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Viscous Damping of Rotation in Wendelstein 7-AS
H. Wobig, J. Kisslinger

Mazx-Planck Institut fur Plasmaphysik, EURATOM Association
D-85740 Garching bei Miinchen, Germany

Abstract:

One of the main results of the Wendelstein 7-AS stellarator (Major radius 2
m, average plasma radius 0.18 m, magnetic field 2.5 T, low shear) is the
achievement of the H-mode confinement in ECR- and NBI-heated plasmas.
There is a strong dependence on the external rotational transform; the H-
mode confinement can be found only in a narrow window close to 1= 1/2.
Viscous damping and the interaction with a neutral background are the only
mechanisms proposed so far as damping mechanism, which inhibits the polo-
idal shear flow. Viscous damping is computed in collisional approximation
and in weakly collisionless approximation (plateau regime). Large values of
the poloidal viscosity are found on rational magnetic surfaces, while in the
neighborhood of low order rational the viscosity is very small. Islands pro-
vide a mechanism for enhanced momentum transport in radial direction,
which leads to an effective shear viscosity. In Wendelstein 7-AS islands exist
on the “natural’ rational surfaces with v = 5/9, 5/10, 5/11 ... Furthermore, a
next generation of islands exist on 1 = 10/19, 10/21. Experimental results in
Wendelstein 7-AS confirm the hypothesis that H-mode only can arise if none
of these islands exists in the plasma. The regions of rotational transform
predicted by this hypothesis roughly agree with those of the experiment.

The extrapolation towards Wendelstein 7-X shows that there a similar case
is expected. Numerical calculations of islands are made in vacuum fields;
the evolution of the islands with rising plasma pressure is unknown. Finally
a qualitative model of H-mode development is discussed.




1. Introduction.

H-mode operation in Wendelstein 7-AS has been achieved with either ECRH or NBI
heating and at various magnetic fields (1.25 T and 2.5T)%,23. A specific feature of this
phenomenon is that the H-mode exists only in a narrow regime of the rotational
transform in the very neighborhood of 1 = 0.5. The features of the H-mode are similar to
those of a tokamak: reduction of the Ha-emission, onset of poloidal rotation and a 30%
improvement of the energy confinement time, which is accompanied by a reduction of the
turbulence level. With the onset of the shear flow a transport barrier arises in a 2-5 cm
wide region just inside the separatrix. However, the critical dependence on the rotational
transform is a particular feature of this low shear stellarator and in the following paper
an attempt will be made to understand this phenomenon by investigating the specific
influence of the magnetic geometry on the onset of poloidal shear flow.

In the literature several mechanisms to drive poloidal plasma rotation have been
proposed:

The recoil effect of lost orbits4,5
The anomalous Stringer spin-up®
The turbulent Reynolds stresses’

Interaction with neutral particles, which carry momentum to the wall, and magnetic
pumping or viscous damping are those mechanisms, which are able to inhibit the shear
flow. At the first glance the plasma neutral interaction by charge exchange has no parti-
cular dependence on the rotational transform, however, in considering a plasma
equilibrium with a frictional term in the momentum balance?, the electric potential
exhibits a strong dependence on the closure of field lines. Although this frictional model
of a plasma equilibrium is non-linear and also has bifurcation properties — the relation-
ship to Bénard convection has been investigated in Ref. 8 — the effect of inertial force has
been neglected and thus classical or anomalous Stringer spin-up cannot be described in
this model.

The magnetic pumping process dissipates the energy of plasma rotation and slows down
any shear flow. In the collisional limit the Braginskii viscosity is the appropriate
starting point and it is possible to compute the poloidal and toroidal damping coefficients
in any stellarator geometryY. However, in the collisional limit the damping coefficients
do not depends strongly on the rotational transform. This is quite understandable, since
the mean free path is short compared with any length of closed magnetic field lines. The
closure of field lines is a discontinuous function of the rotational transform and the

1V, Erckmann et al, Phys. Rev. Lett. 70, 14 (1983) 2086

2F. Wagner et al. Plasma Phys. Control. Fuston 36 (1994) A61

3 M. Hirsch et al. Plasma Phys. Control. Fuston 40 (1998) 631 - 634

4 K. Itoh, S. Inoue-Itoh, Phys. Rev Lett. 60, (1988) 2276

5 K. C. Shaing, E.C. Crume, Phs. Rev. Lett. 63, (1989) 2369

6 A.B. Hassam, J.F. Drake, Phys. Fluids B5, (1993) 4022

7P H. Diamond, J.B. Kim, Phys. Fluids B3, 1626 (1991)

8 H. Wobig, Z. Naturforsch. 41a (1986) 1101 1110

In this paper the friction term in the momentum balance Vp = j x B — av de-couples pressure
surfaces and magnetic surfaces and links the momentum balance to Ohm's law. At low order
rational surfaces convective cells can arise, which prevent the onset of poloidal shear flow.

9 H. Wobig, J. Kisslinger, Plasma Phys. Control. Fusion 37, (1995) 893 - 922



length of closed field is small on low order rational surfaces and large on high order
rational surfaces. Low order surfaces are those where 1 = m/n has small values of m and
n. In Wendelstein 7-AS the dominant low order rationals are 1\ = 1/2, 1/3, 2/5 and the so-
called natural resonances 1 = 5/9, 5/11, 5/12. Low order rational surfaces are isolated in
the sense that in their very neighborhood only high order rational surfaces exist. This
property has been invoked to explain that in the low shear stellarator Wendelstein 7-A
this region close to low order rationals is very robust against magnetic field
perturbations!®, a property, which also holds for drift orbits of passing particlesl!.
Plasma parameters in the boundary region of Wendelstein 7-AS are in the plateau
regime and neoclassical theory is needed to compute the viscosity. Neoclassical viscosity
in non-axi-symmetric stellarators has been computed by Shaing!?, who found a
resonance behavior of the viscous forces at rational values of the rotational transform.
Furthermore, the viscosity has a non-linear dependence on the radial electric field,
which is the origin of bifurcated solutions of the condition of ambipolarity. The combined
effect of plasma-neutral interaction and viscous damping has been investigated by
Talmadge et al.13, who concluded that L—H transition will not occur if the neutral
density is large enough and the local maxima in the poloidal viscosity as function of the
radial electric field do not occur. The present paper follows the same analysis as in Ref.
12; however, the main interest will be focussed on the influence of the rotational
transform on the viscosity and the viscous forces. The regions of strong and weak
damping in Wendelstein 7-AS will be identified.

In the first part of the paper the collisional limit of the viscous forces will be discussed,
the analysis starts from an ideal equilibrium and the general form of the inviscid flow
tangential to magnetic surfaces. In the plateau limit the viscous forces exhibit a strong
dependence on the rotational transform, which will be discussed in chapter 3. Some
numerically examples will be presented on order to give a qualitative explanation of the
experimental results in Wendelstein 7-AS. Finally a qualitative picture of the L-H
transition in W 7-AS will be outlined.

2. Momentum balance

In a rotating plasma Lorentz forces and pressure gradient are not the only forces, which
affect the momentum balance. There are inertial forces and viscous forces, which are
described by the divergence of the viscous pressure tensor. If turbulence exists, the
inertial forces are supplemented by the turbulent Reynolds stresses. The dominant
forces are the Lorentz force and the pressure gradient and these mainly point into the
radial direction. Inertial forces and viscous forces also have components parallel to the
magnetic field and the balance between these forces has a strong influence on the
poloidal and toroidal rotation of the plasma. In the one-fluid model the time averaged
momentum balance of the plasma is

pveVu=-Vp+jxB-Ver Eq. 1

10H. Wobig, Z. Naturforsch. 42a, 1054 — 1066 (1987)

11 H. Wobig, D. Pfirsch, IPP-report I11/245, see also paper at this workshop

12K.C. Shaing, Phys. Fluids B5 (11) (1993) 3841

I3JN. Talmadge, B.J. Peterson, D.T. Anderson, F.S.B. Anderson, H. Dahl, J.L. Shohet, M.
Coronado, K.C. Shaing, M. Yokoyama, M. Wakatani, Proc. 15t IAEA Conf on Contr. Fusion,
Seville, 1994, Paper CN-80/A—6-1-6




where v is the macroscopic velocity of the plasma and r the viscous stress tensor. In a
fluctuating plasma the inertial forces are are modified by the Reynolds stresses. The
pressure is the time averaged pressure. In a turbulent plasma the velocity is the mean
velocity V plus a fluctuating term v and the intertial term is the sum of two terms
depending on the mean velocity and the divergence of the Reynolds stress, which arises
from the fluctuating part dv. Let us assume that an equilibrium state exists, which
satisfies the balance equation (1). In such a rotating equilibrium pressure surfaces and
magnetic surfaces are decoupled. Concerning axially symmetric configurations equilibria
with inertial forces have been investigated by Zehrfeld and Green!d. The issue of steady
flow in stellarator equilibria has been treated by Greene et al. 15 and by Kovrizhnykh
and Shchepetov!6. Momentum balance of a rotating plasma in stellarator geometry
including turbulent terms and anomalous radial losses has also been investigated by
Wobig!?. We anticipate the existence of toroidally closed pressure surfaces p = const. and
average the momentum balance over the pressure surface. This provides one with the
following relations parallel to the magnetic field and parallel to the plasma currents

<jepveVuv>=—-< jeVp>—-<jeVen> Eq. 2
and
<BepveVv>=-<BeVp>—-<BeVen> Eq. 3
Because of and Ve j =0 and Ve B =0 these relation reduce to
<jepveVu>=—-<jeVen> Eq. 4
and
<BepveVv>=—-<BeVern> Eq.5

These relations show that the momentum balance parallel to the magnetic field and
parallel to the plasma currents is governed by inertial forces and viscous forces. These
equations include all processes mentioned in the introduction. The non-linear coupling of
the radial plasma flow pv to the poloidal velocity is the reason for classical or anomalous
Stringer spin-up. Reynolds stresses are the result of turbulent inertial forces. The vis-
cous stress tensor of the thermal plasma tends to slow down a macroscopic plasma rota-
tion. This stress tensor is a linear functional of the distribution function

= mj [U.’U - %}/(v)dsv Eq. 6

If there a large fraction of lost orbits the distribution function differs from a Maxwellian
and the lost orbits give rise to an additional term in the stress tensor, which is not
retarding but accelerating. In principle all effects mentioned above will contribute to the
force balance in the rotating plasma, the main issue is to identify the dominating ones.
The viscous stress tensor is zero in case of a Maxwellian. Therefore small viscous forces
are expected in a collisional plasma where collisions tend to restore a Maxwellian. In the
collisionless regime or in the plateau regime the deviation from a Maxwellian can be
large leading to a large viscous force. Furthermore details of particle orbits have more
and more influence on the distribution function and therefore the specific structure of

14 P. Zehrfeld, B.J. Green, Nucl. Fusion 12, (1972) 569

156 J M. Greene , J.L. Johnson, K.E. Weimer, N.K. Winsor, Phys. Fluids 14, (1971). 1258
16 1, M. Kovrizhnykh S.V. Shchepetov, Nucl. Fusion 29, (1989), 667

17 11, Wobig, Plasma Phys. Control. Fusion 38 (1996) 1053
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the magnetic field will strongly influence the viscous forces. In the viscous damping of
poloidal and toroidal shear flow the specific features of the magnetic field become
apparent and therefore a unified picture of H-mode behavior in stellarator is difficult to
obtain.

Ideal MHD equilibrium

In the momentum balance eqs 1 and 2 the self-consistent magnetic field has to be intro-
duced. However, if inertial and viscous forces are small compared with the other ones
one may approximate the magnetic field by the field of the ideal MHD equilibrium,
which satisfies the condition

JjxB=Vp Eq. 7
On magnetic surfaces the Hamada coordinate system can be introduced, which is charac-

terized by straight magnetic field and a Jacobian equal to unity. In this coordinate sys-
tem 5,0 ¢ the base vectors are defined by

e,=VsxVop ; e, =-VsxV0 Eq. 8
ep is the poloidal base vector and et the toroidal base vector. The magnetic field can be
represented by

B = x’(s)ep + l;f’(s)e, Eq.9
and the plasma current by
i=J(s)e, +I'(s)e, Eq. 10

%V are the poloidal and toroidal fluxes and J,I the poloidal and toroidal currents. The
plasma current density can also be written in the form

j=-p(v)e,+1'(v)B Eq. 11

which in stellarators without toroidal current reduces to a current parallel to the
poloidal base vector.

Zero-order plasma flow

An arbitrary rotation in poloidal and toroidal direction can be superimposed onto this
equilibrium. Since in ideal equilibrium model there is no coupling between plasma
velocity and momentum balance this rotation is undetermined as long as dissipative
terms and inertial forces are neglected. This lowest order rotation lies in magnetic
surfaces and satisfies the equations

Vo +y,xB=0 ; Vepy, =0 Eq. 12
which leads to the ansatz

v, = “E(l,lf)ep + A(yf)B Eq. 13

The two flux functions E and A describe a poloidal and a parallel motion along magnetic
surfaces. In this ideal model without dissipative forces there can exist a poloidal and a
toroidal flow of the plasma. Using eq. 4 the plasma velocity can also be decomposed in a
poloidal and a toroidal component. In next order these quantities must be computed
from the balance between spin-up forces and dissipative forces (friction and viscosity).




The viscous forces (or the magnetic pumping effect) are proportional to the lowest order
velocities. These surface-averaged viscous forces are

-<e,eVern>| (pu u fE Eq. 14
<BeVern> . pkA '
The viscous tensor 7 is defined by

6= mj(v rv-— U—;)f(v)dgv Eq. 15

which in Chew-Goldberger Low approximation yields

<e,oVer >=< (p“ —pl)ep-

<BOV0n>:<(p"-pl)Bt%> Eq. 16

The formulation of the viscous forces given in eqgs. 11 is valid in any regime of collisiona-
lity; the problem left is the computation of the anisotropic pressure, which is different in
every regime of collisionality.

The parallel and the perpendicular components of the pressure tensor are defined by

2
2 Ve -
= mJ vfdv ; p, = m.[ —2l fd v Eq. 17

The distribution function f must be computed by kinetic theory.

Collisional plasma

Although the boundary plasma in the Wendelstein 7-AS is in the plateau regime we
consider the collisional limit first. In collision-dominated plasmas the anisotropic part of
the pressure can be approximated by 8

(p"_pl):—BfP‘BB;Z.BVvO Eq. 18

P =nkT is the scalar pressure and 7 is the ion-ion collision time. This leads to the
averaged viscous forces in the following form

—<e,oVer> _ 3P C, CGI|E Eq. 19
<BeVer> C, CA\A

The geometric coefficients C are given by

C,=< ep-VB > 5 G =2 B-VB > ; C, =< B-YE ep-VB
B B B B

18 This follows from the bulk viscosity given by Braginskii (see Ref. 9)

}::v Eq. 20




Cp couples the toroidal velocity to the poloidal force and C; the toroidal velocity to the
toroidal viscous force. The coupling of poloidal and parallel flow is described by the
coefficient Cy. In stellarators without any symmetry - neither axial symmetry nor helical
symmetry - there exists a finite threshold for spin-up, which is given by

2
R=.=3IP(&—C) Eq. 21
C P

The term in brackets is purely geometrical and can be evaluated for any magnetic field.
In tokamaks this threshold id zero, since the toroidal rotation is not slowed down by
magnetic pumping id the toroidal is neglected. The following figure shows a comparison
of this geometrical factor C, between Wendelstein 7-AS and Wendelstein 7-X and a
tokamak configuration (see Ref. 9).

In axially symmetric configurations like tokamaks a viscous damping in toroidal
direction does not exist. The poloidal variation of B is determined by the 1/R-dependence.
Fig. 5 shows the poloidal viscous coefficient of a circular tokamak in comparison with
advanced stellarators. W 7-X and a tokamak are nearly equivalent in this respect
whereas the W 7-AS device exhibits larger poloidal damping coefficients,
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Fig. 1: Comparison with tokamak. Poloidal viscous coefficient C,

Plateau Regime

In the Wendelstein 7-AS experiments the plasma parameters are not in the collisional
regime. At the plasma boundary the mean free path is in the order of 10 to 20m, which
puts the plasma into the plateau regime and in the bulk plasma we find the plasma in
the collisionless regime. Viscous damping must be computed using kinetic theory.

The viscous coefficients of the collisional regime are independent of the electric field and
show no particular dependence on the structure of the magnetic field. This feature
changes in the plateau regime where details of particle orbits become important!®.
Furthermore, the electric field affects the particle orbits and thus modifies the viscous

19 M.Coronado , H. Wobig, Phys. Fluids 29, (1986) 527




damping. This effect has been of interest in the context of L-H-transition. K.C. Shaing®
has computed the poloidal and toroidal viscous forces in non-axisymmetric configu-
rations and has studied the influence of the electric field. His main result was the
existence of a local maximum of the poloidal viscous force as function of the radial
electric field (or the poloidal Mach number). This phenomenon may give rise to
bifurcation and thus a transition between states of different rotation velocities. In the
following we consider the plateau regime and write the kinetic equation in the following
form

B 2y
Lf, =—3{v, e VF’ +Fy—eV|=LU Eq. 22
/i {D (W) Yig [Vtz}: :” q
with
L=VH%OV+UDOV—C Eq. 23

vy is the drift velocity and C the collision operator. U is the parallel component of the
macroscopic velocity. The drift velocity is the sum of the magnetic drift and the electric
drift:

UD=[u+mﬁJVBXB+V(DXB Eq. 24

B | B B?

u is the magnetic moment of the particles. The kinetic equation can also be written in
the form

m 1 VB
Lf; :_EF(‘)[VI% —-z—vi)voo? Eq 25

In the standard neoclassical theory the radial drift velocity in the kinetic operator L is
neglected, which eliminates the radial derivative on the left-hand side of eq. 25. The
electric potential is a function of y only. In this approximation only the spatial deriva-
tives with respect to the two angles occur and radial coordinate y is a parameter. This
implies that that the inverse of L, !, commutes with any y-dependent function.

The formal solution of the kinetic equation is

fi= —%{E( y)L'Fo, +A(y)L'Fo,) Eq. 26
with

1 VB 1 VB
O)P=(V|2|——2~Vi]ep.? ;s Wy :[Vﬁ—gvi)B.——B“ Eq 27

and the viscous coefficients
2 2
_m -1 3 . _m -1 3
up_—ch:prL Fo, dv> ; ,u,——-—kT<jcobL Fo,d’v>

m’ 1 3
1, =E<pr[. Fow,d*v> Eq. 28

20 K.C. Shaing, Phys. Fluids 5 No. 11 (1993) , 3841-384




L1 is the inverse operator of L. In the collisional regime the kinetic operator is -C and
we get the results described above. In this regime the viscous coefficient do not depend
on the details of the particle orbits, however, this new feature arises in the plateau or
long-mean-free-path regime. In this case the result may depend strongly on the details of
the magnetic field and the rotational transform.

The standard approximation in the plateau regime is a Krook collision term instead of
the Landau operator

L=>v”—'§-‘V+vEOV+V Eq. 29
VE is the electric drift
ExB
v = Eq. 30
R

This approximation allows a Fourier transformation of the equation, which clearly shows
the resonance character at rational values of the rotational transform

i i

Lfi=g= ["n E("’ ~nt)+ 7"Vet V}fm,,, = Zun Eq. 31

with

m 1 VB

&mn = —EF(Vﬁ "Evi}’o * 5 Imn Eq. 32

and

VB VB VB

["0 - ) =5 W)(% '?Jm ,, +A(W)(B . _Er_)m Fa. 38

Here a strong difference between axisymmetric and non-axisymmetric configurations
arises. In tokamaks only the terms gu=o exist and the kinetic operator has no resonance
at m-n1 = 0. In stellarators, however, all coefficients gmn exist and L may become "small"
at these rational surfaces. This implies that the anisotropic pressure and the viscous
damping are large on rational surfaces.

These equations only apply to the region outside magnetic islands where toroidal
magnetic surfaces exist. The surfaces close to the separatrix of magnetic islands are
distorted by the neighboring islands and the Fourier series of B or In B has large
components with the periodicity of the islands. In other words: the corrugation of the
magnetic surfaces in the neighborhood of islands will lead to enhanced magnetic
pumping or enhanced viscous forces.

Numerical computations of collisional viscosity in the neighborhood of magnetic islands
have been described by Wobig and Kisslinger?!, who confirmed the suggestion above.

The Fourier expansion of B in Hamada coordinates has the general form

InB= ia,’m 005(19 - m(p) +b,,, cos(lﬁ + mqo) Eq. 34
Im

which after insertion into eqs. 27 yields

21H. Wobig, J. Kisslinger, IPP-report IPP 2/334 Jan. 1997




Ju'_p = Aozgs’;)a!,m + gg,:,)b[,m
I,m

U, = Coig{;)(ll - m)2 ajm+ gs,:?(h + m)2 by
I,m

Ly = ﬁ,ig{j(!t - m)a,,m + g{ﬂ(ll + m)b,,,,, Eq. 35
Lm :
with
() _17F V[“'z' "“i)
g:t=-- Flu Ju, du, dy Eq. 36
6 4_'[0 v2+(u”(h+m)+lVE)2 ( ) B
and

( ) 1 fo0 V(uﬁ —'—'2 ui)
== Flu?Ju, du, d Eq. 37
= 4_‘[.. v2+(uu(h-m)+lh)2 (u )ul -

u is the normalized velocity u = v/vin (vin is the thermal velocity), Vg is the normalized
poloidal velocity Ve = veR/(rvin), ve=E/B is the electric drift velocity, v is the normalized
collision frequency v = R/A, A = mean free path.

In the limit of large collision frequencies v these coefficients scale like 1/v and we obtain
the collisional limit discussed above. In the other limit of small collision frequency the
integrand scales like a delta function with a peak at

u[,(ll - m)+ Wg=0 Eq. 38

In case of zero electric field the coefficient gf;),(v,VE,L) is

© S S ) N
8im(V> Vel I e ml Eim |ll ~ ml Eq. 39

and exhibits a singularity at rational values of the rotational transform. Finite electric
fields remove this resonance and the coefficient decreases. It should by pointed out that
only the viscous coefficient pp is affected by this resonance.

The viscous forces derived above are proportional to the lowest order flow in magnetic
surfaces, derivatives of the components E and A do not occur. The reason is that the
radial drift of the particles on the left-hand side of eq. 26 has been neglected. This term,
however, becomes important for particles with small or zero parallel velocity. Drift orbits
of these particles exhibit large deviations from magnetic surfaces and thus correlate the
plasma flow in radial direction. This effect leads to a shear viscosity, whih in the
collisional regime is small, however which may become large in the plateau or collision-
less regime. A solution of the drift-kinetic equation taking into account radial drift has
been presented by Hastings?2 who derived a differential equation for the radial electric
field in stellarators. Standard neoclassical theory only yields algebraic equations for the
electric field.

22D.E. Hastings, Phys. Fluids 28, (1985) 334

10



Numerical results

Numerical calculations of the collisional viscous coefficients have been presented in Ref,
20. As mentioned above the viscous damping increases in the neighborhood of magnetic
islands as will be shown in the following figure

W 7-AS Poloidal viscous coefficlent
28 T T ! T

=—&=jola=0.53
—a—[ola=0.55 : H
2 0-----..1 i b B PN NIRRT SRR R

L )| e

[€s

C_p [arb. units]

6 8 1‘0 1I 2 1' 4 186
Average radlus [em]

Fig. 2: Poloidal viscous damping coefficient C, in Wendelstein 7-AS. The

upper curve exhibits the effect of the 5/9 island. Inside the island the

viscosity cannot be computed, since here a self-consistent equilibrium is

needed. The line inside the island is meaningless. The magnetic configu-

ration used for these computations is displayed in Fig. 8.

Although these calculations are only valid outside the islands they support the idea that
magnetic islands inhibit poloidal rotation. Magnetic islands are fixed in space and they
play the role of a rock in a river: the laminar flow is disturbed and slowed down. The
lack of an accurate description of the equilibrium, however, in the island makes it
difficult to assess the influence of the island. With growing beta the position and the size

of the island may change. The computations in Fig. 2 have been made with the vacuum
field.

Viscous forces in the collisional regime are the product of a geometrical factor and some
plasma parameters. The geometrical factor can be easily evaluated and used for
comparing various configurations. This factorization is no longer the case in the plateau
regime and in addition to the Fourier spectrum of B the viscous coefficients depend on
the collision frequency, the electric field and the rotational transform. For this reason
the numerical calculations presented in the following will concentrate on the dependence
on iota only considering the Fourier coefficients of B, the collision frequency and the
electric field a free parameters. An example the coefficient up as function of the

rotational transform is shown in the following figure.
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Poloidal viscous coefficient
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Fig. 3: Poloidal viscous coefficient p, vs rotational transform. The electric
field is small and fixed. Dimensionless E-field 0.05. Collisionality in
dimensionless units: 0.01 (upper curve), 0.05, 0.1 (lower curve).

To obtain this figure the Fourier series In B is modeled with finite coefficients at 1 = 5/n,
n =29, 10, 11, 12, 13, 14, 14 , which simulates the natural islands in W 7-AS. Islands by
error fields exhibit resonances at 1 = 1/2, 2/5, 1/3 etc. In that case further peaks would
occur in Fig. 5. It is interesting to note that in the vicinity of 1 = 1/2 a minimum of
viscous damping occurs. The reason is the absence of low order rational surfaces in this
region. Resonances can only arise at 1= m/l with large m,] where the Fourier coefficients
of In B are small and insignificant.

The electric field removes the resonance as shown in the next figure

Viscous Coeff. p,P Collisionality v = 0.01

40 —_— —
V= 0.0EV_ = 0.02V_ = 0.05

35 [

30 W e | M ab B B | DESER T

Coefficient up

15 =

e mepandin s wodaren bl o eisd R e vl R wtiti
0,3 0,35 0,4 0,45 0,5 0,55 0,6
Rotational transform

Fig. 4: Poloidal viscous coefficient i, vs rotational transform. The electric
field increases by a factor five. The collisionality is kept fixed, v =0.01.
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L T =

The electric field is fixed and does not depend on the rotational transform. However, it
should be noticed that the E-field depends on poloidal plasma rotation. If the poloidal
rotation is inhibited by large viscous damping the radial electric field is small or zero. It
is expected that in the presence of magnetic islands plasma rotation is damped by large
magnetic pumping, which is consistent with zero electric field. However, it cannot be
excluded that also a case with large electric field and small viscous damping can be
maintained close to rational surfaces. The electric field is the result of a balance between
driving and damping effects and this nonlinear relation may have bifurcating solutions
as has been discussed in the literature.

In regions outside the resonances the poloidal viscosity decreases slowly with growing
rotational transform. This is caused mainly by the m = 0 components in eq. 38. In these
regions the term ni - m is large compared with the electric field term and the collision
frequency, which explains why in these regions the electric field has little effect on the
poloidal viscosity, ;

In the figures above only the main resonances have been retained. Higher order
resonances occur at

JT
e Eq. 40
m,+m, m, m,

where 1; and 12 are the lowest order natural resonances. Between 1 = 5/9 and 5/10 we
expect 1 = 10/19 and between 1=5/10 and 5/11 the next order resonance is 10/21. In the
following figure finite perturbation on these resonances have also been introduced. In
these calculations ( Fig. 4 and Fig. 5) the Fourier coefficient have been chosen freely. As
will be shown later, islands exist on these surfaces. Therefore it has to be expected that
the poloidal viscosity is even larger in the neighborhood of the island, but in the island
the standard kinetic theory is not applicable. Therefore, the local minima of the poloidal
viscosity, which are shown in Figs. 3 and 4 must be considered with caution. In a

realistic geometry with islands these minima may not exist, however a rigorous theory is
lacking.

W 7-AS, Poloidal Viscosity

Poloidal Viscosity [arb. units]

1 sﬁ} ......

L)
0.35 0,4 0,45 0.5 0,55 0.6

Rotational Transform

Fig. 5: Poloidal viscous coefficient p, vs rotational transform. Collisiona-
lity and electric field are kept fixed. Additional resonant Fourier coef-
ficients at 1 = 10/19 and 10/21 have been introduced.
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3. H-mode windows in Wendelstein 7-AS

In the minima to the right and the left of 1 = 1/2 the viscous damping is small and nearly
independent of the electric field. In this regime H-mode confinement has been observed
in Wendelstein 7-AS. Plasma parameters in the boundary region of W 7-AS are in the
plateau regime, therefore the present theory is applicable. Because of the low viscous
damping spin-up mechanisms easily can overcome the damping and lead to plasma
rotation and shear flow without a significant reaction on the damping mechanism. This
has to be distinguished from the case of rational surfaces where the viscous damping is
enhanced and electric shear flow cannot evolve. Therefore the electric field stays at low
values and the viscous damping remains large as shown in Fig. 6. It should be noted that
in case of magnetic islands on rational surfaces the theory does not apply to this region,
however in the neighborhood of the low order rational surface only high order rational
surfaces without islands exist and there the theory is valid.

The region above 1 = 1/2 shows a slightly smaller damping rate than the region below 1 =
1/2. This may explain why in the experiment H-mode confinement predominantly was
found in this region. As pointed out above only the basic resonances at 1 = 5/n were
retained in the numerical calculation. It is obvious that higher order resonances occur, if
the Fourier spectrum of In B (see eq. ) contains not only the main harmonics but also
higher ones. Between 1 = 5/10 and 5/9 the next order resonance in the Farey tree is 1 =
10/19, there a local maximum of viscous damping is to be expected. Islands on these
surfaces would enhance the damping in this region and inhibit the spin-up of shear flow.

Magnetic surfaces in Wendelstein 7-AS

Fig. 6: Magnetic surface in Wendelstein 7-AS. Rotational transform 1 = 10/19
at the boundary. I:/I.» = 0.6351. There are 19 islands in the boundary region.
Iota in the center 1=0.5097.
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Fig. 7: Magnetic surface in Wendelstein 7AS. Iota = 5/9 at the boundary. .
It/Im = 0.7320,

Fig. 8: Magnetic surface in Wendelstein 7AS. Tota = 5/9 at the boundary.
Iota(0)=0.5442, It/Im = 0.7883
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Fig. 9: Rotational transform vs average radius. Upper curve (circles, It/Im =
0.7320) is the transform of Fig. 8, curve in the middle (squares It/Im =
0.6351) corresponds to Fig. 6. The lower curve is the profile of Fig. 7 (It/Im =
0.5968).

It/Im is the ratio of the current in the TF-coils to the current in the modular coils. This
ratio determines the rotational transform.

Fig. 10: Poincaré plot of magnetic surfaces in Wendelstein 7-AS. Iota(0) =
0.5017. The profile of the rotational transform is shown in Fig. 9 (lower
curve). It/Im=0.5968.
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H-mode confinement in Wendelstein 7-AS was observed in the narrow region above 1 =
1/2 and 1 below 1/2. The iota-profiles of the upper H-mode region are shown in Fig. 4. In
all cases no large islands exist in the boundary region. In the center of this region,
however, the 10/19 island series exists, as is shown in Fig. 1. This may be the reason
why the H-mode window is divided in two parts with a center where H-mode is not
achievable. The presence of these islands in the boundary can inhibit the spin-up of
poloidal shear flow. Raising the iota-profile above the upper profile in Fig. 4 leads to the
existence of large 5/9 islands in the boundary region, which is demonstrated in Fig. 3.
This clearly will prevent spin-up of poloidal shear flow.

In summary, the following hypothesis can be established:

Spin-up of poloidal shear flow and H-mode confinement is inhibited by enhanced
poloidal viscosity in the presence of the following islands at 1 = 10/21, 5/10, 10/19,
5/9, 5/11 and lower. If these islands exist somewhere inside the plasma H-mode is
not possible.

The following figure displays the iota profiles of the vacuum field and the hatched areas
denote those regions, where according to the previous hypothesis H-mode may be
possible. ;

Wendelstein 7-AS ES H-mode Windows
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Fig. 11: Rotational transform of the vacuum field in Wendelstein 7-AS.
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There is a small region just below 1 = 1/2 in Fig. 11, where spin-up could exist according
to the hypothesis, however, the experiment does not verify this. An explanation may be
that the 1 = 1/2 is also distorted by symmetry breaking error fields and therefore may
have a strong damping effect.

The role of islands on viscous damping can be understood by following considerations.
Particles transport across islands is enhanced, which has been demonstrated by Monte-
Carlo calculations (ref) and particles also carry momentum across the island. Thus the
rotating layers on both sides of an island are intimately correlated by the anomalous
transport leading to a reduction of the velocity shear. In regions without islands radial
momentum transport is provided by drift surfaces, which differ from magnetic surfaces,
and by the effect of collisions. Especially transition particles, particles between being
trapped and passing, with their large deviation from magnetic surfaces contribute most
to the radial momentum transfer. This is the plateau approximation. In the region of
islands the radial step width is determined by the islands size and the radial momentum
transfer is large in regions with large islands.

4. Extrapolation to Wendelstein 7-X

The rotational transform in Wendelstein 7-X is 1(0) = 0.86 and y(a) = 0.99. This is also a
regime without low order rational magnetic surfaces. In this region the viscous damping
is small and therefore plasma rotation can be expected in this region. A slight increase of
the rotational transform would move the 5 natural islands into the plasma region and
viscous damping inhibits the rotation. The numerical evaluation of the poloidal viscous
coefficient is shown in the next figure.

Poloidal viscous coefficient (W 7-X)
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3 —-- + ...i;. ...... —
2.5 HE I i i
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Rotational transform

Fig. 12: Poloidal viscous coefficient p, vs rotational transform (Wendelstein 7-X). The
electric field increases by a factor five. Collisionality is kept fixed.
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This figure shows the main resonances and the largest damping aeffect at1 = 5/6 and
5/5. Higher order resonances occur at 1 = 10/11, 10/9, 15/17, 15/16, 15/14, 15/13. The
shear in Wendelstein 7-X is larger than in Wendelstein 7-AS, therefore the resonant sur-
face at v = 10/11 cannot be avoided. On the other hand, the viscosity in average is re-
duced by the increase of the rotational transform and the optimization effect. For this
reason it is very likely that shear flow and H-mode also occurs in Wendelstein 7-X. The
poloidal viscous coefficient depends on the geometric quantity

e 2

S |

Minimizing this geometric term will lead to small viscous damping of poloidal rotation.
To minimize this term is the main goal of the Helias geometry. In the extreme limit this
term would be zero which implies that current lines are orthogonal to magnetic field
lines. In Wendelstein 7-X this goal can be achieved in some regions of the magnetic
surfaces which explains the reduction of the viscous coefficients compared to
Wendelstein 7-AS as shown in figure 1.

5. Discussion

The considerations above give a qualitative explanation for the narrow H-mode window
in Wendelstein 7-AS. The poloidal viscous force exhibits a strong dependence on the
rotational transform, and these forces have minima in the vicinity of iota = 1/2, which is
seen in the plateau approximation of the viscous forces. However, the role of magnetic
islands needs to be clarified more quantitavely.

An interesting feature of the viscous is the dependence of the viscous forces on the radial
electric field. For small E-fields the forces

(-<ep°V°ﬂ:>J=(HP “"IE] Eq. 41
<BeVern> W, uAA

are linearily increasing functions with E and A, however, at large E-fields the coeffi-
cients decrease quadratically with E and the poloidal viscous force scales with 1/E. The
poloidal viscous force has at least one local maximum as a function of the E-field which
by many authors has been invoked as the reason for bifurcation and multiple solutions
of the poloidal rotation?324, Shaing (ref. 2) has shown that more than one local maxi-
mum may arise in stellarators, which depends on the special choice of the Fourier
spectrum of B.

To explain L-H transition in toroidal systems the driving forces must be taken into

account. Lost ion orbits, Stringer spin-up and turbulent Reynolds stresses are the
various candidates for driving forces. A general momentum balance equation including

23D.E. Hastings, W.A. Houlberg, K.C. Shaing , " The ambipolar electric field in stellarators" ,
Nuclear Fusion 25, No 4, (1985) 445

24K .C. Shaing, E.C. Crume "Bifurcation Theory of Poloidal Rotation in Tokamaks: A Model for
th e L-H Transition", Phys. Rev. Lett. Vol. 63, No. 21 (1989) 2369

19




Stringer spin-up and turbulent Reynolds stresses has been given in%, which includes
the effect of impurities and neutral gas interaction.

In Ref. 9 a set of equation was derived which describe the transient phase of the poloidal
and toroidal flow. In a stellarator without toroidal currents these equations are

IE <( = )e '&B‘>
_p(<ep-ep> 0 ) at :(Rll OJ(E}_*_ Pu Py P B Eq 49

0 <B>) JA 0 oAA VB
o _<(P||_PL)B'?>
which in plateau approximation is
o
_p<ep-ep> ()2 gt _ Ry OfE| (M, H E Eq. 43
0 < B >) A 0 OAA) \u, u, \A
ot
R1) is the Stringer spin-up term
R, =< puV -(ep X Vl;f) Eq. 44

u is the parallel velocity connected to the radial plasma diffusive velocity by the equation
of continuity. This relation is also valid in turbulent plasmas, where the radial particle
flux is anomalous (anomalous Stringer spin-up). When the turbulence level and the
radial anomalous loss are reduced by the shear flow, the anomalous Stringer spin-up
also decreases. Thus the Stringer spin-up has the same general structure as viscous
damping.

The driving term Ri;only affects the poloidal component E, there is no Stringer drive in
parallel direction. The mixed coefficient p,, however, couples the two equations together,
and any poloidal flow is accompanied by a toroidal flow. The coefficient is the driving
term for the bootstrap current (see Ref. 25), which in Helias configurations is close to
zero. Hence in Helias configurations the spin-up equations reduce to

—p<ep-ep>%=R”E—ppE Eq. 45
which is the equivalent equation to eq. 13 in a paper by Hassam et al. on the onset of H-
mode in tokamaks?5,

In the initial phase of the spin-up the coefficients R;; and |, are independent of E and
the poloidal rotation either grows exponentially or decays exponentially. Turbulent Rey-
nolds stresses, however, provide a driving mechanism, which is finite at zero rotation
and thus can sustain a small poloidal rotation even in case when viscous damping 1s
stronger than anomalous Stringer drive. Turbulent forces would add another term RS to
eq. 45 which is either constant or decreases with E if the turbulence is reduced with
growing poloidal rotation (see Ref. 25).

—p<ep-ep>%:&I(E)E—,up(E)E+ RS(E) Eq. 46

This simplified equation explains qualitatively the main features of poloidal rotation.

25 H. Wobig , " On rotation of multi-species plasmas in toroidal systems”, Plasma Phys. Contr.
Fusion 38 (1996) 1053-1081
26 A B. Hassam, T.M. Antonsen, J.F. Drake, C.S.Liu, Phys. Rev. Lett. 66 (1991) 309

20



A driving force, which is independent of the E-field would lead to two solutions of the
force balance equation where the larger one is unstable. In order to obtain two stable
solutions the driving terms must decay faster than 1/E at large E-fields. A possible
scenario for L-H transition could be the following:

Turbulent Reynolds stresses or lost orbits initiate a poloidal rotation of the plasma,
which by viscous damping is stabilized at a low level. There is no significant reduction
of the turbulent fluctuations and the anomalous transport. This is the L-mode solution.
There exists a second unstable solution, which results from the balance between viscous
damping, Reynolds stresses, and Stringer spin-up. If at high electric fields, when the
shear flow is established, the turbulence will be reduced. As a consequence the Reynolds
stresses decline and also the anomalous Stringer spin-up decreases. If this driving term
decrease faster than 1/E (faster than the viscous damping forces), a third stable solution
exists. This model is sketched in the following figure.

Driving Force

L-Mode /

Poloidal Viscous Force H-Mode

A

Fig. 13: Qualitative sketch of the force balance in Helias systems. The
dots are the stable solutions for the radial electric field, the open circle is
the unstable solution. The finite driving force at small E-fields is the
result of turbulent Reynolds stresses or lost orbits. At large E the
Reynolds stresses are negligible and the Stringer drive is the dominant
driving force. The balance between viscous damping and Stringer drive
determines the H-mode solution.

E-Field

As indicated in figure 13 the curves are close together. Since the viscous damping
depends on the details of the Fourier spectrum, on collisionality and rotational trans-
form, a situation may arise where the viscous damping is larger than the driving forces
except for the first stable L-mode solution. The other two solutions vanish if the viscous
damping increases by a small amount. This may explain the experimental results of
Wendelstein 7-AS where L-H transition is found only in a region with relatively small
viscous damping. Furthermore, if the first stable solution and the unstable solution
approach each other, a finite perturbation can push the system into the rotating stable
solution on the right in Fig. 13.
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As shown above the viscous forces are non-monotonous in the radial E-field. In order to
get at least 3 solutions of the force balance the driving term must also be non-mono-
tonous. This argues against Reynolds stresses or lost orbits as the only source of driving
forces. Lost orbits are reduced by the radial E-field and therefore the recoil effect on the
bulk plasma decreases monotonically with increasing E-field. The turbulent Reynolds
stresses also decrease if the turbulence is reduced by the shear flow.

The hypothesis proposed here is only qualitative, in future a more quantitave
verification of the model will be made.
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