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Field Line Oriented Coordinate Systems
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The existence of orthogonal, field aligned coordinate systems, i.e. coordinate systems with
one coordinate direction always parallel to the local magnetic field, is critically reviewed.
Such coordinates are widely used e.g. in wave propagation studies of magnetospheric
plasmas and would as well be useful in theoretical studies of fusion plasma configurations,
particularly of configurations without spatial symmetry. With the help of simple model
magnetic configurations it is demonstrated that the presence of local magnetic shear
precludes in general the existence of such coordinates.




1. Introduction

In the investigation of any problem of plasma physics, such as, for example, the propa-
gation of waves in a magnetized plasma, a suitable coordinate system has to be chosen.
Only in the simplest cases will Cartesian coordinates be adequate. Symmetries in the
configuration considered may suggest the use of cylindrical coordinates, etc. If no sym-
metries are present, and if one wants to keep all options open, it is possible to work with
a system of yet unspecified coordinates and to use covariant notation. For this freedom,
however, one has to pay with the ubiquitous co- and contra-variant metric coefficients
9i; = Oir-d;r and g = Vr'. VrJ, respectively, where r is the coordinate vector with com-
ponents 7', 7%, 73 and 9; = 8/0r, for i = 1, 2, 3. Between these extremes of trivial and of
general coordinates there exist several classes of coordinate systems which are adapted in
some way to the physics and/or to the topology involved in the problem. In the case of
magnetized plasmas such coordinate systems are commonly based on the magnetic field
structure and may become rather elaborate [1].

In fusion plasma physics it is often assumed that the magnetic field lines are confined to
closed nested toroidal surfaces, the so called “magnetic surfaces” or “flux surfaces”, P(r) =
const, which, in the magnetohydrodynamic (MHD) plasma model, are also surfaces of
constant pressure. The variable 9(r) is then used as one of the coordinates. The two other
coordinates are a poloidal angle-like coordinate and a toroidal angle-like coordinate on the
flux surfaces, which can be chosen in such a way that the lines of the magnetic field become
straight lines. Various options on these “flux coordinates” can in addition be satisfied,
which give rise to specific coordinate systems such as the Boozer-Grad coordinates or the
Hamada coordinates [1].

In the following we will focus our attention on field line based coordinates rather
than on flux based coordinates. In field line coordinate systems, the intersections of
two families of coordinate surfaces trace out magnetic field lines. Let the intersecting
coordinate surfaces be a(r) = const and (r) = const. The magnetic field B then has the
so-called Euler or Clebsch representation

B = f(e,8) [Va x V], (1)

where f(c, () is a scalar function of o and 3. The coordinates (e, 3), in conjunction with
a third coordinate (r), which for example could be the distance along the field lines, are
well known and documented in the literature [1], [2].

A class of field aligned coordinates that is particularly popular in studies of waves
and resonances in magnetospheric plasmas is characterized by coordinate surfaces that
are also orthogonal to each other, see e.g. [3] — [13]. Unfortunately, such orthogonal,
field aligned coordinates, denoted here as OF coordinates, do not exist for arbitrary
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magnetic field configurations. Some authors do correctly indicate that the use of OF
coordinates places restrictions on the admissible configurations [5]. Other authors [7],
[12] consider a priori only those magnetic field geometries for which the existence of OF
coordinates is self-evident. An example of the latter geometry class is an axisymmetric
configuration with a purely meridional (poloidal) magnetic field. In most of the references
cited above, no discussion on the existence of OF coordinates is included. It is clearly
possible that the authors of these references had in mind magnetic configurations that
are consistent with the constraints of OF coordinates, without explicitly noting this. In
many of the papers based on OF coordinates the implicit restrictions on the acceptable
magnetic configurations do not necessarily place severe limits on the attainable goals of
the investigations. There are, however, papers where this is not so clear [3], [4], [5]. In
these papers the effects due to nontrivial magnetic geometry are stated explicitly as part
of the focus of the investigation [4] or as its main focus [3], [5], although in such general
configurations OF coordinates likely do not exist.

Since OF coordinate systems are so widely used, and in view of the general significance
of hypothetical OF coordinates, it seems appropriate to explore in some detail the prob-
lems related to their existence. This is the general aim of the present paper. We want
to point out specifically that orthogonal, field aligned coordinates should not be used
without a clear proof that they exist. A paper that is particlularly relevant for our pur-
poses is Ref. [3] by Klimushkin, Leonovich and Mazur. These authors propose a method
of construction of orthogonal, field aligned coordinates for magnetic configurations for
which OF coordinates do exist. Their method of construction and their discussion of re-
sults for nontrivial magnetic field configurations could suggest that OF coordinates exist
in fairly general situations. At first glance, it is not clearly evident where their method
of construction might fail, once existence of surfaces normal to B is established. The
authors reenforce this impression with the incorrect claim that Hamada coordinates for
arbitrary MHD equilibria are OF coordinates provided that Eq. (4) in Sect. 2 is satisfied.
In order to elucidate the reasons for possible nonexistence of OF coordinates, we will
treat in this paper a very simple, helical magnetic field configuration for which practically
all desired quantities and properties can be obtained analytically. With this example it
will be demonstrated where and why the construction process presented in Ref. [3] can
and usually does go wrong. The insight gained with this example is pertinent for general
magnetic field configurations as well.

In Sect. 2 a few basic properties of OF coordinates are reviewed. In Sect. 3 we
provide a short sketch of the construction method of Ref. [3] that is based on Dupin’s
theorem [14]. We then introduce our example configuration and demonstrate the stated
contradictions in the construction of orthogonal coordinates. In the literature the role




of axisymmetry in regards to the existence of orthogonal, field aligned coordinates is
sometimes presented, or rather the presentation is avoided, in such a way that incorrect
interpretations could ensue [3], [9], [11], [13]. We therefore discuss some pertinent aspects
of the general axisymmetric case in Sec. 4. A discussion and the conclusions are contained
in Section 5. Three appendices are present. Appendix A contains a short derivation of
the lines of minimal and maximal curvature of the helical magnetic field. Appendix B
summarizes the lines of minimal and maximal curvature in two degenerate versions of the
helical magnetic field. Finally, Appendix C contains a treatment and refutation of OF
coordinates which is more formal than the presentation in Sect. 3. The counterexample
employed in this appendix is, however, somewhat more general.

2. Some properties of orthogonal, field aligned coor-

dinate systems

The representation (1) for the magnetic field, which automatically satisfies divB = 0,
always exists, at least locally [1]. With a redefinition of a or 3 the coefficient f(a,f3)
can be transformed into unity. Sometimes o and £ in the representation (1) are called
“unmatched” Euler potentials, while they are called “matched” if f = 1. A consequence
of Eq. (1) is

£:-Va=B-V3 =0. 2)

Field lines are described by the intersection of the & = const and § = const coordinate
surfaces. If all three coordinate surfaces are assumed to be orthogonal to each other, the
magnetic field must be in the direction of the normal to the third coordinate surface,
v(r) = const say. This implies

B =gVy, (3)

where g = g(r) may also be a function of position. By taking the curl of Eq. (3) one
obtains
B :curlB =0. (4)

With j = curl B this condition, j - B = 0, implies that the current density j must not
have a component parallel to the magnetic field. Equation (4) is also sufficient for B
to have normal surfaces [15]. In the current-free case g is a pure function of v and can
be transformed into unity. Condition (4) is a severe restriction on the magnetic fields
admissible for OF coordinates.

Once functions a(r), B(r) and «(r) for a magnetic field are known, it follows from
Egs. (1) and (3) that the orthogonality conditions

Va-Vy=Vg-Vy=0 (5)
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are satisfied automatically. The third orthogonality condition
Va-Vg=0, (6)

however, has to be imposed in order to make the coordinates orthogonal.

In magnetospheric literature, OF coordinates are used in two, slightly different, ways.
Either Egs. (1) and (3) are used explicitly, [5], [7] - [10], [12], or, without applying these
two equations, orthogonal, curvilinear coordinates are postulated, and the magnetic field
is assumed to have only one component, in the direction of one of the coordinate lines [3],

(4], (6], [11], [13].

3. An example without orthogonal, field aligned co-

ordinates

The construction of an orthogonal, field aligned coordinate system, as proposed by Kli-
mushkin, Leonovich and Mazur [3], very roughly sketched, proceeds as follows. Consider a
bundle of field lines, the bundle having sufficiently small but finite width. In the region of
the bundle the desired coordinate system is to be constructed. For this purpose, construct
the (continuum of) surfaces y(r) = const which are orthogonal to the field lines. On these
surfaces, construct the lines of curvature, i.e. the curves which at each point follow the
directions of minimal or maximal normal curvature of the surface. It is well known [16]
that through each point of a surface there are exactly two such curves and they cross
each other at right angles (except for spheres and planes where there are infinitely many).
In this way an orthogonal grid of lines covers each surface. The lines of minimal and
maximal curvature, denoted here as LMMC, stacked along the bundle, form surfaces o =
const and [ = const, respectively, say. From this procedure a tri-orthogonal family of
surfaces results which can be used as mutually orthogonal coordinate surfaces. Since the
construction is based on field lines everywhere the intersection of any two surfaces o =
const and 3 = const constitutes again a field line.

In order to look deeper into this method of construction, we use a very simple axisym-
metric, helical magnetic field configuration. Cylindrical coordinates (,, z) are employed
throughout. It is assumed that the magnetic field B only depends on the radial coordinate
r and that B has no radial component. Thus, the non-vanishing components are By(r)
and B,(r). The dependence on r, so far, is arbitrary. The symmetry assumed makes the
field B(r) automatically divergence free, if the axis r = 0 is excluded.

Let us look for a representation of B in the form of Eq. (3). The functions ~(r) has
to satisfy the (vector) differential equation

[B x V4] = 0. (7)
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From Eq. (7) one finds the two conditions
Ory=0 (8)

and
B,0yy — rByd,y = 0. (9)

There is a compatibility condition between Egs. (8) and (9). Take the r-derivative of
Eq. (9) in the form

d B. 930y _ (8m)(0:0,7) — (@7)(355‘#).

— = 10
drrBy  Or 0py (Oy)? (10)

From Eq. (8) it follows that the right-hand side of Eq. (10) is zero. The resulting equation
for the left-hand side, d[B,/(rBj)]/dz = 0, is just the expected condition B - curl B = 0,
Eq. (4), as is easily verified. This condition is satisfied for all configurations with

B.(r) = crBy(r), (11)

where By(r) is an arbitrary function, and c is an arbitrary constant. This relation is
assumed to hold, henceforth. It will become evident, however, that Eq. (4) is not enough,
in general, to guarantee the existence of OF coordinates. The magnetic field, in Cartesian
components, becomes

B = By(r) (—sinf,cos 8, cr). (12)

With Eq. (11) the solution of Egs. (8) and (9) simply is
v(0 + cz) = const, (13)

where 7 is an arbitrary function of its argument. These normal surfaces are also of helical
shape. Since they do not close onto themselves if @ is increased by 2w, radial cuts have
to be made in order to make them globally unique. For the present purpose, however, a
local consideration with a finite but small region of # values is sufficient.

The field lines r(z), 6(z) are determined by

dy v By rdd By 1
dz>B, } dz 1 BLIGY fp? (14)
with the solution
Z—2
T =19 = const, 0 =0 + —5—. (15)
cr

Here, 79 and 2, are arbitrary constants, 0o(ro) is an arbitrary function, and ¢ # 0 is
assumed. The field lines are helices whose steepness varies with the inverse square of
distance to the axis. 6y — zp/(cr2) could have been combined into a function Bo0(70), but
the representation (15) emphasizes that the field line crosses the plane z = z; at 6 = 4,.
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Next we look for surfaces a(r) = const and B(r) = const which are tangent to field
lines. They are defined by
B-Va=0 (16)

and the analogous equation for 3. In order to avoid unnecessary duplication of equations,
the pair o and 3 will be collectively denoted, in the following, either by a or by 3. Where
the distinction between the two functions is relevant, the original @ and (3 will be replaced
by a; and a; or by 5; and (. We start with the notation . The characteristic equation

for (16) is
_dz

df = —.
cr?

(17)
This can be integrated, with the result

z

a(r,0,z) =a(p,q), p=0- g=r, - (18)

cr?’
where « is an arbitrary function of its two arguments p and g. Clearly, from Egs. (15),
« is a constant along each field line. At each point in space the surfaces v = const and
a = const are orthogonal to each other, as is easily confirmed with the relations Vr =
(cosf,sin,0), VO = (—sin6,cos6,0)/r and Vz = (0,0,1), in Cartesian coordinates.
Equations (5) are therefore satisfied identically.

The arbitrary functional dependence of the o on their arguments p and q is to be used
to satisfy the orthogonality condition (6), i.e.

Val ¢ VOIQ = 0, (19)

everywhere. According to Klimushkin et al. this can be done with the help of the curvature
lines, the LMMC, which are orthogonal to each other. In appendix A the LMMC are
derived. They can be put in the form

0;(r) = 0jo +In Qﬁ, zi(r) = zjo — lln Qj—(r), forg=1, 2, (20)

Qjo c Qjo
where 01 = 1, 03 = —1 and Q;(r) = ojcr + 1+ 2. Also, Qjo = Qj(rj0). Each of
the two curvature lines r;(s) passes through an arbitrary point r = rjo, defined by the
triplets (1o, @j0, zjo), with 7 = 1, 2. If the surface which embeds the LMMC is described

by ¥(r) = 7 = const, the quantities 6,q, zjo and 7 are constrained by the relations
’}’(ng + Cng) =Y. (21)

In the limit 7 — oo Q1(r) diverges while Qy(r) goes to zero. This implies that the two
curves are spirals, one turning clockwise around the origin and the other counterclockwise.

The variation of the parameters 6,y and 6y generates a dense set of LMMC on v = .
They constitute a dense, orthogonal grid of coordinate lines. The additional variation of
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710 and 79 merely shifts the “bookkeeping” position of the LMMC to different radii and
adds no extra freedom. At any fixed point on y = v, the directions r(s) and r}(s) of the
LMMC, passing through it, are given by Egs. (A.5) and (A.6). It is easily confirmed that
the orthogonality relations

I =0 B 2205, toreg =01, 2 (22)

are satisfied identically not only on v = 74 but at every point in space (within the bundle).
Actually, as can easily be seen, r} and r} are combinations of the normal and the binormal
unit vectors n and b of the field line passing through r, according to r} = (b + n)/v/2,
ry =(b—n)/V2.

After these preparations, it remains to extend the local orthogonality relations (22) to
the surfaces a;(r) = const, see Eq. (19). The intersection of the surfaces a;(p,q) = ajo =
const with the surface v = o defines two families of curves, ¥;(s) and F;(s), say. As will
be presently shown, they can be made to coincide with the set of LMMC ri(s) and ry(s)
from Eq. (20). For this purpose, the first argument, p = 8 — z/(cr?), of « is evaluated
along both sets of LMMC. The result,

2
=t - 25+ TG0, @

is a function of 7 only. By choosing a suitable dependence on the second argument ¢ = r

it is thus possible to compensate this r -dependence completely and to achieve a; = const
along all the LMMC on the chosen surface v = 7. One thus obtains

. 2 Q:
{00 2) = 8 (0 - : c'r*?zju - 1(Uc7‘()rr") " éf:)) , e

where the o; are now two arbitrary functions of their single argument, respectively. It is

evident that the parameter 6, is equivalent to the parameter oo as regards the selection
of surfaces a(r) = ajo. The intersecting curve, 0(z), 7(z), say, between any two surfaces
a;(r) = ajp = const and ay (r) = o = const is again a field line. This is most easily seen
if, without restriction of generality, the two arbitrary points rjo on ¥(r) = 7y are chosen
to coincide, rjp = ry, say, and the constants oy and asg are both set equal to zero. From
the two equations in Eq. (24) one obtains, first by subtraction and then directly,

= ~ zZ— 2
T = rg = const, 0 =0+ ’

25
oy (25)

This is simply the field line which passes through r = ry on v = .

We now address the crucial question: given an arbitrary but then fixed “reference
surface” y(r) = 7, is the orthogonality relation (19) satisfied identically everywhere
along the intersecting field line of the two surfaces a;(r) = 0. For Va; - Vo there results

2
Va1 ¥ Vag = QJIQEW [2&21 AZg + (Azl T AZQ)T’UJ] ’ (26)
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where the prime here denotes the derivative with respect to the argument, w is defined
in Eq. (A.3), and
Azjzz—ngrlanj—(T). (27)
¢ Qjo
Since r = T = 7y, along the intersection, the last term in Az; vanishes, and only Az; =
z — zg, for j =1, 2, remains. Hence, Eq. (26) simplifies to

' 0 4
V():’]_ s VCBQ = ala;—CZ_er (Z = 20)2. (28)

It is evident that Vay - Va, is different from zero, in general. The only place where it
vanishes is on the reference surface v = v, with 2z = z,, where indeed, by construction, it
has to. We thus obtain the result: two coordinate surfaces, a;(r) = const and ay(r) =
const, which are made up of field lines and which are orthogonal to each other on an
orthogonal reference surface (r) = 9, do not remain orthogonal in general along the
field line that they have in common. This conflicts with the construction in Ref. [3] where
the orthogonality property is tacitly assumed to persist along the field line.

Our negative result is a consequence of the local magnetic shear, which is present in
the configuration. Field lines at different radial positions have different helical pitches. On
the reference surface v = ~; consider the foot-point of the common field line and the foot-
points of two arbitrary field lines on a;(r) = const and ay(r) = const. By construction,
they form a right angle. Since the common field line rotates around the axis at a different
angular “speed” compared to that of the other two field lines, the right angle is distorted.

Thus, the construction of an orthogonal system of surfaces does not work, in general,
if the field lines are to be coordinate lines. A complementary part of the construction
procedure in Ref. [3] which leads to the same conclusion highlights another aspect. Instead
of a reference surface consider a single, arbitrary but fixed reference field line, I say, which
is embedded within a bundle of neighboring field lines. One may ask first whether there
1s a coordinate system (fy, B2, ), say, whose surfaces v(r) = const are orthogonal to the
field lines, as before, and whose surfaces 3, (r) = const, §,(r) = const are orthogonal to
each other and to y(r) = const everywhere along F. A posteriori it is tested whether field
lines are coordinate lines.

One can proceed as follows. Let F' be given by

7(z) = 7o = const, 0(2) = .. B b, (29)

cra

where 7, 50 and Zj are arbitrary constants. Along this field line plus bundle there exists
the continuum of orthogonal surfaces (r) = const, as given by Eq. (13). On each of them
the curvature lines, the LMMC, are known, see Eqgs. (20). In particular, on each surface,
we focus on those two LMMC which meet (orthogonally) at the point where the field line
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F crosses the surface. The totality of all these pairs of LMMC along F' form the two
surfaces ) (r) = const and f,(r) = const. They are easily derived. In Egs. (20) the two
arbitrary points (7o, 6o, 2zj0) have to be replaced by the common values (7(2), 0(3), 2),
where Z is written for the continuous z-value along F. With Eqgs. (29) this parameter 2
can be eliminated. Altogether, with Egs. (20), a relation between 7, @ and z is obtained
which defines the two desired surfaces. They may be written in the form g;(r) = 0, with

ﬁj(T, 9,2) = ﬁj (9 = §U = 4% 20 —JLU2('FO) In QJ(T)) 3 (30)

cr2 (cFo)? Qjo

where the functions §; may depend arbitrarily on their argument, but such that g;(u) =0
for u =0, and Qjp = Q;(7). Note the similarities and the differences between a;(r),
Eq. (24), and G;(r). It is easily confirmed that V3, - VG, = 0 along F'| as it must be.
With Eq. (12), however, it also follows that

By

5= 1A, a2 2

BVﬁJ_ﬂJW(Tumr ) (31)
This vanishes only along the field line F, at r = 7, (and, owing to the symmetry of
the configuration, also on all field lines with the same radial distance to the axis). Con-
sequently, except for F, field lines are not simutaneously coordinate lines of the system

Bi(r), Pa(r), v(r), which along F is orthogonal.

4. Further comments on OF coordinates in the ax-

isymmetric case

First, a trivial observation regarding orthogonal, field aligned coordinates in axisymmetric
configurations is made. In the magnetospheric literature it is often stated that in such
cases the angle of symmetry, ¢, can be used as one of the coordinates o or B in Eq. (1),
see e.g. Refs. [3], [4], [9], [11], [13]. This identification implies B - V¢ = 0, i.e. the absence
of a toroidal component of the magnetic field. This is a further, severe restriction of
the admissible configurations, which however is seldom mentioned by the authors. For
example, if the only comment on restrictions to the admissible configurations is something
like, “The only restriction of the magnetospheric plasma . . . is its axial symmetry, implying
that all equilibrium quantities — plasma density py, pressure F,, and magnetic field B —
are independent of the azimuthal coordinate” [13], then this is rather misleading. Neither
models of the magnetosphere which would retain axisymmetry but would be more realistic
with respect to a local azimuthal field component nor axisymmetric fusion devices with
finite rotational transform can be treated with the coordinate system and the identification
of ¢ just mentioned.
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A less trivial result on OF coordinates in axisymmetric configurations follows from
theorems of differential geometry. Let 1 be an index which labels the circularly symmetric
magnetic shells or surfaces. Since B - Vi) = 0 is satisfied by definition, ¥ can also be
identified with a or # (without a specification of the other member). Dupin’s theorem
[14] states that in a system of three mutually orthogonal surfaces these surfaces meet in
curvature lines of the surfaces. This implies in particular that field lines must be curvature
lines of the 1(r) = const surfaces. Curvature lines of surfaces of revolution, however, are
the meridians and the circles of constant latitude only [17]. In configurations whose field
lines do not belong to this particular, degenerate class (purely poloidal or purely toroidal),
therefore, the magnetic surfaces cannot play the role of the coordinate surfaces « or g, If
OF coordinates exist at all, their surfaces o = const and 8 = const must be tilted with
respect to the 1) surfaces.

We end with a comment on field aligned but not fully orthogonal coordinate systems.
If Eq. (1) for the magnetic field is kept, but Eq. (3) is not retained, the restriction (4) on
the current density and the orthogonality relations (5) are removed. One could however
still ask whether coordinates o, § exist such that their mutual orthogonality condition
(6) is satisfied, and such that a corresponds to the axisymmetric magnetic surfaces .
Also, let 3 be a coordinate, more general than ¢, but such that the partial derivative
of equilibrium quantities with respect to  vanishes. Without proof we state our result,
namely that such, potentially desirable, coordinates are again not possible for general
magnetic field configurations.

5. Discussion and conclusions

A simple, helical magnetic field configuration was used to study explicitly the existence of
orthogonal, field aligned coordinate systems for which a construction method is given in
Ref. [3]. It was demonstrated why this construction goes wrong in general: the demand
for a mutually orthogonal system of coordinate surfaces and the demand that field lines
should also be coordinate lines are incompatible in general.

The problem does not lie in the demand for mutually orthogonal coordinate surfaces.
Locally, they always exist. There are two methods to construct them which are related
with the two aspects of the problem discussed in Sect. 2. The first method is based
on Darboux’s embedding theorem [14]. It states that if on an arbitrary surface v(r) =
Yo, say, a grid of curvature lines is given, this surface can always be embedded, in the
local neighborhood, in a mutually orthogonal system of coordinate surfaces. The second
method has been advocated by Mercier and others [18], [19]. It singles out an arbitrary
suitable curve, r.(£) say, which may also be a field line, as an “axis” of the configuration.
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The planes spanned by the normal and the binormal directions, n(£) and b(¢), to r.(£)
are considered. In these planes, the distance p to the central curve and a suitably defined
angle w, together with the coordinate £ can always be forged into an orthogonal coordinate
system (in the local neighborhood of the central curve). Mercier coordinates have their
merits and they are used up to recently [20]. In the two types of orthogonal coordinate
systems just mentioned, however, field lines are not simultaneously coordinate lines, in
general. In Sect. 2 it was made plausible that local magnetic shear is the culprit which
prevents the coincidence of the two items. This suggestion is corroborated by an example
for OF coordinates, mentioned in Ref. [19]. In a solenoid with an axis twisted away from
the equatorial plane the magnetic field lines in the vicinity of the axis are also coordinate
lines of an orthogonal (Mercier-) coordinate system. This configuration has no shear in
the neighborhood of its axis. _

The claim that for a rather general class of MHD equilibria OF coordinates exist [3]
still needs to be discussed. MHD equilibria with plasma pressure P(r) satisfy the equation
[i x B] = VP. For j-B = 0 the normal to the pressure surfaces, the current density
lines and the field lines are indeed mutually orthogonal. If OF coordinates exist, surfaces
normal to all three families of coordinate lines must also exist. The condition for surfaces
normal to the current density lines j to exist is the analogue to Eq. (4) for the field lines,
namely

J-curlj=0. (32)

This can be tested with our example configuration of Sect. 2 which is easily extended into
an MHD equilibrium. The components of j are
!
=0, jo=-B, =%, (33)
cr
where B,(r) = crBy(r), and the prime denotes derivation with respect to 7. The MHD
equation is satisfied provided P = P(r), with P'(r) = —w?(r)B,B./(c*r?*). From Egs. (33)
one obtains

2B.(r)
er?
This, however, shows that condition (32) is not satisfied in general, contrary to the claims

jreurlj=— (34)

in Ref. [3]. (Our analysis is valid with or without the use of Hamada coordinates). The
only acceptable case, in our example, is the current free case, with By(r) ~ 1/r and
B; = const. This result underlines our word of caution that orthogonal, field aligned
coordinates only exist under very restricted circumstances.

Cases where OF coordinates trivially exist include axisymmetric configurations with a
purely meridional (poloidal) magnetic field. This is an often assumed model field in wave
and resonance studies of magnetospheric plasmas. (For the helical magnetic field studied
here such degenerate cases are discussed in Appendix B.) Unfortunately, purely poloidal
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(or purely toroidal) magnetic fields are unsuitable in fusion plasma physics where the same
wave phenomena, e.g. resonances in the Alfvén continuum, are of interest. The extension
of their analysis in the 2D, axisymmetric case [21] to the 3D case without symmetry, which
is still an outstanding task, would have profitted from the existence of OF coordinates.
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Appendix A: derivation of the curvature lines

It suffices to quote just a few steps of the derivation of the lines of minimal and maximal
curvature, LMMC, since the method can be found in many textbooks on differential
- geometry [16)].

On the surfaces v = const the first and the second metric forms, g;x = d;r - dyr and
Ly = N - 04%r, for i, k = r, 2, are required. N = B/B is the unit normal vector to the
surface, and r and z are used as coordinate pair on the surface. The main curvatures

A = K1, ks follow from

det {sz - Agik} = 0. (Al)

With
9rr = 1, grz: = 0; Gzz = '11}2, L, = 0: Ly, = _z/w: L,,= 0; (AQ)

where
w=w(r)=vV1+cr?, (A.3)
it is found that x; = ¢/w? and k3 = —c/w?. The two main curvature directions r’(s),

J =1, 2, where the prime denotes differentiation with respect to the arc length s along the
LMMC, can be decomposed into components &} according to r} = &;0;r, with summation
over i = 1, 2. The §j- are determined from the coupled equations

x; = Lu&3ET, 1= gatE}. (A.4)

After a bit of algebra the main curvature directions, in Cartesian representation, are
obtained as

1
= E(w cos@ — crsinf, wsinf + crcosf, —1), (A.5)
1
ry = ——(—wcosf# — crsinf, —wsinf + cr cos @, —1). A6
= ) (A6)
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In order to obtain the curvature lines one still has to integrate the differential equations
with respect to s,

r; = (rcosf,rsin, 2); = (r' cos§ — r¢'sin @, ' sin 6 + 76’ cos 9, 2');, (A.7)

where 1| and rf, on the left-hand side, are given in Egs. (A.5), (A.6). Since the desired
curves 1;(s), with components r;(s), 6;(s), z;(s), are on y(f + cz) = const, it holds that
0; = —cz;. From Egs. (A.5), (A.6) and (A.7) the additional relations 7(s) = —r}(s) =
1/v2w and z(s) = z,(s) = —1/(v/2w) are obtained. Their integration is straight-
forward. If the parameter s is eliminated in favor of 7 one finally obtains for the two
LMMC

1 .
BJ(T) = dj. + IHQJ‘(T), Zj(f') = bj = Ehl Qj(T), 1= ]., 2, (AS)
where Q; = gjer +w(r) and 0y = 1, 0 = —1. b; and d; are four arbitrary integration
constants, except that d; + cb; = dy + ¢cb, which follows from Eq. (13).

Appendix B: degenerate cases

In the cases ¢ = 0 (“poloidal” field) or ¢ = co (“toroidal” field) the field lines degenerate
into circles in the z = const planes or into straight lines in z direction, respectively. In
both cases, the normal surfaces v(r) = const are planes, either with # = const or with
z = const, respectively. The curvature lines, the LMMC, from Egs. (20) become straight
lines in the case ¢ = 0,

0i(r) =0jp,  zi(r) = 2zjo — g;(r — ), (B.1)

or logarithmic spirals for ¢ = oo,

fin 17
0;(r) = 6o +In (T—) : zi(7) =24, for 4 =1, 2; (B.2)
50
where 07 = 1 and 03 = —1. LMMC in planes, however, are not unique. In the poloidal

case the lines 7, z = const are also mutually orthogonal LMMC, as are the lines r, § =
const in the toroidal case. The continuation of these LMMC along the field lines gives
rise to a trivial system of mutually orthogonal coordinate surfaces.

Appendix C: more general counterexample

As in Sect. 3 we consider an axisymmetric magnetic field which depends on the radial
coordinate r only and which has no radial component. The components By(r) and B, (r),
however, are arbitrary. In general, therefore Eq. (11) does not hold and there exist
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no surfaces with normal direction parallel to the field lines. In this appendix the field
is represented in the form of Eq. (1), and it is investigated whether the orthogonality
relation Va - V3 = 0 can be satisfied everywhere along a field line.

The functions a(r) = a;(r) and §(r) = as(r) are defined by Eq. (16). Its characteristic
equation is

5 = BT e
which is easily integrated. The solution for «, for j =1, 2, is
a;(r,0, z) = a;(p, ), (@2
where the dependence on p and g,
p=0—u(r)z, q=r, (C.3)
is arbitrary, and u(r) = By(r)/(rB.(r)) . For Vay - Va, one obtains
Va, - Va, = ?%aa—f [(u’z)2 +1+ u2] - (%C;l 680;2 + %(Zl %jf) 4 68—?%, (C.4)

where u' = du(r)/dr. If the orthogonality condition Ve, - Vay = 0 is satified, the right-
hand side of Eq. (C.4) must vanish all along a field line. The intersection between two
different surfaces o;(p, ¢) = const defines a field line in the form

p = const, ¢ = const. (C.5)

For finite and regular u(r) one can always transform from the coordinate triple (r,#8, z)
to the triple (p,q, z). In Eq. (C.4) this transformation is trivial and affects only the term
u' = du(g)/dg. At fixed p and ¢ the coordinate z corresponds to a coordinate along the
field line. Hence, the right-hand side of Eq. (C.4) must vanish for all values of z, at fixed
p and ¢q. Consequently, the coefficients of z*, with 2™ = 0, 1, 2, have to vanish separately.
This implies

8&1 6062 a0—’1 8042
i . kil i C.6
dp 9p 7 0q Oq (C5)
and 9oy Ba; Doy B
1 Olg p OO
= C.7
dp 0Oq dq Op )
From Egs. (C.6) it follows that either
6051 60.’1
s s =) C.38
-2, (©3)
or 5 5
(03] (05}
— T e Cl
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or the same relations with the indices 1 and 2 interchanged. A function ;(p,q) which
does not depend on both of its arguments does not define a surface. Hence, only the case
(C.9) is acceptable. From Eq. (C.7) there remains

Jday Oasy

PR (C.10)

Together with Egs. (C.9), however, it again follows that at least one of the two functions

@;(p, q) is independent of both arguments. This proves that Va; - Vas = 0 cannot be
satisfied everywhere along a field line, for the configuration considered.
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