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Abstract

Cancers result from altered cell proliferation properties, caused by mutations in spe-

cific genes. An accumulation of multiple mutations within a cell increases the risk to

develop cancer. However, mechanisms evolved to prevent such multiple mutations.

One such mechanism is a hierarchically organized tissue structure. At the root of

the hierarchy are a few, slow proliferating stem cells. After some cell differentiations

all functional cells of a tissue are obtained. In the first two chapters of this the-

sis, we mathematically and computationally evaluate a multi compartment model

that is an abstract representation of such hierarchical tissues. We find analytical

expressions for stem cell and non stem cell driven cell populations without further

mutations. We show that non stem cell mutations give raise to clonal waves, that

travel trough the hierarchy and are lost in the long run. We calculate the average

extinction times of such clonal waves. In the third chapter we allow for arbitrary

many mutations in hierarchically organized tissues and find exact expressions for

the reproductive capacity of cells, highlighting that multiple mutations are strongly

suppressed by the hierarchy. In the fourth chapter we turn to a related problem,

the evolution of resistance against molecular targeted cancer drugs. We develop a

minimalistic mathematical model and compare the predicted dynamics to experi-

mental derived observations. Interestingly we find that resistance can be induced

either by mutation or intercellular processes such as phenotypic switching. In the

fifth chapter of this thesis, we investigate the shortening of telomeres in detail. The

comparison of mathematical results to experimental data reveals interesting prop-

erties of stem cell dynamics. We find hints for an increasing stem cell pool size with

age, caused by a small number of symmetric stem cell divisions. We also implement

disease scenarios and find exact expressions how the patterns of telomere shortening

differ for healthy and sick persons. Our model provides a simple explanation for

the pronounced increase of telomere shortening in the first years of live, followed

by an almost linear decrease for healthy adults. In the final chapter, we implement

a method to introduce arbitrary many random mutations into the framework of

frequency dependent selection. We show how disadvantageous mutations can reach

fixation under a deterministic scenario and discuss possible applications to cancer

modeling.
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Kurzfassung

Krebs entsteht durch von Mutationen induzierte Veränderungen der Zellteilung-

seigenschaften. Das Anhäufen einer Vielzahl unterschiedlicher Mutationen in einer

Zelle erhöht das Risiko der Krebsentstehung. Demgegenüber haben sich Mecha-

nismen entwickelt, die eine solche Anhäufung verhindern. Einer dieser Mechanis-

men ist eine hierarchisch organisierte Gewebestruktur. Stammzellen können sowohl

differenziertere Zellen produzieren, als auch die Stammzellpopulation aufrecht er-

halten. Nach einer bestimmten Anzahl von Zelldifferenzierungen werden alle funk-

tionalen Zellen eines Gewebes produziert. In den ersten zwei Kapiteln dieser Ar-

beit untersuchen wir mit mathematischen und computerorientierten Methoden ein

Mehrkompartmentmodell, das eine solche hierarchische Gewebeorganisation repre-

sentiert. Wir entwickeln analytische Ausdrücke für Zellpopulationen mit und ohne

Stammzellen und ohne zusätzliche Mutationen. Zellpopulationen ohne Stammzel-

lunterstützung resultieren in klonalen Wellen, die durch die Hierarchie wandern

und letztlich verloren gehen. Zusätzlich berechnen wir die Aussterbezeiten dieser

Wellen. Im dritten Kapitel erlauben wir beliebig viele Mutationen und erreichen

exakte Ausdrücke für die Reproduktionsfähigkeit von Zellen. Es stellt sich her-

aus, dass Zellen mit mehrfachen Mutationen innerhalb einer Hierarchie besonders

stark unterdrückt werden. Im vierten Kapitel wenden wir uns dem Problem der

Resistenzentstehung gegen bestimmte Krebsmedikamente zu. Wir entwickeln ein

einfaches mathematisches Model und vergleichen dessen Voraussagen zu experi-

mentellen Ergebnissen. Interessanterweise können Resistenzen durch Mutationen

und intrazelluläre Prozesse hervorgerufen werden. Im fünften Kapitel dieser Arbeit

untersuchen wir die zeitliche Änderung von Telomerlängen. Der Vergleich von an-

alytischen und experimentellen Ergebnissen liefert interessante Eigenschaften von

Stammzelldynamiken. Wir finden Hinweise auf eine Zunahme der Stammzellen im

Alter, hervorgerufen durch symmetrische Zellteilungen. Wir implementieren auch

Krankheitsszenarien und erreichen exakte Ausdrücke für die erwartet Telomerlän-

genverteilung von gesunden und erkrankten Personen. Darüberhinaus erlaubt unser

Model eine einfache Erklärung der beschleunigten Abnahme der Telomerlänge in

den ersten Lebensjahren. Im letzten Kapitel entwickeln wir eine Methode, um be-

liebig viele zufällige Mutationen in das Gebiet der frequenzabhängigen Selektion zu

integrieren. Wir zeigen auf, wie nachteilige Mutationen die gesamte Population auch

in einem deterministischen Szenario übernehmen können.
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Chapter 1

Introduction

1.1 Motivation

A scientific theory is a well substantiated explanation of some aspects of the nat-

ural world, that has been repeatedly confirmed through observation and experi-

ment (Popper, 1959). In physics, theories are usually formulated in a mathematical

framework and derived from a small set of postulations, for example classical elec-

trodynamics described by Maxwell’s equations (Jackson and Fox, 1999) or gravity

described by Einsteins general relativity (Wald, 1984). The all embracing theory

in biology is evolution, formulated by Darwin and Wallace by means of natural

selection (Darwin, 1859). Based on competition within and between species, the

principle of evolution is formulated orally. Ever since, scientists intended to de-

rive quantitative theories of evolution, starting with classical population genetics by

Fisher, Wright and Haldane (Fisher, 1930; Wright, 1932; Haldane, 1932) towards

evolutionary game theory proposed by Maynard Smith (Maynard Smith, 1982). Al-

though all these theories suffer from the enormous complexity of biological systems,

they provide important contributions to the understanding of biological systems.

This includes explanation of the widely observed sex ratio of 1:1 by Fisher (Fisher,

1930; Hamilton, 1967), the red queen hypothesis (van Valen, 1973) or eusociality by

Hamilton’s rule (Hamilton, 1964).

In recent years, the scientific community became increasingly interdisciplinary

and methods of physics, chemistry and informatics are applied to biological systems

and vice versa. These combined efforts yield substantial progress in our under-

standing of biological systems. One measure of this progress is the improvement of

medical treatments and the accompanied increase of life expectancy for every new

generation. Of course, the success of antibiotics in the treatment of infectious dis-

eases is outstanding. However, the joint work of theory, experimental and clinical
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Figure 1.1: Development of cancer specific death rates. Shown is the development

of the death rates per 100000 male individuals in the United States of America for different

cancer types between 1930 and 2012. Mortality rates for cancers as lung or prostate are

decreasing significantly, others as pancreatic cancers or leukemias remain unchanged. The

figure was taken from (Siegel et al., 2013).

research show promising developments in a different area as well, that is cancer re-

search. Understood as genetically caused, cancers fit into the framework of evolution

as they can be seen as a competition of healthy and cancerous cells (Nowak, 2006a;

Hanahan and Weinberg, 2000). Since the early 1990’s there is a considerable decline

in cancer related deaths, see figures 1.1 and 1.2. This decline is more pronounced for

lung or prostate cancers and rather unchanged for leukemias or pancreatic cancers

(Siegel et al., 2013). However, in the United States of America approximately 1.1

million cancer deaths were averted in the last 20 years, see figure 1.2. There are

hopes to continue this promising trend. In this thesis, we investigate different as-

pects of cell populations dynamics. We mathematically and computationally tackle

problems of cancer initiation in hierarchically organized tissues, resistance evolution

and telomere dynamics. In the cases of resistance evolution and telomere dynamics

we are also able to compare our deduced dynamics directly to experimental results.

We hope, that this work provides a humble contribution to the broad area of bi-

ological modeling. In the rest of this chapter, we provide a short introduction to

the basic biological terminology used throughout this thesis, followed by some the-
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Figure 1.2: Total number of cancer caused deaths for males and females in the

United States of America between 1975 and 2012. The blue line represents the actual

number of cancer deaths recorded in each year, and the red line represents the number of

cancer deaths that would have been expected, if cancer death rates had remained at their

peak. The figure was taken from (Siegel et al., 2013).

oretical tools. In the main body of this thesis, we first discuss the dynamics of cell

populations in hierarchically organized structures. We then shift our attention to

aspects of the resistance evolution to molecular targeted treatment strategies. We

further we derive telomere length distributions of (a)symmetric dividing stem cell

populations, providing insights in the aging process of tissues. In the last chapter of

the main body, we discuss a more general approach to model the impact of random

frequency dependent mutations on a population. We conclude this thesis with some

final remarks.

1.2 Biological basics

Throughout this thesis, we develop mathematical and computational models to de-

scribe various problems in biological systems. In this chapter we introduce the

corresponding biological terminology. We explain the concept of hierarchically or-

ganized tissues and discuss the importance of mutations in cancer development. We

give some insights in molecular targeted cancer treatments and its drawbacks. We

also introduce telomeres and explain the importance of telomeres and telomerase on
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Figure 1.3: Schematic simplified sketch of the hierarchical organization of

hematopoiesis. At the root of the hierarchy are a few tissue specific stem cells, able

to self renewal and differentiate. Stem cells give raise to more specialized (differentiated)

progenitor cells. During cell proliferation, cells commit further within the hierarchy. After

a certain tissue dependent number of differentiation steps, all mature cells can be obtained.

The figure was taken from (King and Goodell, 2011).

the regulation of cell cycle activity, damage control and cell senescence.

1.2.1 Hierarchically organized tissues

The seemingly unchanging physical appearance (at least over medium time scales)

of organisms might give the impression of a very static tissue organization with very

little cell proliferation. However, for most tissues the opposite is true. Cells contin-

uously die and are replenished (Hayflick et al., 1961; Raff, 1992). For example in

human hematopoiesis, on average 3.5 × 1011 mature blood cells are produced per

day (Berardi et al., 1995; Abkowitz et al., 1996; Brümmendorf et al., 1998). Often

such enormous cell turnover rates are realized by a hierarchical tissue organization,

described for example for hematopoiesis (Dingli et al., 2007a; Nowak, 2006a), epi-

dermal cell turnover in the skin (Tumbar et al., 2004; Fuchs, 2008), or in the colonic

crypt (Potten et al., 2009). Mature functional tissue cells are produced throughout a

series of cell differentiation steps (Pittenger et al., 1999; Michor et al., 2005), see Fig.

1.3 for a schematic sketch of human hematopoiesis. At the root of the hierarchy are

a few tissue specific stem cells, combining two indispensable properties, self renewal

and differentiation potential (McCulloch and Till, 2005; Grove et al., 2004; Dingli

et al., 2007a; Werner et al., 2011). Self renewal is essential to avoid an exhaustion of

the stem cell pool and the differentiation potential to enable mature cell production.
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However, a clear distinction of mature tissue specific and embryonic stem cells is

important. Where latter are pluripotent (can potentially differentiate into all three

germ layers, endoderm, mesoderm and ectoderm) are former multipotent and the

differentiation potential is limited to specific tissue lineages (Grove et al., 2004),

although a reprogramming into pluripotent stem cells in vitro seems possible (Jiang

et al., 2002; Yu et al., 2007). As we are concerned with tissue homeostasis, stem cell

dynamics in our models relate to multipotent stem cells.

The exact phenotypic definition of stem cells appears to be difficult. The stan-

dard approach to characterize stemness is the identification and classification of ex-

pressed cell surface markers (Bunting, 2002). In recent years, an increasing number

of stem like cells and their corresponding cell surface markers have been identified

(amongst them CD34+ and CD38-)(Hao et al., 1995; Lavker and Sun, 2000). In

addition gene expression profiles were analyzed (Berardi et al., 1995), however the

interpretations and conclusions are still under discussion. Hayflick showed, that any

cell line, cultured in vitro, has a limited repopulation capability of approximately

40-60 proliferation cycles per cell (Hayflick et al., 1961; Shay et al., 2000; Morrison

et al., 1995). The underlying causes are incompletely understood, but one possible

explanation is the progressive shortening of telomeres during cell proliferations, and

an induced cell death for too short telomeres (Allsopp et al., 1992; Olovnikov, 1996).

We discuss this in more detail below. This experimental result seems a contradiction

to the observed unlimited reproduction capabilities of tissues in vivo. This leads to

the postulation of stem cell niches. A stem cell niche is defined as spatial location,

that induces stemness by providing special growth conditions to cells (Scadden,

2006; Lin, 2002). In certain tissues, as for example the colon, these locations were

identified (Lavker and Sun, 2000; Tumbar et al., 2004), but in other tissues evi-

dence for a stem cell niche is still lacking. For example hematopoietic stem cells

seem to be distributed within the whole bone marrow (Zhang et al., 2003). Thus,

especially in hematopoiesis stemness is ensured by a tight regulation of cell prolifer-

ation properties at early stages of the hierarchy. Very recent publications show, that

hematopoietic stem and progenitor cells reside in distinct niches and the regulation

of Cxcl12 seems key for self renewal maintenance (Ding and Morrison, 2013; Green-

baum et al., 2013). To some extent, the deviation of in vitro and in vivo results

might be explained by experimental difficulties in providing such a highly regulated

environment.
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The lack of an exact phenotypic stem cell definition leads to a functional deter-

mination by transplanting cell lines in stem insufficient mice. The stemness of this

cell line is then determined by its capability to repopulate the tissue. However, the

incomplete knowledge leads to an uncertainty in other very basic parameters, as for

example the exact number of actively dividing stem cells. In human hematopoiesis

the estimates vary from approximately 400 to 105 actively dividing stem cells (Dingli

and Pacheco, 2006; Buescher et al., 1985; Rufer et al., 1999; Roeder et al., 2006).

Furthermore, experimental results in mice suggest temporal fluctuating stem cell

numbers. The stem cell pool expands with age, whereas the proliferation rate of

stem cells declines (Rossi et al., 2005, 2008). So far, this effect is not conclusively

shown in humans, but there is no evidence to expect the opposite. Indeed, in chap-

ter 5, we compare results from a mathematical model to experimental data of in

vivo telomere shortening, and find hints of an increasing stem cell pool size caused

by symmetric cell divisions.

The further differentiation steps within hierarchies are tissue dependent. In the

hematopoietic system, stem cells proliferate into progenitor cells, which give raise

to the two major subtrees of hematopoiesis, myeloid and lymphocyte progenitors.

Within these subtrees a fixed amount of cell differentiations are necessary to obtain

all mature blood cells, reaching from red and white blood cells, to macrophages,

platelets and others, see Fig. 1.3.

1.2.2 Cancer biology

In the previous subsection we introduced the concept of hierarchically organized

tissue structures. These tissues are highly controlled and regulated. However, for

varies reasons cells potentially escape these control mechanisms and start increased

cell proliferation. Such uncontrolled cell behaviors, that give a fitness advantage

to a cell, are considered cancerous (Hanahan and Weinberg, 2000). The reasons,

why cells escape these control mechanisms are manifold. A few cases are known,

where viruses (oncovirus) alter cell proliferation properties to be cancerous. The

most prominent example is the discovery of the papillomavirus and its potential to

cause cervical cancer (Zur Hausen, 2002). This discovery allowed the development

of a vaccination, yielding the nobel price in medicine to zur Hausen, Barre-Sinoussi

and Montagnier in 2008. Another example is the statistical correlation of Burkitt’s
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Ding et al. Nature 2012

A B

Figure 1.4: A Discovery of tumor suppressor genes by Knudson in 1971. It needs

in general two hits, to deactivate both alleles of a tumor suppressor gene. Where the first

activation is (almost) neutral, the second hit alters the phenotype of a cell. The time for

two hits scales ∝ t2 (upper dashed line). However, rarly people carry one mutated allele due

to a germline mutation. In this case one hit is sufficient and the time scales ∝ t (lower line).
The figure was taken from (Knudson, 1971). B Clonal evolution of single patients with

acute myeloid leukemia. Cells accumulate different mutations over time. Thus the clonal

composition of patients vary. The diversity influences the treatment outcome. In cases of

relapses, the secondary disease is driven by different clones and is difficult to predict. The

figure was taken from (Ding et al., 2012).

lymphoma (an aggressive B-cell lymphoma) and the Epstein-Barr virus (Thorley-

Lawson and Gross, 2004). However, the underlying cause is the trigger of mutations

in specific oncogenes (here Myc-mutation) by these viruses (Allday, 2009). This

lead to the modern view, that cancer is a genetic disease, caused by mutational hits

in specific cancer initiating genes. Often these genes control cell proliferation or cell

senescent properties and mutations can cause an escape of these control mechanisms

(Vogelstein and Kinzler, 2004).

In general, multiple mutational hits within a cell are necessary for cancer pro-

gression. This lead to the multi-stage theory of carcinogenesis (Armitage and Doll,

1954). It assumes that mutations accumulate within cells, and the interplay of these

mutations can provide a fitness advantage to those cells. In its basics the theory

is still widely accepted today (Hornsby et al., 2007). Originally based on statisti-

cal arguments, it was possible to give a quantitative explanation of the appearance
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of cancers. An early success of the multi-stage theory was the explanation of the

statistical observations in retinoblastomas (blastoma developing in the retina) by

Knudson in 1971 (Knudson, 1971). A mutation in a single gene is sufficient to

cause a retinoblastoma. However, the mutation is recessive, thus mutations in both

gene copies (alleles) are necessary for cancer initiation and effectively two muta-

tion hits are needed. Such recessive genes, that need two hits to be cancerous,

are called tumor suppressor genes (a prominent tumor suppressor gene is p54, mu-

tated in approximatly 50% of all human cancers) (Weinberg et al., 1991; Nowak,

2006a). By comparing data from patients with a germ line mutation to patients

with somatic mutations, Knudson showed empirically, that the time for the first hit

is proportional to t and proportinal to t2 for the second hit, see Fig. 1.4A. Later,

mathematical models revealed, that the scaling of these waiting times depend on

population size. The second hit is proportional to t2 for small population sizes to t

for intermediate sizes and proportional to t2 for large population sizes. In the last

case these two hits are not rate limiting (Komarova et al., 2003; Nowak, 2006a).

However, tumor suppressor genes need to be deactivated to potentially lead to

cancer. In contrast for many genes a single mutational hit is sufficient to alter the

proliferation properties of a cell. Such genes are called oncogenes, a concept intro-

duced by Bishop and Varmus (Varmus, 1984; Schwab et al., 1984). An important

and well understood oncogene is the BCR-ABL translocation of the 9th and 22nd

chromosome in hematopoietic stem cells. This fusion gene codes for a tyrosine ki-

nase, altering the cell proliferation properties. This results in an accumulation of

immature white blood cells (Lugo et al., 1990), and patients are diagnosed with

chronic myeloid leukemia (Epstein et al., 1988; Bartram et al., 1983; Michor et al.,

2005). However, in most cases a single mutated gene is insufficient to cause cancer,

but mutations in several oncogenes are necessary. The exact number is tissue and

cancer specific. Approximations reach from 1 (in some blood cancers) to 30 mu-

tated genes in some colon cancers (Greenman et al., 2007; Bozic et al., 2010). The

classification of oncogenes increased rapidly with the recent progress in sequencing

techniques. The efficient sequencing of DNA of patients with different types of can-

cer revealed complicated mutational landscapes (Sjöblom et al., 2006; Bozic et al.,

2010; Shah et al., 2012; Ding et al., 2012). Besides some known oncogenes (for ex-

ample Myc, BCR-ABL, PML-RARA,PIG-A) scans show a high diversity. In same

cancers one might not find a single common mutation, although over 100 mutated

genes can be found in samples of single patients (Lee et al., 2010; Ding et al., 2012).



1.2. Biological basics 9

Presumably not all 100 mutations contribute to oncogenesis. Thus mutations are

classified into driver and passenger mutations. Driver mutations are necessary for

cancer initiation and are frequently found in patients. Passenger mutations are un-

derstood as (almost) neutral background mutations, unrelated to cancer progression

(Stratton et al., 2009; Pleasance et al., 2009). However, the identification of driver

mutations is difficult. In most cases a minor subset of a larger set of possible mu-

tations seems sufficient for cancer progression. The mutational landscape strongly

depends on the clonal history of patients (Ding et al., 2012), see Fig. 1.4 B and in-

fluences treatment strategies as well. An individualized cancer therapy is necessary

and in some cases there are already promising developments towards this direction

(Diaz Jr et al., 2012).

Besides the occurrence of passenger mutations, there are further complications

in modeling cancer initiation and tumor progression, for example the hierarchical

organization of tissues (Werner et al., 2011). The hierarchy is a natural protection

mechanism against cancer, as the life time of most cells is limited, and potential

cancerous mutations get washed out of the hierarchy. In chapter 2 we calculate

solutions, describing such clonal waves within hierarchical tissues, and show the

suppression of multiple mutations within hierarchies. However, such hierarchies in-

crease the diversity of possible clonal dynamics. The stage of a mutation influences

further dynamics. Some cancers clearly occur in stem cells, others evolve at later

stages of the hierarchy. Especially latter case lead to the postulation of cancer stem

cells, which emerge either by mutation within stem cells, or the gain of stemnes

within non stem cells by certain mutations (Jordan et al., 2006; Kelly et al., 2007).

Much efforts have been done recently to identify stem like sub populations in can-

cerous tissues. An important question to modelers is, if a successful therapy requires

the erasion of all cancer stem cells, or the extinction of a subset is sufficient (Lenaerts

et al., 2010, 2011; Glauche et al., 2012). Given the complexity of the underlying

processes, it seems difficult to obtain predictions by theory only. But the investiga-

tion of population dynamics within hierarchically organized tissues might provide

one step towards a better understanding of cancer progression and cancer diversity.

1.2.3 Molecular targeted treatment strategies

We discussed the clonal theory of cancer initiation in the former subsection. A hall-

mark of most cancers is the high clonal diversity within patients, which complicates
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cancer therapies significantly (Greaves and Maley, 2012). Treatment strategies are

as diverse as cancer, and discussing all might be a dissertation by itself. Here we

focus on the treatment of chronic myeloid leukemia, as this raises questions, we

address in chapter 4. Chronic myeloid leukemia is caused by a translocation of

the ends of the 9th and 22nd chromosome within a hematopoietic stem cell. This

translocation results in a functional fusion gene (BCR-ABL) that codes for a ty-

rosine kinase. The activation of the resulting receptor is independent of cellular

signaling molecules, causing an unnatural accumulation of immature white blood

cells in the blood stream of patients (Epstein et al., 1988; Bartram et al., 1983;

Michor et al., 2005). Chronic myeloid leukemia remains in a chronic phase for 3-7

years, followed by a transition into a blast crisis. This transition is lethal if untreated

(Wetzler et al., 1993; Sawyers, 1999). Ten years ago chemotherapy followed by bone

marrow transplantation was the standard therapy, imposing significant risks to pa-

tients. However, the treatment protocol changed with the invention of molecular

targeted drugs, amongst them Imatinib (Druker et al., 2006), Nilotinib (Weisberg

et al., 2005), Dasatinib (Shah et al., 2004) and Bosutinib (Cortes et al., 2011)..

These drugs take advantage of the distinct spatial structure of the BCR-ABL en-

coded tyrosine kinase. They specifically occupy the binding sites of these receptors

and inhibit the initiation of further signaling cascades within the cell, lowering the

proliferation capabilities of BCR-ABL positive cells significantly (Komarova and

Wodarz, 2005; Michor et al., 2005; Dingli et al., 2008a; Traulsen et al., 2010; Werner

et al., 2011). This leads to a total remission in approximately 95 % of all treated

patients, most of them staying in remission since at least 5 years (Kantarjian et al.,

2007). Since these molecules target BCR-ABL positive cells very specifically and

have lesser effects on healthy tissues, this was the first successful example of such

targeted therapies, raising hopes to find similar drugs for other cases. However,

there are drawbacks. It is unknown, if the medication can be stopped and if so,

when (Lenaerts et al., 2010, 2011). In single cases the disease relapses, often due

to an evolving drug resistant clone (Hochhaus et al., 2002; Werner et al., 2011).

One tries to tackle this problem by combining different drugs with slightly different

binding mechanisms (Komarova and Wodarz, 2005). Unfortunately mutants exist,

resistant to all currently available drugs. Thus scientists are interested in a better

understanding of mechanisms and dynamics of resistance evolution. In chapter 4 we

discuss a resistance inducing experiment. By applying a minimalistic mathematical
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model we are able to infer basic model parameters. Interestingly the results hint

towards an interplay of genetic and epigenetic effects.

1.2.4 Telomeres and telomerase

Telomeres are noncoding DNA structures expressed at the ends of all eukaryotic

chromosomes. In vertebrates they consist of numerous repeats of the amino acids

TTAGGG (Blackburn et al., 1991). Telomeres prevent the loss of coding DNA

regions during cell proliferation and are essential to ensure chromosomal integrity

(Hande et al., 1999; d’Adda di Fagagna et al., 2001; Boukamp et al., 2005; Brüm-

mendorf and Balabanov, 2006). During cell proliferation telomere repeats shorten

because of the inability of the DNA polymerase to fully replicate the 3
′ end of

chromosomes. This is known as the end replication problem and as a result a pro-

gressive shortening of telomeres can be observed in many aging tissues (Levy et al.,

1992; Allsopp et al., 1995). Accelerated telomere shortening is associated with ge-

netic instability and increased cell senescence. It accompanies diseases, for example

cancers, HIV and increased stress (Epel et al., 2004; Brümmendorf et al., 2006).

Further telomere shortening may explain the limited proliferation capability of cell

lines (Hayflick limit) and thus are proposed to play an important role in general

aging processes of organisms (Blasco, 2007). The observed loss of telomere repeats

during cell proliferation motivated the idea, that telomeres might be a mitotic clock,

mirroring the replication history of cells (Vaziri et al., 1994; Morrison et al., 1996).

But telomeres are susceptible to oxidative stress and stochasticity has an impact on

telomere dynamics (von Zglinicki, 2002). In chapter 5 we show that stochasticity is

important at the level of single telomeres, but deterministic modeling can describe

telomere dynamics on the cell and the tissue level.

The shortening of telomeres can be counteracted. In vertebrates, the end replica-

tion problem is solved by the enzyme telomerase. For its discovery, Greidel, Szostak

and Blackburn were awarded with the Nobel price for medicine in 2009. Telomerase

is a reverse transcriptase, that can add additional TTAGGG repeats to the 3
′ end of

chromosomes and thus is able to counteract accelerated telomere shortening (Black-

burn et al., 1991). Telomerase is highly expressed on the germline and on the stem

cell level, but also many cancerous tissues show increased telomerase activity (Shay

and Bacchetti, 1997; Sharpless et al., 2004). That provides one possible explanation
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how cancer cells escape cell senescence. Therefore a combination of traditional can-

cer therapies with a telomerase blockage were proposed, unfortunately with limited

success. However, telomerase is insufficiently expressed in most tissues to a avoid

a progressive shortening of telomeres with age (Harley et al., 1990; Vaziri et al.,

1994; Rufer et al., 1999). The complete lack of telomerase can lead to severe dis-

eases, such as anemias or premature aging (dyskeratosis congenita). Anemias result

from a stem cell pool exhaustion as a consequence of increased cell death due to

faster telomere shortening. This leads to an underproduction of blood cells, caus-

ing bone marrow failure and immunosenescence. Although diseases occurring from

telomere dysfunctions are clinically diverse, they are closely related and a compact

classification as telomere syndromes was proposed (Ball et al., 1998; Brümmendorf

et al., 2001; Armanios and Blackburn, 2012). However, the underlying causes for

the telomere dysfunction may differ, resulting in expected observable differences in

the dynamics of telomere shortening. In chapter 5, we address telomere dynamics.

We derive expected telomere distributions for different cell proliferation properties

and diseases. A comparison to experimental data allows us to deduce some basic

system parameter and to get insights in the in vivo stem cell dynamics.

1.3 Stochastic dynamics

Natural biological systems of proliferating cells are stochastic (Goel and Richter-

Dyn, 1974; Abkowitz et al., 1996). The source of this stochasticity is manifold,

reaching from mutations, resource competition, differentiation processes, clonal evo-

lution, cell senescnce and many others. Our aim is to describe the dynamics within

such biological systems. However, in general it is difficult to catch all these effects

in solvable closed mathematical models, which necessitates approximations of such

system (McKane and Newman, 2004). These approximations can take the form of

a deterministic description of the underling stochastic dynamics, a reduction of the

systems complexity by neglecting effects of seemingly lesser influence, or stochastic

computer based simulations of biological processes.

1.3.1 Gillespie algorithm

In some cases, it is advantageous to implement a stochastic model with kinetics

that is close to the underlying biological system. To understand the dynamics it is
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helpful to run exact individual based stochastic simulations of the system. However,

that immediately confronts us with the problem of how to implement an algorithm,

that reproduces the exact stochastic trajectories.

For example in chapter 2 we describe the dynamics of cells in hierarchically

organized tissues. Effectively, such systems contain a varying number of different

cell types, each cell type with dissimilar cell proliferation properties. This difference

could be differentiation probabilities or proliferation rates (Werner et al., 2011).

The question becomes: Given a certain number of different types and given cell

proliferations are discretized in a sense that there is exactly one proliferating cell at

a single time, which cell is next to proliferate and which time does it take until the

next cell proliferation? To implement such an algorithm, we can utilize results of

stochastic chemical kinetics. The Gillespie algorithm and variants of it are used to

describe the stochastic kinetics of chemical reactions (Gillespie, 1976, 2007). Here,

we shortly describe the algorithm and derive a variant, that allows us to perform

stochastic simulations of many type cell populations, used in chapters 2 and 5.

Assume Xi (t) denotes the number of cells of type i ∈ (1, . . . , n) at time t. A

rigorous derivation of the underling chemical master equation can be found in (Gille-

spie, 1992). Our goal is to simulate stochastic trajectories of the state space vector

X (t) = (X1 (t) , . . . , Xn (t)), given some initial condition X (t0) = x0. Therefor we

follow the argumentation in (Gillespie, 1976, 2007). We assume M possible reac-

tions (R1, . . . , RM ) in our system, for example different mutation and proliferation

pathways. The key is the probability

P (τ, j) dτ =probability that the next reaction will be within the

time interval (t+ τ, t+ τ + dτ) and will be a type

j ∈ (1, . . . ,M) reaction.

To derive at an expression for P (τ, j) we need to specify the possible state variables

hj of our system,

hj =number of distinct reaction combinations for reaction Rj

present at time t.

For example if we assume reaction j to be Xj → Xk, we have hj = Xj . Assuming

reaction j to have a rate parameter cj , the probability that a reaction will occur in
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the time interval dt to first order is simply hjcjdt. Given, that P0 (τ) is the proba-

bility, that no reaction will occur within the time interval (t, t+ τ), the probability

of having a reaction j in this time interval is

P (τ, j) dτ = P0 (τ)hjcjdτ (1.1)

To find an expression for P0, we assume the interval (t, t+ dτ) to be divided into K

subintervals of equal length, given by ∆ = τ/K. Using the multiplication theorem

for probabilities, the probability of having no reaction in the interval (t, t+ ∆) is

P0 (∆) =

M∏

l=1

(1− hlcl∆ + o (∆)) = 1−
M∑

l=1

hlcl∆ + o (∆) . (1.2)

As the intervals are of equal length, the probability is the same for every single of

the K intervals. This allows us to write

P0 (τ) =

[
1−

M∑

l=1

hlclτ

K
+ o

(
1

K

)]K
. (1.3)

Choosing the time intervals infinitesimally small, K →∞, we get

P0 (τ) = lim
K→∞

[
1−

M∑

l=1

hlclτ

K
+ o

(
1

K

)]K
= exp

[
−

M∑

l=1

hlclτ

]
, (1.4)

where we used limn→∞ (1− x/n)n = exp (−x) in the last step. Putting this into

(1.1) gives the exact expression for the reaction probability density function

P (τ, j) = hjcjexp

[
−

M∑

l=1

hlclτ

]
. (1.5)

This allows us to construct exact stochastic simulations. There are different equiv-

alent implementations. Maybe the simplest is the so called direct method. The

method works as follows: Draw two random numbers ζ1 and ζ2 from a uniform

distribution in the interval [0, 1]. The time until the next reaction is,

τ =
1

∑M
l=1 hlcl

ln

[
1

ζ1

]
, (1.6)

and the next reaction to occur is the first j fulfilling the condition

j∑

l=1

hlcl > ζ2

M∑

s=1

hscs. (1.7)

With this, the time until the next reaction and the next reaction to take place are

specified and the algorithm of the direct method can be implemented as follows:



1.3. Stochastic dynamics 15

(i) Initialize the system according to the initial conditions.

(ii) Calculate all hl and
∑M

l=1 hlcl.

(iii) Generate values for τ and j using the equation (1.6) and (1.7).

(iv) Update the system by the last reaction and return to step (ii).

A small variation of this is the method of the first moments, that however can

be shown to be equivalent to the direct method (Gillespie, 2007). If there are M

possible reactions in our system, we draw ζ1, . . . , ζM in the interval [0, 1] uniform

distributed random numbers, to create in total M time intervals,

τj =
1

hjcj
ln

[
1

ζj

]
. (1.8)

The smallest τk, k ∈ {1, . . . , n}, determines the next reaction k to take place. In

chapters 2 and 5 we will use the method of the first moment to simulate stochastic

trajectories of proliferating cells in hierarchical organized tissues. There different

compartments i contain a certain number of cells Ni, that proliferate with a prolif-

eration rate ri. The cell in compartment i to proliferate next is then determined by

the smallest time τi
τj =

1

Njrj
ln

[
1

ζj

]
. (1.9)

1.3.2 Moran process

The Moran process is a classical model of population genetics (Moran, 1962) and

belongs to the class of stochastic birth-death processes. As such, a discrete finite

population of fixed size progresses in time. In general there are n types in a popula-

tion of size N . During one time step one type reproduces and some other type dies,

enforcing constant population size N . Assume the number of type Aj (1 ≤ j ≤ n

and n < N), individuals is ij (0 ≤ ij ≤ N). During one time step, the number ij
of type Aj can either increases by one, stays constant or decreases by one, which

occurs with transition probabilities T+
ij
, T 0

ij
and T−ij respectively. The concrete im-

plementation of these transition probabilities defines the properties of the Moran

process at hand. Usually, the transition probabilities are chosen such,that they only

depend on the population composition, T = T (i1, . . . in), where
∑n

l=1 il = N , and

thus are fully determined by the current state of the stochastic process (Traulsen

and Hauert, 2009).
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We assume, that the process X = Xt has a finite state space I = {i1, . . . , in}
and proceeds in some discrete time t = 0, 1, 2, . . .. The process is a Markov chain of

k-th order, if the probability distribution P of the stochastic process X fulfills

P (Xt+1 = It+1|Xt = It, . . . , Xt−k+1 = It−k+1) . (1.10)

More informally in words: the probability distribution of the stochastic process at

time t+ 1 depends on the last k previous states of the process (Kemeny and Snell,

1960). The process fulfills the Markov property and is called Markovian if condition

(1.10) reduces to

P (Xt+1 = It+1|Xt = It) . (1.11)

Such processes are memoryless, as the probability distribution of the following state

is fully determined by the present state of the process and is independent of the

previous transitions. A Moran process with transition probabilities T = T (i1, . . . in)

fulfills the Markov property and thus falls into the class of Markov processes (Moran,

1958).

In the following we want to collect some important results that are obtained for

the well understood two type Moran process (Nowak, 2006a; Traulsen and Hauert,

2009). Assume, a population of size N at time t is composed of i type A individuals

and N − i type B individuals respectively. Each time step, one individual is chosen

to reproduce and one individual is chosen to die. Important properties of the process

are then the fixation probability ΦA
i , and the fixation time τAi of type A (or ΦB

N−i,

and τBN−i for type B). As the arguments can be exchanged, it is sufficient to focus

on a single type. In the following we aim to calculate the fixation probability Φi,

meaning the probability of i type A individuals to take over the whole population.

Obviously, if the probability to decrease the number of A individuals from N to

N − 1 is T−N > 0 one has Φi = 0. Thus, for a non vanishing fixation probability it

is necessary to assume T−N = 0, which, due to the constant population size, implies

T+
0,B = 0 for the transition probability of 0 type B individuals. Usually, the process

is assumed to be symmetric and thus we have the additional properties T+
0 = 0 and

T−N,B = 0. This gives at least two absorbing states Φ0 = 0 and ΦN = 1. For the

probability of fixation of an intermediate state i we can write the recurrence relation

(Traulsen and Hauert, 2009)

Φi = T−i Φi−1 +
(
1− T−i − T+

i

)
Φi + T+

i Φi+1. (1.12)
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By rearranging terms in (1.12) we obtain

T−i (Φi − Φi−1)︸ ︷︷ ︸
ξi

= T+
i (Φi+1 − Φi)︸ ︷︷ ︸

ξi+1

, (1.13)

yielding the recurrence relation ξi+1 = γiξi, with the abbreviation γi = T−i /T
+
i .

Taking the absorbing state Φ0 = 0 into account, the solution to this equation is

ξi = Φ1

i−1∏

j=1

γj . (1.14)

Next we note that

N∑

l=1

ξl = Φ1 − Φ0 + Φ2 − Φ1 + . . .+ ΦN − ΦN−1 = 1 (1.15)

is a telescoping series, as all terms except the first and the last cancel each other

out. Making use of the absorbing states Φ0 = 0 and ΦN = 1 allows us to obtain the

result. Finally by combining (1.14) and (1.15) we can derive an expression for the

fixation probability Φ1

1 =
N∑

l=1

ξl = Φ1

N∑

l=1

l−1∏

j=1

γj = Φ1


1 +

N−1∑

l=1

l∏

j=1

γj


 , (1.16)

where in the last step we wrote the empty product
∏N−1
j=N γj = 1 in the sum explicitly.

Thus the probability that a single type takes over the whole population of fixed size

N is given by

Φ1 =
1

1 +
∑N−1

l=1

∏l
j=1 γj

. (1.17)

Expression (1.17) is an important property of biological systems. New types within

a population are often considered to occur via mutation and thus are rare (a single

type) initially, and their probability of fixation is often of interest. However, we can

also derive an expression for the fixation probability Φi, given by

Φi =

i∑

l=1

ξl = Φ1

i∑

l=1

l−1∏

j=1

γj =
1 +

∑i−1
l=1

∏l
j=1 γj

1 +
∑N−1

l=1

∏l
j=1 γj

. (1.18)

Note in the special case T+
i = T−i , we have γi = 1 and the expression (1.18) simplifies

to Φi = i/N . If i = 1 the fixation probability becomes Φ1 = 1/N . This situation

is called neutral selection and it corresponds to an unbiased random walk (Kimura,

1983; Nowak, 2006a). Neutral selection is an important concept in evolutionary
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biology, as many processes are believed to take place at neutral or close to neutral

conditions (Kimura, 1983, 1991). Further, neutral selection is used as a benchmark

and often the deviation of fixation probabilities and fixation times are compared to

the neutral case.

Another very important property in biological processes is the fixation time τi.

Even if the fixation probability might be one, the process could proceed on very

different time scales and thus appears different in biological systems (Altrock and

Traulsen, 2009a,b; Altrock et al., 2010, 2012). A prominent example is oncogenesis.

Although a mutation might be cancerous and can be proven to fixate with certainty

in a tissue, it might take longer than the expected life time of a healthy person

and thus is effectively harmless. The unconditional average fixation time τi can be

formulated by a recurrence relation again (Taylor et al., 2006; Traulsen and Hauert,

2009)

τi = 1 + T−i τi−1 +
(
1− T−i − T+

i

)
τi + T+

i τi+1, (1.19)

where τ0 = τN = 0. Again we can rearrange the terms to

τi+1 − τi︸ ︷︷ ︸
ζi+1

= γi (τi − τi−1)︸ ︷︷ ︸
ζi

− 1

T+
i

(1.20)

resulting in the recurrence relation ζi+1 = γiζi+1/T+
i . This can be solved iteratively

ζi = τ1

i−1∏

l=1

γl −
i−1∑

k=1

1

T+
l

i−1∏

l=k+1

γl. (1.21)

Further we observe
∑N

l=2 ζl = −τ1 and thus arrive at the following expression

τ1 = −
N∑

l=2

ζl = −τ1

N−1∑

l=1

l∏

k=1

γl +

N−1∑

l=1

l∑

k=1

1

T+
k

l∏

m=k+1

γm. (1.22)

Rearranging terms finally gives the fixation time

τ1 =
1

Φ1

N−1∑

l=1

l∑

k=1

1

T+
k

l∏

m=k+1

γm. (1.23)

We derived expressions for fixation probability (1.18) and fixation time (1.23) of

a two type Moran process without mutations. These expressions are very general

and only depend on the transition probabilities T− and T+. There are a few stan-

dard implementations of transition probabilities describing different situations in

biological systems. The simplest case are constant transition probabilities, where
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T+
i = T+ = r1 and T−i = T− = r2. This implies that γ = T−/T+ = r2/r1 = r,

where r ∈ R≥0, is a constant number. This is called the constant selection case

(Nowak, 2006a). Plugging these transition probabilities into (1.18) leaves us with

two geometric series to be solved, and the fixation probability simplifies to

Φi =
1− ri
1− rN . (1.24)

Note, for r = 1 by applying the rule of l’Hospital we obtain

lim
r→1

=
1− ri
1− rN = lim

r→1

iri−1

NrN−1
=

i

N
, (1.25)

which is the former result we derived above for neutral selection. We find Φi = 1

only if r = 0 , which is fulfilled for T− = 0 and 0 < T+ ≤ 1. Note that in all other

cases Φi < 1, even in the limit of large N . However, either one of both types will

reach fixation in the long run.

The situation becomes slightly more complicated if the transition probabilities

become state dependent. Assume there are i type A individuals and N − i type B
individuals. A standard way to introduce state dependency is

T+
i =

ifi
ifi + (N − i) gi︸ ︷︷ ︸

birth of A

N − i
N︸ ︷︷ ︸

death of B

(1.26a)

T−i =
(N − i) gi

ifi + (N − i) gi︸ ︷︷ ︸
birth of B

i

N︸︷︷︸
death of A

, (1.26b)

where fi and gi are fitnesses of type A and B. We explain the exact concept of

fitness and its implementation below. The logic of above terms is as follows. To

increase the number of type A individuals by one, an A type needs to reproduce

and a B type needs to die. Usually the birth is assumed to be proportional to the

types fitness, where death is assumed to be random. This implementation implies

selection acting on reproduction but not on death (Nowak, 2006a). However, this is

an arbitrary choice and fitness dependence could be implemented in death terms as

well (Altrock and Traulsen, 2009a).

Fitness in an traditional evolutionary framework is interpreted as an abstract

reproduction capacity of a type (Ariew and Lewontin, 2004). Higher fitness corre-

sponds to potentially higher number of offspring and thus a faster spread of this type

within the population. Note, if fitness of type A and B are assumed to be constant

numbers fi = α and gi = β, we find γi = T−i /T
+
i = β/α = r. This is the case of



20 Chapter 1. Introduction

constant selection we discussed above. So called frequency dependent selection was

originally introduced in classical game theory and was later adapted to evolutionary

game theory by John Maynard Smith and others (von Neumann and Morgenstern,

1944; Maynard Smith, 1974, 1982). First we have to implement a game between

type A and B. Assume types A and B carry fixed strategies, that can be genetically

in a biological sense or behavioral in an economic or social context. The strategies

are determined by the payoff matrix of a game that takes the form

(
A B

A a b

B c d

)
, (1.27)

where a, b, c, d are real numbers called payoffs. The matrix has to be read as follows:

if a typeA individual interacts with another typeA individual both will obtain payoff

a, if type A interacts with type B, type A will obtain b and type B obtains c. Type

B individuals interacting with type B individuals obtain d. Type interactions are

specified in concrete models and depend on population structure (Nowak and May,

1992; Lieberman et al., 2005; Tarnita et al., 2009). However, a common approach

is a well mixed population, where the probability to meet another type is given by

its frequency (Nowak, 2006a). The payoff matrix above captures the special but

important case of two players and two strategies. If we increase the number of

strategies, the payoff matrix increases in size (3×3), an increase of players increases

the dimension of the matrix ( for example 2 × 2 × 2 for the case of 2 strategies

and 3 players) (Gokhale and Traulsen, 2010). In general a game between d players

and n strategies can be captured by a (n, d) tensor. But so far we introduced

payoffs without any connection to the actual dynamics of the stochastic process.

This connection is achieved by a mapping of these payoffs into fitness (coefficients

fi and gi in (1.26a) and (1.26b) respectively). Therefore we need to define a fitness

mapping function, that is to some extend arbitrary again (Wu et al., 2010). We just

may assume the function to be smooth, differentiable and monotonically decreasing

for decreasing payoffs. However, traditionally a linear fitness mapping of the form

fi = 1− w + w
a (i− 1) + b (N − i)

N − 1︸ ︷︷ ︸
Fi

(1.28a)

gi = 1− w + w
ci+ d (N − i− 1)

N − 1︸ ︷︷ ︸
Gi

, (1.28b)
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is chosen, where 1 is the baseline fitness, w ∈ [0, 1] is a control parameter that

represents selection intensity and Fi, Gi are the expected payoffs of type A and type

B individuals in a well mixed population (Nowak, 2006a). If w = 0, the fitnesses are

independent of the game and we recover the case of neutral selection. For w → 0 the

contribution of the game becomes minimal, which generally is characterized as weak

selection (Wild and Traulsen, 2007; Wu et al., 2010). The dynamical patterns for

frequency dependent selection are more versatile compared to the constant selection

case. A common question to ask is, given a certain set of strategies, which strategy

should I play to maximize my personal fitness. In economics this would mean to

maximize profit, in biology one could interpret it as evolutionary superior strategy

that produces most offspring. We do not discuss this in too much detail, as this is

not the aim of this thesis. We only want to collect a few basic facts.

The question of which strategy to chose is to some extend answered by the

concept of the Nash equilibrium (Nash, 1950). It states, that a strategy is Nash,

if any divergence from this strategy gives at most the same payoff. It is strict

Nash, if a divergence always decreases the payoff. However, Nash equilibria do not

necessarily maximize fitness on a population level. This is easily demonstrated by

a minimalistic example. Consider the following payoff matrix

(
C D

C 2 0

D 3 1

)
. (1.29)

A player that choses strategy C obtains a payoff of 2, if he meets another player

with strategy C and a payoff of 0, if he meets a player with strategy D. A player

with strategy D obtains a payoff of 3 by meeting a player with strategy C and 1 by

meeting another D. In this situation it is always advantageous to play D and the

only Nash equilibrium in this case is all D, thus everyone obtains payoff 1. However,

if everyone played C the payoff per player is 2 and the populations payoff is higher.

But this state is invaded by players with strategy D and the equilibrium shifts

towards all D. This problem became famous as the Prisoners Dilemma and much

research is done on additional mechanisms that are required to lead the dynamics

towards the populations fitness maximum (Hamilton, 1964; Hauert, 1999; Macy and

Flache, 2002; Hauert and Doebeli, 2004; Nowak, 2006b). Nash proved, that every

game has at least 1 Nash equilibrium (if mixed strategies are allowed). We give a
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full characterization of possible equilibria of the N player two strategy case in the

chapter 1.4.1.

1.3.3 Towards deterministic dynamics

In the previous section we described properties of the Moran process, a stochas-

tic birth-death process with finite population size. In simple situations, important

properties such as fixation probabilities and fixation times can be derived. However,

often the underlying dynamics of the process are also interesting. For example in

oncogenesis the dynamics can be key. Although a mutation might extinct with cer-

tainty, intermediate states could be lethal. It is convenient to describe the dynamics

of a system by time continuos differential equations, often enabling analytical solu-

tions. In the following we want to derive the time continuos description of the Moran

process by a system size expansion (limit of large N). Formally we have to perform

a Kramers-Moyal expansion of the Master equation (Kampen, 1997; Traulsen et al.,

2005; Traulsen and Hauert, 2009). The Master equation in general is a set of differ-

ential equations, describing the temporal change of the probability distribution of a

stochastic process with finite state space (Gillespie, 1992). For the Moran process

we can write

P τ+1 (i)− P τ (i) = P τ (i− i)T+ (i− 1)− P τ (i)T− (i)

+ P τ (i+ 1)T− (i+ 1)− P τ (i)T+ (i) , (1.30)

where P τ (i) denotes the probability that the system is in state i at time τ and T±

are the transition probabilities introduced above. Performing the transformations

x = i/N , t = τ/N and ρ (x, t) = NP τ (i) we obtain

ρ

(
x, t+

1

N

)
− ρ (x, t) = ρ

(
x− 1

N
, t

)
T+

(
x− 1

N

)

+ ρ

(
x+

1

N
, t

)
T−
(
x+

1

N

)
(1.31)

− ρ (x, t)T− (x)− ρ (x, t)T+ (x) .
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The next step is a Taylor expansion of the transition probabilities and the probability

densities around x and t, yielding

ρ

(
x, t+

1

N

)
= ρ (x, t) +

1

N

∂

∂t
ρ (x, t) +O

(
1

N2

)

ρ

(
x± 1

N
, t

)
= ρ (x, t)± 1

N

∂

∂x
ρ (x, t) +

1

2N2

∂2

∂x2
ρ (x, t) +O

(
1

N3

)

T±
(
x± 1

N

)
= T± (x)± 1

N

∂

∂x
T± (x) +

1

2N2

∂2

∂x2
T± (x) +O

(
1

N3

)
.

Plugging these terms into (1.31) we obtain

∂

∂t
ρ (x, t) = − ∂

∂x

[
T+ (x)− T− (x)

]
︸ ︷︷ ︸

a

ρ (x, t) +
1

2N

∂2

∂x2

[
T+ (x)− T− (x)

]
︸ ︷︷ ︸

b2

ρ (x, t) ,

which has the form of the well studied Fokker-Planck equation. Applying Ito’s

Lemma (Kampen, 1997) this can be transformed into a Langevin equation with

multiplicative noise ζ

ẋ (t) = a (x) + b (x) ζ. (1.32)

In the limit N →∞ we have b→ 0 and thus we find

ẋ (t) = lim
N→∞

[
T+ (x)− T− (x)

]
= x (1− x)

(
f − g
φ

)
, (1.33)

where φ = xf + (1− x) g is the average fitness of the population. Equation (1.33) is

the well known replicator equation, frequently used in evolutionary game theory to

describe the deterministic dynamics of a game (Taylor and Jonker, 1978; Zeeman,

1980; Page and Nowak, 2002a). Above calculations can be extended, allowing mul-

tiple types and non vanishing mutation rates, see (Traulsen et al., 2006). In chapter

4, we will use the Moran process and the replicator equation as deterministic ap-

proximation to describe the dynamics in a resistance inducing experiment.

1.4 Deterministic dynamics

So far, we have described stochastic approaches to capture biological systems. As

these systems consist of a finite number of interacting agents, cells molecules etc. and

due to numerous random influences, such as mutations or changing environments,

it is natural to assume these dynamics to be stochastic. However, deterministic

descriptions can offer interesting insights into these often very complicated systems,

either as an approximation of large system size or by revealing general patterns
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underlying stochastic fluctuations. A classical approach is the use of differential

equations, to capture the deterministic dynamics of a system. Throughout this

thesis we develop several model systems, describing different biological systems by

applying different types of differential equations.

1.4.1 Replicator equation

In the former subsection 1.3.3 we derived the replicator equation for two possible

strategies by a system size expansion of the Moran process. This equation can be

generalized to n interacting types (Nowak, 2006a). We assume n strategies and

denote with x = {x1, . . . , xn} the distribution of the population, where xi is the

frequency of strategy (or type) i. We call fi (x) the fitness of type i. The general

replicator equation is given by

ẋi = xi (fi (x)− φ) , (1.34)

where φ is chosen such, that
∑n

i=1 xi = 1. The parameter φ turns out to be the

average fitness of the population, φ =
∑n

i xifi (x). The dynamics of this system can

be studied on a simplex with n vertices, defined by all sets of frequencies that fulfill
∑n

i=1 xi = 1. An important property of this system are its equilibria, which can be

derived by solving the in general nonlinear system of equations xi (fi (x)− φ) = 0.

The vertices of the simplex are either 0 or 1 and are trivial fixed points. However,

of biological interest are often interior fixed points (xi > 0 ∀i), as this provides a

possible mechanism of maintaining biodiversity (Huang et al., 2012). Recently, it

was shown, that for a d player game with n strategies, the maximum number of

interior fixed points is (d− 1)n−1 (Gokhale and Traulsen, 2010; Han et al., 2012).

Importantly, for any two player game, there is at most 1 interior fixed point, that

either can be stable or unstable. In the special case of a two player two strategy

game this leaves us with only 4 possible dynamical scenarios. These scenarios can

easily be calculated by solving the system

ẋ1 = x1 (f1 (x1, x2)− φ (x1, x2)) = 0 (1.35a)

ẋ2 = x2 (f2 (x1, x2)− φ (x1, x2)) = 0. (1.35b)

Using x1 + x2 = 1 this system can be reduced to a single equation, given by

x1 (1− x1) (f1 (x1, x2)− f2 (x1, x2)) = 0. (1.36)
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0 1xA

(ii) Dominance of type B

xA 10

(i) Dominance of type A

xA 10

(iii) Negative frequency dependence

xA 10

(iv) Positive frequency dependence

Figure 1.5: All possible dynamical patterns of the two player two strategy sce-

nario. Here full circle represent stable equilibria and the direction of arrows give the

direction of selection. See main text for a detailed discussion of all four cases.

Thus we find the trivial fixed points x1 = 0 and x1 = 1 at the vertices of the simplex

(a line in this case). Further we assumed f (x) to be strictly monotonic. Thus there is

at most a single intersection point of f1 and f2, leading to one potential interior fixed

point if f1 (x1, x2) = f2 (x1, x2). However, this fixed point can be asymptotically

stable or unstable, resulting in two different dynamical patterns (Nowak, 2006a).

Here, a fixed point is called stable if all eigenvalues of the Jacobian matrix are

strict smaller than 1 (Browder, 1979). Referring to the implementation of the payoff

matrix (1.27) and the fitness mapping functions (1.28a) and (1.28b), equation (1.36)

can be written as

xA (1− xA) [(a− b− c+ d)xA + b− d] = 0. (1.37)

The interior fixed point becomes x∗A = a−b−c+d
b−d . This equilibrium is stable if

d (f1 + f2) /dxA < 0, which is fulfilled for a− b < c− d. The 4 different dynamical

scenarios are determined by the entries of the payoff matrix:

(i) Dominance of type A, (xA → 1), if a > c and b > d.

(ii) Dominance of type B, (xA → 0), if a < c and b < d.

(iii) Negative frequency dependent selection (x∗A is stable), if a < c and b > d.

(iv) Positive frequency dependent selection ( x∗A is unstable), if a > c and b < d.

Here the terms negative or positive frequency dependent selection refer to a type,

advantageous at either low or high frequencies respectively, see Fig. 1.5. The situ-

ation a = b = c = d refers to the static case, where the system stays at its initial

state.
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We note, that equation (1.34) is closely related to some other important equa-

tions. If fitness is state independent fi (x) = fi, the replicator equation corresponds

to the quasi species equation without mutations. However, in chapter 4 mutations

are necessary and we use a generalized quasi species equation that allows for muta-

tions (Page and Nowak, 2002a). Further a transformation xi = yi/(1 + y) converts

the replicator equation into the Lotka-Volterra equation. An incorporation of mu-

tations leads to the replicator mutator equation, given by

ẋi =

n∑

j=1

xjfj (x) qji − xiφ. (1.38)

Here qji gives the probability that a replication of type i gives rise to type j and

Q = [qji]n×n is called the mutation matrix or kernel.



Chapter 2

Single mutations in hierarchical

tissues

In chapter 1.2.1, we discussed the basic biological properties of hierarchical orga-

nized tissue structures. We emphasized, that cell production in most tissues follows

such a hierarchical organization. This chapter is based on the publication (Werner

et al., 2011), coauthored by David Dingli, Tom Lenaerts, Jorge M Pacheco and Arne

Traulsen. A detailed summary of the authors contributions to this publication can

be found at the end of this thesis. We evaluate a multi compartment model to

describe cell dynamics in an abstract general hierarchy. We analyze the dynamics

by stochastic computer simulations capitalizing the Gillespie algorithm, see chapter

1.3.1, and by rate equations, that capture the averages of the simulations. We ob-

tain closed expressions for stem cell and non stem cell driven cell dynamics. Stem

cell driven cell proliferation lead to a steady state of homeostasis and non stem cell

driven cell proliferation result in clonal waves, that travel trough the hierarchy. Cells

at higher stages of the hierarchy without stem cell support are washed out of the

hierarchy and get lost in the long run. We further calculate the average extinction

time of such clonal waves and are able to compare our theoretical results to the

extinction of neutral PIG-A mutants, yielding a good agreement. However, in this

chapter we neglect the possibility of additional mutations during cell proliferations

and thus do not investigate the dynamics of cells with multiple mutational hits. We

extend our model in chapter 3 to account for this aspect of homeostasis.
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2.1 Introduction

Many tissues have a hierarchical multi compartment structure in which each com-

partment represents a cell type at a certain stage of differentiation. This architecture

has been well described for hematopoiesis (Dingli et al., 2007a; Nowak, 2006a) and

epidermal cell turnover in the skin (Fuchs, 2008; Tumbar et al., 2004) or in the

colonic crypt (Potten et al., 2009). At the root of this process are the tissue specific

stem cells that have the capacity to differentiate into more specialized cells (McCul-

loch and Till, 2005). Each cell undergoes a series of cell divisions and differentiation

steps until the whole diversity of the tissue is obtained (Michor et al., 2003; Ko-

marova and Cheng, 2006; Dingli et al., 2007a; Nowak, 2006a; Johnston et al., 2007;

Michor et al., 2005; Wodarz and Komarova, 2005). The model presented here closely

follows this concept. We introduce in total k + 1 compartments, where each com-

partment i represents a certain stage of cell differentiation with i = 0 representing

the stem cell pool. Each cell in a compartment i replicates at a rate ri. If a cell in a

non stem cell compartment i > 0 replicates, it can undergo three different processes:

With probability εi, it divides into two more differentiated cells that migrate into

the adjacent downstream compartment i + 1. With probability λi, the cell dies.

With probability 1 − εi − λi, it divides into two cells that retain the properties of

their parent cell and therefore remain in the same compartment i (self-renewal), as

shown in Fig. 2.1. Thus in compartment i, the number of cells Ni is increased by

influx from the adjacent upstream compartment i− 1 and self-renewal within com-

partment i, and decreased by cell death in compartment i and cell differentiation

into the adjacent downstream compartment i+ 1. One could also allow asymmetric

cell divisions in non stem cell compartments. But the average dynamics in this case

can be captured by modifying the differentiation probabilities ε. Thus, this case is

implicitly included in our model. In the following, we shall assume a constant num-

ber of stem cells N0, following (Dingli et al., 2007a; Abkowitz et al., 2002). This can

be achieved via asymmetric cell division (Dingli et al., 2007; Lenaerts et al., 2010).

However, one can also assume a process at the stem cell level in which cell differ-

entiation, cell death and self renewal are balanced such that the average number of

cells remains constant, i.e. 2ε0 + 2λ0 = 1. For immortal stem cells, λ0 = 0, this

means ε0 = 0.5. However, for our purpose details of the dynamics in the stem cell

compartment are not relevant, as long as the number of stem cells is constant.
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1 − εk − λk
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1 − εi − λi
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1 − ε− λε λ

a)

b)

Figure 2.1: Cell proliferation and compartment structure. a) We consider three

possible events during the cell division of a non-stem cell. Cells can differentiate, die, or

reproduce. This happens with probabilities ε, λ, and 1−ε−λ, respectively. b) Compartment

structure: The first compartment represents stem cells dividing asymmetric. These stem

cells replicate with a rate r0 and their number N0 is constant. Cells in a non stem cell

compartment i replicate with a rate ri. They will differentiate into the next compartment

with probability εi, die with probability λi or produce cell types of compartment i with

probability 1− εi − λi.

This model does neglect several aspects that may have an impact on the dy-

namics of the system under consideration, such as biochemical feedback or spatial

population structure (Jackson, 2003; Nowak et al., 2004; Johnston et al., 2007;

Marciniak-Czochra et al., 2009). However, due to the generality, our model can be

seen as a benchmark and thus allows to infer when such aspects are of importance

and when they can be ignored by a comparison between the different model classes.

One special case of our framework is the model of hematopoiesis discussed in

(Dingli et al., 2007a). There, cell death is neglected, λi = 0 for all i. Furthermore,

an exponentially increasing proliferation rate ri = γir0 and a constant differentiation

probability εi = ε are assumed for all non stem cell compartments. Here, we relax

these conditions and therefore our analytical arguments hold for general values of

ri, εi and λi in each compartment and thus for a wide class of related models and

different tissues.
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2.2 Mathematical model and results

The individual cell model is based on a finite number of cells that divide and differ-

entiate with certain probabilities. Thus, it is a stochastic process (Kampen, 1997)

and fits the current view of the stochastic nature of such cell differentiation processes

(Abkowitz et al., 1996). However, the average cell numbers can be captured by a

system of coupled differential equations that is deterministic. These equations follow

from a proper counting of incoming and outgoing cells within each compartment i.

Let us assume that the number of stem cells N0 is constant, following (Dingli

et al., 2007a; Abkowitz et al., 2002). The number of cells in the first non stem cell

compartment i = 1 increases by influx from the stem cell pool at a rate r0N0 and due

to self renewal at a rate (1− ε1 − λ1) r1N1. In addition, the average number of cells

in the compartment i = 1 is lowered by cell differentiation into the next compartment

i = 2 at rate ε1r1N1. Cell death in compartment i = 1 occurs at rate λ1r1N1.

The dynamics in all other compartments is the same, except that the number of

cells Ni in the compartment i increases due to influx from the adjacent upstream

compartment at rate 2εi−1ri−1Ni−1. Self renewal occurs at rate (1− εi − λi) riNi.

Ni decreases due to cell death at rate λiriNi and cell differentiation at rate εiriNi.

Combining these terms and assuming in total k + 1 compartments, we obtain a

system of coupled differential equations

Ṅ0 (t) = 0 (2.1a)

Ṅ1 (t) = − (2ε1 + 2λ1 − 1)︸ ︷︷ ︸
α1

r1N1 + r0N0 (2.1b)

Ṅi (t) = − (2εi + 2λi − 1)︸ ︷︷ ︸
αi

riNi + 2εi−1ri−1Ni−1 (2.1c)

where 1 < i ≤ k and the dots denote derivatives with respect to the time t. From

now on, we use the abbreviation αi to denote the difference between the loss from

compartment i due to differentiation and cell death and the gain from self renewal.

Thus, αi = εi+λi− (1−εi−λi) = 2εi+2λi−1. Typically, we will have αi > 0, and

this net loss of cells will be compensated from the influx of cells from the upstream

compartment.

The simulations presented in this chapter are individual based stochastic simu-

lations. We implement all elements of the first i compartments separately, thus we

are able to record the dynamics of every single cell. Every cell division is called an
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event. We use a standard Gillespie algorithm (Gillespie, 1976), described in detail in

chapter 1.3.1, to determine in which compartment the next event takes place. After

the compartment is determined, one cell in this compartment is chosen to divide

proportional to the reproduction rate. The outcome of this event is determined by

the cell death and differentiation probabilities λi and εi. The dynamics in the stem

cell compartment is different: in our realization stem cells are allowed to divide

asymmetrically only, thus we keep the number of stem cells constant. One could

implement a Moran process on the stem cell level also and therefore allow dynamics

on the stem cells (Lenaerts et al., 2010). However this would not change the aspects

we look at here. The number of stem cell events determine the time scale. We define

1 time unit as n stem cell events. For example, in the hematopoietic system of a

healthy adult human we assume that there are approximately 400 stem cell divisions

a year.

2.2.1 Stem cell driven dynamics

The equilibrium of the process is obtained from setting the left hand side of our

system of differential equations to zero. Biologically, this corresponds to tissue

homeostasis. In this case, we have

Ni = N0
r0

riαi

i−1∏

j=1

2εj
αj

. (2.2)

Next, we turn to the process of filling empty compartments by a continuous influx

from the stem cell pool. Because we do not consider interactions between different

cell clones in our differential equations, this corresponds also to the dynamics of a

mutation arising in the stem cell pool. Thus, we choose the initial condition

Ni (0) =

{
N0 i = 0

0 otherwise.
(2.3)

The differential equation (2.1b) for the compartment i = 1 is an inhomogeneous

linear differential equation of first order and can be solved by methods such as the

variation of parameters. Assuming initial condition (2.3), one obtains the solution

for compartment i = 1

N1 (t) = N0
r0

r1

1

α1

[
1− e−α1r1t

]
. (2.4)
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Because the differential equation for compartment i = 2 depends onN1 (t) andN2 (t)

only, one can insert (2.4) into (2.1c) for i = 2 and solve the resulting inhomogeneous

equation through variation of parameters again,

N2 (t) = N0
r0

r2

2ε1

α1α2

[
1− e−α2r2t

]

+N0
2ε1

α1

r0

α1r1 − α2r2

[
e−α1r1t − e−α2r2t

]
. (2.5)

Continuing with this procedure one can find the general pattern, which leads to a

solution for general i,

Ni (t) = N0
r0

riαi

i−1∏

j=1

(
2εj
αj

)[
1− e−αirit

]

+N0r0

i−1∏

l=1

(2εlrl)

i∑

j=1

(−1)i

rjαjR
(1)
ji

[
e−αjrjt − e−αirit

]
, (2.6)

where we have introduced R
(1)
ji =

∏i
l=1,l 6=j (αjrj − αlrl) to shorten our notation.

Equation (2.6) allows any choice of εi, λi and ri. Within the basic model assumptions

depicted in Fig. 2.1, this represents the most general case. All thinkable stem cell

driven effects can now be described and followed in detail, as for example any change

in the equilibrium compartment sizes or any change of cell division properties during

cell differentiation. Compartments are continuously filled with cells until they reach

the equilibrium described above. This can easily be deduced from (2.6), because all

terms involving decaying exponential functions in time will ultimately be irrelevant

for the cell counts.

If we choose (i) an exponentially increasing proliferation rate ri = γir0, (ii)

constant differentiation probability εi = ε and (iii) constant cell death λi = λ for

each non stem cell compartment i, solution (2.6) simplifies to

Ni (t) = N0
1

γi
(2ε)i−1

αi

[
1− e

−α γi

N0
t
]

+N0

√
γi(i−1)

(2ε)i−1

αi

i∑

j=1

(−1)i

γjΓ
(1)
ji

[
e
−α γ

j

N0
t − e

−α γi

N0
t
]

(2.7)

with Γ
(1)
ji =

∏i
l=1,l 6=j

(
γj − γl

)
as a short cut.

In Fig. 2.2, equation (2.7) is compared to averages obtained from an individual

based stochastic simulation. Note that α > 0 is required to maintain an equilib-

rium. In this case we have Ni (t→∞) = N0 (2ε)i−1 / (γα)i, the cell count in a
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Figure 2.2: Deterministic dynamics of hematopoiesis modeled as a hierarchical

multi compartment process. The colored symbols are averages of an individual based

stochastic simulation with 104 realizations. The colored lines are our analytical solution

(2.7) for the first six non stem-cell compartments i. Parameters are based on the model

of hematopoiesis in (Dingli et al., 2007a) (N0 = 400, ε = 0.85, λ = 0, and γ = 1.26, stem

cells divide approximately once per year). The stem cell division rate fixes the time scale.

Compartments are continuously filled with cells until they reach the equilibrium.

compartment i under equilibrium conditions. This is in agreement with former re-

sults (Dingli et al., 2008). While we focus on the biologically relevant case of α > 0,

we can also consider more general values of α. For α < 0, the compartment produces

more cells than it loses even in the absence of cell influx from upstream. Thus, the

number of cells would grow exponentially according to equation (2.7) in each non

stem cell compartment. For α = 0 the gain of cells due to self renewal and the

loss of cells due to differentiation and cell death in a compartment is equal. Thus

the number of cells are not changed by processes in the compartment, despite a

continuous output of cells into the next downstream compartment. The case α = 0

can be solved directly from Eqs. (2.1a)-(2.1c), which gives Ni (t) = N0

(∏i−1
j=0 rj

)
ti

i! .

Solution (2.6) describes the deterministic process of filling empty compartments

within hierarchical organized tissue structures, as can occur during wound healing,

recovery from hematopoietic stem cell transplantation (Marciniak-Czochra et al.,

2009) or of in vitro experiments with fetal liver cells (Brümmendorf et al., 1998).

However, it can also be viewed as the dynamics of a mutant clone arising from a

single cell in the stem cell pool, N0 = 1. Thus, it is also possible to describe the
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Figure 2.3: Deterministic dynamics of non stem cell driven mutants in a hierar-

chical multi compartment process. a) A single mutant occurred in the compartment

j = 1. Shown are the number of mutants in the downstream compartments i = {2, . . . , 6}.
Lines are due to equation (2.9), the colored dots are due to an individual based stochastic

simulation. The corresponding parameters have been chosen from a model of hematopoiesis

(Dingli et al., 2007b) (N0 = 400, ε = 0.85, λ = 0 and γ = 1.26). Averages are over 104

realizations. In the long run, mutants will always be washed out, because of the missing

input from the stem cell pool. However, this process can take a very long time, in our ex-

ample it would be of the order of 10 years until the average number of mutant cells becomes

smaller than one in compartment 6. But it will take significantly longer until all cells in

downstream compartments are washed out. b) Parameter dependence of the maximum. For

decreasing ε, λ and γ the maximum number of average cells increases, but the time to reach

this maximum increases. The more differentiated the cell of the origin of the mutation, the

lower the maximum number of cells and the quicker this maximum is reached.

average time development of diseases caused by mutations at the stem cell level such

as the chronic myeloid neoplasms. Again, because we assume there is no interaction

between normal cells and mutated cells, the dynamics of mutated cells proceeds

independently, albeit with different differentiation parameters.

2.2.2 Non stem cell driven dynamics

Next, we turn to mutations occurring downstream of the stem cell compartment.

The occurrence of a mutation in a non stem cell compartment is more likely than a

mutation in the stem cell pool due to the higher numbers and proliferation rates of

non stem cells. The dynamics of such a mutant is not driven by the stem cell pool

and thus is not described by the solution form above, equation (2.6). However, the
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compartment structure is unchanged and thus the dynamics of such mutants is also

described by equations (2.1a)-(2.1c), but with altered initial conditions. Assuming

there is a mutation in compartment j, the initial condition is

Nij (0) =

{
1 i = j

0 otherwise.

Here Nij (t) represents the number of mutant cells in compartment i at time t,

whereas the mutation occurred in compartment j at time t = 0. According to this

initial condition, the system of coupled differential equations (2.1a)-(2.1c) turns into

a homogenous system and the dynamics of mutant cells is independent from the first

j equations. Using the same tools as above, we obtain the general solution

Nij (t) =





0 i < j
i−1∏
l=j

(2rlεl)
i∑

h=j

(−1)i−j

R
(j)
hi

e−αhrht i ≥ j (2.8)

with R(j)
hi =

∏i
l=j,l 6=h (αhrh − αlrl). Note that this equation describes the dynamics

of chronic myeloid leukemia clones in (Michor et al., 2005) analytically and reduces

to the solution in (Johnston et al., 2007) in a special case. If, as in (Dingli et al.,

2007a), we assume (i) an exponentially increasing proliferation rate, (ii) a constant

differentiation probability, (iii) constant cell death across all compartments, then

the solution simplifies to

Nij (t) =





0 i < j
√

γi(i−1)

γj(j−1)

(−2ε
α

)i−j i∑
h=j

1

Γ
(j)
hi

e
−α γ

h

N0
t

i ≥ j. (2.9)

Fig. 2.3 a) shows the dynamics of mutants in the first compartments, when the

mutation arises in compartment j = 1. Note that for the most biologically plausible

case α > 0, for large t the exponential functions in (2.8) vanish. Thus the mutants

will be washed out from the non stem cell compartments. Thus, the absence of

mutants is a stable state of such hierarchical compartment structures. However,

this equilibrium may not be of any biological or medical relevance, since the time

to get rid of the last mutant cells of the clone may be longer than the normal

expected lifetime of the healthy organism, cf. Fig. 2.4. Fig. 2.3 b) shows how the

maximum of equation (2.9) and the time to reach it depends on ε, λ, and γ. As

the proliferation rate γ of the mutant population decreases, the size of the mutant

population in downstream compartments increases, although it will take ’longer’ for
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Figure 2.4: Average cell number for first 31 compartments a) Average number of

mutants in the first 31 compartments of a hematopoiesis model (N0 = 400, ε = 0.85, λ = 0

and γ = 1.26) driven by a single stem cell mutation, cf. equation (2.7). The number of

mutants increases exponentially per compartment and approaches an equilibrium. b) The

same dynamics driven by a single mutant in the third non stem cell compartment j = 3,

due to equation (2.9). The average mutant cell count reaches a maximum, but vanishes in

the long run, because of the missing influx from the stem cell compartment. However, it

will be difficult to distinguish between the two cases in the initial phase of the disease (here

≈ 3 years).

the population to reach high levels. A mutation that increases the net loss of cells α

(either by increasing cell differentiation ε or cell death λ) in a compartment lowers

the number of mutants at maximum size of the clone in downstream compartments,

which is also reached earlier. Note also that mutations occurring later in the cell

differentiation process will lead to smaller maxima that vanish faster (Traulsen et al.,

2010).

Based on equation (2.8), other mutant dynamics are also possible. If αh < 0

in a single compartment h, mutant counts diverge exponentially in all downstream

compartments. If αh = 0 in a single compartment h and α > 0 otherwise, in the

long run mutants will reach an equilibrium in all downstream compartments, which

is given by

Nij (t→∞) =





0 i < h

2i−j−1 rh
ri
αh
εi

i∏
l=j

εl
αl

i ≥ h. (2.10)

This equilibrium is robust against variations of Ni and thus is a stable fixed point.

However a small change in αh would lead either to extinction or the divergence

of the mutant cell count. Initially, the difference between the dynamics of a clone

arising from the stem cell compartment and an early non stem cell compartment is
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small, see Fig. 2.4.

2.2.3 Mutant extinction times

In the long run the average mutant cell count is given by the dynamics of the slowest

decaying exponential function of equation (2.8). It is often natural to assume that

this corresponds to the dynamics in the compartment of the mutant origin j. Thus,

if we assume that αjrj < αiri for all i > j (as in the hematopoiesis model in (Dingli

et al., 2007a)), in the long run mutants will die out at a rate

Nij (t) =



i−1∏

l=j

2rlεl


 (−1)i−j

R
(j)
ji

e−αjrjt. (2.11)

This is shown in Fig. 2.5 a). For this special choice of parameters equation (2.11)

becomes

Nij (t) =

√
γi(i−1)

γj(j−1)

(−2ε

α

)i−j 1

Γ
(j)
ji

e
−α γj

N0
t
. (2.12)

Thus, the mutant cell count in the long run is given by a decaying exponential

function. This enables us to calculate the average extinction time text
ij of mutants in

the i-th compartment, if the mutation occurred in compartment j,

text
ij =

1

αjrj
ln




i−1∏
l=j

(−2rlεl)

R
(j)
ji


 . (2.13)

If we assume a constant differentiation probability, constant cell death and an ex-

ponential increasing proliferation rate again this simplifies to

text
ij = − N0

αγj
ln



√
γj(j−1)

γi(i−1)

(−2ε

α

)j−i
Γ

(j)
ji


 . (2.14)

In Fig. 2.5 b) we compare the extinction time due to equation (2.14) to simulation

results. This approximation does not allow to calculate the extinction time of the

mutant of the compartment of origin, but a more detailed consideration of this case

can be found in (Dingli et al., 2008).

A special case of interest is a mutation with εj = 1/2 and λj = 0. This results

in a mutant cell that shows stem cell like properties in compartment j and non
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Figure 2.5: Extinction times. a) The black lines show the average mutant cell count based

on equation (2.9) in the compartments i = 20 and i = 30, where the mutant occurred in the

first non stem cell compartment j = 1. The dashed blue lines are given by equation (2.11),

extinction occurs when the average cell count drops below 1. Again the parameters are

chosen from a model of hematopoiesis as in Fig. 2.3 and 2.4. b) Average extinction time due

to simulation (black dots) and due to equation (2.14) (dashed blue line). This approximation

does not work for the mutant in the compartment of origin, where an alternative approach

is necessary (Dingli et al., 2008).

stem cell like properties in higher compartments. In this case the set of differential

equations (2.1a)-(2.1c) becomes

Ṅi (t) =





0 i ≤ j
−αiriNi + ri−1Ni−1 i = j + 1

−αiriNi + 2εi−1ri−1Ni−1 i > j + 1.

(2.15)

Equation (2.15) transforms into equation (2.1a)-(2.1c) if one shifts the index i to

i→ i− j. Thus we have to shift the index of the general solution (2.6) and find

Nij (t) =
rj
riαi

i−1∏

l=j+1

(
2εl
αl

)[
1− e−αirit

]

+ rj

i−1∏

l=j+1

(2εlrl)
i∑

h=j+1

(−1)i

rhαhR
(j)
hi

[
e−αhrht − e−αirit

]
. (2.16)

Thus, the average dynamics of such a mutation is exactly as described above for a

stem cell mutation. The averages of the simulation are described by equation (2.6)

and (2.8), but a single run is still stochastic. The relative standard deviation of lower

compartments σi/Ni is of order 1, but decreases with increasing compartment num-

ber. Stochastic effects on the stem and the early progenitor cell level are important
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Figure 2.6: Dynamics of PIG-A mutants. Panels a) to c) show the number of PIG-A

mutants per million healthy cells in compartment k = 31, based on equation (2.8). The

mutation of origin occurred at time t = 0 in compartment j = {10, 11, 12}. The parameters

of the mutant cells are γP = 1.26, εP = 0.77 and λP = 0 in all compartments. The horizontal

lines correspond to the detected maximum, the detected average and the detection limit of

PIG-A mutants observed in in vivo studies (Araten et al., 1999). The upper table in panel

d) shows the time (in days) of these events after the original mutation occurred at time

t = 0 based on equation (2.8). The bottom table shows the corresponding extinction times

(∆tl = t6 − tl). We predict an extinction time of 230 days for the measured maximum and

100 days for the average mutant cell count.

and can be crucial in a medical context (Dingli et al., 2007b; Lenaerts et al., 2010),

but to understand some fundamental properties, the deterministic view seems to be

sufficient.

2.2.4 Example: Dynamics of PIG-A mutants

Here, we will utilize the model to illustrate the dynamics of a mutation that is seen

in virtually every healthy human being. Sensitive flow cytometric analysis of cir-

culating blood cells will identify a small clone that lacks expression of CD55 and

CD59 (amongst others)(Araten et al., 1999). CD55 and CD59 belong to a class
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of proteins that inhibit complement activation and their absence renders red blood

cells sensitive to intravascular destruction. These proteins are normally displayed

on the surface of cells since they are anchored to the plasma membrane via a glyco-

sylphosphatidyl inositol (GPI) moiety. Synthesis of GPI requires a series of steps.

The PIG-A gene encodes a protein that is an essential component of the complex

responsible for the first step of GPI biosynthesis. Mutations in this gene can lead

to a partial or complete deficiency of GPI synthesis resulting in low level or com-

plete absence of such proteins from the cell surface, as for example the complement

inhibitors CD55 and CD59 (Hillmen et al., 1993; Longo et al., 2008). Red blood

cells lacking CD55 and CD59 are destroyed by complement, leading to hemolytic

anemia. As a result, mutations in PIG-A can explain the phenotype of paroxys-

mal nocturnal hemoglobinuria (PNH), an acquired hematopoietic stem cell disorder

characterized by anemia, hemoglobinuria and other manifestations (Luzzatto et al.,

1997). A recent mathematical model suggests that a PIG-A mutation in a HSC is

sufficient to explain the incidence and natural history of PNH (Dingli et al., 2008).

However circulating blood cells with the PNH phenotype (due to a mutation in PIG-

A) can be found in virtually every healthy adult human (Araten et al., 1999). Such

clones generally disappear with time. With this background, we will now apply the

analytical solution (2.8), to assess extinction times of PIG-A mutants and compare

these results to in vivo data derived from healthy adult humans.

The model parameters were fixed to represent hematopoeisis following (Dingli

et al., 2007b). In this approach, cell death is neglected, λi = 0 for all i, and an expo-

nentially increasing proliferation rate ri = γir0 as well as a constant differentiation

probability εi = ε is assumed for all non stem cell compartments. Further, limited

self-renewal is considered across many stages of differentiation, a prediction that

is finding increasing support: For example, this was noted recently for cells at the

proerythroblast stage, a cell type far removed from the stem cell or primitive pro-

genitor cell pools (England et al., 2011). Finally, the model parameters for human

hematopoiesis become N0 = 400, r0 = 1/N0, γ = 1.26 and ε = 0.85. The number

of cells per compartment increases exponentially and one needs k ≈ 31 compart-

ments (Dingli et al., 2007b) to ensure that in a healthy adult human, on average,

the daily bone marrow output is of the order of 3.5 · 1011 blood cells (Vaziri et al.,

1994). The same model can also be fitted to other mammals (Dingli et al., 2008b).

PIG-A mutants are considered to be neutral (Araten et al., 2002), supported by in

vivo measurments (Maciejewski et al., 1997; Dunn et al., 1996). Thus we chose, as
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for normal cells, λP = 0 and γP = 1.26 as mutant parameters. For fully neutral

mutants, the clone would either be present for too much time or it would not reach

the level observed in vivo. We explored various values of ε and found that a slightly

lower differentiation probability εP = 0.77 gave the best results. Note that this

slight difference compared to healthy cells is still consistent with the experimental

evidence.

In Araten et al (Araten et al., 1999) the blood of 19 healthy adult humans was

sampled and tested for clones with PIG-A mutations. Mutants were found in every

person ranging from 8 to 51 mutants per million (with an average of 21 ) normal

blood cells. Blood samples from the same patients were taken at later times to

determine survival of these clones. The lower limit of detection in (Araten et al.,

1999) was approximately 7.5 mutant cells per million. The detected maximum of 51

mutants per million healthy cells decreased after 164 days and was undetectable after

192 days. Individuals with the average cell count of 21 PIG-A mutants per million

still had the clone present after 65 days, but it was not detectable after 174 days. We

need to determine the compartment j, where a mutation in PIG-A occurred, such

that the clone that arises would grow to reach the detection threshold and remain

detectable for a time compatible with observations. Using equation (2.8), we record

the dynamics of mutant cells in compartment 31 for different compartments of origin.

In Fig. 2.6, the mutant cell count per healthy cells in compartment 31 is shown,

where the mutation took place in a) compartment 10, b) compartment 11 and c)

compartment 12. With these curves, one can predict extinction times for different

origins of the mutation. Comparing the total size of the mutant population and the

corresponding extinction times to values obtained in humans (Araten et al., 1999)

allows to predict the compartments where the mutant clone originated.

In Fig. 2.6, we show the corresponding times from the mathematical model

calculated from equation (2.8). The same figure also illustrates that the time of

origin of the mutation can be much earlier than the detection time. For example,

if the mutation occurred in compartment 10, we predict an extinction time of 230

days for the maximum of 51 mutants per million, when the initially sample was

taken at time t3, see figure 2.6 a). The extinction time for the average cell count

is 100 days. However, it should be clear that such mutant cells will survive for sig-

nificantly longer than what is detectable by technology due to issues of sensitivity.

With this in mind, there is good agreement between what the model predicts and

the results described in (Araten et al., 1999), since it is unlikely that the clones in
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all the individuals were either found as soon as they were detectable or when they

were at their peak concentration. Thus what is relevant are (i) the distribution of

times that these mutant cells remain in circulation and (ii) the size of the clones

one observes. In this respect our model provides a very good approximation of the

dynamics of such clones and is able to infer the cell of origin. If the mutation oc-

curred in earlier compartments, the clone would be expected to expand to a higher

cell count and will stay in the circulation for a longer time, but such clones are less

likely to occur due to the lower number of progenitor cells and slower proliferation

rate. Mutation events in higher compartments as j = 12 are more likely to happen

but these mutants would not be detectable by most current clinical flow cytometry

techniques due to the small size of such clones in compartment 31 although they

may be detected perhaps with polymerase chain reaction technology. Thus, com-

partments {10, 11, 12} are the most likely compartments of the mutant origin for the

cases described in (Araten et al., 1999). Mutations arising in these compartments

correspond to mutations in early progenitor cells. This agrees with the experimen-

tal results, since the PNH phenotype is present in several different cell lineages and

thus has to occur early in the hematopoietic tree. Note that besides the compart-

ment of origin, the only free parameter is the differentiation probability of mutated

cells εP. Here we assumed that these circulating mutant cells all originate from one

founder cell. Two or more independent, simultaneous or contemporaneous clones in

early compartments would be unlikely (Traulsen et al., 2007; Dingli et al., 2008).

If a second independent mutation occurs during the presence of an earlier mutant

population, the total mutant cell number is the sum of both single populations, see

the supporting information for more details.

Moreover the hierarchical structure of hematopoiesis provides an explanation

why almost all humans carrying PIG-A mutations do not have symptoms of PNH.

Only mutations in the most ’primitive’ compartments have an impact and only

mutations in a HSC will lead to disease. In general, one can predict the dynamics

for mutants with very different properties using equation (2.8). The compartment

of the mutant origin can be inferred if one follows the mutant count by taking blood

samples at regular intervals.
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2.3 Discussion

In this work, we presented closed analytical solutions for the deterministic dynam-

ics of stem cell and non stem cell driven mutants in a multi compartment model of

tissues such as hematopoiesis, the skin and the colon. This enables us to describe

the dynamics of mutant cells in a general approach. We can predict the time devel-

opment of a mutant depending on its origin and its specific proliferation properties.

The process of cell differentiation is conceptually fairly well understood, but it is of

course a challenge to estimate the various parameters in our model for real systems.

Fortunately, very often, simplifying assumptions, e.g. exponentially increasing cell

proliferation rates, can lead to insights (Dingli et al., 2007a). However, our analyt-

ical solution allows us to incorporate more involved parameter dependencies, which

could immediately be analyzed.

Let us turn to hematopoiesis to address some of the implications of our model

because recent technological developments allow the detection of well known mu-

tations in many otherwise healthy people. Perhaps the best examples are derived

from blood disorders, since repeated blood sampling is a minimal invasive procedure

and molecular probes for many blood disorders are available. The case of PIG-A

mutant cells present in healthy humans has been analyzed extensively in an earlier

section. There are several other specific examples (Traulsen et al., 2010).

(i) A mutation in the janus like kinase 2 where phenyalanine substitutes va-

line (JAK2V617F) is a common mutation in patients with chronic myeloid

neoplasms. However, one can find this mutation in a substantial fraction of

healthy adults (perhaps 0.2 - 0.4 percent) and with an even higher frequency

(0.94 percent) in hospitalized patients who do not have an overt hematologic

disorder (Nielsen et al., 2011; Xu et al., 2007). JAK2V617F is expected to give

a survival and reproductive advantage to cells, and probably also enhances self

renewal of progenitor cells. Knowing the dynamics of such clones, can lead to

an understanding of the cell of origin in these patients as well as its impact on

the fitness of mutant cells.

(ii) Finally, the classic oncogene BCR-ABL (Daley et al., 1990) that is associated

with chronic myeloid leukemia can be found in healthy adults (Bose et al.,

1998). In some of these individuals the mutant clone resolves while in others it

persists but to our knowledge, none of the individuals in the cohort described
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have progressed to develop CML. There are various potential explanations

for this observation including (i) non-stem cell origin of the mutant clone,

(ii) stochastic extinction (Lenaerts et al., 2010), (iii) immune response to the

clone, (iv) additional mutations may be needed to lead to CML. Independent

of the multitude of possibilities, it is safe to conclude that the cell of origin

of a mutant is of importance and the impact of a mutation is cell context

dependent. Our model can provide plausible explanations for the frequency

and cell of origin of these mutations and perhaps why they do not lead to

disease.

(iii) We can also think of other mutations altering cell division properties. For in-

stance, one can consider a mutation occurring in compartment j with εj = 1/2,

λj = 0 and normal properties in all the other upstream compartments. This

would be the special case described by equation (2.16), and can be understood

as a mutation that enables a cell to reacquire stem cell-like renewal capacities

again. Such a behavior can explain the origin of various subtypes of acute

leukemia as has been reported recently (Krivtsov et al., 2006; Huntly et al.,

2004; Guibal et al., 2009).

Our model provides a mathematical abstraction of hierarchically structured tis-

sues and neglects many factors that can have an important impact on the dynamics,

as for example spatial population structure or temporal changes of cell division prop-

erties, e.g. due to aging or injury. Nonetheless, the most important aspects of such

tissue structures are captured by our model. It takes the form of ordinary differen-

tial equations that allows analytical solutions in many cases. An alternative would

be a numerical solution, but such a solution has to be implemented for specific sets

of parameters. We are convinced that our model can readily be applied to various

hierarchical tissues and expect that general features of mutant dynamics will be

conserved across different tissues.



Chapter 3

Multiple mutations in hierarchical

tissues

In chapter 2 we evaluated the cell dynamics in hierarchically organized tissue struc-

tures, neglecting the possibility of multiple mutational hits within a single cell.

However, as discussed in 1.2.2 such multiple mutational hits are essential for many

cancers to occur. This chapter is based on a manuscript, coauthored by David Dingli

and Arne Traulsen, currently under revision in the Journal Interface of the Royal

Society. We now extend our multi compartment model to allow multiple mutations

within the hierarchy. We investigate the scaling of multiple mutations in hierarchies.

Most importantly we introduce the reproductive capacity of a non stem cell, defined

as the total cell load produced from a single cell somewhere in the hierarchy. We

obtain analytical expressions for most general cell proliferation parameters and find

interesting scaling properties of hierarchical tissue structures. Cells carrying mul-

tiple mutations are strongly suppressed by the hierarchy. However, the scaling of

those cells is sensitive to their proliferation parameters and a small divergence from

the healthy state can already lead to a substantial increase of the number of cells

with multiple mutations. Thus small differences in cell proliferation parameters re-

sult in significant differences of the expected number of distinct mutations, derived

from a single ancestor cell. This finding might contribute to the explanation of very

diverse mutational landscapes for different cancer types.
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3.1 Introduction

The lifespan of most cells in biological organisms is limited and usually the life

expectancy of the organism exceeds this time by orders of magnitudes (Hayflick

et al., 1961; Raff, 1992). As cells are continuously lost, mechanisms to replenish the

cell pool evolved in organisms, enabling sustained cell production during life time

(Pardee, 1989). Often this is realized by hierarchically organized tissue structures.

At the root of the hierarchy are few tissue specific stem cells, combining two prop-

erties, self renewal and differentiation potential (McCulloch and Till, 2005). During

cell proliferation, cells differentiate and become increasingly specialized to perform

specific functions within the hierarchy. After some differentiation steps the com-

plete spectrum of functional cells can be obtained (Michor et al., 2003; Dingli et al.,

2007a; Nowak, 2006a; Michor et al., 2005; Wodarz and Komarova, 2005; Werner

et al., 2011). A prominent example is the hematopoietic system (Loeffler and Wich-

mann, 1980; Michor et al., 2005; Dingli et al., 2007a; Nowak, 2006a; Wodarz and

Komarova, 2005; Werner et al., 2011), but other tissues as for example skin (Fuchs,

2008; Tumbar et al., 2004) or colon (Potten et al., 2009) are also hierarchically

organized.

A large number of cell divisions are indispensable to life, however, they are un-

avoidably accompanied by mutations. Typically, these cells are washed out of the

hierarchy and thus, especially if they arise in relatively differentiated cells, the asso-

ciated mutations are lost in the long run (Araten et al., 1999; Werner et al., 2011).

But cells with multiple mutational hits might persist for a long time, causing the

risk of the accumulation of additional mutations during cell proliferation, which can

ultimately lead to cancer. Although some cancers seem to be caused by single muta-

tion hits, for example the BCR-ABL translocation occurring in stem cells in chronic

myeloid leukemia (Daley et al., 1990) or the PML-RARA translocation occurring

in more differentiated cells in acute promyelocytic leukemia (Guibal et al., 2009),

they are rare. The majority of cancers are triggered by at least a handful of muta-

tions (Stratton et al., 2009; Beerenwinkel et al., 2007; Gerstung and Beerenwinkel,

2010). The recent progress in genome sequencing techniques allowed in some cases

the classification of cancer initiating mutations, in other cases the underlying muta-

tions remain unknown (Welch et al., 2012). However, many of these studies reveal a

very diverse mutation landscape, indicating the existence of several cancer initiating

driver mutations and additional alterations that have a small or even no impact on
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cancer development, so called passenger mutations (Hanahan and Weinberg, 2000;

Vogelstein and Kinzler, 2004; Sjöblom et al., 2006; Jones et al., 2008; Pleasance

et al., 2010; Shah et al., 2012; Ding et al., 2012; Walter et al., 2012). The precise

impact of passenger mutations on cancer progression is still under discussion, but

the typical assumption is that they are neutral and do not affect the proliferation

properties of cells (Haber and Settleman, 2007; Bozic et al., 2010). In particular,

this holds for synonymous mutations that do not have any consequences on protein

structure or function (Greenman et al., 2007).

In mathematical and computational approaches, compartment models are fre-

quently used to describe cell dynamics in hierarchically organized tissue structures.

Many of these studies investigate effects of stem cell mutations and related clinical

implications, see for example (Michor et al., 2005; Rodriguez-Brenes et al., 2011;

Roeder et al., 2006; Dingli et al., 2007a; Marciniak-Czochra et al., 2009; Glauche

et al., 2011). Also stochastic effects of tissue homeostasis are analyzed (Lenaerts

et al., 2010, 2011; Traulsen et al., 2013), highlighting, that cancer driving mutations

can in principle disappear by chance (stochastic extinction). The interplay of stem

cell and progenitor cell mutations and their impact on cancer initiation are discussed

(Komarova and Wang, 2004) and game theoretical approaches allow to model evo-

lutionary aspects of tissue homeostasis and inter cell competition (Basanta et al.,

2011; Gerlee et al., 2011). Often, these studies investigate the effects of cells carry-

ing one or very few specific mutations and assume either constant population size

or only minimal hierarchies.

Here, we focus on the presence of cells carrying multiple mutations within a

hierarchically organized tissue. We show mathematically, that the hierarchical or-

ganization strongly suppresses cells carrying multiple mutations and thus reduces

the risk of cancer initiation. Closed solutions for the total cell population that arises

from a single (mutant) cell are derived and from this the expected diversity of the

mutation landscape and the clonal size can be described. This enables a better

understanding of the expected diversity in mutation landscapes that are observed

in both healthy and cancerous tissues.

3.2 Mathematical model and results

The hierarchical tissue organization is typically modeled by a multi compartment

approach (Dingli et al., 2007a; Werner et al., 2011). Each compartment represents
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Figure 3.1: Schematic representation of the compartment structure of multiple

mutations and corresponding transition rates. The top compartments (blue) contain

cells carrying no mutation. The bottom compartments (red) contain cells carrying one

mutation. Compartments to the right represent more specialized cell stages and arrows

transition probabilities, where ε denotes the differentiation probability, u the mutation rate

of cells and αk
i = εki + u. Initially no mutated cells are present in the hierarchy. We then

ask, how many cells are acquired from the founder compartment (top left) and investigate

how many cells with k mutations are on average expected at any stage of the hierarchy.

a certain differentiation stage of cells. At the root of the hierarchy are stem cells

ensuring a continuous influx of cells. A proliferating cell in compartment i divides

and the two daughter cells differentiate and migrate into the next downstream com-

partment (i + 1) with probability ε, increasing the downstream compartment by 2

cells, mutates with probability u or self renews within its own compartment with

probability 1− ε−u. Mutated cells stay in the hierarchy. If a mutated cell prolifer-

ates, it differentiates with probability ε into the next downstream compartment, it

self renews with probability 1−ε−u, or it mutates with probability u again, leading

to a cell with two (or more) mutations. All possible outcomes of a cell proliferation

are depicted in Fig. 3.1. The direction of the arrows point towards the accessi-

ble cell states and the labels give the transition probabilities. We allow arbitrary

parameters and introduce εki as differentiation probability of cells in compartment

i carrying k mutations. Asymmetric cell divisions are not explicitly implemented,

as they can be absorbed in the differentiation probabilities on the population level.

The fate of a cell’s offspring is determined based on the probabilities εki . Cells prolif-
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erate with a rate ri in each compartment i. Usually cells in upstream compartments

proliferate slow and cell proliferation speeds up in downstream compartments (i.e.

ri < ri+1). This general framework is very flexible and different tissue structures

can be represented.

We implement individual based stochastic simulations of the cell dynamics in

hierarchically organized tissue structures. We utilize an implementation of the Gille-

spie algorithm (Gillespie, 1976, 2007). Originally introduced to simulate chemical

reactions, it allows us to reproduce exact stochastic trajectories of the system. Each

cell has an individual representation. Thus the complete clonal history of cells within

the hierarchy can be recorded. If a cell is chosen for reproduction (determined by

the Gillespie method), it either differentiates, self renews or mutates according to

the probabilities εki and u. The parameters of the simulated system are described

below and chosen to represent human hematopoiesis.

In the following we focus on the hematopoietic system. There about 400 stem

cells replenish the hematopoietic cell pool (Dingli and Pacheco, 2006; Buescher et al.,

1985). Each stem cell divides approximately once a year (Rufer et al., 1999; Dingli

and Pacheco, 2006). Cell proliferation is assumed to increase exponentially ri = γir0,

with γ = 1.26 and r0 corresponds to the proliferation rate of stem cells. The

differentiation probability is assumed to be constant, ε = 0.85, for all non stem cell

compartments and in total i = 31 compartments are needed, to ensure a daily bone

marrow output of approximately 3.5× 1011 cells (Dingli et al., 2007a; Werner et al.,

2011).

3.2.1 Time continuous dynamics of multiple mutations

We describe the deterministic dynamics of a cell population within a hierarchically

organized tissue structure, that initially carries no mutation. A cell may commit

further into the hierarchy (differentiate), mutate, or self renew itself. This occurs

with probability ε, u and 1 − ε − u, respectively. In Fig. 3.1 a schematic repre-

sentation of the resulting hierarchical structure is shown. Compartments to the

right represent downstream compartments of more specialized (differentiated) cells,

while compartments to the bottom represent states of cells, that accumulated an

additional mutation. During one cell division, a cell either mutates and moves

one compartment to the bottom, differentiates and produces two cells in the next

downstream compartment to the right, or self renews and produces an additional
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wild type
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Figure 3.2: Clonal expansion within a hierarchically organized tissue. Cell prolif-

eration is driven by a few slow dividing stem cells, giving raise to faster dividing progenitor

cells. After some differentiation steps the mature tissue cells are obtained. Initially cells

have no mutations, but mutants can arise and expand within the hierarchy. These cells

either vanish or gain an additional mutation, which again potentially spreads within the hi-

erarchy. Different colors code for a different number of mutations, whereas different shapes

indicate different mutations.

cell within its original compartment. This leads to an expansion of clonal popula-

tions within the hierarchy, that potentially accumulates several (distinct) mutations

during the differentiation process. This is schematically shown in Fig. 3.2.

The above transition probabilities can be used in an individual based stochastic

simulation. In the following, we provide a deterministic description of the average

dynamics of cells carrying multiple mutations in such hierarchical structures. Thus,

we describe the dynamics by transition rates instead of transition probabilities, but

only averages enter in our description. By doing so, we neglect certain effects, such

as stochastic extinction of cells. However, the approach allows us to investigate the

averages of the underlying stochastic simulations.

Assume that in compartment i there are Nk
i (t) cells carrying k mutations at

time t. The number of these cells increases due to influx from the upstream com-

partment at a rate 2ri−1ε
k
i−1, mutations with a rate riu and self renewal at a rate

ri
(
1− εki − u

)
. Cells are lost either by mutation at a rate riu, or differentiation at

a rate riεki . The deterministic description of the hierarchical compartment model
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becomes a system of coupled differential equations (Werner et al., 2011), given by

Ṅk
i (t) =

{
ri
(
1− 2αki

)
Nk
i (t) + 2riε

k
i−1N

k
i−1 (t) k = 0

ri
(
1− 2αki

)
Nk
i (t) + 2riε

k
i−1N

k
i−1 (t) + riuN

k−1
i (t) k > 0.

(3.1)

Here αki = εki +u denotes the probability that a cell with k mutations leaves compart-

ment i. Typically, αki is very close to ε. A model for stochastic cell dynamics in the

stem cell compartment for neutral and non neutral mutations can be found in (Dingli

et al., 2007b; Traulsen et al., 2013). In that paper, the stochastic Moran process is

used to investigate the extinction and fixation probabilities of stem cell mutations.

The deterministic stem cell driven cell replenishment in hierarchical tissues is stud-

ied in detail in Werner et al. (2011). However, in that prior work, the effects arising

from additional mutations were neglected. Here we focus on non stem cell driven

clonal dynamics. We explicitly allow for an arbitrary number of mutational hits at

any stage of the hierarchy, but we neglect a continuous influx of mutated cells from

the stem cell level. This assumption gives the condition Nk
0 (t) = 0. The initial

condition

Nk
i (0) =

{
n0 i = 1 k = 0

0 otherwise,
(3.2)

corresponds to initially n0 cells in compartment 1 carrying no mutation. One can

think of a neutral marker approach, where one cell in the hierarchy is genetically

marked, and one considers the clonal population arising from this marked cell (Ger-

rits et al., 2010). Although we neglect a continuous influx of mutated cells from

the stem cell compartment, stem cell mutations can be implemented indirectly. Our

approach allows for altered cell proliferation properties of the founder cell, poten-

tially derived by a mutation at the stem cell level. For a constant differentiation

probability, i.e. the case where all αki and all εki are identical, Eq. (3.1) can be solved

recursively. The number of cells in compartment i carrying no mutation changes in

time as

N0
i (t) = n0

(2ε)i−1

(1− 2α)i−1



i−1∏

j=1

rj




i∑

l=1

erl(1−2α)t

i∏
h=1
h6=l

(rh − rl)
. (3.3)

The solution can also be derived recursively for cells carrying k mutations in com-
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partment i and becomes

Nk
i (t) = n0

k∑

h=0

uk−hghi
k!

(2ε)i−1

(2α− 1)i+h−1



i−1∏

j=1

rj




i∑

l=1

(rl t)
k−h erl(1−2α)t

i∏
h=1
h6=l

(rh − rl)
, (3.4)

where ghi is a combinatoric parameter denoted in 3.5 for cells carrying up to three

mutations,
h = 0 h = 1 h = 2 h = 3

k = 0 1

k = 1 1 i− 1

k = 2 1 (i− 1)k i(i− 1)

k = 3 1 (i− 1)k i(i− 1)k (i+ 1)i(i− 1)

(3.5)

If α < 0.5, non stem cells will continuously accumulate in downstream compart-

ments. The probability of self renewal in this case is larger than the probability

of differentiation. This scenario seems to be realized in certain blood cancers. For

example in acute promyelocytic leukemia an abnormal increase of immature granu-

locytes and promyelocytes is observed, resulting from a block of cell differentiation

at a late progenitor cell stage (Raymond et al., 1993; Guibal et al., 2009). However

these cases are rare.

For α > 0.5, the solution becomes a clonal wave, traveling through the hierarchy

in time. In this case the probability of differentiation is larger than the probability

of self renewal and thus cells progressively travel downstream, see Fig. 3.3 as an

example. The cell population founded by a single non stem cell expands within the

hierarchy initially, but gets washed out and vanishes in the long run. This is be-

lieved to be true for healthy homeostasis. For example for the hematopoietic system

the differentiation probability was estimated to be ε = 0.85 (Dingli et al., 2007a).

As by far most cell proliferations occur at the progenitor and more committed dif-

ferentiation stages, this provides a natural protection of the organism against the

accumulation of multiple mutations, as the survival time of most (non stem cell like)

mutations is finite.

The maximum mutant cell count of the clonal wave and the time to reach this

maximum can be calculated for the compartment of the mutant origin, in our case

the first compartment. The time is given by

tkmax =
k

(2α− 1) r1
. (3.6)
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Figure 3.3: A Number of cells carrying no mutation in compartments 1 to 31

arising from compartment 1 containing 1000 cells. Lines show equation (3.3), with

parameters n0 = 1000, ε = 0.85, γ = 1.26, u = 10−6 and r0 = 1/400. Cells are more

likely to differentiate than to self renew and thus progressively travel into more committed

compartments. Initially, the cell count increases, but cells get washed out in the long run.

The time scale is determined by the number of stem cell divisions. A stem cell is assumed

to divide once a year, thus after 400 stem cell divisions a year passed. B Count of cells

carrying zero to three mutations in compartment 31, given by equation (3.4). We used

same parameters as in A. Cells carrying multiple mutations are exponentially suppressed.

The time to reach the maximum increases linearly with the number of additional

mutations k. The cell count at the maximum becomes

Nk
1 (tmax) =

(uk)k

k! (2α− 1)k
e−k ≈ uk

(2α− 1)k
1√
2πk

, (3.7)

where we used the Stirling formula to approximate k!. The maximum scales with

uk and thus decreases exponentially with k. In addition the factor 1/
√
k leads to a

further suppression of the maximum for increasing k. However, the risk of additional

mutations depends not on the maximal cell count, but on the reproductive capacity

of a cell line. This reproductive capacity can be captured by the cumulative cell

count. The number of cells within compartment i carrying k mutations produced

until time t is given by

mk
i (t) = riα

k
i

∫ t

0
dsNk

i (s) , (3.8)

and the reproductive capacity can be derived by taking the time limit to infinity.

The general solution (3.4) allows to carry out the integral exactly by integration by

parts. However the problem can be tackled from a different perspective, leading to

a more transparent solution of (3.8) that is easier to handle.
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3.2.2 Cell reproductive capacity

We call the cell subpopulation within a compartment i, that is derived by a single

founder cell in an upstream compartment, the reproductive capacity of this founder

cell. This idea directly corresponds to the method of neutral markers. We imagine

a genetically marked cell somewhere in the hierarchy and count the offspring of this

cell at any stage of the hierarchy. This corresponds to the total count of cells with

same color in Fig 3.2.

Assume a single cell carrying no mutation in compartment 1. This cell differ-

entiates with probability ε0
1 into the next downstream compartment, mutates with

probability u or produces an additional cell in compartment 1 with probability

1 − ε0
1 − u. We first discuss the probability, that a cell leaves compartment 1 af-

ter exactly l cell divisions. A cell can leave a compartment either by mutation or

differentiation, before which the cell has to undergo l − 1 self renewals. Thus this

probability becomes (ε+ u) (1− ε− u)l−1. During this time, the cell population in

compartment 1 derived from this single cell increased to 2l−1 cells, if all daughter

cells share the same proliferation probabilities. With this, the reproductive capacity

of a single cell in compartment 1 is on average

m0
1 =

∞∑

l=0

α0
1 2l

(
1− α0

1

)l
=





α0
1

2α0
1−1

α0
1 >

1
2

∞ α0
1 ≤ 1

2 .
(3.9)

The sum becomes infinite if α ≤ 0.5, as the probability to produce offspring in

the founder compartment is higher than the probability to leave the compartment.

Thus, the cell population continuously increases. Of course, under normal condi-

tions, cells do not have an unlimited capacity to divide and serial telomere erosion

amongst others will impose a physical limit on the number of divisions a cell can

undergo (Hayflick et al., 1961; Armanios and Blackburn, 2012). The biologically

more relevant case is α > 0.5 and cells tend to differentiate into more committed

compartments. In this case, the total number of offspring cells that arise from a

single cell (i.e. a clone) is finite and given by (3.9). The number of cells m0
i in com-

partment i carrying no mutation, increases due to influx of cells via differentiation

from compartment i− 1 and the expansion of these cells due to self renewal in com-

partment i. Thus we can write for the reproductive capacity of cells in compartment

i without mutation

m0
i = 2

ε0
i−1

α0
i−1

m0
i−1

α0
i

2α0
i − 1

=
α0
i

2α0
i − 1

i−1∏

l=1

2ε0
l

2α0
l − 1

. (3.10)
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This can be generalized, and an expression for the reproductive capacity of cells in

compartment i carrying k mutations can be derived. Cells in compartment i with k

mutations are acquired either by differentiation of cells from compartment i−1 that

carry k mutations, by mutation of cells in compartment i carrying k− 1 mutations,

or by self-renewal of cells already in compartment i and k mutations. With this, we

can write

mk
i =

(
2
εki−1

αki−1

mk
i−1 +

u

αk−1
i

mk−1
i

)
αki

2αki − 1
, (3.11)

where the two terms in the bracket represent cells either produced by differentiation

or mutation, multiplied with the self renewal potential of these cells. This recurrence

relation can be solved recursively

mk
i =

αki
2αki − 1

i∑

l=1

2i−l
u

αk−1
l

mk−1
l

i−1∏

h=l

εkh
2αkh − 1

. (3.12)

Since, m0
i is given by (3.10) one can construct the explicit solution iteratively. Equa-

tion (3.12) allows for arbitrary parameters αki and thus incorporates any mutational

induced change in cell proliferation parameters. However, if αki ≤ 0.5 the sum

diverges. Cells with at least k mutations in and downstream compartment i will

accumulate over time. In the following we discuss the general solution of equation

(3.12) for mutations that are neutral relative to the founder cell.

3.2.3 Reproductive capacity of neutral mutants

We call a mutation neutral if the reproductive capacity of the mutant and the

founder cell is equal. In the former subsection we have shown, that the reproductive

capacity of a cell depends on its differentiation probability ε and its mutation rate u,

but interestingly it is independent of the reproduction rate r. Thus, our definition of

neutral mutations only requires constant differentiation probabilities and mutation

rates relative to the founder cell. This assumption allows us to write εki = εi and

thus the number of parameters is reduced from (k + 1) i+ 1 for the general case to

i + 1 for the neutral case. This number can be reduced to two parameters u and

ε, if a constant differentiation probability for all non stem cell stages is assumed,

εi = ε. This simplifies the evaluation of the recurrence relation (3.12) significantly.

The reproductive capacity mk
i of neutral mutations in compartment i carrying k

mutations becomes

mk
i = α

uk

k!

(2ε)i−1

(2α− 1)i+k

k∏

l=1

(i+ l − 1) = αuk
(2ε)i−1

(2α− 1)i+k

(
i+ k − 1

k

)
. (3.13)
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Mutants carrying k mutations are suppressed by a factor uk and thus are rare

in early differentiation stages. The number increases exponentially for downstream

compartments, and a significant load of cells carrying few mutations can be observed

in late differentiation stages, see Fig. 3.4.

Equation (3.13) reveals interesting properties of hierarchical tissue structures.

The ratio of cells carrying k mutations to cells carrying k−1 mutations in compart-

ment i is
mk
i

mk−1
i

=
u

2α− 1

(
1 +

i− 1

k

)
. (3.14)

The ratio increases with compartment number, but the increase becomes flatter

for increasing k. The compartment structure leads to an additional suppression of

cells carrying multiple mutations and thus is a protection mechanism against cancer

initiation. The ratio is constant for i = 1, the compartment of the mutant origin.

The protection mechanism affects downstream compartments only.

On the other hand, the scaling properties for more differentiated cells show

interesting properties also. The ratio of cells with k mutations in compartment i+1

to cells with k mutations in compartment i is given by

mk
i+1

mk
i

=
2ε

2α− 1

(
1 +

k

i

)
. (3.15)

The increase of cells is constant for cells carrying no mutations k = 0. It increases

with k, but is suppressed within the hierarchy by the factor of 1/i.

3.2.4 Number of distinct neutral mutations

So far, we have discussed the reproductive capacity of cells. However we did not

distinguished between different mutations, but grouped together cells with an equal

number of mutations. Often experimental studies focus on mutation landscapes,

investigating the variation in clonal loads in healthy and sick individuals. Our

approach allows us to estimate the expected number of distinct mutations that arise

from a single founder cell, corresponding to the count of distinct symbols with same

color in Fig. 3.2. The founder cell can have arbitrary cell proliferation parameters.

Let us assume that every mutation event is unique. Thus we neglect the pos-

sibility that the same mutation is derived twice independently. The diversity in

compartment i increases either by additional mutations of cells in compartment i,

or differentiation of clones from compartment i− 1 into compartment i. Assuming
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a differentiation probability ε > 0 the expected diversity nk+1
i of cells with k + 1

mutations in compartment i is

nk+1
i = u

i∑

j=1

mk
j = αuk+1

i∑

j=1

(2ε)j−1

(2α− 1)j+k

(
j + k − 1

k

)
. (3.16)

As an example, if we use the parametrization of the hematopoietic system, ε =

0.85 and u = 10−6, we find approximately n1
31 ≈ 30 distinct single mutations in

compartment 31, that were derived from the clonal progeny of a single founder cell in

compartment 1. But the founder cell by chance could carry a mutation, that changes

their cell proliferation parameters. For example, the differentiation probability of

the founder cell could change to ε = 0.75. In this case, Eq. 3.16 estimates 28000

distinct mutations derived from this single founder cell. We note, that the above

change of the differentiation probability from 0.85 to 0.75 is sufficient to explain the

manifestation of chronic myeloid leukemia in otherwise healthy adults (Dingli et al.,

2008a; Lenaerts et al., 2011). However, Eq. (3.16) represents an average and in

individual cases fluctuations, caused by stochasticity are expected. But also small

changes in ε or u influence the expected diversity significantly. A linearized error

analysis (Taylor, 1997) reveals the dependency of (3.16) on the uncertainties of u

and ε, which is given by

∆nk+1
i =

i∑

j=1

(2ε)j−1

(2α− 1)j+k+1

(
gεj + guj

)(j + k − 1

k

)
, (3.17)

with gεj = uk+1|2α (1− j − k)− 1|∆ε and

guj = uk|(k + 1)ε (2ε− 1) + u (2 (k − j + 3)) ε− k − 2) + 2u2 (2− j) |∆u. If we as-

sume ∆u = 10−7 and ∆ε = 0.01 the uncertainty given by (3.17) becomes ∆n1
31 ≈ 35,

where the individual error contributions in u and ε are 7 and 28 respectively. Espe-

cially note the strong dependency on ∆ε. If we choose ∆ε = 0.05, a deviation, that

might be difficult to detect in vivo, one gets ∆n1
31 ≈ 150. Thus small variations

in ε lead to significant differences in the expected diversity of clonal populations,

one aspect that might contribute to the explanation of the observation of very di-

verse mutation landscapes. Note also, that an increasing mutation rate ∆u = 10−6

gives ∆n1
31 ≈ 65. Of course, higher mutation rates increase the expected diversity

of clonal populations. However, a higher mutation rate (or genomic instability) is

neither the exclusive nor necessarily the dominant underlying cause of the diversity

in the mutation landscape that is observed.
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Figure 3.4: A Number of cells without mutations in compartments 1 to 5, arising

from a single cell in compartment 1. Lines are equation (3.8), symbols are averages

with corresponding standard deviations over 103 independent runs of stochastic individual

based computer simulations and squares are equation (3.13). Parameters are n0 = 1,

ε = 0.85, γ = 1.26, u = 10−6 and r0 = 1/400. B Reproductive capacity of a single

founder cell in compartment 1. Shown is the number of cells with 0 to 4 mutations in

the first 31 compartments, acquired from a single cell in compartment 1. Symbols are

numerical solutions of (3.8) in the limit of infinite time and lines are equation (3.13). The

reproductive capacity increases exponentially for increasing compartment number. Cells

carrying multiple mutations are strongly suppressed within a hierarchical tissue structure,

see equation (3.14).

3.2.5 Example: clonal diversity in acute lymphoblastic leukemia

Let us now consider a specific example using data from childhood acute lymphoblas-

tic leukemia (ALL). The most common chromosomal abnormality in this disease is

the t(12;21) translocation that results in the fusion gene ETV6-RUNX1 (also known

as TEL/AML1). There is evidence that this mutation often arises in utero and this

has been confirmed to be the case in at least one pair of monozygotic twins (Hong

et al., 2008). There is evidence that this mutation is a founder mutation and is con-

sidered critical for the disease. Cells that express this fusion gene appear to have a

higher self-renewal and enhanced survival compared to normal cells (Fischer et al.,

2005; Hong et al., 2008). In our model, enhanced self-renewal implies a reduced

differentiation probability for the cells carrying the mutation (ε < 0.85). Recently,

Ma et al. performed whole genome sequencing on leukemic cells isolated from two

pairs of monozygotic twins. In one pair of twins, the initial event occurred in utero

since the ETV6-RUNX1 fusion was shared by both siblings (Ma et al., 2013). They

found that the incidence of non-synonymous single nucleotide mutations between



3.3. Discussion 59

the samples ranged from 708 to 1237 (Ma et al., 2013). These mutations must have

occurred after the founder mutation and independent of each other. The time from

the putative appearance of the shared ETV6-RUNX1 mutation and disease was 48

to 55 months. The second pair of monozygotic twins shared a mutation in NF-1,

and the time to diagnosis of ALL was 72 to 77 months after birth. The tumors in

these two children had 949 to 975 unique non synonymous single nucleotide muta-

tions. Using these constraints and an estimate of 10%-75% cancer cells at diagnosis

as well as N0 = 100 Dingli and Pacheco (2007), we use equation (3.4) to estimate

the differentiation probability ε for the mutant cells, which is then in the range 0.78

to 0.81, ie. only slightly lower than that of normal cells. Based on equation (3.4),

it takes approximately 50 to 80 months to reach this load. We further predict a

range of 350 to 2600 distinct mutations by utilizing equation(3.16), assuming a mu-

tation rate of u = 10−6 and the above range of differentiation probabilities. Thus,

we expect slightly more distinct mutations than found in patients. But some of

those theoretically predicted clones are very small and may escape detection. For

example, if we neglect mutations, that occur in the last differentiation step of cells

in compartment 30 to 31 (expected to be very small cell populations), we predict

only 150 to 950 distinct mutations. Clearly, the model as presented can explain the

large number of passenger mutations that can be expected in a typical patient with

ALL and likely other types of leukemia.

3.3 Discussion

The accumulation of multiple mutations in cells is considered to be critical for cancer

initiation. However, mutations unavoidably accompany cell proliferation and thus

cancer can potentially occur in any multicellular organism. Hierarchical tissue struc-

tures contribute to the protection against such mutations. So far, the suppression

of single mutations in hierarchical tissue structures has been the focus. Here, we

have shown that in addition, the risk of the accumulation of multiple mutations is

dramatically reduced by a hierarchical tissue organization. The cell population is di-

vided into few slow proliferating stem cells and many faster proliferating progenitor

cells. Stem cells have an almost infinite cell reproductive capacity, but the manifes-

tation of a critical mutational load often exceeds an organisms expected natural life

time. Progenitor cells proliferate faster, but their reproductive capacity usually is

limited and thus they give rise to clonal waves traveling through the hierarchy. Still
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both cases can be observed. There are cancers that presumably originate from stem

cell mutations for example chronic myeloid leukemia, and there are cancers that

originate in later stages of hematopoiesis, for example acute promyelocytic leukemia

and various other subtypes of acute myeloid leukemia (Guibal et al., 2009). Under-

standing the clonal dynamics for both cases is of importance. Here, we have focused

on the accumulation of non stem cell driven mutations in hierarchically organized

tissues. We arrived at closed solutions for the clonal waves traveling through the

hierarchy. From this the reproductive capacity of cells can be deduced. This allows

us to predict the expected risk to acquire any number of mutations from one single

cell, given the proliferation properties of this cell. We derived equations that al-

low the quantitative classification of multiple mutations in hierarchically organized

structures, highlighting the strong suppression of clones carrying multiple mutations

by this architecture.

Another important question emerged more recently with the accessibility of

whole genome sequencing technology. These techniques revealed very complex and

diverse mutation landscapes for many different cancers, with the classification of

driver and passenger mutations as the final goal. Knowing the exact driver mu-

tations might help to understand the properties of specific cancer cells, allowing

the development of effective treatment strategies. A promising example is the de-

sign of molecularly targeted agents such as the various tyrosine kinase inhibitors

(Imatinib, Nilotinib etc) to treat patients with chronic myeloid leukemia. These

molecules specifically bind to kinase domains, encoded by the BCR-ABL oncogene

and strongly suppress the proliferative capacity of these cells (Druker et al., 2006;

Saglio et al., 2010; Werner et al., 2011). Our work can contribute to this question by

predicting the average number of distinct neutral (passenger) mutations, acquired

from a single cell at any stage of the hierarchy. This approach directly corresponds

to the method of a neutral marker. The genetically marked cell represents the

founder cell of the clonal population and one follows the offspring of this founder

cell throughout the hierarchy. This enables the prediction of the size and the vari-

ability of the clonal population. For example, in normal hematopoiesis, we expect

cells to have a differentiation probability of ε = 0.85, leading to approximately 30

distinct single mutations (subclones) in adult cells, acquired from this single cell. If

this founder cell acquired a mutation, that changed the differentiation probability

to ε = 0.75 by chance, the expected number of distinct single mutations increases

to approximately 28000.
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We have shown how even a slight change in the self-renewal probability of pro-

genitor cells can lead to substantial differences in the number of passenger mutations

observed in ALL. This likely holds true for other malignancies. In acute promyelo-

cytic leukemia, apart from the t(15;17) that is a critical event in the origin of this

disease (akin to the ETV6-RUNX1 discussed above for ALL), approximately 440

non synonymous single nucleotide mutations were found that were unique to the

tumor clone (Welch et al., 2012). Interestingly, it is highly likely that the cell of ori-

gin of APL is downstream (a progenitor cell) of the cell of origin of ETV6-RUNX1

driven ALL and this may, in part, explain the less diverse mutational landscape

reported in APL compared to ALL and would fit well with our model. Of course,

any genomic instability will further increase the repertoire of passenger mutations

that is observed in any given tumor.

We also note that the effect of a specific mutation on a cell need not be large for

the effect to spread throughout the tumor. Tissue architecture and dynamics as in

hematopoiesis serve as a deterrent against the accumulation of mutations, in par-

ticular multiple mutations occurring in one cell. Once a driver mutation appears, if

this changes either the self-renewal of the cell or the mutation rate, then the appear-

ance of many passenger mutations becomes inevitable in such an architecture due

to the amplification of cells that occurs. Thus, a minor change in the differentiation

probabilities that might be difficult to detect in vivo drastically changes the ex-

pected number of passenger mutations that would be observed. Concomitantly, this

will increase the risk of acquiring mutations in ’driver genes’ and so lead to malig-

nancy. However, if the initiation of disease requires several co-occurring mutations,

a hierarchical tissue structure is a powerful mechanism of tumor suppression.





Chapter 4

Resistance evolution

We argued in the former chapter, that most cancers are caused by multiple muta-

tional hits in cells. However, cancers exist that evolve from a single mutational hit,

for example chronic myeloid leukemia. We discussed in 1.2.3, that this mutation

codes for an active kinase domain with a distinct spatial structure. This allowed the

development of molecular targeted drugs, that strongly suppress the proliferation

capacity of those cancer cells. Unfortunately, resistance to those drugs can occur,

imposing an increasing problem in daily clinical care.

In this chapter we discuss the dynamics of a resistance inducing experiment

in BCR-ABL positive cells. The experiments were performed by David Lutz under

supervision of Stefan Balabanov and Tim Brümmendorf at the university hospital in

Hamburg Eppendorf. They harvested in total 10 cultures of BCR-ABL positive cells.

Each cell population contained approximately 2×105 cells. These cell cultures were

exposed to increasing concentrations of the tyrosine kinase inhibitor Imatinib. After

12 days, the Imatinib concentration was increased and death cells were replaced by

BCR-ABL positive wild types, to assure an approximately constant population size.

The ratio of death and alive cells was recorded, allowing a rough estimate of cell

fitness. The experiment ran for 120 days and all populations were scanned for

resistance inducing mutations. Initially a pronounced decrease of cell fitness could

be observed. However, in the long run cells adapted and high concentrations of

tyrosine kinase inhibitors affected cell fitness less. The fitness of the cell population

passes through a very characteristic minimum to reach the resistance state. We

are especially interested in the underlying deterministic dynamics. By applying a

minimalistic mathematical model we hope to infer some important parameters of

the system.

In the following we shortly discuss the solution of the quasi species equation

with time dependent fitness functions. The subsequent main body of this chapter

is then based on the publication (Werner et al., 2011).
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4.1 Quasi species equation with time dependent fitness

We apply the individual based stochastic Moran process, in detail described in sec-

tion 1.3.2, to model the population dynamics observed in the experiment. The

population consists of initially 2× 105 wild type cells. Importantly, as the concen-

tration of Imatinib increases, the fitness fw of wild types decreases. We approximate

this decrease by a linear time dependence of the wild types fitness,

fw =

{
1− t

t∗ t < t∗

0 otherwise.
(4.1)

The baseline fitness of wild types is 1. The linear time decay is an arbitrary choice,

however, other decaying functions such as a negative exponential does not change

the dynamics significantly. The fitness of resistant types is chosen constant fr = b,

where the experimental results suggest 0 < b < 1. In chapter 1.3.3 we derived a de-

terministic approximation of the Moran process in the limit of large population size

N . The deterministic equations for the two type case became replicator equations

of the form

ẋ = x (1− x) (f1 − f2) . (4.2)

Here we use a modified version of the replicator mutator equation (1.38). We

chose f1 (x1, x2) = f (t) and f2 (x1, x2) = f2 (t), where t represents time. Addi-

tionally type 1 can mutate into type 2 with rate u, but backward mutations are

neglected. With this restrictions, equation (1.38) becomes

ẋ1 (t) = x1 (t) [1− x1 (t)] [f1 (t)− f2 (2)]− uf1 (t)x1 (t) , (4.3)

and x2 = 1− x1. By reordering terms, this can be written as

ẋ1 (t) + [f2 (t)− (1− u) f1 (t)]︸ ︷︷ ︸
a(t)

x1 (t) = [f2 (t)− f1 (t)]︸ ︷︷ ︸
b(t)

x2 (t) , (4.4)

which is a special case (α = 2) of the nonlinear differential equation

ẋ (t) + a (t)x (t) = b (t)xα (t) α 6= 0, 1, (4.5)

known as the Bernoulli differential equation (Bernoulli, 1695). Thus the time de-

pendent quasi species equation with directed mutation (4.3) corresponds to the

Bernoulli differential equation and the solution of (4.5) can be reduced to quadra-

ture for general time dependence of a (t) and b (t). In our case α = 2, the first
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step to the general solution is the variable transformation y (t) = x−1 (t) and the

multiplication with an integrating factor λ (t). This transforms (4.5) into

λ (t) ẏ (t) + λ (t) a (t) y (t) = λ (t) b (t) . (4.6)

Further we observe, that

d

dt
[λ (t) y (t)] = λẏ + λ̇y = λẏ + λay︸ ︷︷ ︸

λ̇=aλ

, (4.7)

yielding a simple differential equation in λ with the solution

λ (t) = e
∫

dsa(s). (4.8)

However, equation (4.7) can also be written as

d

dt
[λ (t) y (t)]︸ ︷︷ ︸

g(t)

= b (t)λ (t) , (4.9)

giving a differential equation g (t), that can be solved by a separation of variables,

finally leading to the general solution

y (t) =

∫
dt
′
b (t) e

∫
dsa(s)

e
∫

dsa(s)
. (4.10)

Thus, equation (4.3) can be reduced to the calculation of some integrals for general

functions f1 (t) and f2 (t). With our choice f1 = fw = 1− t
t∗ and f2 = fw = const,

these integrals can be solved.

In the next section, we use this deterministic description of the Moran process to

derive analytical solutions of the underlying dynamics for the two type case. How-

ever, it turns out, that the two type case is insufficient to describe the experimental

results completely. Thus we generalize our model to three possible types. Analyti-

cal results for the three type case are out of reach, but we can compare simulation

results of the three type Moran process to the experimental dynamics.
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4.2 Introduction

The variety of approaches in cancer research ranges from clinical studies, experimen-

tal studies in vivo and vitro and genetic analysis to computational and mathematical

models. Due to the insights from all these domains it was possible to develop spe-

cific targeted therapies for many cancer types and maybe cures for some are within

reach (Mahon et al., 2010). A very promising example is the progress in treatment

of patients with chronic myeloid leukemia (CML). CML is caused by a single re-

ciprocal chromosomal translocation between the long arms of chromosome 9 and

22, the so called Philadelphia chromosome, in a hematopoietic stem cell (Rowley,

1973). The resulting BCR-ABL fusion gene encodes for a constitutive active ty-

rosine kinase, which is expressed and active in almost all haematopoietc cells and

which leads to accelerated cell cycle activity (Deininger et al., 2000). As a result

predominantly white blood cells at all stages of differentiation are significantly in-

creased in peripheral blood and bone marrow of affected patients. Some years ago

the standard treatment in the chronic phase was interferon-alpha and after disease

progression chemotherapy with or without hematopoietic stem cell transplantation,

a procedure that is associated with significant side effects and risks. The treatment

algorithms changed due to the development of tyrosine kinase inhibitors (TKI) such

as Imatinib (Druker et al., 2006), Nilotinib (Weisberg et al., 2005), Dasatinib (Shah

et al., 2004) and Bosutinib (Cortes et al., 2011). These molecules bind specifically

to the kinase domain of BCR-ABL and thereby strongly suppress the proliferation

capability of CML cells. Since normal cells are less affected by this treatment, it al-

lows normal hematopoiesis to be restored (Lenaerts et al., 2010). Long time clinical

studies investigating the effect of TKIs show overwhelming success (Druker et al.,

2006; Saglio et al., 2010; Kantarjian et al., 2010). Unfortunately, there are cases in

which patients do not respond to the drug or develop resistance during the treat-

ment. This raises the question of how BCR-ABL positive cells bypass inhibition and

develop resistance. A large number of in vivo and in vitro studies were performed,

which identified different mutations causing resistance to TKIs (O’Hare et al., 2007;

Bixby and Talpaz, 2009). However, the spatial structure and thus the molecular

mechanism of kinase domain binding various between different tyrosine kinase in-

hibitors and thus clones resistant to one inhibitor may be sensitive to an alternative

inhibitor. Unfortunately, there are clones resistant to several inhibitors at the same
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time. For example the mutation T315I, the so called gatekeeper mutation, causes re-

sistance to all approved TKIs. Agents as Ponatinib have been particularly designed

to bind to such mutated kinase domains of BCR-ABL and suppress cell prolifera-

tion. These are in clinical trials and showing promising results (Hochhaus et al.,

2011; Demidenko et al., 2005; O’Hare et al., 2009). Also many mathematical models

concentrate on the probabilities and the dynamics of the development of such cross

resistance and how to reduce the risk of resistance evolving to a minimum using

combination therapies of different drugs (Katouli and Komarova, 2010; Komarova

and Wodarz, 2009; Komarova et al., 2009). We will not focus on this aspect in the

following, but address the dynamics of resistance development instead.

Here, we discuss an experimental setup that induces resistance to Imatinib in

initially sensitive BCR-ABL positive Ba/F3-p210 cells. In the following, our aim

is not to assess the probability of the occurrence of a specific resistance-conferring

mutations nor to identify novel mutations, but to focus on the clonal dynamics

that occurs during such an experimental setup. We show that not only mutations,

but also intracellular processes that do not lead to any mutations can lead to the

development of resistance. We investigate the average fitness of cancer cells exposed

to a drug concentration that increases over time in this in vitro experiment. Basic

features of this dynamic can be explained by a mathematical model, assuming a

fitness of cancer cells that decreases with time as the drug concentration increases.

By comparing the experimental data with simulation and analytical results we were

able to assess individual parameters in this model and gain insights into the general

cancer cell population dynamics under such environmental situations.

4.3 Experimental setup

We shortly describe some details of the resistance inducing experiment, that was per-

formed by David Lutz and Stefan Balabanov at the university hospital in Hamburg

Eppendorf. Below, we compare the population dynamics observed in the experiment

to predictions of our mathematical model.

Materials

Imatinib was purchased from Toronto Research Chemicals Inc, Ontario, Canada.

Stock solutions of IM (10mg/mL; in DMSO/H2O (1:1)) was stored at 20◦C. Murine
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BCR-ABL transduced pro-B cell line Ba/F3-p210 was obtained from N.P. Shah

and C.L. Sawyers (UCLA, USA). Cells were cultured under standard conditions as

previously described (Balabanov et al., 2011) .

Cell culture approach for induction of Imatinib resistance

In this experiment, Ba/F3-p210 cells carrying the BCR-ABL kinase were used as

a model for resistance development to IM treatment, following a well established

protocol (Burchert et al., 2005). Flow cytometry based cell sorting using a FACSAria

(BD Biosciences) was employed to produce 10 clones of BaF/3-p210 cells. These

clones were expanded to cultures of 2×105 cells each. These cultures were exposed to

Imatinib in a concentration increasing over time, starting with 0.1µM. Cell viability

was measured by the Trypan blue exclusion method (Patterson, 1979). The Imatinib

concentration was periodically increased by 0.1µM only if cell viability was above

70%, the concentration stays unchanged if the cell viability is between 30% and 70%

and withdrawn in case of cell viability less than 30%. Thus the time the Imatinib

concentration was increased differed for different clone lines, but the concentration

was always increased within 12 days. Parallel, a control with untreated clones was

performed. At the end of the experiment all Imatinib treated lineages were resistant

to the drug, confirmed by a cytotoxicity MTT-assay.

MTT assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay was

performed as previously described (Balabanov et al., 2007). In brief, BAF/3-p210

cells were plated into 96-well flat-bottomed microtiter plates (Becton Dickinson,

Heidelberg, Germany) at 1.5 × 104 cells/well in 150µM of their respective media.

Cells were preincubated for 24 hours before increasing concentrations of Imatinib

(0-10µM) were added. All analyses were performed in triplicates. After 48 hours,

the viable cells in each well were assayed. The dose-response effect for Imatinib

at the point of inhibitory concentration (IC50) was analyzed by the median-effect

method with CalcuSyn Software (Biosoft, Cambridge, United Kingdom) (Chou and

Talalay, 1981).
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Figure 4.1: Experimental results. A) Average population doubling time observed for

BAF/3-210 cells with (white triangles) and without (black dots) long-term Imatinib treat-

ment. The number of population doubling for control cells was significantly higher compared

to IM-treated cells. B) Measurment of IC50 for Imatinib in control and resistant clones.

The long-term presence of Imatinib increase the IC50 in all resistant cell clones. In par-

ticular, cell clones which were growing at 1µM Imatinib showed a marked increase of the

IC50 value. The cell viability was determined using MTT assay and IC50 was calculated

CalcuSyn software. C) Schematic representation of in vitro detected BCR-ABL mutations.

D) Quantification of BCR-ABL transcript by reat-time PCR in resistant clones without

BCR-ABL mutations. Only one clone (K10) exhibited an increased expression of BCR-

ABL. E) Quantification of MDR-1 expresion by flow cytometry in resistant clones without

BCR-ABL mutations. Imatinib resistance was not associated with an increased expression

of MDR-1.
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Mutagenesis screen and real time PCR for BCR-ABL transcript

To identify possible BCR-ABL kinase domain mutations as mechanism of Imatinib

resistance, the coding cDNA of the kinase domain was sequenced. For all RT-PCR

reactions, total RNA was isolated using TRIzol (Invitrogen). cDNA was prepared

by reverse transcription of 250 ng RNA with oligo(dT)15 and Superscript II re-

verse transcriptase (Invitrogen) and amplified using REDTaqâ ReadyMixâ PCR

Reaction Mix (Sigma-Aldrich). BCR-ABL allele was amplified by nested PCR us-

ing BCR forward primer B2A(5‘-TTCAGAAGCTTCTCCCTGACAT-3‘) and ABL

reverse primer 4065 (5‘-CCTTCTCTAGCAGCTCATACACCTG-3‘). Nested PCR

reactions were performed using BCR F4 forward

(5‘-ACAGCATTCCGCTGACCATCAATA-3‘) and reverse

U396 (5‘-GCCATAGGTAGCAATTTCCC). PCR products containing the kinase

domain were sequenced with both forward primer

3306F (5‘-TGGTTCATCATCATTCAACGG-3‘) and reverse primer

4000R (5‘-GGACATGCCATAGGTAGCA-3‘). Real time PCR for BCR-ABL was

performed as previously described (Beillard et al., 2003; Gabert et al., 2003). Am-

plification of ABL was used as a internal housekeeping gene.

Quantification of MDR-1 on resistant clones

For the relative quantification of MDR-1 we used a flow cytometry-based assay.

Cells were fixed in 2% formaldehyde for 10 minutes at 37◦C, chilled on ice for 1

minute, and then permeabilized with ice-cold 90% methanol for 30 minutes on ice.

From each sample, 2×105 cells were washed with 2 mL incubation buffer (PBS/0.5%

bovine serum albumin), centrifuged at 50g for 5 minutes, and resuspended in 100µL

of incubation buffer with 2.0µL of a MDR-1 specific antibody (abcam, Cambridge,

UK). After 45 minutes of incubation at RT, cells were washed twice, resuspended

in 100µL incubation buffer with 0.5µL of the secondary antibody (anti-rabbit IgG

FITC-conjugate; Jackson ImmunoResearch Europe, Newmarket, United Kingdom),

and incubated at RT for 30 minutes in the dark. After washing two times with

washing buffer, cells were analyzed using flow cytometry.
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Figure 4.2: Individual based stochastic simulation as two type Moran process.

We assume two possible cell types, wild type leukemic cancer cells sensitive to Imatinib

(yellow) and resistant cancer cells (blue). In total, ≈ 2 × 105 cells were included in the

experiment and simulations. At time t there are i resistant cells and N − i wild type cells.

During the next time step t + 1 three cases are possible: (i) the number of resistant cells

increases by one with probability T+
i , (ii) stays the same with probability T 0

i = 1−T+
i −T−i

(iii) or decreases by one with probability T−i , (see equation (4.12a) and (4.12b)).

4.4 Mathematical model and results

We compare the dynamics in the mathematical model to the experiment based on

the fitness of cells. We assume that the average fitness of the experimental cell

population is the ratio between the number of vital cells and the total number

of cells. Mathematically we model the cell population dynamics observed in the

experiment by an individual based stochastic approach, applying a standard two

type Moran process (Moran, 1962; Nowak, 2006a). We assume a population of

N = 2× 105 cells consisting of two subpopulations, wild type leukemic cancer cells

sensitive to Imatinib and Imatinib resistant cancer cells. Initially, only wild type

cancer cells are present, but transformations from wild types into the resistant type

are possible. In each time step, one cell is chosen to reproduce and one cell is chosen

to die, thus the total number of cells stays constant and the subpopulation sizes

can change at most by 1 cell during one time step, see Fig. 4.2. If a wild type

cancer cell is chosen to reproduce, an Imatinib resistant cancer cell is produced with

a transformation probability u. To avoid complications, we assume that resistant

types cannot switch back to nonresistant types. This would not change the basic
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Figure 4.3: Dynamics of resistance development in the experiment and the math-

ematical model. A) Average fitness of the total population due to experiments (black

dots), stochastic simulations (green dots) and analytical results (black line, due to equa-

tion (4.17)). The parameters of simulation and calculation were chosen to N = 2 × 105,

u = 1 × 10−4, t∗ = 80 days and b = 0.83. The dashed red line shows the linear decrease

of the wild type fitness, the slope is determined by the critical time t∗. B) The average

frequency of wild type cells due to simulation (yellow dots) and calculation (black line), as

well as the frequency of resistant cancer cells (blue dots) over time. We always start with

wild types only, but since the system selects for resistant cells, they fixate in the long run.

results, however. The two types differ in their fitness fw (for the wild type) and fr

(for the resistant type) We assume a time dependent wild type fitness function, due

to the increasing concentration of Imatinib in the experiment. We set the fitness of

untreated wild types fw to one and assume that it decreases linearly with increasing

Imatinib concentration,

fw (t) =

{
1− t

t∗ 0 ≤ t ≤ t∗

0 otherwise.
(4.11)

The parameter t∗ determines the impact of Imatinib on wild type cells. Choos-

ing other decreasing functions, e.g. an exponentially decreasing function, does not

change the results qualitatively. For the Imatinib resistant subpopulation we as-

sume constant fitness, fr = const. For fr < fw, resistant cells proliferate slower

than wild type cells, for fr > fw they proliferate faster than wild type cells. The

experimental data suggest 0 < fr < 1 and thus initially resistant types would ini-

tially be out-competed by wild type cells, see below. Due to the decreasing fitness

of wild type cells, we can go from one domain to the other in time. We assume
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that cell reproduction occurs proportional to fitness and simultaneously a random

cell is chosen to die. Thus, the probability of increasing or decreasing the number

of resistant cancer cells i at time t is notated by T+
i or T−i respectively,

T+
i =

[
ifr

ifr + (N − i) fw
+ u

(N − i) fw

ifr + (N − i) fw

]
N − i
N

(4.12a)

T−i =

[
(1− u)

(N − i) fw

ifr + (N − i) fw

]
i

N
. (4.12b)

The number of resistant cells stays unchanged with probability T 0
i = 1− T+

i − T−i .

One generation consists of N reproduction and death events, such that each cell

reproduced on average once.

4.4.1 Analytical approximation for large population size

If the population size N is large, we can describe the averages of our individual based

model by a deterministic approach. In this case, we consider the frequency (relative

population size) of the two cell types, wild type leukemic cells with frequency w (t) =

(N − i)/N and Imatinib resistant cell types with frequency r (t) = i/N . We use the

same fitness functions as above and also assume transformations from the wild type

to the resistant type. The average fitness of the system, which has been measured

in the experiment, is given by Φ (t) = w (t) fw (t) + r (t) fr. The change in wild

type and resistant type frequencies for large populations are given by a replicator

mutator equation (Page and Nowak, 2002b; Nowak, 2006a)

ẇ =w (fw − Φ)− ufww (4.13a)

ṙ =r (fr − Φ) + ufww, (4.13b)

where the dot represents a derivative with respect to time t. With the functions

from above, these differential equations take the form

ẇ =

{
w (1− w)

(
1− fr − t

t∗

)
− u

(
1− t

t∗

)
w 0 ≤ t ≤ t∗

w (1− w) (−fr) t > t∗
(4.14a)

ṙ =

{
r (1− r)

(
fr − 1 + t

t∗

)
+ u

(
1− t

t∗

)
w 0 ≤ t ≤ t∗

r (1− r) fr t > t∗.
(4.14b)

These are time dependent nonlinear differential equations of the Bernoulli type,

for which a general solution scheme exist (Bernoulli, 1695). Thus the system of

differential equations can be reduced to integrals, which in this situation are solvable.
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Due to w (t) + r (t) = 1, we only have to solve one of the equations. The general

solution for w(t) with respect to the initial condition w (0) = 1 for t ≤ t∗ reads

w(t) =
1− u

1− ueh
2
t−h20 +

√
πt∗

2
ufr√
1−ueh

2
t [Erf (ht)− Erf (h0)]

, (4.15)

where ht =
(1−u) t√

t∗
+
√
t∗(fr−1+u)√

2(1−u)
and Erf (ht) = 2√

π

∫ ht
0 ds e−s

2 is the error function.

For t� 1, this can be approximated by

w(t) ≈ 1− ut+ u
1 + (1 + u− fr)t

∗

2t∗
t2 + o[t3].

For t ≥ t∗, the number of resistant cells grows logistically and consequently, the

number of wild type cells decreases logistically

w (t) =
1

1 + 1−w(t∗)
w(t∗) e−fr(t−t∗)

. (4.16)

The average fitness of the total population becomes

Φ (t) = fr (1− w (t)) +

(
1− t

t∗

)
w (t) . (4.17)

For small t, when w(t) is approximately constant, the average fitness decreases

approximately linearly determined by t∗.

4.4.2 Development of Imatinib resistance in cell culture

Using an in vitro approach to induce Imatinib resistance under increasing selection

pressure, we detected resistance in 10 out of 10 BAF/3-p210 clones. As depicted

in Fig. 4.1A the development of Imatinib resistance was associated with a signifi-

cant decrease in the population doubling compared to control cells. The observed

development of Imatinib resistance resulted in an significant increase of the IC50

for Imatinib in all, but one clones (Fig. 4.1 B). For four resistant clones, it was

possible to identify previously known resistance mutations in the BCR-ABL kinase

domain. These were the D276G (prevents Imatinib from binding to BCR/ABL),

E355G (blocks the TK catalytic centre) and L284M (inactivates the kinase) muta-

tions (Fig. 4.1 C). No mutations of the kinase domain were found in the other clones,

nevertheless they also developed resistance to Imatinib. In order to explore if the

resistance in the non-mutated clones is based on an increased BCR-ABL expression

we employed real time PCR for quantification of the BCR-ABL transcript. As de-

picted in Fig. 4.1 D we could only identify an up-regulation of BCR-ABL expression
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Figure 4.4: Average fitness observed for samples A) with and B) without detected

mutations. The black dots are due to data and the green dots due to simulations. The

evaluated parameters differ (see the inset of the plots), the fitness of the mutated cells is

on average higher but their transformation rate is much smaller.

in one single clone. Furthermore, there was no increased expression of the ABC-

transporter MDR-1 on resistance cell clones (Fig. 4.1 E). Based on these findings,

we concluded that mechanisms other than kinase domain mutations, BCR-ABL over

expression or MDR-1 up-regulation have lead to resistance in these cases.

We now focus on the dynamics of the cell population. Initially, the average fitness

of the total population decreases as the Imatinib concentration increased. At day

24 of the experiment, a global fitness minimum of Φ = 0.706 (experimental data)

is obtained (Fig. 4.3 A). Subsequently, the average population fitness increased,

although the environmental conditions become more challenging due to the ongoing

increase of the Imatinib concentration. From day 48 until the end of the experiment

the average fitness of the population was saturated and fluctuated around Φ =

0.83± 0.03. Our mathematical model offers a simple explanation for this result: In

the beginning, only wild type cancer cells with decreasing fitness are present (Fig. 4.3

B). During the experiment, the frequency of resistant cell types increased and once

they represent the bulk of the population, the average population fitness becomes

independent of a further increase of Imatinib concentration. Consequently, the

average fitness becomes constant. While it is challenging to analyze the underlying

mechanisms of resistance evolution, we were able to adress the parameter ranges in

the experiment based on our model.
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Figure 4.5: Stochastic simulations with three subpopulations. A) Transitions be-

tween the three types considered, wild types (W), resistant types without observed muta-

tions (T) and resistant types with observed mutations (M). The switching probabilities are

according to the arrows. B) Average fitness of the system described in a) due to simulations

(green dots) and experimental data (black dots, as described in figure 4.3). The parameters

are those observed in figure 4.4. C) Average frequency of the three types. Initially, only

wild types (yellow line) are present, at day 37 of the experiment resistant types without

observed mutations (T, dashed blue line) reach almost fixation, but in the long run mutated

types (M, blue dots) take over due to their fitness advantage. At day 120 of the experiment

we have 0.57 T types and 0.43 M types (6 T and 4 M types were observed in the experiment

at day 120).

4.4.3 Fitting the mathematical model to the experimental data

First, we fixed time scales to make experimental and simulation results comparable.

In the control experiment, untreated wild type cancer cells were grown in a regular

growth medium and the population doubling times were recorded. We compare

these doubling times to one generation in our simulation, which we define here as N

reproduction events in a population of size N . We found on average a doubling rate

of 0.48±0.01 per day in the experiment, thus one generation in silico approximately

relates to two days in vitro.

The initial fitness decrease was determined by the fitness decrease of wild type

cells only and thus allowed us to fix the parameter t∗ by linear regression of the
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average population fitness on day 0, 12 and 24, leading to t∗ = 82 ± 4 days. Thus,

assuming a linear decrease of fitness according to equation (4.11) the wild type fitness

would reach zero on day 82 of the experiment (dashed black line in Fig. 4.3 A). Such

an assumption of zero fitness is probably biologically not meaningful. However, our

simulation results remain unchanged if we assume that the lowest possible fitness

value of wild type cells is 0.5. This would be reached at day 40 of the experiment,

where the resistant cell type already took over the population as shown in Fig. 4.3

B.

In our model, the average fitness of the total population becomes constant at

high Imatinib concentrations, because the resistant cell types take over the cell

cultures. This fixed the average fitness of the resistant cell types to fr = 0.83± 0.02

(averaged from day 48 on).

The only remaining free parameter is the switching probability u, which is more

difficult to assess. To determine u, we fixed t∗ and fr as discussed above and

performed individual based stochastic simulations, which suggests that a switching

probability between 10−6 ≤ u ≤ 10−4 is compatible with the experiment. Smaller

values of u would cause a later increase in frequency of resistant cell types, but as

soon as a certain fraction of resistant cells are present they fixate faster. For higher

values of u the minimum of the average fitness Φ would be reached earlier. We also

performed a non linear fit of equation (4.17) with the full solution for w(t), equation

(4.15). The best fit yields a value of u = 10−4. Note that u = 10−4 is too high to

call this parameter a mutation rate. However, in the experiment only in 4 out of 10

samples mutations known for causing resistance to Imatinib were found.

To take these two different experimental outcomes into account, we performed

the procedure described above independently for samples with and without muta-

tions. The result is shown in Fig. 4.4. In samples where mutations were detected,

we observe u = 1 × 10−6, fr = 0.88. In the case of no detected mutations, we

found u = 6 × 10−4 and fr = 0.82. Thus, the transformation probability differs by

magnitudes and samples with mutations seemed finally fitter than samples without

mutations. This leads to the possibility that two mechanism may cause resistance,

mutation and a sort of phenotype switching. We extended our model to incoop-

erate these two distinct effects, as shown in Fig. 4.5. With this extension, wild

type cells switch into mutated cells (M) with probability uM = 1× 10−6 and fitness

fM = 0.88. Alternatively, they switch into transformed types (T) with probability
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uT = 6× 10−4 and fitness fT = 0.82. Additionally, transformed types (T) can mu-

tate with probability uM into mutated types (M). The dynamics for this scenario is

shown in Fig. 4.5 C. Initially only wild type cells are present in the simulation. Due

to the higher switching probability transformed types take over almost the whole

population, but due to their fitness advantage and the directed mutations in the

long run the mutant types fixate. However the experiment was stopped after 120

days. In the experiment we found mutant types in 4 out of 10 samples. At this time

we observe frequencies of 0.43 for mutated types and 0.57 for transformed types in

the simulation, compatible with the experiment. Also in the simulation, the average

fitness of the population goes through a minimum, but the fitness still increases

after 120 days, because the mutant type does not reach fixation yet.

4.5 Discussion

Resistance to TKI is a frequent clinical problem in treatment of CML patients. The

appearance of resistant cell clones undermines our abillity to control the malignant

BCR-ABL positive cell clone and thereby prevent the successful treatment of CML

patients. The mechanisms of TKI resistance are either BCR-ABL dependent or

BCR-ABL independent (von Bubnoff et al., 2003). Mutations in the BCR-ABL

kinase domain represent the most frequent BCR-ABL dependent mechanisms. On

the other hand, overexpression of BCR-ABL and overexpression of drug transporters

are known kinase independent mechanisms of TKI resistance. The rise of drug

resistance is a evolutionary process characterized by a competition between sensitive

and resistant cells but not an active process of resistance induction by the drug

(Blagosklonny, 2002).

Using a combination of a clonal in vitro approach for induction of Imatinib

resistance and mathematical modeling, we were able to explain the dynamics of the

average fitness of Imatinib treated cancer cell populations in vitro in a simple model

assuming that:

(i) The population consists of only three subpopulation, the wild type cancer cells

(the only cell type present at the beginning of the experiment) and resistant

cell types (mutated and transformed cells).
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(ii) The fitness of wild type cells decreases with increasing drug concentration over

time. The fitness of resistant types is lower than the wild type fitness, but

both are constant.

(iii) We introduced directed transformation. Wild types transform into resistant

types, the reversal is neglected.

With these assumptions, we provided a method to fix the model parameters and

thus get some insights into the mechanism that cause the dynamics. Comparing the

analytical solution with experimental results enabled us to fix important parameter

of the system. Accordingly, it is possible to derive a range for the transformation

probability u, which is 10−6 ≤ u ≤ 10−4 for this experimental setup. This is high

compared to values normally assumed for mutations, which seems to be about 10−8

for normal cells. But the mutation rate of malignant cells has been reported to be at

least 10−1 to 10−2 higher (Drake et al., 1998; Hicks et al., 2010). If we perform our

analysis separately for the samples with and without mutations, we find different

parameter values. For the mutated cell lines, we found uM = 1 × 10−6, which is

in the expected range for mutation rates of such malignant cells. But for samples

without mutations, we find uT = 6 × 10−4. This supports the idea that not only

mutations are responsible for drug resistance evolution in this case, but that also

other mechanisms are likely to be involved (Lange et al., 2005). Noteworthy, we

could not detect BCR-ABL- or MDR-1 overexpression as the reason for resistance.

However, there is some evidence that an activation of additional pathways, like the

phosphatidylinositol-3-kinase (PI3K)-AKT pathway (Burchert et al., 2005) or Src

family kinase (Pene-Dumitrescu and Smithgall, 2010; Wu et al., 2008), can compen-

sate for the BCR-ABL inhibition and can promote the proliferation of these cells

in the presence of Imatinib. From our mathematical model and our experimental

results, one can conclude that particularly the time frame between day 24 and day

48 is crucial for development of resistance. It can be speculated that starting with

day 24, the cells launch out to adapt their metabolism to the increasing pressure of

raising Imatinib concentrations. This kind of adaptions are normaly accompanied

by an activation of novel signaling pathways and can drive the cellular metabolism of

resistant cells to an increased glycolytic activity and phospholipid turnover (Klawit-

ter et al., 2009; Kominsky et al., 2009). In this context, our model represents a

basis to determine the critical time point and Imatinib concentration for further

studies to detect novel BCR-ABL independent resistance mechanisms. This should
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be done by a comprehensive and integrative genome-, transcriptome-, proteome- and

metabolome analysis and may lead to additional insights into activated pathways

of resistant CML cells. Recent in vitro and in silico studies have revealed that a

combination of drugs with different mode of actions can prevent treatment failures

due to drug resistance (Katouli and Komarova, 2010; Komarova, 2011; Komarova

et al., 2009; Komarova and Wodarz, 2009). However, the appropriate targets are

not defined and must be elucidate in further studies.

From our study, it is apparent that the development of Imatinib resistance is

associated with reduced fitness of resistant cells in vitro. Translating this into fitness

in vivo can be challenging, due to additional aspects as the hierarchical structure

of hematopoiesis (Dingli and Pacheco, 2006; Rodriguez-Brenes et al., 2011; Werner

et al., 2011), failed targeting of cancer stem cells, for example due to quiescent cells,

(Chomel and Turhan, 2011; Peng et al., 2010) and possible aging effects (Vicente-

Dueñas et al., 2010). Furthermore very small differences in vitro can cause important

measurable differences in vivo, but also in this case mathematical approaches can

be helpful (Lenaerts et al., 2011). Notably, the fitness of clones harboring a BCR-

ABL mutation was higher compared to the unmutated clones. This might be due

to the proposed switch on alternative or additional programs in unmutated clones

which may be costly in terms of proliferation, but enable the cell to function in-

dependent of the BCR-ABL kinase. Based on recent studies, it can be speculated

that in mutated clones the mutations are preexisting and the cells do not need to

adapt their metabolism to reach resistance (Jiang et al., 2007). In this case the

reduced fitness reflect the differences between mutant and wild-type BCR-ABL. Re-

cent studies have revealed that certain mutated BCR-ABL kinases are accompanied

by reduced oncogenic activity (Griswold et al., 2006; Skaggs et al., 2006). These

findings are supported by clinical studies. Hanfstein et al. have shown a deselec-

tion of mutant BCR-ABL positive clones after cessation of tyrosine kinase inhibitor

(Hanfstein et al., 2011), as also suggested by mathematical models (Dingli et al.,

2008; Lenaerts et al., 2010). Fitness costs are commonly associated with drug resis-

tance. Particularly, resistance against antibiotics is frequently observed in vitro and

in vivo and is associated with reduced fitness of resistant clones (Andersson, 2006;

Andersson and Hughes, 2010). In comparison to that, the existence of a fitness cost

in resistance to cancer drugs has not been analyzed in detail yet. Therefore, our

data represent an appropriate model to further investigate in this cellular behavioral

pattern.



Chapter 5

A mathematical model of telomere

shortening

This chapter contains work in progress about telomere dynamics on the cell and

tissue level. We show, that telomere dynamics provide additional insights in the

dynamics of stem cell populations. Although this chapter neglects hierarchical tissue

organizations, the findings on stem cell dynamics promise interesting applications.

The experimental data on the telomere distribution in lymphocyte and granulocyte

cell populations of healthy adults that we use in this chapter were derived by Fabian

Beier and Tim Brümmendorf, the modeling idea, the mathematical analysis and the

performed simulations were done by Benjamin Werner and Arne Traulsen.

Telomeres are noncoding DNA structures expressed at the end of all eukaryotic

chromosomes. In vertebrates they consist of hundreds to thousands of repeats of the

amino acid blocks TTAGGG (Blackburn et al., 1991; Griffith et al., 1999). These

structures are essential to ensure chromosomal integrity, as an accelerated telom-

ere shortening is associated with genetic instability (Hande et al., 1999; d’Adda di

Fagagna et al., 2001; Boukamp et al., 2005; Brümmendorf and Balabanov, 2006).

However, due to the inability of the conventional DNA polymerase to fully replicate

the 3′ end of the DNA during replication, the so called "end-replication problem"

(Levy et al., 1992) and due to the permanent suspension to oxidative stress, telom-

ere repeats are sequentially lost in most somatic cells. The loss of telomere repeats

is partially counteracted by the enzyme telomerase, as this specialized DNA poly-

merase adds additional amino acid blocks at the 3′ end of chromosomes. Telomerase

is most active on the stem cell level and the germ line (Chan and Blackburn, 2004;

Wright et al., 1996), but increased activity is also found in varies cancer types. In

most tissues telomerase activity is insufficient to completely prevent the sequential

loss of telomere repeats with age (Harley et al., 1990; Vaziri et al., 1994; Rufer

et al., 1999), leading to a progressive shortening of telomeres. Shorten telomeres
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were linked to the observation of a limited replication capacity of cell lines in vitro,

and may be an important trigger of cell senescence in vivo as well.

Although the replication capacity of most cell lines is limited, a continuous cell

reproduction is necessary to maintain a tissues functionality. This is often real-

ized in a hierarchical organized tissue structure with multipotent stem cells at the

root (Dingli et al., 2007a; Werner et al., 2011; Tumbar et al., 2004; Potten et al.,

2009). Stem cells differentiate into more committed cell lineages and in addition

show self renewal potential. The rate of self-renewal is regulated by the ratio of

symmetric and asymmetric cell divisions, either achieved in single stem cells or on

the population level (Morrison et al., 1997; Morrison and Kimble, 2006). In the

latter case symmetric stem cell divisions compensate the loss of stem cells, while

in the former case each stem cell strictly undergoes asymmetric cell divisions. The

ratio of symmetric versus asymmetric divisions may change with age or disease. For

example stem cells undergo additional symmetric cell divisions after chemotherapy

(Brümmendorf et al., 2001; Marciniak-Czochra et al., 2009). In contrast, stem cells

potentially are lost because of replication errors, self immune-mediated damage, or

external causes such as high radiation or chemotherapy. A progressive shrinking

of the stem cell pool is found in patients diagnosed with aplastic anemia. These

patients develop bone marrow failure syndromes and significantly shorter telom-

eres compared to healthy individuals (Ball et al., 1998; Brümmendorf et al., 2001).

Recently accelerated telomere shortening was shown to correlate with a variety of

conditions, reaching from cancers, infectious diseases to increased stress.

Besides experimental results, theoretical modeling can generate hypothesis on

the dynamics of telomere shortening. Some results were achieved in the past, as

the expected fraction of proliferating cells in a population of cells with decreasing

telomeres (Levy et al., 1992; Arino et al., 1995; Olofsson and Kimmel, 1999) or

changing properties of cell proliferation with age. Cells initially divide fast and

enter a class of slower dividing cells during aging (Sidorov et al., 2004). Analytical

results for the telomere length distribution of purely symmetrically dividing cells

were derived and a phase transition between an ultimately senescent cell population

and an infinitely proliferating cell population is determinded (Antal et al., 2007).

Below, we present a mathematical model of telomere shortening on the cell level.

We do not consider the dynamics of single telomeres, but investigate the average

shortening of telomeres in single cells. We analyze the case of healthy individuals,

including the effects of stem cell pool expansion due to increased symmetric cell
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Figure 5.1: Distribution of the remaining cell cycles of asymmetric dividing cells

at six different points in time. The distribution of the remaining cell cycles is traveling

to the left with progressing time. The maximum of the distribution (black line) declines

proportional to 1√
t
, see equation (5.4). Initially there are N0 = 800 cells with c = 80

remaining cell cycles each.

divisions, which occurs in early childhood and after chemotherapy. We also address

the consequences of stem cell pool exhaustion. This allows us to calculate the

exact telomere length distribution at any time. We explicitly incorporate the effects

of symmetric and asymmetric stem cell division and non linear effects caused by

stem cell death due to external forces. We compare the theoretical predictions to

clinical data, that measures the telomere length distribution of granulocytes and

lymphocytes in healthy adults.

5.1 Mathematical model and results

We assume a population of N0 cells, each cell initially with an average telomere

length of c. Cells either divide symmetrically with probability p, or asymmetrically

with probability 1−p. We assume, that the average telomere length of a cell shortens

by a fixed number (∆c) during one cell division. Thus a symmetric cell division leads

to two stem cells, where the average telomere length of those cells shortened by ∆c.

An asymmetric cell division leads to one stem cell and one more committed cell,

both cells with by ∆c shorten telomeres. We note that the number of cells within



84 Chapter 5. A mathematical model of telomere shortening

the stem cell pool is conserved by asymmetric cell divisions, whereas the number

increases du to symmetric cell divsions. The implementation of asymmetric cell

divisions reflects the hierarchical organization of most tissues. Stem cells are at the

root of the hierarchy and a certain number of differentiation steps are necessary to

produce all mature cell types of a tissue. The initial cell pool represents the stem

cells and a committed cell reflects a progenitor cell. Each cell proliferates with a rate

r and cells become senescent in state 0. This corresponds to the idea of a Hayflick

limit, stating, that the proliferation capacity of any cell is limited (Hayflick et al.,

1961). We will implement cell death other than reaching state 0 below and expand

the model appropriately.

Below we compare our analytical results to individual based stochastic simu-

lations. In these simulations every cell has an individual representation and the

complete dynamics can be recorded. At each time step i one cell proliferates, where

a Gillespie algorithm (Gillespie, 1976) is used to decide which cell reproduces next.

If a cell reaches state 0 it drops out of the pool of proliferating cells. In the next

section we formulate a mathematical description of the telomere dynamics, enabling

us to find closed analytical solution of the telomere length distribution observed in

exact individual based stochastic computer simulations. In addition we can compare

those analytical results to measured telomere length distributions in healthy adults.

5.1.1 Asymmetric cell divisions

We discretize the available states of telomere length to derive analytical expressions

for the telomere length distribtuions. We introduce in total c+ 1 states. Each state

contains cells of equal average telomere length. Initially all cells have telomeres

of length c. In this section we focus on asymmetric cell divisions (p = 0). An

asymmetric division of a cell in state i leads to one more committed cell and one

cell functional identical to its mother cell. The committed (progenitor) cell leaves

the pool of stem cells and does not further contribute to stem or progenitor cell

production. The second cell keeps the stem cell properties and enters state i − 1.

We call N (i) (t) the number of cells in state i at time t. We note, asymmetric

cell divisions strictly conserve the size of the cell pool
∑c

i=0N
(i) (t) = N0. We

further chose the initial condition N (c) (0) = N0. The next proliferating cell is

randomly chosen amongst all cells not yet in state 0. We apply a deterministic,

time continuos approximation and capture the dynamics of telomere shortening by
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Figure 5.2: Number of cells in state i given by equation (5.2) (lines) and exact

individual based stochastic computer simulations (dots). At t = 0 there are N0 =

100 cells in state c = 7. Cells in state i are Gamma distributed, except for cells in state

0. Those cells accumulate over time to saturate at N0. The maximum number of cells in

a state i is reached after t(i)max = (c− i)N0 cell divisions. The experimentally measured

telomere length distribution (5.3) (see Fig. 5.1 for an example) can be obtained by drawing

a vertical line at the associated time point.

a system of coupled differential equations,

Ṅ (i) (t) =





− rN(i)

N0
i = c

− rN(i)

N0
+ rN(i+1)

N0
0 < i < c

rN(1)

N0
i = 0.

(5.1)

Here N0 is the initial number of stem cells in state c, and r represents the prolif-

eration rate of a cell. Cells progressively travel into lower states and accumulate

in state 0 in the long run. In the following we shift the index to j = c − i for

convenience. The general solution of (5.1) can be derived recursively

N (c−j) (t) =





N0
j!

(
rt
N0

)j
e
− rt
N0 0 ≤ j < c

N0

(
1− e

− rt
N0

c−1∑
l=0

1
l!

(
rt
N0

)l)
j = c.

(5.2)

The number of cells in state j correspond to a Gamma distribution with rate pa-

rameter r
N0

and shape parameter j, see Fig. 5.2 for a comparison of solution (5.2) to

exact individual based stochastic computer simulations. The number of cells in state

c decreases exponentially. Cells in downstream states are initially absent, undergo

a maximum and vanish in the long run again. Only cells in state 0 accumulate over

time. However, experimentally the distribution (5.2) can not be determined by one
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Figure 5.3: Telomere length of 103 healthy individuals (blue dots) in the age of

18 to 85 for A Granulocytes and B Lymphocytes. The lines correspond to fits of the

analytical predicted linear approximation E [c] (t) ≈ c− r
N0
t. The gray area represents the

theoretical predicted standard deviation (5.8) of the expected telomere distribution. We

find for A) c = 9.47± 0.26 kbp and r
N0

= 0.035± 0.006 kbp
year and for B) c = 10.09± 0.3 kbp

and r
N0

= 0.054 ± 0.006 kbp
year . Using estimates for the telomere shortening of 50 to 100 bp

per cell division and assume 0.5 to 2 stem cell divisions a day, one can estimate the number

of actively dividing stem cells. For Granulocytes we find an approximate range of 250 to

2100 and for Lymphocytes a range of 150− 1400.

sample at a single time point t′. A measurement of the telomere length distribu-

tion at time t′ corresponds to the interception points of a vertical line, drawn at

time t′, and the number of cells in every state given by equation (5.2). Thus the

experimentally observed distribution at time t′ is given by

ft′ (c) = {N (c)
(
t′
)
, . . . , N (0)

(
t′
)
}. (5.3)

This distribution gives raise to a traveling wave shifting towards shorter average

telomere length in time, see Fig. 5.1. The maximum of this wave reaches state i

after t(i)max = (c−i)N0

r cell divisions. Plugging this into equation (5.2), we find for the

maximum of this wave

N (i)
(
t(i)max

)
=

N0

(c− i)!

(
c− i

e

)c−i
≈ N0√

2π (c− i)
, (5.4)

where in the last step the Stirling formula was used. The maximum of the telomere

length distribution declines proportional to 1√
t
in time. The telomere length distri-

bution (5.2) allows us to calculate the expected average telomere length E [c] (t) at
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any time t. This corresponds to the first moment of the distribution, given by

E [c] (t) =
1

N0

c−1∑

i=0

(c− i)N (i) (t) =
c−1∑

i=0

c− i
i!

(
rt

N0

)i
e
− rt
N0

=
1

c!

(
rt

N0

)c+1

e
− rt
N0 +

cN0 − rt
N0

Γ
[
1 + c, rtN0

]

c!
. (5.5)

where Γ
[
1 + c, rtN

]
=
∫∞
rt
N

dxxce−x is the incomplete Gamma function. For a biolog-

ical meaningful parameter range, we have c ≈ 10 kbp and N0 is in the order of a few

hundred to thousands of cells. Thus the first term in Eq. (5.5) is negligible. The

second term is dominated by the linear decaying term, as the incomplete gamma

function is Γ
[
1 + c, rtN0

]
≈ c! for not too large t. In Fig. 5.4 we compare Eq. (5.5) to

exact stochastic computer simulations, revealing, that the linear approximation is

excellent, until most cells reach states of very short telomeres. Thus the complicated

expression (5.5) is well approximated by

E [c] (t) ≈ cN0 − rt
N0

. (5.6)

Expression (5.6) allows the direct connection to experimental results. In Fig.5.3 we

fit this linear approximation to clinical data of telomere shortening in granulocytes

and lymphocytes, derived from 103 healthy individuals in the age of 18 to 85. This

linear fit yields for the model parameters: c = 9.47 ± 0.26 kbp and r
N0

= 0.035 ±
0.006 kbp

year for granulocytes and c = 10.09± 0.3 kbp and r
N0

= 0.054± 0.006 kbp
year for

lymphocytes. Assuming a telomere shortening of 50 to 100 bp per cell division, we

can estimate the ratio r
N0

. Assuming further 0.5 to 2 stem cell divisions per day,

the granulocyte data predicts 250 to 2100 and the lymphocyte data predicts 150 to

1400 actively dividing stem cells. However, such linear fits were performed before,

and the estimations derived here confirm former results (Rufer et al., 1999). But

those studies lack an underlying kinetic model. Our approach allows us to calculate

additional properties of the system. We can derive analytical expressions for the

time dependence of the variance σ2 (t) for example. Note, that the momentum

generating function of the telomere length distribution Mc (x) = E [ecx] (t) is given

by

Mc (x) = 1 +
e(e−x−1) rtn Γ

[
c+ 1, e

−xrt
n

]

c!
− Γ

[
c+ 1, rtn

]

c!
. (5.7)
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We can recover our result for the average (5.5) of the telomere length distribution

via E [c] (t) = d
dx (Mc (0)). In addition, the variance can be calculated via

σ2 (t) = E
[
c2
]
− E2 [c] =

d2

dx2
Mc (0)−

(
d

dx
Mc (0)

)2

(5.8)

=

(
rt

n

)c+1 nc− rt
n c!

e−
rt
n +

[(
c− rt

n

)2

+
rt

n

]
Γ
[
c+ 1, rtn

]

c!
− E2 [c] .

Again, the first term of equation (5.8) is negligible for a biological meaningful pa-

rameter range. The quadratic term (c− rt/n)2 is compensated by an identical term

in E2 [c] (see Equ. (5.5)). Again, the gamma function is approximately equal to c!

for not too short telomeres. Thus, expression (5.8) is initially dominated by the lin-

ear term and consequently, the variance grows linear due to σ2 = rt
n . The standard

variance becomes

σ =

√
rt

n
. (5.9)

We compare the analytical results of Eq. (5.8) to results of exact individual based

stochastic computer simulations in Fig. 5.5. The linear approximation of the vari-

ance is excellent. Only if cells start to accumulate in state 0 the variance decreases

again.

In the following we fit our theoretical predicted telomere length distribution (5.3)

to measured telomere length distributions of healthy individuals, see figure 5.7. We

assume symmetric cell divisions with probability p and asymmetric cell divisions

with probability 1 − p, respectively. Further we denote the initial telomere length

by c, the initial number of stem cells by N0 and r is the proliferation rate of cells.

We first discuss the special case of asymmetric cell divisions, p = 0. In this situation

the number of actively dividing cells is strictly conserved. The expected number of

cells with a telomere length of x at time t is given by (5.1). This yields for the

expected telomere length distribution ρ (t, x) at time t,

ρ (t, x) =
1

(c− x)!

(
rt

N0

)c−x
e
− rt
N0 . (5.10)

We substitute q = rt
N0

within the expected telomere length distribution and get

ρ (t, x) =
qc−x

(c− x)!
e−q. (5.11)

We can fit Eq. (5.11) to measured telomere distributions in healthy individuals,

leaving two free parameters q and c to be determined. Results of the nonlinear fits
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Figure 5.4: A Mean remaining cell cycles derived from equation (5.4) (lines) and

simulations (dots) for c = 50, r = 1 and N0 = 200 (red line) and for c = 50, r = 1

and N0 = 100 (blue line) for strict asymmetric cell divisions. The average of the

remaining cell cycles decreases linear before turning into a power law if it reaches 0. B

Mean remaining cell cycles derived from equation (5.21) (line) and simulation results (dots)

for symmetrically dividing stem cells with parameters n0 = 20, c = 50, r = 1 and p = 1.

can be seen in Fig 5.7. The initial telomere length c varies between individuals

but is within the expected range of 8 − 13 kbp. However, the parameter q shows

an interesting property. The parameter is given by q = rt
N0

. We assumed p = 0

(asymmetric cell divisions only), thus the number of stem cells N0 is constant. The

parameter q is time dependent, and one would expect an increase of q with increasing

age. However, the non linear fits suggest, that the parameter q is independent of

age, see Fig. 5.7. This contradiction can be solved heuristically by assuming p > 0.

Substituting N0 = n0 + prt gives

q =
rt

N
=

rt

n0 + prt
=

1

p+ n
rt

. (5.12)

We further observe limt→∞ q = 1/p. We expect q to converge towards a constant

value for increasing t. However this is a heuristic argument. The calulated telomere

length distribution (5.11) is only valid for p = 0. Incorporating p > 0 leads to a

modified distribution.

5.1.2 Symmetric cell divisions

In the former subsection we derived the telomere length distribution under the re-

striction of asymmetric cell divisions (p = 0) and discussed its properties. However,

a comparison of those analytical results to experimental data highlights the need to

incorporate symmetric cell divisions into our mathematical framework. Symmetric
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Figure 5.5: Variance of the telomere length distribution for asymmetric cell divi-

sions. Shown are analytical (line, Equ. (5.8)) and simulation (dots) results for the variance

of the telomere length distribution. The parameters are N0 = 200, r = 1 and c = 50.

Initially all cells are in state c = 50, thus the variance vanishes at t = 0. The variance

increases linear with ongoing cell proliferations, but decreases again as cells accumulate in

state 0.

cell divisions cause a stem cell pool expansion. To incorporate this into our model,

we assume a cell division to be symmetric with probability p and asymmetric with

probability 1− p respectively. Initially there are n0 cells with telomeres of length c.

We assume the number of cell divisions within a fixed time interval to be constant

and thus the cell pool increases on average linear, N (t) = n0 + rpt. Including this,

the system of differential equations changes to

Ṅ (i)
p (t) =





− rN
(i)
p

rpt+n0
i = c

− rN
(i)
p

rpt+n0
+

r(1+p)N
(i+1)
p

rpt+n0
0 < i < c

rN
(1)
p

rpt+n0
i = 0.

(5.13)

The solution to (5.13) is

N (c−i)
p (t) =





n0
i!

(
1+p
p

)i
lni(t∗)
p√t∗ 0 ≤ i < c

n0 (1 + p)i
(

1−
Γ
[
i+1, 1

p
ln(t∗)

]
i!

)
i = c,

(5.14)

where we used t∗ = rp
n0
t+1 as an abbreviation. Using l’Hospital and ex = limn→∞

(
1 + x

n

)n

we recover the result (5.2) for p→ 0 and the solution turns into a Gamma distribu-

tion again

lim
p→0

N (c−i)
p (t) =

n0

i!

(
rt

n0

)i
e
− rt
n0 = N (c−i) (t) . (5.15)
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In the extreme case of p = 1 and n0 = 1 Eq. (5.14) becomes

N
(c−i)
p=1 (t) =

2i

i!

lni (rt+ 1)

rt+ 1
. (5.16)

If symmetric cell divisions are possible p > 0, the number of stem cells increases.

We can calculate the maximum possible number of additional produced stem cells

Na due to symmetric cell divisions

Na = N (0)
p (t→∞)− n0 = n0 ((1 + p)c − 1) . (5.17)

Thus for p = 0, corresponding to strict asymmetric cell divisions, the number of

stem cells stays constant. We assumed a constant number of cell divisions within a

fixed time interval. Due to the increasing stem cell pool size, this effectively causes

a reduction in the proliferation rate of single cells with age.

Similar to the former subsection, the time dependence of the maximum of the

distribution can be calculated. The time until the maximum of the telomere length

distribution reaches length i, (0 < i < c) is given by

t(i)max,p = n0
ep(c−i) − 1

rp
. (5.18)

The time to reach the maximum increases exponentially for symmetric cell divisions,

in contrast to the linear increase for only asymmetric cell divisions. However, (5.18)

reduces to the result we obtained in the former subsection in the limit p→ 0. The

cell count at the maximum becomes

N (i)
(
t(i)max,p

)
≈ n0 (1 + p)c−i√

2π (c− i)
. (5.19)

The maximum decreases considerably slower compared to the case of only asym-

metric cell divisions (5.4). Similar to the former subsection we can calculate the

average of the telomere length distribution. This time the average becomes

Ep [c] (t) =
1

Np (t)

c−1∑

i=0

(c− i)N (i)
p (t)

=
ρc+1

c!

lnc+1 (t∗)

(t∗)ρ
+

Γ [1 + c, g (t∗)]

c!
(c− ρ ln (t∗)) (5.20)

with t∗ = rp
n0
t+ 1, ρ = p+1

p and g (t∗) = ρ ln (t∗). Similar to (5.5), this expression is

dominated by the second term of the equation. The average decreases approximately

logarithmically,

Ep [c] (t) ≈ c− p+ 1

p
ln

(
rp

n0
t+ 1

)
. (5.21)
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In Fig. 5.4 B we compare (5.21) to exact individual based stochastic simulations.

The logarithmical approximation is in excellent agreement with the simulation re-

sults. The decrease of the average telomere length increases with decreasing p. In

the limit p → 0 we observe the former result (5.6) of a linear decreasing average.

Similar to the former section we can derive the variance of the distribution, using

the momentum generating function Mp (x) = Ep [ecx] (t), via

σ2
p (t) =

d2

dx2
Mp (0)−

(
d

dx
Mp (0)

)2

. (5.22)

However, the result becomes lengthy and less accessible. Thus we restrict ourselves

to a numerical solution of (5.22). The logarithmic decay of the average telomere

length has consequences on the interpretation of experimental results of telomere

length distributions. In infants an accelerated decrease of telomere length can be

observed (Rufer et al., 1999). This accelerated decay is usually explained by in-

creased cell turnover rates due to developmental growth. Parameters are estimated

by two linear fits. Our model suggests a different dynamical pattern. The stem

cell pool contains only few stem cells initially. These stem cells divide symmetri-

cally with probability p and asymmetrically with probability 1−p respectively. The

symmetric cell divisions cause an increase of the stem cell pool size and an indirect

decrease in cell proliferation rates. The logarithmic decay is pronounced initially,

but becomes flatter after some time. Thus in adults the logarithmic decay is difficult

to distinguish from a linear decay, see for example figure 5.4.

Again, we can compare the analytical solution (5.14) to experimental data of

telomere length distributions in 11 healthy adult persons. The calculated distribu-

tion, if symmetric cell divisions are allowed, is

ρp (t, x) =
1

(c− x)!

(
1 + p

p

)c−x [ln (q + 1)]c−x

p
√
q + 1

, (5.23)

with q = rpt
n0

. Again, c gives the initial telomere length, p the probability of sym-

metric cell divisions, r the division rate and n0 the initial number of active stem

cells, leading to three free choosable parameters p, c and q in the non linear fit, see

figure 5.8. The initial telomere length increases and is in the range of 9 − 15 kbp.

The probability of symmetric cell divisions is in the range of 0.001−0.01 and rather

low. However, assuming 400 stem cell divisions a year leads to approximately 200

symmetric cell divisions within a time span of 50 years.
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5.1.3 T-cell mediated stem cell death

In the former section we investigated the interplay of symmetric and asymmetric

cell divisions. If the dynamics is restricted to those, the total number of cells either

stays constant or increases but never decreases (if cells in state 0 are counted).

However, different effects may cause a shrinking of the cell pool. Cells may die with

a certain probability q during cell division, or external effects cause an increase of

cell mortality. One of these causes could be T-cell mediated damage to the stem cell

pool, as thought to appear in certain diseases as for example in Aplastic anemia.

First we propose a minimalistic model to include the effect of T-cell mediated

damage to the stem cell pool. Assume there are N stem cells in a pool of M non

stem cells. T-cells selectively kill stem cells and thus the stem cell pool will shrink

over time. If we assume a time continuos approximation this becomes

Ṅ (t) = −ρN = − N2

N +M
, (5.24)

where ρ = N
N+M is the probability to randomly kill a stem cell in the pool of non

stem cells. It is natural to assume M � N and thus the N in the denominator

of equation (5.24) can be neglected. Thus, if we assume N (t0) = N0, the solution

reads

Nq (t) =
MN0

N0 (t− t0) +M
=

N0

qt+ 1
, (5.25)

where in the last step t0 = 0 was assumed and q = N0
M was chosen. This is a

minimalistic description of the time dependence of the shrinking stem cell pool

due T-cell mediated damage. As in the former subsection, we can use this time

dependence and include it in our system of differential equations. This time we

have to include the shrinking stem cell pool in our calculations, where we need to

generalize the differential equations to

Ṅ (c−i) =

(
−1 +

d

dt
N (t)

)
rN (c−i)

N (t)
+
rN (c−i+1)

N (t)
. (5.26)

Incorporating this, the system of differential equations becomes

Ṅ (i)
q (t) =





−
(

1 + qN0

(qt+1)2

)
r(qt+1)N

(i)
q

N0
i = c

−
(

1 + qN0

(qt+1)2

)
r(qt+1)N

(i)
q

N0
+

r(qt+1)N
(i+1)
q

N0
0 < i < c

∑c
l=1

rqN
(l)
q

qt+1 +
r(qt+1)N

(1)
q

N0
i = 0.

(5.27)
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Figure 5.6: Model of the telomere length reduction of patients with aplastic

anemia. The upper black line corresponds to the telomere decrease of healthy individuals.

Aplastic anemia is caused by an immune-mediated damage to the stem cell pool, leading to

an increased shortening of telomere repeats. The disease dynamics (dashed lines, disease

initiation at 4 different time points) follows initially a quadratic decline due to equation

(5.29). However after treatment the stem cell pool stabilizes and the telomeres decline

linear again (blue lines), but possibly with a larger slope, as the stem cells were reduced in

number.

The solution is

N (c−i)
q =

N0

i!

(
rt

N0

)i ( q
2 t+ 1

)i

qt+ 1
e
− rt
N0

( q2 t+1), (5.28)

if j > c. The solution for j = 0 is more difficult to obtain analytically and less

intruding. We get

E [c] (t) =
1

c!

(
t∗∗

n

)c+1

e−
t∗∗
n + (c− (t∗∗)

Γ[1 + c, t
∗∗

n ]

c!
(5.29)

for the average, with t∗∗ = t
( q

2 t+ 1
)
. Note the equality of (5.29) to (5.5), when

one substitutes t → t
( q

2 t+ 1
)
, the average telomere length decreases quadratic in

time, see figure 5.6. Consequently, the average telomere length decreases faster than

in the healthy adult case. Thus, lower average telomere length at disease diagnosis

compared to healthy individuals are expected. However, in clinical studies a linear

and not a quadratic decline in average telomere length is observed. This linear

decrease is likely caused by the age distribution of the patients and corresponds

to the linear decrease of telomere length with age, see Fig. 5.6 as example. The

telomeres shrink linear for healthy individuals. As the disease initiates, the telomere
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decrease accelerates and follows a quadratic decline. As the disease is diagnosed the

telomeres are shorten considerable already, but treatment might stop further damage

to the stem cell pool and telomeres shorten linear in time again. To measure the

quadratic decline one would need to follow the telomere length of individual patients

during disease progression without treatment. However, such data is not available

as patients get treated immediately after they are diagnosed.
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Figure 5.7: Telomere length distribution of granulocytes in 11 healthy persons of

different age. Each panel represents a single person. Each dot in a panel represents the

measured relative abundance of granulocyte cells with a certain average telomere length

of this person. The line corresponds to the best fit of the calculated distribution (5.11),

corresponding to asymmetric cell divisions. The initial telomere length c is in a expected

range of 8−15 kbp. However, the second fitting parameter is time dependent q = rt/N and

thus should increase with increasing age. The lower right panel shows the parameters q for

different persons, but no real pattern is revealed. This might be explained by symmetric

cell divisions, see equation (5.12).
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Figure 5.8: Experimental telomere length distribution as in figure 5.7. However,

the line is the best nonlinear fit of the calculated distribution (5.11). This distribution

accounts for symmetric cell divisions, giving the additional parameter p. The initial telomere

length c increases to 9− 17 kbp. The probability of symmetric cell divisions is in the range

of 0.001− 0.01 and thus rather low. However, if we assume 400 stem cell divisions a year,

the number of actively dividing stem cells would on average increase by 200 within 50 years.





Chapter 6

Impact of random mutations on

population fitness

The theory of evolution formulated in means of natural selection by Darwin and

Wallace is the unifying concept of biology (Darwin, 1859). Competition between

different agents selects for an inheritable set of currently advantageous properties.

Thus evolution is a dynamical process and its rate can range from a few days, for

example in resistance evolution, to million of years in speciation processes (May-

nard Smith, 1995; Ridley, 1996). However, natural selection reduces its required

diversity, as a fire burns its source. Darwin was aware of this objection, but unable

to disprove it. Indeed, only the discovery of genetics solves this problem naturally

(May, 2004). Random changes (mutations) in the DNA of individuals provide a

source of diversity in a population, which natural selection can continuously act

on. However, this immediately confronts us with new questions, what is the exact

interplay of selection and mutation, which dynamical patterns can we expect and

how can this be captured in a mathematical framework? In previous work Huang et

al. proposed a mathematical framework, which allows the incorporation of arbitrary

many randomly distributed mutations into the framework of evolutionary game the-

ory (Huang and Traulsen, 2010; Huang et al., 2012). Interestingly, such modeling

accounts for an intermediate standing diversity in certain parameter regimes (Huang

et al., 2012), but fitness dynamics can appear counter intuitive. For example dom-

inant mutations can take over a population, but reduce the average fitness of the

population (Huang et al., 2012). For a further quantitative investigation of latter

effect, we apply the mathematical framework to infinite large populations described

by replicator equations. In the following, we shortly introduce the concept of ran-

dom mutant games and link this framework to possible applications for the modeling

of cancer initiation and cancer progression.
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


S1 S2 S3 S4

S1 a11 a12 a13 a14

S2 a21 a22 a23 a24

S3 a31 a32 a33 a34

S4 a41 a42 a43 a44




extinction




S1 S2 S3

S1 a11 a12 a13

S2 a21 a22 a23

S3 a31 a32 a33


 mutation




S1 S2 S3 S4

S1 a11 a12 a13 x14

S2 a21 a22 a23 x24

S3 a31 a32 a33 x34

S4 x41 x42 x43 x44







S1 S2 S4

S1 a11 a12 a14

S2 a21 a22 a24

S4 a41 a42 a44




A

B

Figure 6.1: Examples of a payoff matrix of variable size in a random mutant game.

A Assume, there are initially four possible strategies, but strategy S3 becomes extinct. Thus

all corresponding payoff entries ax3 and a3x are deleted and the payoff matrix reduces to

a size of 3× 3. B In contrast, if a new mutation occurs one row and column are added to

the payoff matrix and in general 2n+ 1 payoff entries are drawn from a chosen probability

distribution.

6.1 Random mutant games

In the section 1.3.2, where we describe properties of the Moran process, we also

introduced basics of game theoretical modeling. Key is the payoff matrix, that

defines interactions between agents carrying strategies. Assume we have a set of

n possible strategies, denoted by {S1, . . . , Sn}. We need n2 numbers to define all

possible interactions and the payoff matrix becomes




S1 S2 . . . Sn

S1 a11 a12 . . . a1n

S2 a21 a22 . . . a2n
...

...
...

. . .
...

Sn an1 an2 . . . ann




(6.1)

Usually, the number of strategies n and all possible interactions are predefined.

However, here we assume a process with arbitrary numbers of possible strategies.

Therefore we implement a payoff matrix of variable size. If one strategy becomes

extinct, the corresponding row and column of the payoff matrix are deleted. If a

new mutation occurs one row and column are added to the payoff matrix and 2n+1
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new payoff entries need to be specified, see figure 6.1 for an example. We assume

these payoff entries to be random variables independently drawn from a probability

distribution. The mean of the distribution corresponds to the payoff entries of the

mutants descent. In addition to the payoff matrix, we need to define the dynamical

rules of the process. We use standard stochastic approaches as the Moran or the

Wright-Fischer process to model finite populations, and replicator equations for

populations of infinite size. The probability of fixation of a random mutant given

its payoff distribution or the resulting standing diversity for such random games

in finite populations can be investigated. However, in the following publication we

investigate the impact of such a random mutation on the average fitness of the

system. It turns out that random frequency dependent mutations can decrease

average fitness. Especially for low beneficial mutation rates (considered a relevant

biological scenario) the probability of decreasing average fitness after the fixation of

a mutant exceeds the probability to increase it. Thus, (assuming a non arbitrary

shiftable probability distribution) we neither expect an infinite increase nor decrease

of evolution driven populations fitness, but a balanced state of natural selection and

beneficial and deleterious mutations.
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6.2 Introduction

Mutations provide a continuous source of variation in natural populations, on which

natural selection can act. When fitness is assumed to be constant, only those mu-

tations with higher fitness values will be fixed in a haploid population under strong

selection and negligible random drift. Thus, the average fitness of the population

would monotonically increase in evolutionary time. There have been numerous hy-

potheses why this is not what is observed in nature: for instance, environmental

changes require new adaptions(Remold and Lenski, 2001; Lálic et al., 2011) or co-

evolution can imply continuous adaptation without increasing the average fitness

(Brockhurst et al., 2003; Thompson and Cunningham, 2002). However, these are

not aspects that we intend to include here. Instead, we focus on a haploid popu-

lation in a constant environment, and explore frequency dependent fitness, which

can be described by evolutionary game theory (Maynard Smith and Price, 1973;

Maynard Smith, 1982; Hofbauer and Sigmund, 1998; Cressman, 2003; Nowak and

Sigmund, 2004; Nowak, 2006a). In this framework, the fitness of a type depends on

the frequencies of other types of individuals in the population. We address the very

general question of how the average fitness changes when it is driven by random

mutations under frequency dependent selection.

The fitness effects of new mutations have gained significant attention both in

experimental research and theoretical work (Sanjuan et al., 2004; Orr, 2003). In

experiments, the distribution of fitness effects depends on several aspect of the

experimental setup, e.g. how well adapted the organism is to the environment and

whether only single mutants or also double mutants (mutants differing from the

wild type by two mutations) are considered. Different shaped distributions were

proposed to capture the fitness distributions of random mutants under constant

selection (Gillespie, 1983; Zeyl and DeVisser, 2001; Cowperthwaite et al., 2005; Orr,

2006). The concrete shape of fitness distributions of spontaneous mutations varies

between species and even within the same species on different parts of DNA (Eyre-

Walker, 2007). Although no common conclusion on this has been obtained yet –

and a universal fitness distribution may as well not exist – it is often possible to

estimate some general properties, such as the proportion of advantageous mutations

and the mean value of the fitness of the mutations (Lynch et al., 1999; Eyre-Walker

et al., 2006).
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The concept of random distributed and frequency dependent fitness of mutations

can be addressed by evolutionary game theory (Huang and Traulsen, 2010), which

considers evolutionary processes under frequency dependent selection (Levin et al.,

1997). In this framework, a population of interacting individuals is considered. In

the simplest case of linear frequency dependence, the interactions of different types

of individuals are captured by a payoff matrix for a game. Those types which are

more successful in the game will have a higher reproduction rate. We introduce

a payoff matrix with variable size to capture mutations and extinctions. The new

payoff entries introduced by mutations are independently drawn from a probability

distribution, which corresponds to the concept of randomly distributed fitness. By

tracking the dynamics of the payoff matrix and the compositions of the population,

we are able to investigate several aspects of an evolving system, such as the average

fitness changes of the population, the impact of the fitness distribution on these

changes and the expected level of diversity.

6.3 Mathematical model and results

6.3.1 Games with two types

Let us start with a population of a resident wild type (R) and a mutant type (M).

Suppose the fitness of a wild type in a homogenous population is d. For constant

selection, the fitness distribution is simply a one dimensional distribution around d.

For frequency dependent selection, the fitness of a mutant must be defined based

on more than a single number. We can write it as an evolutionary game based on a

2× 2 payoff matrix with three new payoff entries, a, b and c

(
M R

M a b

R c d

)
.

When a mutant and a wild type interact, the mutant obtains fitness a, and the

wild type obtains c. When a mutant meets another mutant, it obtains b. Following

the concept of randomly distributed fitness of mutations, the entries a, b and c are

defined as random variables. We assume that a, b and c follow the same probability

distribution given by a probability density function f(x). While this is the simplest

possibility, it may be more realistic to assume correlations between the payoff entries
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Figure 6.2: Probability of increasing or decreasing the average fitness in the new

equilibrium after one mutation event in an initial homogenous population. θ

is the probability that a random payoff entry of the mutant, a, b or c is larger than wild

type initial fitness d. Blue symbols and lines are simulation and analytical results under

frequency dependent selection (average over 106 runs). Red lines are analytical results

under constant selection. For constant selection, the average fitness either increases or

is unchanged by a new mutation, where the fraction of mutants that increases fitness is

determined by θ. However, under frequency dependent selection, the average fitness of the

population in the new equilibrium after a mutation can also decrease. The probability to

increase, decrease the average fitness or maintain the same average fitness, depends on θ,

for θ >
√
2−1√
2

the probability to increase the average fitness in the new equlibrium is larger

than the probability to decrease it.

characterizing each type, i.e. between a and b as well as between c and d. However,

in the extreme case of a = b and c = d, this would recover the case of constant

selection, so we expect that such correlations would lead to results intermediate be-

tween constant and frequency dependent selection. We discuss how this distribution

affects the changes in the average fitness during the evolutionary process. It turns

out, the probability θ =
∫∞
d dx f(x) that a payoff entry is larger than the fitness

of the wild type (the parent type in the case of n types) d, is of particular interest

and determines the change in the average fitness when initially only a single type

is present. Remarkably, all other aspects of the fitness distribution turn out to be

irrelevant for this observable.

The dynamics of evolving populations of interacting individuals shows stochastic

fluctuations when selection is weak and when populations are small. In addition,
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stochasticity can arise based on environmental changes or stochastic effects due to

mutations. As we are interested in the effects of frequency dependent selection, we

only consider stochasticity arising from random frequency dependent mutations and

use the replicator equations to model evolutionary dynamics. The frequency of a

certain type changes deterministically according to the difference of its own fitness

to the average fitness in the population.

Suppose x is the frequency of the mutant type and 1 − x the frequency of the

wild type, respectively. We can define the fitness of the mutant type, W1, and the

fitness of the wild type, W2, as

W1 = ax+ b(1− x),

W2 = cx+ d(1− x), (6.2)

where a, b, c, and d are the entries in the payoff matrix. The average fitness of the

population W is given by

W = xW1 + (1− x)W2. (6.3)

If the fitness of the mutant type is larger than the average fitness, its frequency will

increase. If the fitness of the mutant type is below the average fitness, its frequency

will decrease. We follow the usual assumption that the change of the frequency

of the mutant type is given by the replicator equation(Taylor and Jonker, 1978;

Zeeman, 1980; Hofbauer et al., 1982)

ẋ = x
(
W1 −W

)
= x (1− x) (W1 −W2) . (6.4)

The change of the wild type frequency follows immediately as −ẋ. This dynamics is

fully determined by the entries of the payoff matrix. Different constellations of the

payoff entries cause different dynamical patterns. In the following, we discuss all

generic cases of two-type interactions and how the average fitness of the population

changes under the different situations.

First, we analyze the case where the mutant has higher fitness than the wild

type for all frequencies x. This is the case for a > c and b > d. The wild type

goes extinct and the mutant type will be fixed in the population. Thus, the average

fitness W in the new equilibrium x = 1 is given by the payoff entry of the mutant

type interacting with itself, a. We are interested in the probability, that the fitness

of the population is increased after the fixation of the mutant. This becomes a
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conditional probability of a > d given that a > c and b > d. Applying Bayes Rule,

this can be expressed as

p(W (1) > d | a > c, b > d) = p(a > d | a > c, b > d)

=
p(a > d, a > c, b > d)

p(a > c, b > d)

=
p(a > d, a > c)

p(a > c)
. (6.5)

We assume that the random variables a, b and c are independently derived from

the same probability distribution. Hence, b does not depend on a or on c. Thus,

the probability of b > d is independent from the probability that a > d, which is

used in Eq. (6.5). Since a and c are sampled from the same distribution, we have

p(a > c) = 1/2 in the denominator. For the numerator, we have

p(a > d, a > c) =

∫ ∞

d
da

∫ a

−∞
dc f(c)f(a)

=

∫ ∞

d
daF (a)F ′(a)

=
1

2
− F (d)2

2
, (6.6)

where F (x) is the cumulative distribution function of a random variable with prob-

ability density function f(x). As the probability that one of the new payoff entries

a, b, c is greater than the wild type fitness d is θ =
∫∞
d dx f(x) = 1 − F (d). Using

this expression in Eq. (6.6), we arrive at

p(W (1) > d | a > c, b > d) = 2θ − θ2. (6.7)

Strikingly, this only depends on θ, and is independent of the concrete choice of

the probability density function f (x). In population genetics, beneficial mutation

rates are measured based on the concept of constant fitness, where the fitness of

the mutant and the fitness of the wild type are both constant numbers. However,

if we consider frequency dependent fitness, a new parameter is needed to represent

the proportion of beneficial mutations. One option arising from our approach is to

compare the payoff value of the mutant with the payoff value of the wild type when

they are confronted by the same opponent. Since θ is the probability that the new

payoff value of the mutant is larger than the wild type’s payoff d, it corresponds to

the probability that a mutation is beneficial under the constant selection scenario. If

θ can be measured, the probability that the average fitness is increased by a random
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mutant is independent of the payoff distribution according to Eq. (6.6). But different

choices of probability density functions f(x) will result in different values of θ, thus

leading to different probabilities to increase the average fitness.

Next, we assume that a mutant type occurs with lower fitness than the wild

type. With frequency dependence, there are two situations for such a mutant type.

The mutant type can either have lower fitness than the wild type for all frequencies,

or it can have a lower fitness only for small frequencies. In both cases, the mutant

will go extinct and the average fitness will remain unchanged, since a mutant type

is supposed to arise with a small amount.

Finally, a mutant type could be initially advantageous compared to wild types,

but turn to be disadvantageous when it has reached a certain frequency. This occurs

for a < c and b > d. In this case neither the wild type nor the mutant type can

take over the population, but there exists a mixed equilibrium consisting of mutant

types at a frequency x∗ = b−d
b−d−a+c and wild types at a frequency 1 − x∗. In this

coexistence equilibrium, the fitness of the wild type subpopulation is equal to the

fitness of the mutant type subpopulation. The average fitness of the system in the

equilibrium is given by

W (x∗) = ax∗ + b(1− x∗) =
bc− ad

b− d− a+ c
. (6.8)

Again, we ask for the probability of having a coexistence game that increases the

average fitness. This is the conditional probability thatW (x∗) > d given that a < c

and b > d, which can be written as

p(W (x∗) > d | a < c, b > d)

= p ((b− d) (c− d) > 0 | a < c, b− d > 0)

= p (c > d | a < c)

=
p (c > a, c > d)

p (c > a)
(6.9)

This is identical to Eq. (6.5) if one exchanges a ↔ c. Since a and c have the same

distribution, we recover the result from Eq. (6.7),

p(W (x∗) > d | a < c, b > d) = 2 θ − θ2. (6.10)

In other words, the probability to increase fitness is the same in a coexistence game

as in a game where the mutant dominates the wild type.
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Let us now combine the results and consider the changes of the average fitness

over all types of interactions. The probability to increase the fitness due to a new

mutation is given by

p(W > d) = p(W > d | a > c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a > c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | a < c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a < c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ2 − θ3 (6.11)

In a similar manner, we can calculate the probability to decrease the average

fitness due to a new mutation. When the mutant dominates the wild type, the

average fitness may still decrease. This is exactly what happens in the Prisoner’s

Dilemma (Rapoport and Chammah, 1965; Nowak, 2006b). Equivalently to the

calculation above, we have

p(W (1) < d | a > c, b > d) =
p(a < d, a > c, b > d)

p(a > c, b > d)

=
p(a < d, a > c)

p(a > c)

= (1− θ)2. (6.12)

For the probability to decrease the average fitness in a coexistence game, we find

p(W (x∗) < d | a < c, b > d) = (1− θ)2. (6.13)

Thus, using a calculation similar to Eq. (6.11), the overall probability to decrease

the average fitness is given by

p(W < d) = θ − 2θ2 + θ3. (6.14)

Also the probability to maintain a constant average fitness can be calculated in

this way. For continuous fitness distributions, there are no strictly neutral mutations.

As the fitness of the wild type is a specific value of the continuous random variable,

the probability of having a strict neutral mutation, the fitness of which is equal to

the fitness of the wild type, is 0. Thus, the average fitness is only maintained when

the mutant goes extinct, which occurs with probability

p(W (0) = d) = p(b < d) = 1− θ (6.15)
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We discussed the changes of the average fitness in a two-type population under

frequency dependent selection above. Under constant selection, the average fitness

will increase with probability θ and decrease with probability 0. As for frequency

dependent selection, it will remain constant with probability 1−θ. Fig. 6.2 illustrates
these results and compares frequency dependent selection to constant selection for

all values of θ. For frequency dependent selection, there is an intersection point θ∗,

where the probability to increase the average fitness and to decrease the average

fitness are equal. Using Eq. (6.11) and Eq. (6.14), this becomes 2 θ2
∗ − θ3

∗ = θ∗ −
2θ2
∗ + θ3

∗, and we have θ∗ =
√

2−1√
2
. Small values of θ are typically considered to

be of biological relevance. In this case, frequency dependent selection tends to

decrease the average fitness: for θ <
√

2−1√
2
, it is more likely that the average fitness

of the population is decreased by a single random frequency dependent mutation;

for θ >
√

2−1√
2
, it is more likely that it is increased.

Frequency-dependent selection can arise from different mechanisms. In a haploid

population, frequency-dependent selection are caused by the interactions of different

types. In this case, the fitness of a particular type depends on the frequency of its

own and other types in the population. However, in a diploid population, frequency

dependent selection on alleles can arise also from the interactions of two alleles at

one locus (Cressman, 1992; Hofbauer and Sigmund, 1998; Traulsen and Reed, 2012).

Thus, our model can be easily extended to a diploid population in such a case, which

leads to different results for the average change in fitness, see 6.3.4.

6.3.2 Games with n types

So far, we have discussed the change of the average fitness of a population consisting

of at most two types. However, when two types coexist in a stable polymorphism,

an additional type can enter the population and persist. To describe the interaction

of individuals in a population with more than two types, we extend the 2× 2 payoff

matrix to a n×n payoff matrix A, where n is the number of types in the population.

The entry in the i-th row and the j-th column, Aij represents the fitness of an i-type

individual interacting with a j-type individual. The fitness of type i on average can

be written as Wi(x) =
∑
Aijxj , where j = 1, 2, 3..., n, and xj is the frequency of

type j, such that
∑n

j=1 xj = 1.

In our model, n is not a fixed number. When a type goes extinct, the corre-

sponding row and column are deleted in the payoff matrix. Thus, the value of n
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Figure 6.3: Transition probabilities between different levels of diversity. The entry

in row i and column j is the transition probability from a stable coexistence of i types to

a stable coexistence of j types, numbers are also color coded. The mutation rate is so

low that the transitions between different states are caused by the appearance of a single

mutation. The higher the number of coexisting types is, the more difficult the state is to

be reached. Here we show the transition for up to six co-existing types (θ = 0.5, averages

obtained over 500 independent realizations and 20000 mutations per realization).

decreases by one. When a mutation occurs, one row and one column are added to

describe the interactions of the mutant type and resident types, which increases the

size of the payoff matrix by one. The new entries introduced by a mutation are

generated based on the assumption that the interactions between the mutant type

m and any resident type i are similar to those between the parent type p and the

resident type i. In our case, we assume amj is a random variable which is drawn

from a probability density function f(x) and is larger than apj with probability θ.

Since the complexity of the population dynamics increases considerably with

the number of types, it would be difficult to obtain the changes of the average

fitness in a polymorphic population of n > 2 types analytically. Therefore, we use

the replicator equations to simulate the dynamics of the system with several types.

We start the simulation from a homogenous population. However, since we are

interested in the average fitness changes and other stationary quantities averaged

over a long time period, the initial number of types has no effects on the results.

The time intervals are sufficiently small that at most one mutant type can appear

during one time interval. The probability that a resident type i produces a mutant

type is µxiWi (x) /W (x), where i = 1, 2, 3, ..., n. Thus the probability that a mutant
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arises from a resident type i increases with the fitness of this type. However, for the

whole population, the probability that a mutant type appears is just the mutation

rate,
∑n

i=1 µxiWi (x) /W (x) = µ.

We can chose arbitrary mutation rates in our simulations. However, when the

mutation rate is very high, a population might experience a new mutation when

it is still in a non-equilibrium state triggered by the previous mutation. In this

case, the fate of a mutant is not only driven by selection, but also by the inter-

play of mutations. Since we are interested in the fitness consequences of frequency

dependent selection, we choose the mutation rate small enough such that a popula-

tion disturbed by a mutation reaches the new equilibrium before the next mutation

arises.

We first look at the transition probability between different levels of diversity

under mutation and selection. Once a mutation occurs it can coexist with all resident

types, replace one resident type, outcompete some resident types, or go extinct. The

transition matrix T describes this dynamics. Suppose the number of types in the

current population is n. The element Tni denotes the transition probability from n

to i coexisting types, where i = 1, 2, 3, ..., n+1, see Fig. 6.3. We obtain the values in

the transition matrix from numerical simulations. Every transition event triggered

by a mutation is recorded and the probability to go from a certain number of types

to another number of types is averaged over many realizations. These transition

probabilities show some interesting properties. The probability to keep the current

diversity (the element in the main diagonal in a row) is always higher than the

probabilities to decrease or increase the diversity (all the other elements in the

same row), see Fig. 6.3 and Ref. (Huang et al., 2012). Interestingly, for a population

consisting of less than 4 types, the probability to increase the diversity Tii+1 is higher

than the probability to decrease the diversity
∑i−1

j=1 Tij in the parameter regime of

Fig. 6.3. Once the population reaches the threshold of 4 types, this pattern reverses.

Thus in the long run the population tends towards an intermediate level of diversity.

Furthermore, we observe the ranking, T12 > T23 > T34 > T45. This suggests that

the probability to reach higher levels of diversity decreases with increasing diversity

even for larger number of initial types. The transition probability from one type to

a two-type coexistence can be calculated analytically based on the comparison of

payoff entries, see above. Thus, T12 = p(a < c)p(b > d) = θ/2, which is confirmed

by our simulation results of T12 under different θ for the n-type model.
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For a population with n types, the changes of the average fitness are more

complicated, as the interactions between different types are much more diverse than

in a two-type population. Even a classification of different types of interactions

in such a population is difficult and of limited value to understand the change in

average fitness. Instead, we evaluate the changes of the average fitness between

these states numerically.

A mutation can increase, maintain, or decrease the diversity level of the popula-

tion. We present the changes of the average fitness in these three scenarios, see Fig.

6.4, for those transitions which happen most frequently (see Fig. 6.3). For small

θ, mutants are more likely to obtain lower fitness than their parents type does, in

the interactions with the same resident type. This can cause the decrease of the

average fitness in all three situations. If θ is sufficiently small, the average fitness

will decrease all the time. When θ becomes larger, the average fitness can increase.

The larger θ is, the larger the increase is. Thus, our results under the replicator

dynamics provide not only the change of the average fitness under a constant θ, but

also the direction and magnitude of the average fitness changes. In real systems,

one may expect that θ decreases during the adaption of the population. However,

e.g. environmental changes could also increase it.

6.3.3 Games with equal gains from switching

So far, we have assumed that the payoff of the mutant interacting with another

resident type is derived from the payoff of its parent interacting with the same

resident type. In a population with only two types, this leads to the case where the

three random payoff entries, a, b and c, are all related to d. As a null model, we

have assumed that a, b and c are uncorrelated. While this is the simplest possibility,

it may not be the case for concrete biological systems. Therefore, we analyze an

different case here which focuses on particular cases of frequency dependence, but

includes such correlations.

We focus on an evolutionary game with the payoff matrix

(
M R

M d+ ε+ δ d+ δ

R d+ ε d

)
,

where ε and δ are independent random variables with probability distributions fε(x)
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and fδ(x) respectively. ε represents the effect of a mutation on the mutant type,

and δ represents the effect of a mutation on those who interact with the mutant

type. This game has the property of “equal gains from switching”, where the sum

of the payoff values in the main diagonal is equal to the sum of the payoff values in

the other diagonal (Nowak and Sigmund, 1990). It can arise from the assumption

that the two types are close to each other in a continuous phenotype space (Wild

and Traulsen, 2007). The case of δ = 0 corresponds to constant selection. Note that

there are no coexistence games when we assume such payoff matrices. If ε > 0, the

mutant will take over the population (d+ ε+ δ > d+ δ and d+ ε > d), and the new

average fitness becomes W = d+ ε+ δ. Compared with the former average fitness

d, the average fitness increases if ε+ δ > 0, and decreases if ε+ δ < 0. If ε < 0, the

mutant will be outcompeted by the wild type (d+ ε+ δ < d+ δ and d+ ε < d), and

the average fitness of the population remains the same.

The probability to increase the average fitness becomes p(W > d) = (1 − θε) ·
0 + θε · p(ε+ δ > 0 | ε > 0), where θε is the probability that ε is larger than 0, and

p(ε+ δ > 0 | ε > 0) is the conditional probability that the sum of ε and δ is larger

than 0 given ε is larger than 0. This conditional probability can be written as

p(ε+ δ > 0 | ε > 0) =
p(δ > −ε, ε > 0)

p(ε > 0)

=

∫∞
0 dx

∫∞
−x dy fδ(y) fε(x)

θε
(6.16)

The values of θε and p(ε + δ > 0 | ε > 0), which determine the probability that

the average fitness increases, depend on the concrete choice of fε(x) and fδ(x). The

integrals can only be carried out in special cases.

It is worth to mention there is a difference between games with equal gains from

switching and games with independent random payoff entires on the population dy-

namics. In an infinite population, where genetic drift has no effect on the population

dynamics, the resulting dynamics under positive frequency dependent selection and

under constant selection are similar, as there are no stable coexistences. Success-

ful mutants will invade and take over the population sequentially. The diversity

will only increase if the mutation rate is high enough. On the contrary, when dif-

ferent kinds of interactions, especially negative frequency dependent selection, are

allowed (for example, the case with independent random payoff entires), diversity

can increase even for lower mutation rates (see above).
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Figure 6.4: Changes in the average fitness when a population evolves between

different levels of diversity under various probabilities that a mutant payoff

values is larger than the parent’s θ. The symbols are simulation results based on

replicator dynamics. The number of different types can either stay the same, increase by

one or decrease by any number, because at most a single mutation enters the population.

Note that the average fitness of the population in the new equilibrium decreases for small

θ in all three cases after a transition. Thus even if a mutant takes over a population, the

average fitness can decrease. With increasing θ, the average fitness will increase over time,

but the fitness gain reduces with increasing diversity. The difference among results under

Gaussian distribution and uniform distribution with the same variance, shows that the ab-

solute changes of the average fitness also depends the concrete shapes of the probability

distribution (every symbol is averaged over 500 independent realizations and 20000 muta-

tions per realization. The probability distribution f(x) is Gaussian (left) or uniform (right)

with variance 1).
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6.3.4 Diploid populations with two alleles

The impact of Mendelian inheritance on the population dynamics has been discussed

in the framework of evolutionary game theory before (Hines, 1980; Hofbauer et al.,

1982; Eshel, 1982; Brown, 1983). In a diploid population, the combinations of two

alleles at a given locus on a pair of homologous chromosomes, can be interpreted by

a special two player game. Suppose there are allele A and allele B. The fitness of

different genotypes, WAA, WAB and WBB can be described by a 2× 2 matrix

(
A B

A WAA WAB

B WAB WBB

)
.

This is mathematically identical to the game with two types discussed above. Here,

WAA corresponds to a, WAB to c = b, andWBB to d. For a population initially only

with homozygotes BB, the probability of increasing the average fitness W caused

by a random new allele A, can be calculated by setting c = b in Eq. (6.11). This

becomes

p(W > WBB) = p(a > d | a > b, b > d)︸ ︷︷ ︸
1

p(a > b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(
b2 − ad

2b− d− a > d | a < b, b > d)
︸ ︷︷ ︸

1

p(a < b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(d > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ − θ2 (6.17)

The probability that the average fitness decreases in such a population is 0, because

the diploid AB and the diploid BA is indistinguishable, c = b. In asymmetric

diploids, where the maternal alleles and paternal alleles are not equally expressed,

the average fitness changes are exactly the same as shown in a general case of haploid

populations.

6.4 Discussion

Mutants with high individual fitness do not necessarily increase the average fitness of

the population under frequency dependent selection. Similarly, the mutants which
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maximize the average fitness of a population are not necessarily those leading to a

stable equilibrium in this scenario. An example for a two-type population is that a

mutant interacts with the wild type in a game like Prisoners’ Dilemma (Rapoport

and Chammah, 1965; Maynard Smith, 1982). This is a special case of a dominance

game, where the defector (the mutant) outcompetes the cooperator (the wild type)

and causes a reduction in the average fitness. For example, in the RNA phage φ6,

the competitive interactions among the high multiplicities-of-infection phage (the

defector) and the low multiplicities-of-infection phage (the cooperator) in the same

host cell are studied, which conforms to the Prisoners’ Dilemma (Turner and Chao,

1999). In this experiment, when the defector invades with a low frequency, it has

higher fitness than the residents (c > a), but the average fitness decreases when the

defector becomes fixed (d > a).

Since natural selection works on an individual level rather than a population

level, it does not always lead to an increase of the average fitness. Our random mu-

tant games model accommodates mutations under frequency-dependent selection,

which can result in an increase or decrease in the average fitness, not only for the

simplest case of two types but also for an arbitrary number of mutant types. An

interesting aspect of our model is that even though it allows for an infinite number

of mutant types, it does not result in a continuous growth of diversity in a popula-

tion, but leads to an intermediate level of diversity (Huang et al., 2012). We assume

that the payoffs are constant in time and identical for individuals of the same type.

If individuals vary in their payoffs despite being of the same type, the results are

altered by this additional source of randomness (Fudenberg and Harris, 1992; John-

son et al., 2002). In a population with two types, we calculate a particular value θ∗,

where the probability that the average fitness increases is equal to the probability

it decreases. The exact value of θ∗ depends on the concrete implementation of the

payoff matrix. An interesting result of our model is that the probability to decrease

or increase fitness depends only on a particularly simple property of the fitness dis-

tribution. While this may not be of direct relevance to a concrete biological system,

it illustrates conceptually that a decreasing fitness may not be counterintuitive even

under the simplest possible assumptions of frequency dependence.

We have discussed the changes in the average fitness for an infinite asexual pop-

ulation under mutation and selection. Additional effects occur when the population

size becomes finite and genetic drift is not negligible (Huang et al., 2012). However,

our main observation is that the average fitness at equilibrium can only increase
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or remain constant by random mutations under constant selection, but also de-

crease under frequency-dependent selection. This can shed new light on problems

in evolutionary biology and leads to the exciting question on the dynamics of the

average population fitness in real biological populations. In an asexual finite pop-

ulation, random genetic drift leads to the accumulation of deleterious mutations

and an continuous decrease in the average fitness, which is well known as Muller’s

ratchet (Muller, 1964). Without any forms of recombination and epistasis, benefi-

cial mutations are the only source to compensate the average fitness decline. Since

the probability of increasing the average fitness by random mutations is lower un-

der frequency-dependent selection (see Fig. 6.2), we must conclude that asexual

populations face an even bigger challenge to maintain their average fitnesses under

frequency dependent selection than under constant selection in a finite population.

This is particularly striking when θ is small, a case that is typically thought of as

the biologically most relevant case.

In population genetics, the change of the average fitness has also been studied

in diploid systems (Fisher, 1930, 1941). However, our approach starting from a

different point of view, not only allows the interplay of mutation and selection, but

also a wider interpretation of the fitness of heterzygotes. Suppose A and B are

two alleles at the same locus. In population genetics, the fitness of genotype AB

and BA is usually considered to be identical, which is a special case in our model

called symmetric diploids. However, this does not hold in asymmetric diploids where

the maternal allele and paternal allele are not equally expressed. Our model and

our analysis allow both cases. In the framework of a well-mixed symmetric diploid

population (corresponding to random mating), our result that the average fitness

never decreases is consistent with the former statement in population genetics.

Frequency dependent interactions can lead to a decrease of the average fitness

of a population during the process of evolution despite natural selection. This is

because natural selection works on individual fitness instead of the average fitness

of a population.
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6.5 Random mutations and cancer

As discussed in chapter 3, the majority of cancers are caused by multiple mutational

hits within single cells. The interplay of these mutational hits might give a fitness

advantage to those cells, and they escape control mechanisms, ultimately leading

to cancer. However, most mutations are either neutral or disadvantageous (Eyre-

Walker, 2007). Thus, those mutations do not contribute or even compensate for

potentially cancerous mutations. Game theoretical approaches in cancer modeling

exist already. These approaches allow an alternative perspective on cancer progres-

sion and may also provide alternative treatment strategies (Basanta et al., 2008,

2011; Basanta and Deutsch, 2008). Random mutant games are a natural framework

to combine game theoretical approaches and the impact of random mutations.

Besides the effect of random mutations, there is a constant cell flow due to the

hierarchical tissue organization. To connect the concept of random games with

a hierarchical tissue organization, we first have to implement a fitness concept.

Usually in biology, fitness corresponds to the number of produced offspring. The

more offspring one individual has compared to others the higher its fitness. Thus

in hierarchical tissues, the fitness can be understood as the capability of a cell to

produce daughter cells. Following (Traulsen et al., 2010) and the arguments in

chapter 3 the number of cell divisions of a cell before leaving a compartment is

n =
∞∑

i=1

i (1− ε)i−1 ε =
1

ε
. (6.18)

Cells leave the compartment with probability ε. Before this cell undergoes i cell di-

visions with probability (1− ε)i within the compartment. The number of produced

cells ρ is n − 1 as in the last division, the cell leaves the compartment. However,

we also need to take the offspring in higher compartments into account. Assuming

the direct number of offspring in compartment i − 1 is ρi−1, and all differentiation

probabilities are constant, the offspring in compartment i is

ρi = ρi−1
1

ε
− ρi−1 =

(
1− ε
ε

)i
. (6.19)

However, if we assume differentiation probabilities εi for each compartment i this is

ρi =

i∏

j=1

1− εj
εj

. (6.20)
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However, this measures the direct offspring of a cell in all compartments. It seems

more appropriate to measure all cells derived from a cell (the daughter cells of the

daughter cells and so on). Including mutations, this leads to a recurrence relation

for the number of produced cells in compartment i

mk
i =

αki
2αki − 1

i∑

l=1

2i−l
u

αk−1
l

mk−1
l

i−1∏

h=l

εkh
2αkh − 1

. (6.21)

We derived and discussed this recurrence relation in chapter 3. Here i is the com-

partment number, k the number of mutational hits in a cell, ε the differentiation

probability, u the mutation probability and α = ε+ u. Importantly, the total num-

ber of produced cells depends on u and ε only. This gives us an ansatz to introduce

random mutations into the framework of hierarchical tissues. We assume the differ-

entiation probability of a mutant follows a probability distribution. Thus if a cell

mutates during proliferation, the differentiation probability of this single mutation

ε1 is drawn from this probability distribution. Note, the differentiation probabil-

ity is restricted to the interval [0, 1]. Thus the distribution of the differentiation

probability needs to be bounded within this interval. This can be achieved for any

continuous probability distribution f (x). This leads to a conditional (truncated)

distribution of the original distribution, given by

f c (x|a ≤ x ≤ b) =
f (x)

F (b)− F (a)
. (6.22)

The probability distribution is restricted to the interval [a, b] and F (x) represents the

cumulative distribution function. In figure 6.5 we show a realization of a truncated

gaussian distribution. This distribution has its mean at the wild types differentiation

probability and relatively narrow range (small variance). The actual distribution

of fitness effects of mutations in human tissues is unknown. However, one would

expect a pronounced peak around the wild types fitness, as most mutations are

assumed neutral. Anyhow, due to the hierarchical tissue organization most mutants

go extinct. Only mutations, that cause a low differentiation probability may give

raise to additional mutations, which may lead to cancer. But such mutations are

rare. A further possibility provide stepwise mutations towards a low differentiation

probability, see figure 6.5. In chapter 3 we showed, that such multiple mutations are

strongly suppressed by a hierarchical organized tissue organization. Thus we have at

least two competing effects: (i) the rareness of mutations causing low differentiation

probabilities and (ii) the inability of the mutant population to derive a state of
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Figure 6.5: Schematic representation of random mutations in a hierarchical tis-

sue structure. A If a mutation occurs, the differentiation probability of the mutant is

drawn from a probability distribution. This distribution peaks around the differentiation

probability of the ancestor cell (most mutations are neutral). However, the differentiation

probability of the mutant might be lower compared to the ancestor cell, thus the distribu-

tion shifts to the left. In a few steps a state of low (potentially cancerous) differentiation

probability can be derived. B Multiple mutations can lead to complex patterns. Jumps

in the differentiation probabilities may occur, most of the mutants extinct (dashed circles),

but there might be a path leading to a low differentiation probability (black circle) and

potentially to cancer.

low differentiation probabilities by stepwise mutations because of the hierarchical

tissue organization. We think, this might result in interesting dynamical patterns

and investing them is worthwhile. This might be an interesting problem for future

research.
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Summary and Outlook

7.1 Summary

Throughout this thesis we developed models about different aspects of cell prolifer-

ation properties. In chapter 2, we focused on the dynamics of cells in hierarchically

organized tissue structures. Such hierarchical organizations increase the complexity

of modeling approaches. Cell flux causes varying compartment sizes. Further, pop-

ulation dynamics in such hierarchies usually span many orders of magnitude and

very diverse dynamical patterns can be observed. We tackle these problems by (i)

implementing exact individual based stochastic computer simulations, utilizing a

Gillespie algorithm, and (ii) by analytically solving coupled systems of differential

equations. The first part of chapter 2 contains the publication (Werner et al., 2011).

Here we focus on the deterministic dynamics of a cell with a single mutational hit

within such hierarchies. The dynamics differs for stem cell and non stem cell muta-

tions. Stem cell mutations accumulate over time. For non stem cell mutations, the

dynamics depends on the properties of the mutant. If the differentiation probability

of the mutant is considerably lower than wild type cells, mutant cells accumulate.

Otherwise, mutant cells will travel trough the hierarchy and get washed out in the

long run. We can calculate the extinction time of such mutants and find a good

agreement to experimental results for neutral mutants in the literature.

The second part of chapter 2 contains a submitted manuscript and turns to

the problem of multiple mutations in such hierarchically organized tissues. We

investigate the accumulation of multiple mutations in a hierarchy. Although crucial

for cancer initiation, such multiple mutations are strongly suppressed. Stem cells are

rare and proliferate slowly, thus an accumulation of multiple mutations is unlikely.

However, cells in more committed stages of the hierarchy undergo a limited number

of cell division before becoming senescent. Thus, most mutations get washed out
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of the hierarchies. We introduce the concept of the reproductive capacity of a cell.

This property is defined as the total number of cells derived from a single cell in a

compartment and directly corresponds to the concept of clonal markers. We derive

at closed expressions for the reproductive capacity of cells. These solutions allow

us to calculate the number of multiple mutations during the differentiation process

of those cells. We find explicit scaling properties of such hierarchically organized

tissues, highlighting the strong suppression of such multiple mutations.

In chapter 4, we turn to a related problem. The development of molecular tar-

geted drugs to fight chronic myeloid leukemia was a breakthrough in the treatment

of this particular cancer. These drugs turn an ultimately lethal into a chronic dis-

ease. Unfortunately, the occurrence of treatment resistant subclones and a disease

relapse are an increasing problem in clinical daily routine. The main body of chap-

ter 4 contains the publication (Werner et al., 2011). Here, we analyze a resistance

inducing experiment to those molecular targeted drugs. We develop a minimalistic

mathematical model based on the two and three type Moran process with time de-

pendent fitness functions and compare the dynamics to experimental results. The

fitness of the cancer cell population passes trough a minimum before it reaches a

relatively stable state. This state shows considerable lower fitness than the wild

type, but is resistant to high concentrations of those molecular targeted drugs. It

turns out that a minimalistic description of the experimental results requires at least

three types, the wild type and two resistant types with different switching rates. We

find hints for a fast switching type with slightly lower fitness compared to the slower

switching type. However, due to the higher fitness, the fitter type takes over the

population in the long run.

Chapter 5 contains work in progress on a model of telomere shortening on the cell

and tissue level. We derive at analytical expressions for the expected telomere length

distribution and are able to compare those to clinical measurements of telomere

length distributions in healthy adults. This reveals interesting properties of stem

cell dynamics. We derive a microscopic model that explains basic observations of

telomere shortening at different ages. We find an increased shortening of telomeres

at young ages, that turns into an almost linear decrease for adults. Importantly, the

model hints towards an expanding stem cell pool size with increasing age. In addition

we can deduce dynamical patterns of telomere shortening for certain diseases, such

as T-cell mediated stem cell death. In this case, we expect a quadratic decline of

the average telomere length compared to the approximately linear decline in healthy
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adults. However, understanding basic properties of stem cell dynamics is crucial for

an improved description of hierarchically organized tissue structures.

The last chapter 6 of the main body of this thesis contains the publication

(Huang et al., 2012), where we implement a method for an arbitrary number of

random mutations into the framework of game theory. We investigate the effects

of such random mutations on the average fitness of an infinite large population by

applying replicator equations. We find fundamental differences for constant and

frequency dependent selection. The average population fitness never decreases for

fixed mutants, if selection is constant. In contrast, the average fitness of the popu-

lation can decrease after the fixation of a mutant for frequency dependent selection.

We calculate the probability for such events explicitly. This gives two conclusions:

(i) The probability of such events only depends on the available fraction of advan-

tageous mutants, but is independent of the actual payoff distribution (ii) If the

proportion of available advantageous mutations is not too large, the probability to

decrease the average fitness is higher than the probability to increase the average

fitness. Our publication (Huang et al., 2012) explores basic properties of the ran-

dom mutant model. We do not link this directly to cell population dynamics in

hierarchies. However, in the last part of chapter 6 we discuss one mechanism, that

allows to include the idea of random mutations into the framework of hierarchical

tissue organization, which may enable us to tackle additional effects of non neutral

multiple mutation hits.

7.2 Outlook

In this thesis we modeled different aspects of cell population dynamics. However,

there are interesting questions for future research, that directly follow from results

in this thesis. So far we focused on deterministic effects of cell dynamics in hierar-

chically organized tissue structures. The investigation of stochastic effects and their

interference with deterministic predictions in such hierarchies is a promising task.

We discussed one possibility in chapter 6 , where we propose an implementation

of random mutations. The differentiation probability of such mutants would follow

a probability distribution. This approach would allow us to study the stochastic

clonal evolution in such hierarchies. One could investigate the relative importance

of different scenarios. Cancerous clones either evolve by a few mutational hits of big

impact or many mutational hits with minor changes. Most cancers might fall into
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the first scenario, as many mutational hits are unlikely. However, a mathematical

description of such clonal histories is of interest.

A second interesting question concerns our model of telomere shortening. We

modeled the shortening of telomeres on the cell level. This allowed us to neglect

stochastic effects. However, stochastic effects are important on the single telomere

level. Building a model on the single telomere level, that derives our model as an

average of the cell telomere length would be of interest. We expect pronounced

differences between the telomere length distributions on single telomere and cell

level. Deriving exact expressions could reveal additional insights into the stem

cell dynamics. A comparison of both solutions may allow an estimation of the

importance of stochastic effects on the stem cell dynamics.

However, we also expect effects on the clonal dynamics due to the expending

stem cell pool size. There are some studies, that investigate the dynamics of stem

cell mutations. Usually, these studies assume a constant instead of an expanding

stem cell pool. In addition the proliferation rate of stem cells slows down. Thus we

expect an (maybe small) impact on the clonal dynamics.

I believe this thesis shows at least partly, how the cooperation of theoretical,

experimental and clinical research can improve our understanding of fundamental

questions in cell population dynamics and subsequent questions as cancer, treatment

or aging. Usually the underlying systems are complex and so are the observed

dynamical patterns. However, even more important are mathematical models, that

can test for assumptions and may even result in predictions. Clarifying the driving

processes are indispensable in developing potential cures for cancer.
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