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Spatially extended systems, such as channel or pipe flows, are often equivariant under continuous
symmetry transformations, with each state of the flow having an infinite number of equivalent
solutions obtained from it by a translation or a rotation. This multitude of equivalent solutions
tends to obscure the dynamics of turbulence. Here we describe the ‘first Fourier mode slice’, a very
simple, easy to implement reduction of SO(2) symmetry. While the method exhibits rapid variations
in phase velocity whenever the magnitude of the first Fourier mode is nearly vanishing, these near
singularities can be regularized by a time-scaling transformation. We show that after application of
the method, hitherto unseen global structures, for example Kuramoto-Sivashinsky relative periodic
orbits and unstable manifolds of travelling waves, are uncovered.

PACS numbers: 02.20.-a, 05.45.-a, 05.45.Jn, 47.27.ed

Mounting evidence that exact coherent structures play
a key role in shaping turbulent flows [1] necessitates de-
veloping new tools for elucidating how these structures
are interrelated [2]. Unravelling these interrelations for
flows which admit continuous symmetries requires spe-
cial care. A solution to a problem in classical or quan-
tum mechanics starts with the classification of problem’s
symmetries, followed by a choice of a basis invariant un-
der these symmetries. For example, one formulates the
two-body problem in three Cartesian coordinates, but
when it comes to solving it, polar coordinates, with the
phase along the symmetry direction as an explicit coor-
dinate, are preferable. While a classification of problem’s
symmetries might be relatively straightforward, for high-
dimensional nonlinear systems (fluids, nonlinear optical
media, reaction-diffusion systems, etc.) a good choice of
a symmetry-invariant frame is not as easy as transform-
ing to polar coordinates. In this letter we describe the
‘first Fourier mode slice’, a simple method for reducing
U(1) or SO(2) symmetry that has been tested on and
works well for systems of dimensions ranging from 4 (for
the ‘two-mode system’ [3]) to 105 (for fluid dynamics [4]).

The applications we have in mind are to solutions of
spatially extended systems, such as Navier-Stokes equa-
tions for a velocity field u on a spatially periodic domain,
where one starts the symmetry analysis by rewriting the
equations in a Fourier basis,

u(x, τ) =

+∞∑
k=−∞

ũk(τ) eiqkx , (1)

where ũk = xk + i yk = |ũk|eiφk , qk = 2πk/L, L is the
domain size, x is the spatial coordinate and τ is time.
Thus a nonlinear PDE is converted to an infinite tower
of ODEs. In computations this state space is truncated to
2m real dimensions [24], a = (x1, y1, x2, y2, . . . , xm, ym)T.

If the system has a translational symmetry, the complex
Fourier modes (1) form a continuous family of states
(a group orbit), equivalent under spatial translations
u(x, τ) → u(x + δx, τ), and related by U(1) rotations

ũk → ũke
ikθ , θ = 2πδx/L . (2)

In other words, the formulation contains a redundant
degree of freedom. Keeping such redundant degrees of
freedom, as we shall illustrate here with the Kuramoto-
Sivashinsky example, obscures the dynamics.

In this letter we shall assume that for a generic ‘tur-
bulent’ state u(x, τ) the first Fourier mode never ex-
actly vanishes, and define the symmetry-reduced Fourier
modes ûk by fixing the phase of the first Fourier mode,

ûk(τ) = e−ikφ1(τ)ũk(τ) , (3)

The symmetry reduced Fourier modes ûk are invariant
under the symmetry transformation (2) by construction.
A phase-fixing transformation of this kind is very natural;
the earliest example known to authors is the reduction
of the S1 symmetry of the complex Ginzburg-Landau
equation by Luce [5]. When applied to spatiotemporally
chaotic dynamics, however, the phase-fixing transforma-
tion (3) introduces what appear to be discontinuities in
the flow. In this letter we show that a reexamination of
the method of slices [6–11] leads to a regularization of
such apparent singularities by means of a rescaled ‘slice
time’. This representation (from here on referred to as
the ‘first Fourier mode slice’) reveals relations among im-
portant coherent structures of the flow, such as relati-
ve equilibria and relative periodic orbits, known to play
an important role in shaping the state space of turbu-
lent flows [1]. Here, for simplicity, we illustrate the first
Fourier mode slice by applying it to the dynamics of
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Kuramoto-Sivashinsky equation in one spatial dimension.
As shown in ref. [4], the method is equally easily incor-
porated into spectral codes for 3D fluid flows in periodic
domains, with no need for any further generalization.

Consider a first-order flow ȧ = v(a) on state space
a ∈ M obtained from the m-mode truncation of the
Fourier expansion (1). Here the velocity function v(a) =
(ẋ1, ẏ1, ẋ2, ẏ2 . . . , ẋm, ẏm)T is the Fourier transform of the
right side of the PDE for field u(x, τ). Translational sym-
metry in the configuration space implies that the dynam-
ics satisfies the equivariance condition

v(a) = D(θ)−1v(D(θ)a) , (4)

where

D(θ) = diag [R(θ), R(2θ), . . . , R(mθ) ] , (5)

is a block-diagonal [2m×2m] matrix representation of
the SO(2) action and R(kθ) is the [2×2] rotation ma-
trix acting on the k-th Fourier mode. The generator of
rotations is also a block-diagonal matrix, with [2×2] in-
finitesimal generators of infinitesimal rotations Tk along
its diagonal,

R(kθ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, Tk =

(
0 −k
k 0

)
. (6)

For visualization purposes we find it more convenient to
work in the real SO(2) representation rather than the
complex U(1) formulation (2). The group orbit Ma of a
state space point a is the set of all points reachable from
a by symmetry transformations, Ma = {D(θ) a | θ ∈
[0, 2π)} . In the method of slices, one constructs a ‘slice’,
a submanifold M̂ ⊂ M that cuts each group orbit in
an open neighborhood once and only once. The dy-
namics is then separated into the ‘shape-changing’ dy-
namics â(τ) ∈ M̂ within this submanifold, and a sym-
metry coordinate parametrized by the group parame-
ter θ(τ) (a ‘moving frame’ [12–14]) that reconstructs
the original dynamics a(τ) ∈ M by the group action
a(τ) = D(θ(τ)) â(τ). For the SO(2) case at hand, a one-
parameter family of transformations, M̂ has one dimen-
sion less than M.

There is a great deal of freedom in how one constructs
a slice; in general one can pick any ‘moving frame’. Com-
putationally easiest way to construct a local slice is by
considering a hyperplane of points â defined by

0 = 〈â|t′〉 , where 〈b|c〉 =

2m∑
`=1

b`c` , (7)

is sketched in fig. 1. Here, t′ = T â′ is the group tangent
(the direction of translations) evaluated at a reference
state space point â′, or ‘template’ [6]. The template is
assumed not to lie in an invariant subspace, i.e., D(θ)â′ 6=
â′ for all D(θ) 6= 1.

M̂

a(τ)

â(τ)â′

t′

â(0)

FIG. 1: (Color online) The slice hyperplane M̂, which passes
through the template point â′ and is normal to its group tan-
gent t′, intersects all group orbits (dotted lines) in an open
neighborhood of â′. The full state space trajectory a(τ) (solid
black line) and the reduced state space trajectory â(τ) (solid
green line) belong to the same group orbit Ma(τ) and are
equivalent up to a ‘moving frame’ rotation by phase θ(τ).
Adapted from ChaosBook.org.

The dynamics within this slice hyperplane and the re-
construction equation for the phase parameter are given
by

v̂(â) = v(â)− θ̇(â) t(â) , (8)

θ̇(â) = 〈v(â)|t′〉/〈t(â)|t′〉 , (9)

with t(â) = T â the group tangent evaluated at the
symmetry-reduced state space point â. Eq. (8) says that
the full state space velocity v(â) is the sum of the in-slice
velocity v̂(â) and the transverse velocity θ̇(â) t(â) along
the group tangent, and (9) is the reconstruction equation
whose integral tracks the trajectory in the full state space
(for a derivation and further references, see ref. [15]).

The phase velocity (9) becomes singular for â∗ such
that t(â∗) lies in the slice,

〈t(â∗)|t′〉 = 0 , (10)

or for â∗ in an invariant subspace, where t(â∗) = 0. The
(d−2)-dimensional hyperplane of such points â∗ forms
the ‘slice border’, beyond which the slice does not apply.
Both the slice hyperplane and its border depend on the
choice of template â′, with the resulting ‘chart’ in general
valid only in some neighborhood of â′. For a turbulent
flow, symmetry reduction might require construction of a
set of such local overlapping charts [10, 11]. However, as
we now show for SO(2), a simple choice of template may
suffice to avoid all slice border singularities in regions of
dynamical interest.

We define the ‘first Fourier mode slice’ by choosing

â′ = (1, 0, 0, 0, ...) , t′ = (0, 1, 0, 0, ...) . (11)

http://ChaosBook.org.
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FIG. 2: (Color online) Kuramoto-Sivashinsky system (a) in
the full state space: Unstable manifold of the relative equi-
librium TW1 (blue) traced out by integrating nearby points
given by (17): 2 repeats of the τp = 33.5010 relative periodic
orbit (red), with instants τ = 0, τp, 2τp marked by black dots;
group orbits (which are also the time orbits) of the TW1 (ma-
genta) and TW2 (green). (b) In the symmetry reduced state
space TW1 and TW2 orbits are reduced to single points, the
unstable manifold is a smooth 2D surface, and the relative
periodic orbit closes after a single period.

The slice determined by this template is the (d− 1)-
dimensional half-hyperplane

x̂1 ≥ 0 , ŷ1 = 0 ,

x̂k, ŷk ∈ R , for all k > 1 . (12)

The condition ŷ1 = 0 follows from the slice condition (7),
whereas x̂1 ≥ 0 ensures a single intersection for every
group orbit. This choice of slice corresponds to (3), fix-
ing the phase of the first Fourier mode. Now that we
have the equations (8) and (9) for the dynamics in the
slice hyperplane we see why this phase fixing transforma-
tion can run into singularities: slice border (10) for the
template (11) is located at x̂1 = 0, and the denominator
of (9) approaches zero as the trajectory approaches the
slice border. We regularize this singularity by defining
the in-slice time as dτ̂ = dτ/x̂1, and rewriting (8) and
(9) as

dâ/dτ̂ = x̂1v(â)− ẏ1(â) t(â) , (13)

dθ(â)/dτ̂ = ẏ1(â) . (14)

The phase velocity (14) is now the non-singular, full state
space velocity component ẏ1 orthogonal to the slice, and
the full state space time is the integral

τ(τ̂) =

∫ τ̂

0

dτ̂ ′ x̂1(τ̂ ′) . (15)

For example, the full state space period τp = τp(τ̂p) of a
relative periodic orbit a(τp) = gp a(0) is the integral (15)
over one period τ̂p in the slice.

We illustrate the utility of first Fourier mode slice by
applying it to the Kuramoto-Sivashinsky system on a pe-
riodic domain in one spatial dimension,

ut = − 1
2 (u2)x − uxx − uxxxx ,

a model PDE extensively studied as it exhibits spa-
tiotemporal chaos [16]. The relative equilibrium (travel-
ing wave) TWi and relative periodic orbit solutions that
we use in this example are described in ref. [17], where
the domain size has been set to L = 22, large enough
to exhibit complex spatiotemporal dynamics. In terms
of complex Fourier modes (1) the Kuramoto-Sivashinsky
equation takes form:

˙̃uk = (q2k − q4k) ũk − i
qk
2

+∞∑
m=−∞

ũmũk−m . (16)

In the real representation ũk = xk+i yk, Kuramoto-Siva-
shinsky equation is equivariant under SO(2) rotations
(5). We have adapted the ETDRK4 method [18, 19] for
numerical integration of the symmetry reduced equations
(13), where we set ũ0 = 0 and truncate the expansion
(16) to m = 15 Fourier modes, so the state space is 30-
dimensional, a = (x1, y1, x2, y2, ..., x15, y15)T.

As an illustration of symmetry reduction, we trace out
a segment of the unstable manifold of the relative equilib-
rium TW1 by integrating n trajectories for time τ , with
initial conditions â1, · · · , ân on the tangent vector ê1,

â` = âTW1 + ε e`δ ê1 , where δ = 2πµ(1)/nω(1) . (17)

Here âTW1
is the point of intersection of the TW1 or-

bit with the slice hyperplane, n we set to 20, integration
time we set to τ = 115, ε is a small parameter that
we set to 10−6, and ê1 = Re V̂1/|Re V̂1|. The unsta-
ble manifold of TW1 is four-dimensional, with V̂1, V̂2 the
expanding complex stability eigenvectors of TW1 with
eigenvalues λ(j) = µ(j) ± i ω(j). Here we present the
two-dimensional submanifold associated with the most
expanding complex eigenvector V̂1. Fig. 2 shows the
state space projections of the unstable manifold of TW1,
along with the τp = 33.5010 relative periodic orbit and
the relative equilibrium TW2. The coordinate axes are
projections (v1, v2, v3) onto three orthonormal vectors
(ê1, ê2, ê3) constructed from Re V̂1, Im V̂1 and Re V̂2
via Gram-Schmidt orthogonalization. It is clear from
fig. 2 (a) that without the symmetry reduction, the TW1

unstable manifold is dominated by the drifts along its
group orbit. In the symmetry reduced state space M̂,
fig. 2 (b), the dynamically important, group-action trans-
verse part of the unstable manifold of TW1 is revealed.
While the drifts along the symmetry direction compli-
cate the relative periodic orbit in fig. 2 (a), the same
orbit closes onto itself after one repeat within the slice
hyperplane, fig. 2 (b). Likewise, TW2, which is topolog-
ically a circle but appears convoluted in the projection
of fig. 2(a), is reduced to a single equilibrium point. The
stage is now set for a construction of symbolic dynam-
ics for the flow by means of Poincaré sections and return
maps [20].

The solutions of Kuramoto-Sivashinsky system are
conventionally visualized in the configuration space, as
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(a) (b) (c)

(d) (e) (f)

FIG. 3: (Color online) Traveling wave TW1 with phase ve-
locity c = 0.737 in configuration space: (a) the full state
space solution, (b) symmetry-reduced solution with respect
to the lab time, and (c) symmetry-reduced solution with re-
spect to the in-slice time. Relative periodic orbit τp = 33.50
in configuration space: (d) the full state space solution, (e)
symmetry-reduced solution with respect to the lab time, and
(f) symmetry-reduced solution with respect to the in-slice
time.

time evolution of color-coded value of the function u(x, t).
Fig. 3 (b,e) illustrates that a relative equilibrium and a
relative periodic orbit become an equilibrium and a peri-
odic orbit after symmetry reduction. Fig. 3 (a,b,c) shows
that a numerical trajectory eventually diverges from the
unstable relative equilibrium and falls onto the strange
attractor. The sharp shifts along x direction in fig. 3 (e)
correspond to the time intervals where trajectory has a
nearly vanishing first Fourier mode. Plotted as the func-
tion of the in-slice time τ̂ in fig. 3 (f), these rapid episodes
are well resolved.

While the first Fourier mode slice resolves the reduced
flow arbitrarily close to the x̂1 = 0 slice border, by sam-
pling it with the in-slice time, this symmetry reduction
scheme works only as long as the amplitude of the first
mode is nonzero. For turbulent flows the first Fourier
mode slice appears empirically valid for regions of dy-
namical interest; in all our numerical simulations of long-
time ergodic trajectories of Kuramoto-Sivashinsky sys-
tem (as well as of Navier-Stokes equations [4]) we have
never encountered exactly vanishing first mode.

In summary, we recommend that the ‘first Fourier
mode slice’, a very simple symmetry reduction prescrip-
tion (3), easily implemented numerically, be used to re-

duce the U(1) or SO(2) symmetry of spatially extended
systems, such as shear flows in periodic domains. For
example, Avila et al. [21] have recently shown that lo-
calized relative periodic orbits have features strikingly
similar to turbulent puffs. The first Fourier mode slice
visualisations of the state space, such as fig. 2 (b), should
help illuminate details of the role such solutions play in
transition to turbulence.
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on a GitHub repository [23].
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