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A characteristic feature of modes in the continua (“Alfvén ” and “slow”) of magnetohy-
drodynamics (MHD) is their singularity at a magnetic surface ¥ = 1. For axisymmetric
toroidal configurations the dependence of continuum modes on the distance 1) —1)q is reex-
amined. It is found that, in general, the normal component &, of the plasma displacement
has an oscillatory type of singularity: & ~ (¥ — 1) ~ sin(|o| In | — 1| + const ),
where ¢ is an imaginary constant. For special classes of MHD configurations o vanishes.
In this case the previously derived law & ~ In|i) — 1|, [Y. Pao, Nucl. Fusion 15, 631

(1975)] remains valid. Configurations with up/down symmetry pertain to these classes.

PACS: 52.35.Bj, 52.50.Gj, 52.30.Bt




1. Introduction

It is well known that the frequency spectrum of plasmas in the magnetohydrodynamic
(MHD) description has both discrete and continuous parts [1], [2]. In axisymmetric geom-
etry, to any frequency in the continuous part there corresponds a flux surface where the
eigenmodes become singular [1], [3]. In three-dimensional geometry without symmetries
the situation is far less clear [4], and comparably much less analytic work has been done.
In the present investigation, however, we restrict our analysis completely to the axisym-
metric case. Also, we consider finite toroidal mode numbers and thus exclude ballooning
type modes.

The continuum plays a important role in linearized MHD. In addition to its fundamen-
tal aspect in the mathematical theory of MHD, it also has practical aspects. The localized
accumulation of energy in the continuum modes can be utilized in heating schemes such
as the so called Alfvén wave heating method [5]. From a more fundamental point of view,
the continuum is of interest because it describes inherent plasma properties independent
of external boundary conditions. Gaps in the continuous spectrum which open up in
toroidal geometry are the preferred locus of global modes (2], [6] which can be dangerous
for alpha-particle heating in nuclear fusion reactors. Also, global modes may experience
“continuum damping” if they do collide with parts of the continuum. Observations of
signals from the earth’s magnetosphere hint at transfer of energy from compressional
phenomena into shear Alfvén waves of the MHD continuum [7], [8]. Thus, the study of
the MHD continuum is a worthwhile subject.

In axisymmetry, two classic papers on this topic have been published in the same
year. One by Goedbloed [1] and a second by Pao [3]. In both papers a subset of linear
differential equations, relevant for the properties of the “eigenmodes” within the magnetic
surfaces, is derived. The derivatives in these equations are derivatives with respect to
the path length, taken along the unperturbed magnetic field lines. The square of the
mode frequency w plays the role of an eigenvalue parameter. Periodicity conditions on
the torus determine the eigenvalues w2, m = 1, 2, ---. The w2, depend continuously on
the magnetic surface label. Both subsets, although written for different variables and
with a different degree of elimination, are mutually equivalent.

Goedbloed [1] discusses in detail how toroidicity couples the Alfvén continuum and
the slow continuum, which are decoupled in screw pinch or sheet pinch geometry, and he
also discusses the occurrence of discrete modes. Furthermore, he shows that there exists
a sequence of integrable functions in Hilbert space which satisfy the eigenmode equations
better and better but which do not converge to an integrable function. He thus proves
the existence of improper (hence the quotes) “eigenfunctions”, which are the signature of
a spectral continuum in the mathematical sense.




Pao [3] is interested not only in the spectrum and the properties within the resonant
surface but also in the dependence of the continuum modes on the “radial” coordinate 1,
where the flux function 1) labels the pressure surfaces. He seeks approximate solutions,
for all mode equations, valid in the proximity of the resonant surface at ¥ = v, for
frequencies w taken from the continuum.

In simple geometries, such as the sheet pinch or the screw pinch, it is well known
from the explicit solution of the equations in terms of Bessel functions, that the radial
component of the displacement vector, to leading order, has a logarithmic dependence,
while the component within the surface but orthogonal to the magnetic field, behaves
as 1/(1 — ). In Ref. [3] Pao claims that the logarithm and the inverse power law still
describe the leading order behavior also in arbitrary azisymmetric toroidal geometry. The
aim of the present paper is to show that this is not the case, in general. We find a
radial dependence of the form (¢ — )% and (¢ — 1)}, respectively, where o is an
imaginary constant that is generally non-zero. In special cases, with o = 0, however, the
results of Ref. [3] remain valid. The most important exceptions to o # 0 are equilibria
with up/down symmetry with respect to the “equatorial” mid-plane. Other exceptions
are e.g. pressureless equilibria with purely poloidal magnetic fields. This case is relevant
e.g. in magnetospheric physics, where it received and still receives much attention [9], [10].
Reference (3] is still one of the fundamental treatments of the subject and is quoted in
many papers on Alfvén continua, see e.g. [8], [10], [11]. We therefore try to be as clear as
possible in substantiating our claim.

In order to determine the leading order behavior of continuum modes, Hameiri devised
a scheme [12] which differs from that applied in Refs. [1] and [3]. Also, in Ref. [12] it is
mentioned in passing, without an explicit proof, that the result of Pao [3] (logarithmic
and inverse dependence on the distance) can even be extended to the general three-
dimensional equilibrium case. Not only in view of our present results but also in the
light of the difficulties encountered in Refs. [4], with non-symmetric 3-D equilibria, we are
skeptical about this remark.

The present paper is organized as follows. In the next section we present our general
method, how to obtain the leading (and higher) order radial dependence. The method
partly agrees with that used in Ref. [12]. A dimensionless exponent o, see above, defined
by averaging procedures around the torus, emerges as relevant for the radial dependence.
In Sect. 3 this so far abstract quantity o is expressed as much as possible in terms of
equilibrium quantities. A discussion of special cases, those with o = 0, follows in Sect. 4.
Conclusions are given in Sect. 5.

Appendix A is a supplement to the case ¢ = 0. Problems that arise in derivations
of the logarithm are pointed out and an improved derivation is presented. The insight




gained here is also helpful in Appendix B, which is devoted to a discussion of Pao’s work
[3] in the light of the results of Sects. 2 and 3. In Appendix B, we attempt to determine
the origin of the logarithmic solution that Pao found. In Appendix C the transition from
a torus to a straight cylinder is investigated.

2. Radial dependence: general considerations

The linearized MHD equations [13] can be written in the form

—w?p& = [curl B x b] + [curlb x B] — Vp, (1)
b = curl ¢ x B], (2)
p=—§-VP—qPdivE, (3)

where € , b and p represent, respectively, the displacement vector, the magnetic field and
the fluctuating pressure of the modes, and 7 designates the ratio of specific heats. Capital
letters denote equilibrium values. In addition, a harmonic time dependence of the form
exp(iwt) with frequency w has been assumed. The vacuum permeability o has been set
to unity in order to stay with the convention adopted in Ref. [1].

Inspection of Eqs. (1) — (3) readily shows that some but not all components of the
modes are differentiated in radial direction, out of the magnetic surfaces. We have in mind
the axisymmetric case, where the flux surface label 9 is used as one of the coordinates,
the toroidal angle ¢ is another, and a poloidal variable x, which for the moment need not
be specified, is the third coordinate. The equations (1) — (3), therefore, can be written in
matrix form in the following way

Av =Bw, (4)

0

7 w=Cv+Dw. (5)
Here, A, B, C, D are matrix operators acting on the column vectors v and w. The
operators contain derivatives only within the magnetic surfaces. The perturbation p and
the vector components of the perturbations b and £ are subdivided into the two vectors
w and v, depending on whether they are differentiated with respect to 3 or not. With
respect to the ¢ -dependence, the ansatz ~ €% is made. As a result of this ansatz, v and
w depend on 1 and x alone, and the only differentiation operation that is left in A — D
is with respect to x. _

For the present purposes, it is sufficient to know this basic structure of the governing
wave equations. It is also advantageous to have this general framework in order to compare
effectively our analysis with the analysis in Ref. [3], see Appendix B. In the next two
sections this framework will be completed with explicit details.
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We anticipate that the singularity of “eigenmodes” in the continuum, at a resonant
surface 1 = 1)y, manifests itself by steep gradients of the modes in the vicinity of .
Let € be a small number, € < 1, and let y = (¥ — 1g)/e. In the following, y is chosen
as the new radial variable in place of ¥, and the region in y considered is of order one.
With Ow /0y = e '0w/dy a factor ¢! is picked up on the left-hand side of Eq. (5). As
a consequence, this equation can be satisfied non-trivially to lowest order, only provided
w is smaller than v, order of magnitude wise, by a factor e. This suggests a series ansatz

for the modes in the form
v=vO 4+ v 4 &v® .o = po(y)vo + ep(y)vi + Epg(y)va + -+, (6)

wW=c¢ [W(O) +ew® 4+ 2w® 4 .. | = e[wo(y)wo + evi(y)wr + 62’/2(!!)“'2 ot o (7)

where the v; and w; are functions of x alone. Finally, all equilibrium quantities, A say,
are Taylor expanded with respect to ¥ which implies an expansion in y of the form

A=Ag+eyA1+£2y2A2+---. (8)

This notation is also transferred to the matrix operators A — D, where is is supposed to
apply to each matrix element. The expansions (6) — (8) transform Egs. (4) and (5) into

(Ao + eyA) (V@ + evD) = (By + eyBy)e(Ww® + ewD) 4 ... (9)

%(w(o) + ew®) = (Co + eyCy) (v + evV) 4 (Dg + eyDy)e(Ww® + ew®) + .- (10)
To the lowest order in € this implies

LoAgve = 0, (11)

voWo = 1oCoVo, (12)

where the prime denotes differentiation with respect to y. To first order there results

AoV + YpoA1ve = voBowo, (13)
viwi = uCovi +ypoCivo + 1oDowo. (14)
From Egs. (11) and (12) we find
Agvo =0, (15)
Vo = Ho, (16)
wo = Covo. (17)

Equation (15), together with periodic boundary conditions in the poloidal variable x,
determines the continuous part of the spectrum. Since Eq. (15) has nontrivial solutions,
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the inhomogeneous Eq. (13) for v;(x) can have solutions only if a solvability condition is
satisfied. The product of V¢, in some properly defined function space, see below, with the
inhomogeneous terms must vanish, where Vv, is a solution of the adjoint equation Ag% =0
If we denote the product with acute brackets and keep in mind that the operator A, is
self-adjoint [1], [3], the solvability condition becomes

Yo < nglvo >=1p < V(T,BQW[) > . (18)
Here v = v was taken, and v} is the transpose of vi. With Eq. (17) and the definition

< VEBDCQVO >
< viAvo >

(19)

g =

there results
Yo = O Vp. (20)

From here onwards our treatment differs from that in Ref. [12]. If Eq. (20) is differentiated
and v is taken from Eq. (16) there results

(ypo)' = apo. (21)

Its solution is
po(y) = coy” ™, (22)

where ¢g is an arbitrary constant. From Eq. (16) there results
- €, o
Vo(y) = Cpo + ;’y 3 for o # 0, (23)
where ¢y is another arbitrary constant, and
w(y) = coo + colnly|,  for o =0. (24)
A remark concerning the case o = 0 is appropriate here. In this case, Eq. (20) becomes

ypo =0, (25)

This condition is not satisfied by the solution (22), except for the trivial case ¢y = 0.
Therefore, strictly speaking, the logarithm is not an acceptable solution for this expansion
scheme. In Ref. [12] this problem was circumvented by an elegant ad hoc recipe. In
Appendix A we discuss this point further and put the logarithm on a firm basis. In
Appendix B we put Pao’s treatment of the singularities [3] in parallel to the treatment
above. We try to shed light on his at times somewhat unclear procedure.

In agreement with Ref. [12] the conclusion is reached that a logarithmic dependence
on ¥ — 1 of some variables, together with a (¢ — 1) ~'-dependence of others occurs only
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provided the quantity o, defined in Eq. (19), vanishes. The determination of o requires
an explicit representation of the operators A — C and a consideration of the eigenvalue
equation (15). This task is undertaken in the next two sections. As mentioned before, we
find o # 0, in general, and o = 0 in special cases.

In the case o # 0 the series ansatz (7), (8) for v and w can easily be solved to higher
orders as well. It may suffice here to indicate the first steps. If Eq. (13) is differentiated
with respect to vy, and g, 1o from Egs. (22), (23) are inserted there results

uiAgvy + cooy® A1V = oy’ Bowy. (26)

This implies
1 a
pm(y) = cro + S0y (27)

where ¢ is a constant, and
vy = Au_l {—O’Al'\f'g + BoWo} . (28)

The inverse operator A; ! exists, since the solvability condition to Eq. (13) is satisfied.
Equation (13), in its original form, shows that cgp = 19 = 0. The function 1 (y) therefore,
is given by yuo(y) (up to a constant factor, which may be absorbed in the x-dependent
part of v(1). It can be shown that p; = yp,—; holds in any order ¢, and analogously with
v;.). Equation (14) for v;(y) and wi(x) can also be solved in a straightforward manner.
Thus, for o # 0, the ansatz (7), (8) for v and w leads to a formal power series solution

of the “eigenmode” equations, in the vicinity of the resonant surface.

3. Evaluation of the exponent o

In the previous section it was found that the dependence of the continuum modes on the
radial variable is governed by a quantity o which is defined in a rather abstract way, see
Eq. (19). The present section is devoted to a more detailed evaluation of this quantity.

For the present task a definite coordinate system and a definite choice of the dependent
quantities to work with is necessary. We adopt the treatment of the continuum in Ref. (1]
for this purpose and we heavily rely on relations derived there. Nevertheless, a few remarks
on the equilibrium, the coordinates and the representation of the modes are repeated here
for convenience.

The coordinates (1, x, ¢) are chosen as in Sect. 2 above, except that now 1 denotes
the poloidal magnetic flux, and the poloidal coordinate ¥ is specified by the orthogonality
condition V- Vx = 0. This turns the unit vectors ey, e,, €, into a mutually orthogonal
triplet, where e; is defined by e; = (dr/di)/|0r/di|, i = v, X, ¢, and r is the coordinate

vector.




The magnetic field is represented in the form

- }i%(—vip x e + Ieg), (29)

where R = R(1, ) is the distance away from the axis of symmetry, I = RBy = I(¢) is
an arbitrary flux function, and %, in cylindrical coordinates R, z, ¢, is determined by

RLLD L D) y(r,2) = ~RP() - 1) (30)
ORROR = 022 T ‘
P = P(%), the equilibrium pressure, is also an arbitrary flux function. In the new

coordinates Eq. (30) is a relation between the Jacobian J = 1/(Vy - [Vx x V¢]), the
poloidal magnetic field B, and the flux functions P and I,

k2
J

The prime denotes (partial) differentiation with respect to 1.

(JBZY + = Tl ] (31)

P+ 72

The linearized mode equations (1) — (3) are condensed in Ref. [1] into the matrix

equation
Y. Fi Xj = —pwie; X, (32)
J

where X = (XY, Z) is defined by

By By&y, — By&s . By&x + Byl
X = (JRBxg,,,, B, Hr s : (33)
the matrix F;; is given in the form
DB?D + ay; DGB?+ a;y D~PF
- 1
:Fij = —BQGD + ag —G"}’PG e B2G§GB2 + ago —G’YPF ) (34)
—FyPD —FyPG —F+vyPF
where
B? = 4P + B?, (35)
and 1 1 2 2 0
i | . 2
an = ~}FR2—B)2(F3 - ﬁ(’r’ +gX'), a2 = BV (Tﬂ 5 /\Za) B, (36)
2 9 .. - B3
ao = —-I—jB2 (TTL + é—)zx\’t) g Qg = —B2F§g‘)§—2FBz, (37)
and . B2 R '
o =X o3 = B?, (38)

XTBREBY v (Pl BYO?




B , B,
r==X(JB), A=F. (39)

Furthermore, D is defined by D = l—a—, and the definitions of F' and G are

J Oy
1 d ng i 8; nB}
=———4 = G=————-—*X
Tay "~ J Jay "1 (40)
The, locally defined, safety factor g is
JB

In order to obtain a first-order system with respect to the 1-derivatives it is advanta-
geous to introduce a function S(%, x) by the definition

S = B?DX + GB?Y +yPFZ. (42)

Equations (32) — (34) can then be written in the standard form of Egs. (4), (5),

(2)+()
()t} e

A _B¢2EF 4 GyPF
B B (45)
YP =, 3P 2 '

gl

® i

U

S———
[

where

with

A e E@%Géz + B2G$GB2 + GYPG — ag — pw’as, (46)
s 1 _ - _
Q21 —BZGE TiG’B2 szF
B— »p | =B B : (47)
0 —Fﬁ —ai12 0
1
0 e
D=1J B2 |. (48)

—a11 — szﬂfl 0
Equations (43) and (44) define explicitly the elements of the column vectors v = (Y, Z)T

and w = (X, S)T. Note that in all equations derivatives with respect to x operate on all
quantities to their right, except where indicated below.
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The matrix A may be simplified by applying the definitions (35) — (40). The result is

B2 ~P (8,B?\? i P
B*F —_X_FB? 4 — ( X ) — puwiay —(0,B*)F
BZB? 2 \ JB i
A= B > (49)
P
F:YB (6.8 FLPB2F pwlas

Here, the y-derivatives in front of B? and enclosed in brackets do not extend beyond the
brackets. In our derivation, the continuous spectrum is determined by Eq. (15), Agve = 0.
If vy, see the ansatz (7), is written in components, the continuum equation becomes

Ao(z)z. : (50)

Equation (40) in Ref. [1] serves the same purpose there. A comparison with the operator
A, above, shows complete agreement (up to a typing error in Ref. [1]).

The fact that the operator A, for periodic boundary conditions, is self-adjoint can be
checked easily, by partial integrations, if the operator <> in function space is defined by

<a>Ejt(ade. (51)

The index o, Eq. (19), which determines the radial dependence of the modes has the
form o = /a, with

1 =g VE’,BOCUVO - 8 a=< nglvo 2] (52)
(3 uses the product BC,

T oits =z P
—a21§5GB2 + B2G“§-2-Ja12 P, X

BC = - . (53)
FH—Jam 0
B2

With repeated partial integrations it is straightforward, albeit tedious, to bring 3 into a

reasonably condensed form:

_ 1 = B* B B .
)8 = 2l < W{Blla (B4 BzR ) B43X (BTTCRRL)} |}/(}I2 >

. 1 1 (8B _—
+ 4iyPI*S < 75 JRB ( TB“ )nt (@75 Yo &
X
1 1 = ]
— 4iyPI¥ < — 75 JRB, ke (04Yy) (0y +ing) Zy >

1 B,
— 4inyPR < — e - 14 (0y +1ing) Zp >, (54)

R
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where R and S denote the real and imaginary parts, 8, = 9/dx and
170 = —Y. (55)

While the factor B?, in this definition, is for convenience, the denominator I ensures that
Yo stays finite in the limit of purely poloidal fields, i.e. for B, = I/R — 0, see the second
component of X in Eq. (33). For equilibrium quantities, the index zero has been omitted
for convenience of notation. The poloidal and toroidal curvatures, k, = e, - Ve, and
Kt = €4 - Vey, are given by [1]

R ,
SUBY,  m=BR. (56)

In Eq. (54), the x-derivatives end after the nearest closing bracket, except in the last two
terms, where they still operate on Zj.

It is instructive to consider a few special cases. In the pressureless case, P = 0, the
first term in 3 simplifies, owing to B2 = B2. while the remaining terms vanish. The result
is

B(P=0) = 2nl < - |Y0|2 - R(n,, . nt)] (57)
If the magnetic field is purely poloidal, I = 0, as e.g. approximately realized in the earth’s
magnetosphere, it holds that

1 B, o
B(I=0) = —4inyPR < -‘@Exn,, Y;0,Z0 > . (58)

The denominator « of o is nonzero, in general [3]. It is obtained from

dA
oY

where A(y)) =< viAv >. This follows from the definition of A, and the fact that Avy =0
at 1 = 1. It is straightforward, using partial integration and periodicity conditions for

a= (59)

]
Y=1)o

A and v, to put A into the form

B2R2 ]. ’YP ]. 2\ %7 4 . 2
A=< J232 I(B + inq) Y| JQB2 = Bl |I(BXB )Y — B*(9, —I-mq)Zl >
2 R
- W< p[ Y2+ B?|Z)?| > (60)

where ¥ = B2Y/I. Manifestedly, A(%) is real. So then is a. Note that consequently o is
purely imaginary, if it does not vanish.

Equation (60) also proves that « stays finite in the poloidal limit, / — 0, when
expressed in terms of Y, and Z,.
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There is no evidence whatsoever, in the general case, that relations originating from
the equilibrium conditions or from Agvy = 0 would bring ¢ identically to zero. For
particular types of configurations, however, o = 0 indeed holds. This is discussed in the
next section.

4. Configurations with ¢ =0

From Egs. (57) and (58) it is obvious that the exponent o vanishes identically under
particular conditions on the equilibrium configurations. This is so for pressureless config-
urations (P = 0), provided the magnetic field is purely poloidal (I = 0) or provided the
perturbation is axisymmetric (toroidal mode number n = 0). The case of a pressureless,
purely poloidal magnetic field configuration has been treated carefully also in Ref. [10]. In
agreement with our result ¢ = 0 a logarithmic dependence was obtained. For the modes,
an extended series solution, analogous to Eqgs. (A.1), (A.2), was derived.

Equation (58) shows that, for finite pressure, a purely poloidal field with an axisym-
metric perturbation also brings about o = 0.

There exists another class of configurations with ¢ = 0 which might be more rele-
vant with respect to applications. It is the class of up/down symmetric configurations,
i.e. configurations which are symmetric with respect to the “equatorial” plane, at x =0,
say.

The proof is based on the fact that the numerator 3 of o is proportional to an in-
tegral around the poloidal cross section and on symmetry properties of ¥ and Z that
can be inferred from Egs. (49) and (50). It is easily seen that the operator A*(x), act-
ing on vi(x) = (Y5, Z;)T, is the same as the operator A(—x), acting on vo(—x). As a
consequence, it holds that

vo(—x) = fvs(x), (61)

where f is a complex constant. From the continuity of vy at x = 0 it follows that

[fIP=1. (62)

Equation (61) holds componentwise for Yy and Z;. From these relations it is straight-
forward, with a bit of algebra, to see that the integrand in all four terms of Eq. (54) is
antisymmetric with respect to x. This proves 3 = o = 0, and hence the logarithmic
dependence of &, on the distance 1) — 1. 7

One might ask whether o goes to zero for arbitrary equilibrium configurations if the
torus is opened up into a straight cylinder, i.e. in the limit Ry — oo, where Rg is the
average major radius. It can be shown that, in general, this is not the case, see Appendix
C. The exponent o vanishes only in configurations which are the axial analogues of the
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toroidal equilibria discussed above in this Section. The only difference is that o = 0 holds
in arbitrary cylindrical equilibria provided the modes are constant along the cylinder axis
(n=0). The fact that continuum modes in cylindrical plasmas with non symmetric cross
section behave differently from those in symmetric configurations, does not seem to be
widely known.

5. Conclusions

It was shown in the previous sections that in axisymmetric toroidal MHD equilibria the
radial dependence of modes in the spectral continuum is, generically, of the form (¢ —1/)?
or (¢ — )°"!, where o is a purely imaginary number. Expressed in real form, this
corresponds to sin [ |o| In 1) — 1| + const] or sin [ |o| In |1p — 3| + const ] /(1) — 109). This
describes an oscillatory behavior whose period shrinks more and more, in coming closer
to the singular magnetic surface 9 = 1. This radial dependence does not agree with the
previously obtained monotonic form In |1 — 1| or 1/(¥ — %), [3], which is (implicitly)
claimed to hold for arbitrary axisymmetric MHD configurations. We think that this claim
(3] is not substantiated enough, see Appendix B.

The impact of this difference on practical applications may be small, in particular,
in view of commonly encountered cases where Pao’s result remains true. The qualitative
difference, however, concerning a fundamental aspect of the MHD continuum, is substan-
tial.

Under particular circumstances, our result, Eq. (54), leads to the special value o =
0. In these cases the results of Ref. [3], with the logarithmic space dependence of the
normal component of the displacement £ remain valid. The most prominent such cases
are configurations with up/down symmetry. Similarly, 0 = 0 holds provided any two
out of the following three conditions are satisfied simultaneously: (I) The magnetic field
has no toroidal component. (II) The MHD equilibrium is pressureless. (III) The plasma
perturbation is axisymmetric.

The transition from the oscillatory behavior to the logarithmic behavior, when a con-
figuration with o # 0 is deformed into a configuration with vanishing o is a gradual one.
The radial zone of oscillations shrinks more and more towards the singular surface.
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Appendix A: series expansion in the case o =0

It has been realized repeatedly [10], [14], [15] that in the presence of logarithmic terms
“eigenfunctions” require a more general ansatz than Eqgs. (7), (8) in order to allow a self-
consistent solution. Such an ansatz which takes into account Eq. (16) and the relations

between pu;, v; and p;_q, vi—1 from Sect. 2 is
v =0 (y)[vo+eyvi + -] + ev(y)[ko + eyki + - -], (A.1)

w = ev(y)[wo + eyw1 + - -] + V' (y) [eyls + €y’ + - -] (A.2)

Here, the functions v;, w;, k; and 1; are functions of x, and the first part in Egs. (A.1)
and (A.2), respectively, corresponds to the ansatz (7) and (8). To lowest order in € one
obtains again Eq. (15), and the relation

v'wo + (yv')'l; = V' Covy. (A.3)
Since the dependence on y has to be the same in all terms it follows that
(W) <ar (A.4)
with an arbitrary constant c. There are two types of solution. For ¢ = 0 there results

v(y) =Inlyl, (A.5)
while for ¢ # 0, the solution is

v(y) = %y“- (A.6)
The case with ¢ = 0 is the interesting one. In this case (yv')’ = 0, and the term with 1
drops out of Eq. (A.3). It thus goes over into Eq. (17). Note that an equation yv' =0,
analogous to Eq. (25), does not occur here. This is a consequence of the series ansatz

made in Eqgs. (A.1), (A.2), which for v(y) = In|y| is more general than Egs. (7) and (8).
To the next order one obtains

Ag(”!ﬂ/’Vl + Vk[]) + yAll/'Vg = B[)(VWQ + yl/’ll). (A7)
The terms with y2/ and those with v have to vanish separately. There results
AQV1 —+ A1V0 —= Bgll, (AS)

Agkg = BQWU. ‘ (Ag)

To both equations a solvability condition has to be considered. With Eq. (15) there

results
< VE)A]_VQ >=< VE)BU]-I >, (A].O)
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0 =< viBowo >=< v{ByCovo > . (A.11)

The first equation merely fixes a weighted mean value of the function 1,. Equation (A.11),
however, is equivalent to the condition o = 0, see Eq. (19). Thus the case o = 0 is indeed
compatible with a logarithmic solution for v, as we wanted to show.

v; and kg can now be obtained from Egs. (A.8) and (A.9). The higher order terms
follow similarly. If, however, the power law solution (A.6) with ¢ # 0 , instead of the
logarithmic one, is inserted into Eq. (A.7), it turns out that o = 0 leads to a contradiction.
This proves that o = 0 is both, necessary and sufficient for a logarithmic dependence to
occur (within the ansatzes made).

Appendix B: comparison with Pao

The aim of this Appendix is to compare the treatment of Pao in Ref. [3] with our analysis.
We begin by associating the key equations in Ref. [3], which we mark here with a capital
P, with ours. In so doing, we will condense the component-wise notation of Ref. [3]
into a convenient vector notation. Pao’s equations (P11) — (P14) and (P15) — (P16) are
represented by our Eqs. (4) and (5), respectively. The components of the vector v are
(ug, uy, bg, by), while those of w are (£,7). In order to distinguish variables in Ref. [3]
from the corresponding variables used here, Pao’s variables will be labeled henceforth
with a subscript P. His vector g with components (g1, g2, 93, g4) that Egs. (P19) - (P22)
specify is given by

g = Bwp. (B.1)

Equations (P23) — (P26), which define the eigenfrequencies w and the associated singular
surface ¥y (w), are represented by the vector equation

A(]VP =0. (B2)

Solutions of this equation are designated vpy analogously to the notation adopted in
Ref. [3]. Equation (4) is an inhomogeneous partial differential equation that relates v
to w. A solution for v exists only if a solvability condition is satisfied. The solvability
condition Eq. (P31) that Pao introduces is,

< vhog >=< vhBwp >=0. (B.3)

Equation (B.3), however, lacks consistency as it stands because vpy is defined only on the
singular surface 1) = 1y, whereas Eq. (4) is defined on a general magnetic surface labeled

by .
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Pao next makes an ansatz for the forms of vp and wp in the vicinity of the singular
magnetic surface with Eqgs. (P35) — (P38),

vp = X(y)[veo + eyvpr + -], (B.4)

wp = A(y)[Wpo + eywp1 + - -], (B.5)

which are power series in the radial coordinate y = 1 — 1y multiplied by the factors A and
). The leading coefficient of Eq. (B.4), vpy, is a solution of Eq. (B.2). These expansions
are equivalent to the first parts of Eqs. (A.1) and (A.2), respectively, and also to Egs. (7)
and (8). It should be noted that the role of v(y) is played by A(y), and that the expansion
factor € in Eq. (A.2) has been omitted. However, the relation A/\ — 0 asy — 0 is
assumed to be valid.

The expansion coefficients are derived by substituting Eqgs. (B.4) and (B.5) in Egs. (4)
and (5). To lowest order, Pao finds :

AOVPO = O, (BG)

which is Eq. (B.2). To the next order, Pao obtains his equations (P39) — (P42), which in
our notation are represented by the vector equation

y)\’Angl = —y/\'AlvPD + BoAwpyg. (BT)

where it is recalled that p; = yue and pg = v). Equation (B.7) is equivalent to Eq. (13).
Pao actually expresses Eq. (B.7) in a slightly different form. Specifically, he writes

'yA’A()VP]_ = 'y}\’A +g, (BS)

where A(vpg) = —A;vpy, and g is defined by Eq. (B.1). At this point, Pao introduces a
critical step. Without a clear explanation, he differentiates Eq. (B.7) with respect to y,
and then adopts the resulting inhomogeneous equation as the governing equation for vp;.
The solvability condition that results from Eq. (B.6) is

N < V}:QBQWPO >= (y/\')' < VI:OA]_VPQ >, (Bg)
or, in the notation of Pao,
< vhg' >= (W)’ G, (B.10)
where
G =2 vl Aiven 5. (B.11)

The left-hand side of Eq. (B.10), to lowest order, is evaluated with Egs. (P15) and (P16),
which correspond to Eq. (5). This leads to Eqgs. (16) and (17). Translated into Pao’s

notation, these equations imply
Wpo = COVPO. (B12)
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After substitution of Eq. (B.12), Eq. (B.9) becomes
X < vhoBoCovro >= (¥N) < vhoA1vpee > . (B.13)

If X'(y) is replaced by uo(y), it becomes evident that Eq. (B.13) is identical to Eq. (21),
with o defined in Eq. (19). Pao does not present an analogue to Eq. (B.13). He simply
states, “It turns out that, to this order, the integral on the left-hand side of ([P]43)
vanishes, yielding the result [y\(y)]'G = 0.” In other words, he claims without direct
proof that o (in our notation) vanishes for arbitrary axisymmetric MHD configurations,
and that A(y) ~ In|y|. Pao provides no explanation why Eq. (B.7) has to be differentiated.
Had he not differentiated, he would have obtained the following solvability condition
instead of Eq. (B.9),

A < vhoBowpg >= (yX') < vhoArveo > . (B.14)

If the left-hand side of Eq. (B.14) were to vanish, as Pao claims it does, the following
condition would emerge,

(yXN) < vheAvpy >=0. (B.15)
Equation (B.15) yields y A’ = 0, which is analogous to Eq. (25). The implications are that
X(y) is proportional to the delta function d(y), and therefore that A(y) is proportional
to the step function. Equation yA' = 0 and the ensuing appearance of distributional
solutions is related to the form of the series ansatz made in Egs. (B.4) and (B.5), as
discussed in Appendix A.

Appendix C: transition to straight cylinder

Let Ry be the average major radius of the toroidal configuration. The aim here is to
discuss the behavior of the exponent o in the limit Ry — co. It is assumed that during this
transition the local equilibrium quantities should not change qualitatively. The poloidal
magnetic flux per unit length along the toroidal circumference, for example, should not
change its order of magnitude, for Ry — oo. Similarly, the number of zeros per unit
length in toroidal direction, of the modes should stay constant. The magnetic field and
the displacement & should also retain their order of magnitude.

With these assumptions, with Eqgs. (29) — (31), and Eqgs. (41), (56), it follows that the
asymptotic scaling with Ry is as follows

TpNRO: INRU) JN]-1 qNRO_I’ nNRD) K:p""ls K't.NR(]_l- (C]-)

The product ng scales ~ 1. For further relevant quantities and operators there results,
see Egs. (37), (38) and (40),

F~G~1, ay~az~1l, A~1 (€.2)
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The modes obey, see Egs. (33) and (55),
Ko By, « a2 ool . ¥ oo B, (C3)

With these relations, it turns out that the numerator, 8, of o, Eq. (54), scales as Ry as Ry
tends towards infinity. The effect of the decreasing toroidal curvature k., in comparison to
Kp, is that all terms in B with a factor ; can be neglected. Only the first part of the first
term, and the fourth term, in Eq. (54) survive. From Egs. (59) and (60) it follows that
the denominator «, owing to the 1)-derivative, also scales as Ry . Hence, o scales as ~ 1.
A vanishing value of o, therefore, relies again on special properties of the configuration
which cut down the value of the poloidal integrals, or on situations with n/ = nP = 0.
As in the toroidal case, symmetry with respect to a mid-plane is sufficient for o = 0.

We note in passing an exception to the rule ¢ = 0 for symmetric straight equilibria.
This is an incompressible plasma, i.e. one with v = oo, with a circular cross section.
In this limit the relation Agvy = 0 for a straight plasma degenerates into the equations
A, Yy =0 and A7y = 0. Thus, Y and Z; are determined by the same equation. This
permits ¥y and Z, to be non-zero simultaneously. In analogy to Eq. (61) the symmetry

properties are
1/[l(_X) = fy YO*(X)? ZO(”X) = fz ZS(X)i (04)

where f, and f, are arbitrary constants that satisfy the constraints | 1% = |52 =1
This permits the choice f,ff = —1. As a consequence, the fourth term of 3 in Eq. (54)
is nonzero since with this choice the integrand is now symmetric with respect to the
angle x. The result, o # 0, agrees with a straightforward analysis of the modes in an
incompressible circular plasma cylinder. The radial displacement X, obeys an ordinary
second-order differential equation with respect to the radial variable r. In the vicinity of
a singular surface r = ry a power law of the form (r —ry)? with an imaginary exponent
o is found [16].
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