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Abstract This paper presents a linear-quadratic regulator
(LQR) approach for solving inverse heat conduction prob-
lems (IHCPs) arising in production processes like chip re-
moving or drilling. The inaccessibility of the processed area
does not allow the measuring of the induced temperature.
Hence the reconstruction of the heat source based on given
measurements at accessible regions becomes necessary. There-
fore, a short insight into the standard treatment of an IHCP
and the related LQR design is provided. The main challenge
in applying LQR control to the IHCP is to solve the dif-
ferential Riccati equation (DRE). Here, a model order re-
duction approach is used in order to reduce the system di-
mension. The numerical results will show the accuracy of
the approach for a problem based on data given by practical
measurements.

Keywords inverse heat conduction · dynamical linear
systems · optimal control · differential Riccati equation

1 Introdution

In many production fields, a certain heat load is induced
during a machining process, as e.g., drilling or milling pro-
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cedures. These thermal loads affect the material properties
and hence, cause deformations of the processed workpiece
and the processing tool. Therefore, it is necessary to fore-
cast the corresponding temperature field. However, in order
to perform a simulation over the entire time horizon, the
trajectories of the induced heat loads are required. There-
fore, the modeling of chip removing processes and the as-
sociated determination of the actual induced amount of heat
into the workpiece to be considered is a highly active re-
search topic, see e.g., [20,24,25,26] and references therein.
Since the chip removing process already requires a high ac-
curacy model in order to identify the amount of heat enter-
ing the workpiece of interest, here we aim at reconstruct-
ing the heat inputs to the workpiece from observations of
the temperature at accessible regions of the workpiece. The
procedure investigated here in fact tries to avoid the sophisti-
cated modeling of the entire chip removing process. Instead
of performing a direct simulation of the heat creation and
transfer process, we solve an inverse heat conduction prob-
lem (IHCP) [18] for the induced heat. Still the reconstruc-
tion requires a good knowledge of the heat transfer coeffi-
cients used in our boundary conditions and thus can heavily
benefit from the investigation of the forward process.

The concrete setting of the application problem consid-
ered in this paper is described in Section 2. A short insight
into the standard theory for solving the IHCP is given in
Section 3.1. Exploiting the dynamical nature of the heat dif-
fusion and at the same time avoiding complicated proper-
ties of the linear operator describing the heat propagation
required in Section 3.1, we consider a linear quadratic reg-
ulator (LQR) approach to reconstruct the inaccessible heat
loads induced by the machining process. This more con-
trol theoretic approach is described in Section 3.2. Section 4
states the corresponding solution strategy. Due to the inten-
sive computational cost for derivation of the solution of the
optimal control problem in the case of large-scale systems,
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Figure 1: Model domain Ω

in Section 5 we review a model order reduction (MOR) pro-
cedure. Finally, Section 6 presents an illustration of the MOR
accelerated method and its realization for a simplified model
example based on measured data. The problem under con-
sideration aims at a drilling process for a certain workpiece
as it is described in the following section.

2 Problem setting

We consider the 3-dimensional steel hollow cylinder given
in Figure 1. The domain represents an experimental work-
piece with an inner radius ri = 47.75 mm, an outer radius
ro = 113 mm and a height of h = 102 mm. The measure-
ments, we consider in the remainder are taken at the outer
surfaces of the hollow cylinder (see Section 6). The corre-
sponding partial differential equation describing the temper-
ature field on Ω with Robin boundary conditions [27] on the
boundaries Γk reads

cpρ∂tΘ = λ∆Θ in (0,T )×Ω ,

λ∂νΘ = κk(Θext −Θ) on (0,T )×Γk, k = 1, . . . ,3,

λ∂νΘ = 0 on (0,T )×Γk, k = 4,

Θ(0, .) =Θ0,

(1)

where Γ1 denotes the inner boundary, Γ2 the outer one, Γ3
the upper boundary and Γ4 describes the bottom of the do-
main Ω . The material parameters for the specific heat ca-
pacity, the density, the heat conductivity, and the heat trans-
port coefficients for different boundaries Γk are denoted by
cp,ρ,λ ,κk, respectively. Here, we consider a steel work-
piece with cp = 500 m2

s2K , ρ = 7850 kg
m3 and λ = 46 kgm

s3K . Fur-
ther, the problem was implemented with the heat transfer
coefficients κ2 = κ3 = 50 W

m2K and κ1 = 300 W
m2K .

Our goal is to find the induced temperature Θext |Γ1 at
the inner boundary Γ1 from measurements y at parts of the
boundaries Γ2,Γ3 and Γ4.

According to [14] an IHCP of the above structure is a
severely ill-posed inverse problem since the solution Θext|Γ1

Ω2D
Γi

Γo

Figure 2: 2D hollow cylinder Ω2D

of (1) does not depend continuously on the data y, i.e., al-
ready for slightly disturbed measurements the identified in-
duced temperature may be quite different from the unper-
turbed.

3 Inverse Problem versus Optimal Control

3.1 Standard solution technique for inverse problems

The following statements are based on the results of [9].
Therein, equation (1) is considered on the two dimensional
domain Ω2D, depicted in Figure 2, with the inner boundary
Γi and the outer boundary denoted by Γo. For further sim-
plification one considers a Dirichlet boundary value g at the
inner boundary Γi. This yields the forward formulation

cpρ∂tΘ = λ∆Θ in (0,T )×Ω2D,

λ∂νΘ = q on (0,T )×Γo,

Θ = g on (0,T )×Γi,

(0, .) =Θ0.

(2)

of the heat conduction problem. Furthermore, it is assumed
that the temperature denoted by Θ̂ , as well as the heat flux q,
are known on the outer boundary Γo for each time instance
t ∈ [0,T ]. Since in addition the heat conductivity λ is as-
sumed to be constant, (2) can be formulated as

Kg = Θ̂ −Θc|(0,T )×Γo =: Θ̃ , (3)

which is linear in the quantity g, Θ̂ is the given temperature
at the outer boundary and Θc denotes the solution of the con-
stant part of equation (2) that can be computed as described
in [9].

Finally, one ends up with a severely ill-posed operator
equation Kg = Θ̃ which can be solved for g by any feasible
method for this kind of problems. The severe ill-posedness
leads to the necessity for regularization, which is often cho-
sen to be of Thikonov type. In our approach a similar reg-
ularization is achieved by the choice of the weighting R in
the cost functional (6). The main problem with the approach
in [9] is that the existence and the uniqueness of the solu-
tion are strongly related to conditions on the linear operator
K which are hard to fulfill in practice. For details we refer
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to [9] and the references therein. Furthermore, the numeri-
cal treatment requires the discretization of (2) with respect
to space and time at the same time. This leads to huge lin-
ear systems. Moreover, the flexibility of adapting the time
discretization according to the features of g is given up.

3.2 Optimal control approach

The time-dependence of the heat conduction problem natu-
rally calls for a dynamical systems approach. In contrast to
the a priori time discretization in the classical inverse prob-
lems setup, this allows us to use efficient time adaptive solu-
tion strategies, see Section 4. In addition, the standard theory
of solving an IHCP crucially depends on rather complicated
properties of the solution operator K. Therefore, we consider
a control-theoretic approach [1,2] adapted to the framework
of inverse problems, previously mentioned in [13]. There
the searched for quantity is a heat flux input on a certain
boundary part of the domain. The unknown heat flux input
is reconstructed by given heat flux data taken at a an ac-
cessible part of the boundary. The main contribution of this
paper is the treatment of the finite time horizon within the
linear quadratic control problem described in [13]. First we
reconsider the IHCP introduced in Section 1 defined on the
domain Ω shown in Figure 1. In contrast to [13], here we
consider the given data to be certain temperature measure-
ments ŷ(t) on the boundaries Γ2 and Γ3. Since the external
temperature Θext at the inner boundary Γ1 is the quantity of
interest, and we want to apply an optimal control approach,
we define Θext |Γ1 = u, i.e., we consider the heat source to
be the control variable acting in the corresponding boundary
condition at Γ1. In order to obtain a finite dimensional dy-
namical system, a finite element (FE) discretization of equa-
tion (1) is considered and we end up with an inhomogeneous
generalized state-space system of the form

Eẋ = Ax+Bu+ f. (4)

Here, E is a FE mass matrix and A denotes the system ma-
trix, consisting of the discrete Laplace operator and the bound-
ary influences into the inside of Ω given by the boundary
conditions. From here on, the state variable x(t) denotes
the discretized version of the temperature field Θ . The in-
homogeneous part f consists of the external temperature in-
troduced by the boundary conditions in equation (1), where
λ∂νΘ = 0 on Γ4, i.e., the bottom of Ω is insulated and there-
fore vanishes in f.

The input matrix B describing the spatial influence of
the induced heat to be determined, is the crucial ingredi-
ent making our approach feasible. We assume that at every
given time t we know where the heat source is located. For
simplicity in this paper we expect this position to be fixed
over time.

Defining an optimal control problem, the goal is to min-
imize the cost to drive the outputs y(t), defined by

y(t) = Cx(t), (5)

with C ∈ Rp×n and p being the number of measurements
taken, to the given measurements ŷ(t) via the control u(t).
That means, we aim at finding an (optimal) control u(t) such
that the performance index

J(y,u)=
1
2

∫ T

t0
(y(t)− ŷ(t))TQ(y(t)− ŷ(t))+u(t)TRu(t)dt

+
1
2
(y(T )− ŷ(T ))T S(y(T )− ŷ(T ))

(6)

is minimized. The matrices Q ∈ Rp×p, R ∈ Rm×m and S ∈
Rp×p serve as weights to penalize large deviations in y− ŷ or
for regularization of (6). The non-integral term additionally
penalizes deviations in the final state. Finally, the optimal
control problem with the inhomogeneous generalized state-
space constraints (4) is given by

min J(y,u)
subject to Eẋ(t) = Ax(t)+Bu(t)+ f,

y(t) = Cx(t).
(7)

This is a so called tracking problem. The solution u of prob-
lem (7) is given (see, e.g. [3,17]) by the control law

u(t) =−R−1BT (X(t)Ex(t)+w(t)
)
, (8)

where the time dependent matrix X(t) is the solution of the
generalized differential Riccati equation (DRE)

ET Ẋ(t)E =−CT QC−AT X(t)E−ET X(t)A

+ET X(t)BR−1BT X(t)E
(9)

with terminal condition ET X(T )E = CT SC and w(t) solves
the adjoint state equation

ET ẇ(t) =−
(
A−BR−1BT X(t)E

)T w(t)

+CT Qŷ(t)−X(t) f ,
(10)

with terminal condition ET w(T ) = −CT Sŷ(T ). Both equa-
tions, (9) and (10), have to be solved backwards in time. It
can be shown that one can easily switch between a forward
and a backward solution ansatz and therefore use standard
solution techniques. Note that in practice, the large-scale so-
lution X(t) ∈ Rn×n is never formed explicitly, see [22]. We
rather compute the feedback K(t)=−R−1BTX(t)E ∈ Rm×n.
Now, computing the adjoint state (10) and plugging Equa-
tion (8) into (4) we can compute the state x(t) and from that
we obtain the desired input signal u(t). By construction u(t)
then identifies the induced temperature we are searching for.
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4 Solving the Optimal Control Problem

In fact, the main computational bottleneck of solving the op-
timal control problem (7) is the solution of the matrix differ-
ential Riccati equation. Since the DRE is an ordinary dif-
ferential equation (ODE), here one can think of any appro-
priate method to solve such. Still the DRE is matrix-valued.
This leads to problems in terms of computational time and
storage demands. In [7,8], the classes of backward differ-
entiation formulas and Rosenbrock methods are adapted for
use in the matrix-valued case. Here, we want to restrict our-
selves to the Rosenbrock type methods (see e.g. [12] and the
references therein).

Since we consider a linear time invariant (LTI) system,
it is sufficient to treat the autonomous framework of Rosen-
brock methods. A so called s-stage Rosenbrock scheme for
autonomous ODE systems ẋ = f (x) is defined as

xk+1 = xk + τ

s

∑
j=1

β jk
(k)
j

k(k)
i = f

(
xk + τ

i−1

∑
j=1

αi, jk
(k)
j

)
+ τJk

i

∑
j=1

γi, jk
(k)
j ,

∀i = 1, . . . ,s.

The quantities αi, j,γi, j and β j denote the determining coef-
ficients of the method, Jk is the Jacobian matrix f ′(xk) and
τ is the time step size. In every stage of the scheme a sys-
tem of linear equations needs to be solved for the unknowns
ki. To simplify representation and implementation, methods
with γ11 = . . .= γss =: γ are of special interest. The 1-stage
Rosenbrock method (Ros1), e.g., is given as

xk+1 = xk + τk1,

(I− τJk)k1 = f (xk),
(11)

with coefficients γ = 1, β1 = 1. It can easily be seen that this
in fact is the linear implicit Euler method (see e.g., [12]).
Following the statements in [7], the application of the Rosen-
brock method (11) to the symmetric generalized DRE (9)
leads to the solution of the generalized algebraic Lyapunov
equation (GALE)

ĀT
k Xk+1E+ET Xk+1Āk =−CT QC− 1

τ
ET XkE

−ET XkBR−1BT XkE,
(12)

with Āk := A−BR−1BT XkE− 1
2τ

E. That means, we need
to solve one GALE at every time step of the Ros1 method to
obtain the solution of the DRE. Increasing the order of the
Rosenbrock method would linearly increase the number of
ALEs one has to solve in each time step. Therefore, we re-
strict ourselves to the first order method described above.
Again, the main effort to solve the DRE by a first order

Rosenbrock method is the solution of the GALE (12) in ev-
ery step. Hence, it becomes necessary to use an efficient al-
gorithm to achieve that. In the context of the optimal control
problem (7), the solution of (12) usually is of low numerical
rank. In [6,16,21] it is shown that ALEs can be solved in an
efficient way via a low-rank version of the alternating direc-
tion implicit (ADI) method and its extensions (see [4,5] for
the most recent formulation). Note that when using higher
order time integration methods, we recommend to use the
ideas proposed in [15].

The model, describing the dynamical behavior of the
temperature field induced by the input signal is of dimen-
sion n = 11318. In combination with the time interval t ∈
[0,55320] s on which the measurements are taken (see Sec-
tion 6), the available codes for the low-rank computations
are not capable of solving the large-scale DRE regarding the
computation times and especially storage demands. There-
fore, we employ model order reduction (MOR) to reduce
the system dimension and thus the computational complex-
ity and the storage requirements for the solution.

5 Model order reduction

MOR allows us to find a system of much lower dimension
approximating the full order model (FOM) and therefore the
associated computations can be performed in a fraction of
time. Further, the goal of any MOR method is to find a re-
duced order model (ROM)

Erẋr = Arxr +Bru+ fr,

yr = Crxr
(13)

with Er,Ar ∈Rr×r,Br ∈Rr×m,Cr ∈Rq×r, fr ∈Rr and r� n,
that approximates the original model (4) in such a way that
the system behavior is well captured. That means, using the
same input signal u as for the FOM, the output yr of the
ROM satisfies yr ≈ y. Therefore, the important states need
to be determined with respect to a certain measure. In or-
der to determine the ROM via a projection based MOR ap-
proach, we need to compute a pair of matrices V,W ∈Rn×r

such that the reduced order system matrices are given in the
form

Er = WT EV, Ar = WT AV, Br = WT B,

Cr = CV, fr = WT f.

In this contribution we consider the Balanced Trunca-
tion (BT) model order reduction approach. The BT method
[19] ensures the stability of the ROM if the original model
is stable and in addition an error bound for the reduction
error is given [10]. The BT method keeps those state-space
variables associated to a dominant energetic behavior. That
means, the states, which are easy to steer and at the same
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time easy to observe are the states of interest. The measures
for the controllability and observability of the system states
are the so called system Gramians P and Q, which can be
computed as the solutions of the corresponding controllabil-
ity and observability ALEs

APET +EPAT =−BBT , (14)

AT QE+ET QA =−CCT . (15)

As stated in Section 4, the large-scale Lyapunov Equations (14)
and (15) can be solved efficiently using the low-rank ADI
method. Given the solutions in the low-rank form P≈ZcZT

c ,
Q≈ ZoZT

o , with Zc ∈Rn×kc , Zo ∈Rn×ko and kc, ko� n, the
projection matrices V,W can be computed using the low-
rank square root method (LRSRM) [23].

Note that the application of the MOR procedure intro-
duces additional computational cost in terms of solving two
extra Lyapunov equations in order to obtain the Gramians
P,Q of the system and the computation of the projection
matrices V,W via the LRSRM. Still, this is done once in
advance of the solution of the DRE (9) and the entire for-
ward solution of (4) using the feedback law (8). That is, the
overall computational cost consists of solving two large Lya-
punov equations for the MOR approach and the solution of
the DRE (9) based on the reduced order matrices compared
to the solution of one large-scale Lyapunov equation in ev-
ery time step of the Ros1 method for the original model. At
the same time the error in the solution at most increases by
the controllable BT MOR error. That means, if the MOR er-
ror is kept below the discretization error we have present in
the FE model anyway, then we can expect the solution to be
as good as without the MOR.

6 Numerical Experiments and Experimental
Verification

We consider a set of measurements taken at the accessible
boundaries of the domain Ω presented in Figure 1 in Sec-
tion 2. As mentioned in the introduction, the actual consid-
ered drilling process has been simplified. As a first test, the
heat source representing the induced heat of the machining
process is modeled by the application of a set of heating
mats at the inner boundary Γ1 as depicted in Figure 3. These
heating elements are steered to a maximum temperature of
around 50 ◦C. The maximum is, compared to the slowly
evolving temperature field inside the model domain Ω , ba-
sically reached instantaneously. The measurements, neces-
sary for the reconstruction approach, are taken by 6 sensors,
equidistantly distributed at the insulated bottom (boundary
Γ4) of the hollow cylinder as presented in Figure 4. The
measurements are taken every 10 s over the time interval
t ∈ [0,55320] s. As an example, the given data in Sensors
1,4 and 6 are presented in Figure 5. For the reconstruction of

Figure 3: Heating mats at the inner boundary Γ1 attached by
magnets.

Figure 4: Sensors at the bottom boundary Γ4 of the steel hol-
low cylinder.

0 10,000 20,000 30,000 40,000 50,000

25

30

35

40

time in s

te
m

pe
ra

tu
re

in
◦ C

Sensor 1 Sensor 4 Sensor 6

Figure 5: Measured temperature ŷ at sensor positions 1, 4, 6.

the temperature input, induced by the heat mats, we consider
the FE model of dimension n = 11318 described already
in the previous sections. The weighting matrices Q,R,S in
the performance index (6) for simplicity are all chosen to
be multiples of the identity of appropriate size. Note, the
choice of the weightings can be further improved by using
more advanced information of e.g., a weighted importance
of the measurement nodes. Here, Q = 2500 · Iq, R = Im and
S = 100 · Iq. The scaling factors of the several identities are
empirically determined in order to ensure a moderate devia-
tion between the computed and the desired output (measure-
ments). Considering the FE model based on the resolution of
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Figure 6: Reconstructed temperature input u.

the utilized FE mesh we already introduced a certain mod-
eling error strongly related to the maximum grid width and
the FEs used, [11]. Controlling the BT error via the error
bound we ensure the FE error to be dominant with respect
to the MOR error. That means, the MOR procedure does not
introduce a significant additional error. The ROM we could
obtain by the BT procedure is of dimension r = 25. That is,
the DRE to be solved becomes a matrix-valued differential
equation of dimension r = 25 instead of n = 11318. Further,
remember that the reduced order model is constructed to ap-
proximate the outputs of the original model for the same
given input signal u. That means, the input reconstructed by
the ROM is already the searched for quantity.

In order to interpret the results, the sensors are numbered
with 1-6 from the inner to the outer boundary. Computing
the solution of (7), we obtain the reconstructed temperature
u presented in Figure 6. Since we cannot compare the re-
sult to a reference solution, we need to compare the mea-
surements ŷ with the computed outputs yr induced by the
input u. The results are depicted in Figure 7 and the corre-
sponding relative error is given in Figure 8. We assume the
heat model (4) to approximate the real process accurately
enough, i.e., we have given, e.g., the correct material param-
eters. Then the result for the reconstructed temperature input
u is quite reliable since the achieved errors for the outputs
lie in the per mill range. The oscillations in u arise from the
noise hidden in the measurements. These uncertainties can
be reduced by filtering the given measurements or using a
linear quadratic Gaussian (LQG) design [17] instead of the
LQR approach described here. Still, the latter will lead to the
solution of an additional, so called, filter differential Riccati
equation. The application of the LQG design and its benefits
will be investigated in the future.
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Figure 7: Comparison of the measured outputs ŷ and com-
puted outputs yr for Sensors 1,4 and 6.
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Figure 8: Relative error of the measured outputs ŷ and com-
puted outputs yr for Sensors 1,4 and 6.

7 Conclusions

We have presented an optimal control approach to solve the
IHCP of reconstructing a thermal load based on given data
measurements. The described ansatz requires the solution
of a DRE (9). For large-scale dynamical systems, the us-
age of low-rank based algorithms is recommended for the
solution of the DRE. However, practical applications are of-
ten grounded on large time intervals. This directly leads to
significant computational times and storage consumption.
Therefore, model order reduction is applied to the linear
time invariant large-scale system (4), (5). Then the DRE and
hence the IHCP is solved based on the small-scale reduced
order model (13). The results show that the input signal u
and the associated outputs y can be reconstructed up to a
relative error in the range of one per thousand. The investi-
gation of an LQG design based approach in order to handle
the measurement noise more appropriate is postponed to fu-
ture work.

Anyway, the approach presented above relies on consid-
ering a linear model in order to describe the underlying tem-
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perature field. Leaving the admissible ambit of the linear
model by e.g., considering non-linear boundary conditions
or temperature dependent model parameters, yields in the
inadmissibility of the procedure.
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