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ABSTRACT

Motivation: DNA enrichment followed by sequencing is a versatile tool

in molecular biology, with a wide variety of applications including

genome-wide analysis of epigenetic marks and mechanisms.

A common requirement of these diverse applications is a comparison

of read coverage between experimental conditions. The amount of

samples generated for such comparisons ranges from few replicates

to hundreds of samples per condition for epigenome-wide association

studies. Consequently, there is an urgent need for software that allows

for fast and simple processing and comparison of sequencing data

derived from enriched DNA.

Results: Here, we present a major update of the R/Bioconductor

package MEDIPS, which allows for an arbitrary number of replicates

per group and integrates sophisticated statistical methods for the de-

tection of differential coverage between experimental conditions. Our

approach can be applied to a diversity of quantitative sequencing

data. In addition, our update adds novel functionality to MEDIPS,

including correlation analysis between samples, and takes advantage

of Bioconductor’s annotation databases to facilitate annotation of spe-

cific genomic regions.

Availability and implementation: The latest version of MEDIPS is

available as version 1.12.0 and part of Bioconductor 2.13. The pack-

age comes with a manual containing detailed description of its func-

tionality and is available at http://www.bioconductor.org.

Contact: lienhard@molgen.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on August 12, 2013; revised on October 26, 2013; accepted

on November 4, 2013

1 INTRODUCTION

DNA enrichment methods are widely used for genome-wide

identification of many different kinds of epigenetic marks.

These techniques include chromatin-immunoprecipitation for

localizing transcription factor binding sites or for revealing the

genomic distribution of different histone modifications.

Methylated DNA Immuno-Precipitation (MeDIP) (Weber

et al., 2005) and methyl-CpG binding domain (MBD) protein

capture (Serre et al., 2010) are similar techniques, but target the

enrichment of DNA fragments containing methylated cytosines.

Similarly, 5-hydroxymethylcytosines can be detected by anti-

serum specific to cytosine-5-hydroxymethylenesulfate (CMS)

after treatment with sodium bisulfite (Pastor et al., 2011). It

can be expected that further affinity methods will be developed

for immunoprecipitation (IP) of known or novel kinds of epigen-

etic marks. To provide a general framework for efficient genome-

wide differential coverage analysis of IP-sequencing data, we

have improved the user-friendly MEDIPS package. In contrast

to the previous version, the MEDIPS update is capable of pro-

cessing an arbitrary number of replicates or samples per condi-

tion. Furthermore, MEDIPS now integrates an elaborated

statistical framework developed for the digital nature of count

data, which includes a model for biological variation across rep-

licates (Robinson et al., 2010a), and has greatly reduced runtime

and memory requirements.

2 MEDIPS WORK FLOW

The MEDIPS package provides functions for the quality control

and analysis of data derived from IP-seq samples. It starts with the

aligned reads (typically bam files) and can be used for any genome

of interest. Figure 1 gives an overview of a typical work flow.

2.1 Preparation

In the first step, the alignment files (single- or paired-end) are

imported, and the fragments overlapping previously specified

genomic regions are counted. These regions can be either

genome-wide windows of regular width or any given regions of

interest. To control for polymerase chain reaction artifacts,

MEDIPS optionally replaces reads with the same position and

orientation by one representative.

2.2 Quality control

The saturation analysis helps to verify whether the given set of

mapped reads is sufficient to generate a saturated and reprodu-

cible coverage profile of the reference genome. This is done by

extrapolation of the correlation of subsets (see Fig. 1C).

To assess the effectiveness of the MeDIP/MBD enrichment, a

function to calculate overall CpG enrichment is provided.*To whom correspondence should be addressed.
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MEDIPS identifies the fraction of CpGs in the reference genome

covered by the sequencing data and evaluates their depth of

coverage.

2.3 CpG density normalization

It has been reported by Down et al. (2008) that methylation

levels obtained from MeDIP/MBD experiments and bisulfite

sequencing cannot be compared directly. Therefore, MEDIPS

maintains its normalization function based on the concept of

CpG coupling analysis (Down et al., 2008) to calculate the rela-

tive methylation score (see Fig. 1D and E). It has been shown by

Chavez et al. (2010) that this normalization can improve the

correlation to bisulfite data.

2.4 Differential coverage analysis

The main task for comparative epigenetic analyses is detection of

regions with differential coverage between conditions.

Variability, which can emerge from technical and biological vari-

ation, has to be estimated and modeled, and the statistical test

has to consider the discrete nature of the count values. For this

purpose, we make use of the edgeR package, which has been

developed in the context of RNA-seq by Robinson et al.

(2010a). It provides functions to estimate the biological

variability from low number of replicates and models the count
data using negative binomial distribution.
Alteration in copy number (CNA) are known to locally influ-

ence the MeDIP signal (Robinson et al., 2010b). To control for
this interference, alterations in copy number are evaluated and
can be considered in further analysis.

To help with the functional interpretation of genomic regions
identified by the differential coverage analysis, MEDIPS pro-
vides the functionality to annotate these regions with any pro-

vided set of annotations. The features can be imported from
custom files, or from online databases, accessible from
Bioconductor.

3 APPLICATION

To demonstrate the functionality of the MEDIPS package, we
processed recently published MeDIP-seq data (Grimm et al.,
2013) that was generated to assess genome-wide epigenetic

changes in mouse intestinal adenoma. For this study, differential
methylation was inferred for the sample groups by calculating
Wilcoxon rank tests for the normalized count values (reads per

million, rpm) of each window. Differentially methylated regions
(DMRs) were determined by applying filters for P-values, min-
imal coverage and ratios (Grimm et al., 2013).

Here, we process the same data but by using the presented
MEDIPS package version 1.12.0. The commented R script,
showing the function calls of this analysis, can be found in the

Supplementary Material. From the five adenoma and seven
normal control mouse samples, 14–22M MeDIP-seq reads
were uniquely mapped to the mouse reference genome

(NCBI37/mm9) using bowtie (Langmead et al., 2009), of which
�93% remain after replacing reads with the same position and

orientation by one representative. The saturation analysis indi-
cates sufficient sequencing depth, and the CpG coverage indi-
cates an effective MeDIP enrichment (see Fig. 1C and

Supplementary Figs S1 and S2). Comparison of the normalized
relative methylation score values with bisulfite validation showed
a good overall correlation of 0.69–0.79 with a set of bisulfite

validation assays previously performed by Grimm et al. (2013)
on the same genomic samples (see Fig. 1E and Supplementary
Fig. S3). The edgeR test for differentially methylated regions

finds 51.722 DMRs (P50.01), which correspond to 0.5% of
the genome. Correction for multiple testing leads to 110 regions
at 10% false discovery rate (FDR). Figure 1F shows the methy-

lation logFC versus average log methylation (MA-plot). DMRs
are depicted as orange points (P50.01) and red crosses

(FDR50.1). The result table containing the DMRs can be
found in Supplementary Table S1. About 60% of the DMRs
identified by Grimm et al. (2013) overlap with the DMRs iden-

tified by MEDIPS 1.12. A detailed comparison between the two
approaches can be found in the Supplementary Material.
Although the overall number of hypo- and hypermethylated

regions is balanced, preferential hypermethylation was found in
functionally important subgenomic regions, such as promoters
and CpG islands. In particular, CpG-rich promoters showed a

substantial enrichment of hyper- over hypomethylation (5:1; see
Fig. 1G). The identification of CpG-rich promoters as preferen-
tial targets for hypermethylation may provide important leads

for further wet lab experiments. For instance, the analysis can be

Fig. 1. The MEDIPS work flow
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helpful to identify binding patterns of epigenetic modulator com-
plexes and can be suited to identify candidate genes for epigenetic
transcriptional silencing.
The processing of the aligned reads took �90min on an AMD

Opteron 6380 2.5GHz computer, using 1 CPU core and allocat-
ing a maximum of 20 GB RAM.
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