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We present an operational procedure to transform global symmetries into local symmetries at the level of
individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians.
We then construct a compatible gauging map for operators, which preserves locality and reproduces the
minimal coupling scheme for simple operators. By combining this construction with the formalism of
projected entangled-pair states (PEPS), we can show that an injective PEPS for the matter fields is gauged
into a G-injective PEPS for the combined gauge-matter system, which potentially has topological order.
We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian
closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge
dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme
results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase
diagram, as we illustrate by studying a Z2 gauge theory with Higgs matter.

DOI: 10.1103/PhysRevX.5.011024 Subject Areas: Particles and Fields, Quantum Physics,
Strongly Correlated Materials

The fascinating subject of gauge theories is omnipresent
throughout many-body physics. The gauge principle,
which states that the fundamental interactions of nature
originate from gauging global symmetries of the free
theory, is one of the cornerstones of the standard model,
but quantized gauge fields also emerge as effective degrees
of freedom in several models for strongly correlated
condensed matter, alongside other effective interactions.
Historically, the concept of gauging, i.e., transforming a
global symmetry into a local symmetry, is based on a
Lagrangian or Hamiltonian description of the system where
operators of the original (matter) theory are transformed
into gauged operators using the “minimal coupling rule,”
which is not always unambiguous [1]. Indeed, while there
is a unique way to ungauge a theory (by setting the gauge
fields and gauge coupling constant equal to zero), the
reverse process is not unique as new degrees of freedom are
introduced and the Hilbert space is enlarged.
The concept of gauging is, however, not strictly tied to

any specific dynamics of the matter fields. This manuscript
therefore explores how to gauge global symmetries at the
level of individual quantum many-body states, independent
of any prescribed Hamiltonian or Lagrangian. We thereto
consider the Hilbert space HðmÞ of a quantum many-body

system living on the vertices of a graph (the matter) and
which has a a global action of a group G defined. We then
introduce other degrees of freedom (the gauge field) by
enlarging the Hilbert space to Hðg;mÞ and define a map G:
HðmÞ → Hðg;mÞ that explicitly transforms every matter state
jψi that is invariant under the global action of G to a
corresponding gauge-matter state jΨi ¼ Gjψi that is
invariant under local symmetry actions of G. Only there-
after do we introduce an associated gauging map G for
operators O, such that GOjψi ¼ G½O�Gjψi and local
matter operators are mapped to local gauge-matter oper-
ators. This map reproduces the well-known result for
simple operators such as hopping interactions or correlation
functions but also produces unambiguous, operationally
defined results for more complex operators involving, e.g.,
plaquette interactions for the matter fields.
To this date, the most accurate description of the strongly

coupled, nonperturbative behavior of quantum gauge the-
ories comes fromMonte Carlo sampling of the path integral
corresponding to Wilson’s lattice-gauge-theory formulation
[2]. The Hamiltonian formulation of Wilson’s lattice gauge
theory, originally developed by Kogut and Susskind [3]
(but see also Refs. [4–6]), has been investigated in the
context of approximate wave-function Ansätze [7–10]
and is receiving a renewed interest in the context of cold-
atom simulators [11–14] and tensor-network approaches
[15–23]. The representation of quantum many-body states
as tensor networks [24,25] originates from White’s suc-
cessful density-matrix renormalization group [26] and is
now well established in the context of one-dimensional
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quantum chains. However, recent results for the tensor-
network description of higher-dimensional quantum
systems [27] (including fermions [28–32]), quantum chem-
istry models [33–35], and even quantum field theories
[36,37] look equally promising. In addition, the theoretical
underpinning of tensor-network states in terms of the area
law of entanglement entropy [38,39] makes them suitable
for theoretical results as profound as the complete classi-
fication of gapped quantum phases [40,41]. The unifying
theme in these studies does indeed correspond to a shift in
focus from a Hamiltonian or Lagrangian description of the
system toward a description in terms of the universal
properties of the quantum (ground) state itself.
Following some early results [15,16], the application of

tensor-network states to systems with gauge symmetry has
recently seen a revived interest. Aside from some extremely
accurate results for the Schwinger model [18–20], there
have been first explorations with two-dimensional pure
gauge theory [17] and theoretical formulations of classes
of tensor-network states with explicit gauge invariance
[21–23,42]. In this manuscript, we also combine our
gauging construction with the formalism of projected
entangled-pair states [27] (PEPS). We prove that an
injective PEPS [43] with global symmetry G is gauged
into aG-injective PEPS [44] (and refer to the Supplemental
Material for a summary of these concepts [45]), which
reestablishes the close relation between deconfinement and
topological order in the case of discrete groups [46,47]
or compact groups broken down to discrete subgroups
[48–50]. We explicitly derive a parent Hamiltonian of
the gauged PEPS, which resembles the Kogut-Susskind
Hamiltonian at zero coupling. We discuss a well-known
approach for introducing gauge dynamics at nonzero
coupling constant and apply this prescription to obtain a
low-parameter family of gauge-invariant tensor-network
states that allows for accurate computation of expectation
values. We use this strategy to study the phase diagram of a
Z2 gauge theory with Higgs matter.

Throughout this manuscript, we consider a lattice or,
more generally, a graph Λ with quantum degrees of
freedom living on the vertices v, to which we henceforth
refer as the matter fields. With every vertex v ∈ Λ, there is
an associated Hilbert space Hv, such that the total quantum
state of the matter fields lives in the Hilbert space

HðmÞ
Λ ¼ ⊗v∈Λ Hv. We furthermore decorate Λwith oriented

edges e as in Fig. 1(a). With a slight abuse of notation, we
denote the edges in Λ as e ∈ Λ, where the only difference
with the vertices v ∈ Λ is in the chosen character. For every
vertex v, we denote Eþ

v as the set of outgoing edges and E−
v

as the set of incoming edges. Correspondingly, we define
ve� as that vertex for which e ∈ E�

v , such that edge e points
from veþ to ve−.
We start from a quantummany-body state jψi ∈ HðmÞ for

the matter fields, which is invariant under the global action
UΛðgÞ ¼ ⊗v∈Λ UvðgÞ of elements g in a finite or compact
symmetry group G, i.e., UΛðgÞjψi ¼ jψi. Here, UvðgÞ
corresponds to a unitary representation of G on the local
Hilbert space Hv of site v. In order to transform this state
into a new state that is invariant under a local action of G,
we introduce new degrees of freedom, the gauge fields. We
thereto define on every edge e of the graph Λ a new
physical Hilbert space He ¼ C½G� [51], spanned by the
“position" basis fjgigg∈G. The left and right group actions
of G on He are given by

LeðhÞjgie ¼ jhgie; ReðhÞjgie ¼ jgh−1ie: ð1Þ

We denote the total gauge-field Hilbert space as HðgÞ
Λ ¼

⊗e∈Λ He and the combined gauge-matter Hilbert space as

Hðg;mÞ
Λ ¼ HðgÞ

Λ ⊗ HðmÞ
Λ . A local gauge transformation with

group element g on vertex v corresponds to the unitary
operator UvðgÞ ⊗e∈Eþ

v
ReðgÞ ⊗e0∈E−

v
Le0 ðgÞ. Group averag-

ing using the Haar measure [52] can then be used to build a
local projector Pv onto the invariant subspace, i.e., the
states satisfying “Gauss law" at vertex v,

FIG. 1. (a) Definition of the graph Λ with vertices v and oriented edges e. (b) Construction of the PEPS jψðAÞi from tensors Av
associated with the vertices v and with virtual bonds along the edges e and physical indices depicted as arrows pointing out of the center
of every tensor. (c) Symmetry of a PEPS tensor to ensure global symmetry of the state jψðAÞi under the group action Ug. (d) Definition
of the tensor Xv used in the construction of the projector P onto the gauge-invariant subspace. (e) Result of acting with the tensor Xe on
the physical input state j1i, which is the only case we need throughout this manuscript. (f) PEPS jΨðBÞiwith vertex tensors Bv and edge
tensors Be obtained from acting with P on jψðAÞi ⊗e j1ie. (g) Symmetry property of the tensor Xv.
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Pv ¼
Z

dgvUvðgvÞ ⊗
e∈Eþ

v

ReðgvÞ ⊗
e0∈E−

v

Le0 ðgvÞ: ð2Þ

Note that ½Pv; Pv0 � ¼ 0 thanks to ½LeðgÞ; ReðhÞ� ¼ 0, so that
the projector onto the gauge-invariant subspace of a region
Γ is defined as PΓ ¼ Q

v∈ΓPv. In particular, P ¼ PΛ is the

projector onto the gauge-invariant subspace of Hðg;mÞ
Λ ,

corresponding to the physical Hilbert space HðphysÞ
Λ .

With these ingredients, we now present our prescription
for gauging quantum states. It is given by the linear map G:

HðmÞ
Λ → HðphysÞ

Λ that acts on states jψi ∈ HðmÞ
Λ as Gjψi ¼

Pjψi ⊗e j1ie. We thus construct the direct product of the
original state jψi for the matter field with a state for the
gauge field which is a product state of j1ie on every edge e
corresponding to the identity element g ¼ 1 of the group.
The result is then projected into the gauge-invariant sub-

space HðphysÞ
Λ by P. We can explicitly evaluate G and find

Gjψi ¼
Y
v∈Λ

Z
dgvUvðgvÞjψi⊗

e
jgve−g−1veþie: ð3Þ

From this definition, it is clear that GUðgÞ ¼ G, since a
global transformation gv → gvg will not appear in the
configuration of gauge fields on the edges, if every edge
is connecting two vertices veþ and ve−. One can, in fact,
check thatG†G ¼ R

dgUΛðgÞ is the projector onto the trivial
representation of the global symmetry groupG inHðmÞ

Λ . This
identity implies that initial states jψi that transform under a
nontrivial representation of the global symmetry G are
annihilated by the gauging process G, which is the math-
ematical equivalent of the well-known fact that one cannot
have a total net charge in a gauge theory on a closed
surface [53].
We now look for an associated operator map G for

gauging an arbitrary matter operator O, in such a way that
GðOjψiÞ ¼ G½O�Gjψi. Since G†Gjψi ¼ jψi, where jψi is
assumed to be invariant under the global symmetry action,
one could define G½O� ¼ GOG†. However, for an operator
O with nontrivial support on a compact region Γ, the
resulting gauged operator GOG† would have nontrivial
support on the whole lattice; i.e., it would no longer be
locally supported. We therefore want to construct a differ-
ent gauging map GΓ that maps local matter operator to local
gauge-matter operators. For any Γ ⊂ Λ containing both
vertices ve� of all of its edges, but not necessarily all edges
of its vertices, we first introduce the operator map PΓ:

LðHðg;mÞ
Γ Þ → LðHðg;mÞ

Γ Þ as

PΓ½O� ¼
Z Y

v∈Γ
dgv

hY
v∈Γ

UvðgvÞ
Y
e∈Γ

Leðgve−ÞReðgveþÞ
i

×O

�Y
v∈Γ

UvðgvÞ
Y
e∈Γ

Leðgve−ÞReðgveþÞ
�†
:

Note that PΓ½O�Pv ¼ PvPΓ½O� for any v ∈ Λ, so that PΓ
produces gauge-invariant operators, even though it does not
include an explicit projector onto the gauge-invariant
subspace; i.e., it does not necessarily annihilate states that
are not gauge invariant. In particular, PΓ½1� ¼ 1. We can
then also define the gauging map

GΓ∶ LðHðmÞ
Γ Þ → LðHðg;mÞ

Γ Þ∶ O → PΓ½O ⊗
e∈Γ

j1ieh1je�:

One can check that GΓ½O� acts diagonally on the gauge
degrees of freedom, in such a way that

GΓ½O� ⊗
e∈Γ

j1ie ¼ ⊗
e∈Γ

j1ie ⊗
Z

dgUΓðgÞOUΓðgÞ†:

Combining this property with PvGΓ½O� ¼ GΓ½O�Pv for any
v ∈ Λ, it is easy to show that this map indeed satisfies
GOjψi¼GΓ½O�Gjψi for symmetric operators (½O;UΓðgÞ�¼
0;∀g∈G), where the support of the gauged operator GΓ½O�
is equivalent to the support of the original matter operator
(but, of course, also contains the gauge degrees of freedom
on the edges e ∈ Γ). In addition, this identity allows us
to show easily that GΓ is invertible onto the space of
symmetric operators using the expected prescription

trðgÞ½GΓ½O� ⊗
e∈Γ

j1ieh1je� ¼
Z

dgUΓðgÞOUΓðgÞ† ¼ O;

where trðgÞ is a partial trace over the gauge degrees of
freedom living at the edges e ∈ Γ.
The current gauging procedure generates a gauged state

jΨi ¼ Gjψi at a zero value of the gauge coupling constant;
i.e., the gauge degrees of freedom are frozen so that there are
no magnetic fluxes and the gauged theory produces equiv-
alent expectation values as the original theory. To introduce
gauge dynamics for nonzero values of the coupling constant,
we could manually add the electric energy term to the
Hamiltonian. However, since we are working at the level of
quantum states, we follow a different approach. Instead, we
apply the well-known local filtering operation [55–57]

jΨi →
Y
e∈Λ

exp

�
− β

2
E2
e

�
jΨi; ð4Þ

with Ee the electric field operator on edge e. It is now easy to
check that the “ungauging" process (set β ¼ 0 and project
the gauge fields on the links e in Gjψi onto j1ie) results inR
dgUΛðgÞjψi ¼ jψi, where the last equality only holds if

the starting state were invariant under the symmetry action.
It turns out that this gauging procedure is very natural in

the framework of PEPS. Let us hereto introduce the PEPS
jψðAÞi using tensors Av associated with every vertex
v ∈ Λ. These tensors act as a multilinear map from virtual
vector spaces Ve associated with the incoming edges e ∈
E−
v to the virtual vectors spaces Ve0 associated with the

outgoing edges e0 ∈ Eþ
v and the physical Hilbert space Hv.
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We identify Ve with CDe , with De the bond dimension on
edge e. By choosing a canonical basis in all vector spaces,
we can write

Av ¼
X

s;fαe0 g;fβeg
ðAvÞsfαe0 g;fβegjsi ⊗

e0∈Eþ
v

jαe0 Þ ⊗
e∈E−

v

ðβej: ð5Þ

The physical state jψðAÞi is obtained by contracting the
corresponding kets and bras of all virtual spaces. This
construction is illustrated in Fig. 1(b). We now assume that
the PEPS tensors Av satisfy the generic property of
injectivity [43], meaning that the there exists a finite region
Γ ⊂ Λ such that the map from virtual boundary V∂Γ ¼
⊗e∈∂Γ Ve to physical bulk HðmÞ

Γ ¼ ⊗v∈Γ Hv is injective.
This property guarantees that the PEPS is “well behaved,”
e.g., that it is the unique ground state of a local parent
Hamiltonian. If an injective PEPS jψðAÞi is invariant under
the global action UΛðgÞ for g ∈ G, then it was proven in
Ref. [58] that there must exist (projective) representations
Ve of G on the virtual spaces Ve such that Av acts as an
intertwiner

Av½ ⊗
e0∈E−

v

Ve0 ðgÞ� ¼ UvðgÞ½ ⊗
e∈Eþ

v

VeðgÞ�Av: ð6Þ

A slightly different form of this equation is presented in
Fig. 1(c). While the representations Ve are not required to
be unitary, we can, in principle, perform a “gauge”
transformation [59] on the PEPS tensors to transform
any finite-dimensional representation to a unitary repre-
sentation if G is a compact group.
The projector onto the gauge-invariant subspace of

Hðg;mÞ
Λ also has a simple tensor-network description by

introducing virtual spaces Ve
0 ≡ C½G� on every edge e and

contracting all virtual bonds of vertex tensors Xv:
Hv ⊗e∈E−

v
Ve

0 → Hv ⊗e∈Eþ
v
Ve

0 given by

Xv ¼
Z

dgUvðgÞ ⊗
e0∈Eþ

v

jgÞe0 ⊗
e∈E−

v

ðgje; ð7Þ

as sketched in Fig 1(d), and edge tensors Xe: He ⊗ Ve
0 →

He ⊗ Ve
0 given by

Xe ¼
Z

dg−dgþLeðg−ÞReðgþÞ ⊗ jg−Þðgþj: ð8Þ

For the case of continuous groups, the virtual dimensions of
this tensor network are infinite and this representation is not
amenable to numerical computations. Similar constructions
of P appeared in the context of spin networks [60] and
recently in the context of tensor networks [21,22], where it
was also discussed how to compress the bond dimension to
finite values.
Applying this gauging procedure G to the symmetric

PEPS jψðAÞi ∈ HðmÞ
Λ , whose tensors A satisfy Eq. (6),

results in a new PEPS with virtual spaces given by
We ¼ Ve ⊗ V 0

e. Indeed, we can write the new state
GjψðAÞi as a PEPS jΨðBÞi sketched in Fig. 1(g) with
vertex tensors

Bv ¼
Z

dgUvðgÞAv ⊗
e0∈Eþ

v

jgÞe0 ⊗
e∈E−

v

ðgje ð9Þ

and edge tensors given by

Be ¼
Z

dgþdg−jg−g−1þ i ⊗ 1De
⊗ jg−Þeðgþje; ð10Þ

where the first ket corresponds to the physical state, the
second factor to the action on Ve, and the last factor to the
action on the V 0

e. Using the intertwining property of Av in
Eq. (6) or Fig. 1(c) and the symmetry property of Xv
sketched in Fig. 1(g), one can check that

½ ⊗
e0∈Eþ

v

Ve0 ðg−1Þ ⊗ R0
e0 ðg−1Þ�Bv½ ⊗

e∈E−
v

VeðgÞ ⊗ R0
eðgÞ� ¼ Bv;

where all factors act on the virtual levelWe ¼ Ve ⊗ V 0
e. In

particular, R0
eðgÞ corresponds to the right group action of G

on the virtual space V 0
e. We similarly have that

½Veðg−1Þ ⊗ R0
eðg−1Þ�Be½VeðgÞ ⊗ R0

eðgÞ� ¼ Be:

These two equations imply that the resulting PEPS cannot
be injective, but below we prove it to be G injective [44]
instead. This property means that the map from virtual
boundary to physical bulk is only invertible up to the action
of group G—whose representation on We ¼ Ve ⊗ Ve

0 is
here given by Ve ⊗ R0

e—and is intricately related to
topological order. More specifically, for a discrete group
G, the property of G injectivity allows for the presence of
anyonic excitations, although they could, of course, be
confined or condensed, depending on the matter inter-
actions and the gauge coupling constant. We refer to the
Supplemental Material for additional details [45].
For the proof, we consider a region Γ on which the PEPS

tensors act as an injective map. The range of this map is

denoted as A ⊂ HðmÞ
Γ with dimA ¼ dimV∂Γ and corre-

sponds to the support of the reduced density matrix of
jψðAÞi in Γ. Let fjϕii; i ¼ 1;…; dimAg be an orthonormal
basis for this subspace, where every jϕii is obtained from a
unique state j ~ϕiÞ ∈ V∂Γ on the virtual boundary. A
frustration-free parent Hamiltonian can be constructed from

terms hðmÞ
Γ ¼ 1 −P

ijϕiihϕij, i.e., the projector onto the
orthogonal complement of A. The symmetry under G
follows from the fact UΓðgÞjϕii gives rise to a boundary
vector V∂Γj ~ϕiÞ, where V∂Γ is the tensor product
representation of the different Ve representations on the
virtual boundary V∂Γ. Since the boundary vectors j ~ϕjÞ
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form a complete basis for the virtual boundary space
V∂Γ, we can write V∂Γj ~ϕiÞ ¼

P
j uj;iðgÞj ~ϕjÞ and thus

UΓðgÞjϕii ¼
P

j uj;iðgÞjϕji, where uðgÞ has to be a unitary
representation. Consequently, hðmÞ

Γ is invariant under the
symmetry action.
For the gauged PEPS with tensors B, we choose Γ such

that it excludes the physical spaces of the gauge fields on
the edges e ∈ ∂Γ. We denote by Γ∘ the set of vertices in the
interior of Γ, i.e., those vertices for which all edges and
neighboring vertices are also contained in Γ. The vertices in
the set ΔΓ ¼ ΓnΓ∘ are on the (inside) boundary and have
one edge e ∈ ∂Γ [61]. If we now define the state j ~Φi;fgvgÞ ¼
j ~ϕiÞ ⊗ jgveÞe on the boundary W∂Γ ¼⊗e∈∂Γ Ve ⊗ V 0

e,
where every edge e has a one-to-one correspondence with

a vertex ve ∈ ΔΓ, the resulting state in the bulk Hðg;mÞ
Γ is

given by

jΦi;fgvgi ¼
Y
v∈ΔΓ

UvðgvÞ ⊗
e0∈Eþ

v ∩Γ
ReðgvÞ ⊗

e∈E−
v∩Γ

LeðgvÞ

×
Y
v0∈Γ∘

Pv0 jϕii⊗
e∈Γ

j1ie:

One can show that hΦi;fgvgjΦi0;fgv 0gi ¼ 0 if there is no g ∈ G
such that fgv0g ¼ fgvgg, because the edges along the
boundary, between two vertices in ΔΓ, allow us to resolve
the elements gv up to the global transformation gv → gvg.
Having resolved gv up to a factor g, the edges connecting
ΔΓ to Γ∘ will act as a rough boundary, so that the inner
product of the edge degrees of freedom will force all
interior gauge transformations in ket and bra to be equal up
to the global transformation g, resulting in

hΦi;fgvgjΦi0;fgvggi ¼ hϕijUΓðgÞjϕi0 i
¼ ui;i0 ðgÞ:

Hence, the preimage of every bulk state jΦi;fgvgi is the set of
states

f ⊗
e∈∂Γ

VeðgÞ ⊗ Re
0ðgÞj ~Φi;fgvgÞ; ∀ g ∈ Gg;

in line with the concept of G injectivity [44]. Even though
the set of fjΦi;fgvgi;∀i;∀gv ∈ G;∀v ∈ ΔΓg is overcom-
plete, we can still check that

hðg;mÞ
Γ ¼ 1 −X

i

Z Y
v∈ΔΓ

dgvjΦi;fgvgihΦi;fgvgj

is a projector that annihilates the PEPS jΨðBÞi. Let us now
try to rewrite this parent Hamiltonian using the operator
gauging map GΓ. Note that

X
i

Z Y
v∈ΔΓ

dgvjΦi;fgvgihΦi;fgvgj ≠ GΓ

�X
i

jϕiihϕij
�

since the left-hand side contains two independent integra-

tions for every interior vertex v ∈ Γ∘. Instead, we find 1 −
hðg;mÞ
Γ ¼ GΓ½1 − hðmÞ

Γ �Qv∈Γ∘Pv so that hðg;mÞ
Γ contains an

explicit energy penalty for all non-gauge-invariant states.

Since the physical Hilbert space HðphysÞ
Γ of a gauge theory is

restricted to gauge-invariant states satisfying the Gauss-law
constraint on every vertex, we can safely omit this addi-
tional factor and instead write

hðg;mÞ
Γ ¼ GΓ½hðmÞ

Γ � þ ð1 − PΓ½⊗
e∈Γ

j1ieh1je�Þ: ð11Þ

We can recognize the first term as the gauged-matter
Hamiltonian, whereas the second term is a pure gauge term.
One can verify that it acts as a projector giving an energy
penalty 1 to states with nonzero magnetic flux through any
plaquette contained in Γ, which has to contain at least a
single plaquette for the injectivity construction. Hence, for a
single plaquette p, we can then write the second term as

1 −
Z Y

e∈∂p
dgejgeiehgejeχðregÞ

�Y
e

ge

�
; ð12Þ

with χðregÞðgÞ ¼ δðg − 1Þ the character of the regular rep-
resentation, where the product in its argument is ordered in
the way the edges e appear along the boundary ∂p of the
plaquette p, and all edges are assumed to be oriented
similarly. This term corresponds exactly to the magnetic
term of the quantum double models [46]. The typical
magnetic term from the Kogut-Susskind lattice gauge
Hamiltonian would replace χðregÞ with ReχðlÞ, with l the
fundamental representation in the case of a Lie groupG, but
has the same ground-state subspace. Indeed, one can check
that throughout our gauging construction, by initializing the
gauge fields in the j1i configuration, we are effectively
working at zero coupling constant for the gauge field and the
magnetic energy term is automatically minimized.
Finally, the filtering operation in Eq. (4) can be applied to

the PEPS without increasing the bond dimension or
changing the G-injectivity property. If Hðg;mÞ is a frus-
tration-free Hamiltonian with terms hðg;mÞ that annihilate
the ground state, then the filtered PEPS is the ground state
of a parent Hamiltonian built of terms

eðβ=2Þ
P

e∈Γ
E2ehðg;mÞ

Γ eðβ=2Þ
P

e∈Γ
E2e ¼ hðg;mÞ

Γ þ β
X
e∈Γ

E2
e þ � � � ;

where the terms in the ellipses can be expected to become
irrelevant under renormalization for small β, as they
correspond to higher-dimensional operators in the con-
tinuum theory.
We now apply this gauging procedure for quantum states

and operators to a number of examples. Consider as a first
consistency check a nearest-neighbor pair of vertices Γ ¼
fv−; vþg with corresponding edge e ¼ ðv−; vþÞ. Let Oi be
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a vector of operators such that UðgÞOiUðgÞ† ¼ ϕj;iðgÞOj

with ϕ some unitary representation of G. Consider
O ¼ P

iO
i
v−O

i†
vþ . We obtain GΓ½O� ¼ P

j;kO
j
v−Φ

j;k
e Ok†

vþ ,
where Φj;k is given by

Φj;k ¼
Z

dgϕj;kðgÞjgihgj;

i.e., it is the operator that extracts the ðj; kÞ element of the
representation ϕ. We thus recover the minimal coupling
rule for, e.g., a hopping term. This example trivially
generalizes to the case where Γ contains a path between
two distant vertices, as would be the case for a correlation
function. The map GΓ then creates a gauge-invariant
correlation function by inserting a Wilson line along the
path. The choice of path will be irrelevant as long as the
state is an exact ground state of the plaquette operators, i.e.,
as long as there are no fluxes created by, e.g., a finite value
of the gauge coupling constant. For more complex matter
Hamiltonians with, for example, plaquette interactions, one
can check that our prescription exactly reproduces the
gauging construction used in Ref. [62] to establish the
relation between symmetry-protected topological order
[63] and the twisted quantum double models [64]. In
Ref. [65], the corresponding effect is investigated at the
level of the PEPS, which, after applying the gauging
prescription here developed, acquires the property of
twisted G injectivity [66] or an even more general notion
of injectivity in terms of matrix product operators [67].
As a more elaborate example, we now consider the phase

diagram of a gauge theory with Higgs matter, i.e., scalar
bosonic matter transforming nontrivially under the gauge
group, for the specific case of G ¼ Z2 ¼ f1;−1g in
ð2þ 1Þ dimensions. Using a basis j1i; j − 1i for both Hv
and He, we have Leð−1Þ ¼ Reð−1Þ ¼ τx and we also
choose to have Uvð−1Þ ¼ σx, with σx and τx the Pauli
operators for matter and gauge fields, respectively. We start
from the ground state of the Ising model

HI ¼
X
v

ð1 − σxvÞ þ βz
X
e

ð1 − σzve−σ
z
veþÞ

at βz ¼ 0, i.e., the state jψ0i ¼
Q

vjþiv. Instead of turning
on a finite βz in the Hamiltonian, we again resort to
applying a filtering operation

Q
ee

ðβz=4Þσzve−σzveþ . The result-
ing state jψβzi is a PEPS with bond dimension two and
parent Hamiltonian [68]

HðmÞ ¼
X
v

ðe−ðβz=2Þ
P

e∈Ev
σzveþσ

z
ve− − σxvÞ;

where Ev ¼ Eþ
v ∪E−

v . HðmÞ in the equation above matches
the Ising Hamiltonian HI at lowest order in βz. We now
apply the gauging procedure jΨβz;0i ¼ Gjψβzi and switch
on an electric field E2 ¼ ð1 − τxÞ=2 with coupling constant
βx using local filtering, to obtain the state

jΨβz;βxi ¼
Y
e

eðβx=4Þτxe
Y
v

Pv

Y
e

j1ieeðβz=4Þσ
z
ve−σ

z
veþ

Y
v

jþiv;

with Pv ¼ ð1þ σxv
Q

e∈Ev
τxeÞ=2. This state can be written as

a PEPS with bond dimension four. However, we can easily
“disentangle" the matter fields by applying a controlled-
NOT (CNOT) gate with the matter field as control and the
gauge field as target for every pair of ðv; e ∈ EvÞ. Since
all these gates commute, the latter constitutes a finite-
depth quantum circuit that transforms the Gauss law
ðPv−1ÞjΨi¼0 into ð ~Pv−1Þj ~Ψi¼0, with ~Pv¼ð1þσxvÞ=2
and j ~Ψi the transformed state. Hence, gauge invariance in
this transformed frame requires all matter fields to be in the
jþiv state so that we are left with unconstrained degrees of
freedom on the edges. Applying the CNOT transformation to
jΨβz;βxi results in the state

j ~Ψβz;βxi ¼
Y
e

eðβx=4Þτxeeðβz=4Þτ
z
e jΨTCi⊗

v
jþiv;

with jΨTCi the toric code ground state [46] for the edge
degrees of freedom. This mapping is equivalent to the
well-known correspondence between the normal Z2 gauge
theory with matter, whose phase diagram was first con-
sidered by Fradkin and Shenker [69], and the toric code
Hamiltonian with magnetic fields

Hhz;hx ¼ HTC − hz
X
e

τz − hx
X
e

τxe ð13Þ

as studied in Refs. [70–72]. Note that the definition of the
state j ~Ψβz;βxi depends on the order of applying the filtering
in τz and in τx. Since the motivation for these filtering
operations comes from the lowest order in β, at which level
they do commute, we can also opt for a more symmetric
definition

jΨ0
βz;βx

i ¼
Y
e

eðβxτxeþβzτ
z
e=4ÞjΨTCi⊗

v
jþiv:

The PEPS representation of jΨTCi has bond dimension two
[68], which is not increased by the local filtering. We can
probe the phase diagram on this Z2 gauge theory as

function of ~β ¼ ðβz; βxÞ by studying the ground-state
fidelities in Figs. 2 and 3. Fidelities are computed as
described in Ref. [73]. The fidelities illustrate that our
Ansatz qualitatively reproduces the phase diagram ofHhx;hz
and describes the same gapped phases in weak- and strong-
coupling limits. There is the deconfined phase with
topological order around β ¼ 0 and the trivial Higgs phase
and confined phase, which are connected by a local unitary
spin rotation at ∥β∥ → ∞, where jΨβz;βxi is just a product
state of eigenvectors of βzτz þ βxτ

x corresponding to the
largest eigenvalue. The critical behavior, however, is not
exactly reproduced. It is known, for example, that the
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topological phase transition from the deconfined to the
trivial phase along the coordinate axis βz ¼ 0 (and by
τx↔τz duality also along the coordinate axis βx) is in the
2D Ising universality class [57,74], whereas the corre-
sponding phase transition of Hhx;hz is in the 3D Ising
universality class. Also, we obtain a second-order phase
transition along the duality line βx ¼ βz that does not seem
to vanish until ∥β∥ ¼ ∞, even though the singularities in
the fidelity (Figs. 2 and 3) and expectation values (Fig. 4)

very quickly become small. The corresponding transition of
Hhx;hz is conjectured to be first order with a discontinuity in
the expectation values of the star and plaquette operator and
to end at a finite value of ∥β∥ [70–72]. In contrast, the state
jΨβz;βxi seems to have continuous expectation values but a
diverging derivative along a slice passing through the phase
transition at the duality line βx ¼ βz (Fig. 4). Note that one
could also use the state jΨβz;βxi or a slightly more general
class as a variational Ansatz for the actual Hamiltonian, as
was done for the case βz ¼ 0 in Ref. [75], which quickly
led to accurate results. See also Ref. [76], where the state
jΨβz;βxi at the limiting values ∥β∥ ¼ 0 and ∥β∥ ¼ ∞ was
used as a variational Ansatz, as well as other Hamiltonian
studies using large coupling expansions [77,78]. A more
detailed analysis of our results forZ2 and higherZN groups
is presented elsewhere [79].
In conclusion, we have proposed an operational pro-

cedure for gauging global symmetries at the level of
individual quantum states. This procedure combines
naturally with the framework of PEPS. When gauging
an injective PEPS, we have shown how to obtain a
G-injective PEPS and we have derived a parent
Hamiltonian, which automatically contains a projector
version of the Kogut-Susskind Hamiltonian for lattice
gauge theory at zero coupling constant. By introducing
gauge dynamics for nonzero values of the coupling con-
stant using a local filtering operation, this construction

FIG. 2. Trace of the metric gðβÞ with β ¼ ðβz; βxÞ, as obtained
from the fidelity jhΨβjΨβþδβij ¼ expð−NδβTgðβÞδβÞ, where N is
the (infinite) number of sites, as defined in Ref. [80]. An analytic
expression for g along the coordinate axes (βz ¼ 0 or βx ¼ 0) was
obtained in Ref. [81]. The red lines in the right panel indicate the
slices studied in Figs. 3 and 4.

FIG. 3. Fidelity (per site) jhΨβð1Þ jΨβð2Þ ij1=N between any two ground states with parameters β along the three different slices indicated
in Fig. 2.

FIG. 4. Expectation values of the relevant Hamiltonian terms, i.e., τx and τz on the edges, τxτxτxτx around a vertex, and τzτzτzτz around
a plaquette, along the three different slices indicated in Fig. 2.
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results in a low-parameter family of PEPS for which the
phase diagram can accurately be probed, as we have
illustrated by studying the phase diagram of a Z2 gauge
theory with Higgs matter. Tensor networks are indeed
promising candidates to avoid Feynman’s objections [82]
regarding non-Gaussian states that allow us to efficiently
compute expectation values [37]. Similar strategies are
perfectly feasible for studying gauge theories with fer-
mionic matter, using the framework of fermionic PEPS
[28–32], or even gauge theories (with or without matter) in
three spatial dimensions, since no variational optimization
is required.
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