with the MSD
〈
y2
〉

= 1/3(1− γ). For γ = 1/2 it reduces
to a very simple expression

Φv(y) =
3
√

1− y2
π (1 + 3y2)

(42)

shown in Fig. 6 (dashed, squares, green). As we see, sim-
ilarly to the Lévy walk case with two velocity states, the
propagator is bounded by ballistic fronts corresponding
to the maximal possible speed. However, it has more of
a bell shape profile, unlike the shape of the single-speed
Lévy walk with its distinct infinite peaks at |y| = 1.

For a Gaussian velocity pdf
h(v) = (2πv20)−1/2 exp

[
−v2/(2v20)

]
we get a more

involved expression

gv(ξ) =∫∞
−∞ [1 + ξv]

−1/2
exp

[
− v2

2v20

]
dv∫∞

−∞ [1 + ξv]
1/2

exp
[
− v2

2v20

]
dv

. (43)

For γ = 1/2, the corresponding Eq. (35) can be solved
(for example in Mathematica) and expressed in terms
of hypergeometric (or Kummer’s-) functions of the first
and second kind, see Fig. 6 (dotted, diamonds, blue).
Since the Gaussian pdf, in principle, allows for infinite
speeds, the profile of the propagator this time is un-
bounded. Still the MSD remains finite,

〈
y2
〉

= 1 − γ.
Indeed, if the second moment of a symmetric hsc(v) =
h(v/v0)/v0 exists, we always have

〈
y2
〉

= (1−γ)
〈
v2
〉
/v20 ,

see also [39].
A very special situation is induced by Cauchy-

distributed velocities, h(v) = 1/(πv0(1 + (v/v0)2)). It
was shown in Ref. [28] that in this case the flight time
distribution, in particular the value of γ, has no ef-
fect on the resulting propagator, which in turn is also
Cauchy. To show this, let us consider the exact answer
for the velocity model as in Eq.(10) and substitute the

Fourier transform of the Cauchy velocity distribution:
h(kτ) = exp(−v0|k|τ). After simple algebra, and with-
out prescribing the particular form of ψ(τ) we arrive at:

Gv(k, s) =
1

s+ v0|k|
. (44)

One can immediately recognize that the inverse Laplace
and Fourier transform of Eq.(44) will again lead to the
Cauchy distribution:

Gv(x, t) =
v0t

π(v20t
2 + x2)

. (45)

Therefore the scaling function, which we plot on Fig. 6
(full line, triangles, red), has the simple form Φv(y) =
[π(1 + y2)]−1, and its MSD clearly diverges. For such
a simple answer for the propagator in Fourier-Laplace
space, Eq.(44), the application of the proposed inversion
method becomes somewhat redundant, however, it can
be demonstrated that it works here as well. To conclude
this section we note that the model of random walks is
very sensitive to the shape of the velocity distribution
which gets reflected in the profile of the asymptotic den-
sity. This was noticed before [39], as well as a similar
phenomenon in the sub-ballistic, superdiffusive regime
[27]. However, in the subballistic case the effect was much
weaker as it appeared only at the far tails of the distri-
bution, whereas in the ballistic regime it dominates the
whole propagator.
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FIG. 6. (Color online) Scaling functions of the random walks
with random velocities model. Results for four different veloc-
ity pdfs of the walking particles are depicted: two state veloc-
ity v = ±v0 Eq. (39) (dash-dot, circles, grey), uniform on an
interval Eq. (42) [−v0, v0] (dashed, squares, green), Gaussian
Eq. (35) (dotted, diamonds, blue) and Cauchy Eq. (45) (full
line, triangles, red); γ = 1/2. The result for the Gaussian
velocity pdf was obtained using Mathematica. Theory and
simulations nicely match without fitting.

VI. DISCUSSION

We considered the long time scaling limit of the density
profiles of particles for a large class of one dimensional
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random walks that operate in the ballistic regime, which
implies a scaling variable y ∼ x/t. Depending on the
model, these densities differ strikingly. It is important
to note that especially the last renewal period plays a
crucial role with regard to these differences. If we com-
pare the jump models and the simple velocity model with
constant speed where at the renewal only the direction of
motion is chosen, we find that exactly at the instant of a
renewal the jump-first, wait-first and the simple velocity
model are the same (Figure 1). Thus they differ only by
their last renewal interval, and this is the origin of the
difference between their densities.

For both the one and two sided wait-first models the
propagator is restricted to a finite interval of the scaling
variable, y ∈ (0, 1) and y ∈ [−1, 1], respectively, since
the particles can never overcome the front |x| = v0t. In
contrast to that, in the one sided jump-first model the
particles jump further ahead whenever the front catches
up with them, therefore y ∈ (1,∞). In the two-sided
jump-first model we have y ∈ (−∞,∞). The propaga-
tors of both jump-first models exhibit heavy tails (Figs.
4 and 3, right panels) which renders them somewhat un-
physical. Nevertheless they can serve as an impressive
demonstration of the large effect of the final jump.

Whether the scaled propagators of the velocity model
have a heavy tail or live on a finite domain depends di-
rectly on the underlying velocity pdfs which can exhibit
heavy tails or are constricted to a finite interval. We ex-
plicitly calculated the scaled densities for some velocity-
and jump-models, for which we found excellent agree-
ment with the results of direct Monte Carlo simulations
of the respective processes. Although we considered δ-
function-like coupling between the jump distance and
time it takes, the method that we suggested only requires
the existence of the ballistic scaling. Therefore it can in
principle be applied to other, distributed couplings as
long as they lead to the ballistic regime. The mathe-
matical machinery behind the method is specific to the
ballistic regime, and it will be necessary to develop other
approaches for different scaling regimes. We believe that
the analytical results presented here provide an impor-
tant step in our quantitative understanding of random
walks and will facilitate the implementation of these ran-
dom walk models in physics and other interdisciplinary
applications.
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Appendix A: Jump Models: Propagator in
Fourier-Laplace Domain

Fourier-Laplace transformation of Eq. (1) yields

Qα(k, s) = Kα(k, s)Qα(k, s) + 1

Qα(k, s) =
1

1−Kα(k, s)
(A1)

where Kj(k, s) = FL{f(x)ψ(τ |x)} and Kw(k, s) =
FL{f(x|τ)ψ(τ)}. The Fourier-Laplace transform is de-
fined as FL{·} =

∫∞
−∞ dx

∫∞
0
dte−ikxe−st(·). For Eqs.

(2), (3) we have

pw(k, s) = L{Ψ(τ)}Qw(k, s) (A2)

pj(k, s) = FL{f(x)Ψ(τ |x)}Qw(k, s) (A3)

Inserting (A1) results in Eqs. (8) and (9).

Appendix B: Jump Models: Formal scaling solution

Eqs. (8), (9) simplify due to the shift theorem for linear
coupling, Eqs. (4), (5):

G(k, s) =
F (k, s)

1−F
{

exp
[
−s |x|v

]
f (|x|)

} , (B1)

where f is the coupling function between jump length
and waiting time. For the jump-first model,

Fj(k, s) = F
{
f(|x|)
s

(
1− exp

[
−s |x|

v

])}
(B2)

and

Fw(k, s) =
1− ψ(s)

s
(B3)

for the wait-first model. With Eq. (21) the denominator
in (B1) becomes

1−
∫ 0

−∞
e
sx
v0

1

2v0
ψ

(
− x

v0

)
e−ikx dx

−
∫ ∞
0

e−
sx
v0

1

2v0
ψ

(
x

v0

)
e−ikx dx

' τγ0 Γ(1− γ)

2
[(s+ ikv0)

γ
+ (s− ikv0)

γ
] (B4)

Correspondingly, we have for Eq. (B2)

1

s

[∫ 0

−∞

1

2v0
ψ

(
− x

v0

)(
1− e

sx
v0

)
e−ikx dx

+

∫ ∞
0

ψ

(
x

v0

)(
1− e−

sx
v0

)
e−ikx dx

]
' 1

s

[
1− τγ0 Γ(1− γ)

2
[(+ikv0)

γ
+ (−ikv0)

γ
]

− 1 +
τγ0 Γ(1− γ)

2
[(s+ ikv0)

γ
+ (s− ikv0)

γ
]

]
(B5)
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and for Eq. (B3)

1− ψ(s)

s
' 1

s
τγ0 Γ(1− γ)sγ (B6)

Inserting this back into Eq. (B1) yields Eqs. (22) and
(23), respectively.

Appendix C: Propagator in the Velocity Model

Let us write explicitly the numerator in the fraction of
Eq. (10)

L{Ψ(τ)h(kτ)} (k, s)

=

∫ ∞
0

dτ

∫ ∞
−∞

dve−ikτve−sτΨ(τ)h(v)

=

∫ ∞
−∞

dv

(∫ ∞
0

dτe−(s+ikv)τΨ(τ)h(v)

)
=

∫ ∞
−∞

dvΨ(s+ ikv)h(v). (C1)

Analogously for the denominator

1− L{ψ(τ)h(kτ)} (k, s)

= 1−
∫ ∞
−∞

dvψ(s+ ikv)h(v). (C2)

Inserting this into Eq. (10) yields Eq. (32).

Appendix D: Fourier-Laplace transform of the
scaling function

Explicitly, the Fourier-Laplace transform of Eq. (15)
is ∫ ∞

−∞

∫ ∞
0

exp [−ikx− st] 1

t
Φ
(x
t

)
dt dx (D1)

Subsequent variable transformation leads to∫ ∞
−∞

∫ ∞
0

exp [−(iky + s)t] Φ (y) dt dy

=

∫ ∞
−∞

Φ (y)

iky + s
dy =

1

s

∫ ∞
−∞

Φ (y)
ik
s y + 1

dy (D2)

which is equivalent to Eq. (17).
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