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Abstract

A statistical theory of nonlinear-nonequilibrium plasma state with strongly
developed turbulence and with strong inhomogeneity of the system has been developed.
A unified theory for both the thermally excited fluctuations and the strongly turbulent
fluctuations is presented. With respect to the turbulent fluctuations, the coherent part to
a certain test mode is renormalized as the drag to the test mode, and the rest, the
incoherent part, is considered to be a random noise. The renormalized operator
includes the effect of nonlinear destabilization as well as the decorrelation by turbulent
fluctuations. Formulation is presented by deriving an Fokker-Planck equation for the
probability distribution function. Equilibrium distribution function of fluctuations is
obtained. Transition from the thermal fluctuations, that is governed by the Boltzmann
distribution, to the turbulent fluctuation is clarified. The distribution function for the
turbulent fluctuation has tail componenet and the width of which is in the same order as
the mean fluctuation level itself. The Lyapunov function is constructed for the strongly
turbulent plasma, and it is shown that an approach to a certain equilibrium distribution
is assured. The result for the most probable state is expressed in terms of 'minimum
renormalized dissipation rate', which is given by the ratio of the nonlinear decorrelation
rate of fluctuation energy and the random excitation rate which includes both the thermal
noise and turbulent self-noise effects. Application is made for example to the current-
diffusive interchange mode turbulence in inhomogeneous plasmas. The applicability of
this method covers plasma turbulences in much wider circumstance as well as neutral
fluid turbulence. This method of analyzing strong turbulence has successfully extended
the principles of statistical physics, i.e., Kubo-formula, Prigogine's principle of
minimum entropy production rate. The condition for the turbulence transition is
analogous to the Maxwell's construction in the phase transition physics in
thermodynamical equilibrium. The method provides the extension of the

nonequilibrium statistical physics to the far-nonequilibrium states.




§1. Introduction

Strong turbulence in high temperature plasmas is one of the most challenging
problems of statistical physics for systems far from thermodynamic equilibrium.
Understanding of such systems is far from satisfactory, in contrast to those near
thermodynamic equilibrium in which the principles that govern fluctuations (i.e.,
equipartition of energy, Einstein relation, fluctuation-dissipation (FD) theorem, etc.) are
established [1-3].

Statistical physics picture for turbulence has been developed for homogeneous
turbulence in neutral fluid. Based on the conventional DIA (direct interaction
approximation) method [4], various closed sets of equations have been formulated by
use of two-time correlation functions of fields and the averaged quantities of response
functions, including extensions to the two-scale DIA for nonequilibrium situations
[5,6]. In another method, a Fokker-Planck equation was formulated for the truncated
nonlinearlities, by introducing the concepts of turbulence viscosity as a drag and the
turbulent diffusion in a functional space [7,8]. To resolve the infrared divergence,
efforts have been made to utilize the Lagrangean statistical quantities [9]. In these
approaches, the role of strong instabilities has not been clearly identified. For the study
of strong temporal-spatial change of flow, an independent approach, namely, the "rapid
distortion theory" (RDT), has been used [10]. In this type of approach, strong
nonuniformity of the system could be incorporated; however, the statistical feature of
the nonlinear turbulence is not well treated.

Plasma turbulence is often known to be inhomogeneous and the method for a
homogeneous turbulence is insufficient. For strongly unstable plasmas, nonlinear
theory has been developed, based upon the methodology of clump and two-point
correlation functions [11] or on the method of dressed-test mode [12]. The anomalous
transport and the improved confinement in toroidal plasmas, so long as their averaged
properties are concerned, have been successfully explained [13]. In particular, the roles
of pressure gradient and the gradient of radial electric field have been considerably

clarified [e.g., 12-19] (see [20] for a review). In the study of statistical nature of




plasma turbulence, an effort has been made to formulate a Langevin equation for weak
turbulence [21]. Based on the DIA method, a Langevin equation for turbulence is
derived for the strong turbulence [22-25]. This approach has been investigated for the
case of linearly-unstable drift waves.

Recently, a statistical description and the extended analyses have been
developed for a self-sustained strong turbulence which is caused by the subcritically
excited interchange mode. Report were made [26-28], which we call I, I and III,
respectively, in this article. A Langevin equation for a dressed test mode is formulated:
In this theoretical framework (i) the nonlinear interactions are divided into the drag term
(coherent interactions) and the random noise term (incoherent ones), and (ii) thermal
excitation is interpreted as the collisional drag term and the thermal noise term. Random
coupling model (RCM)29 has been used to model the self-noise term. Imposing ansatz
(1) of a large number of degrees of freedom in the turbulence (extensiveness) and (2) of
the randomness of self-noise, the turbulent level and decorrelation rate of turbulence
and the auto- and cross-correlation functions have been solved. The extended FD-
theorem (Einstein relation) has been explicitly described by the nonequilibrium—
parameter (the gradient) of the system [27, 28]. The transition from thermal
fluctuations to turbulent fluctuations has been described. In the space of the
temperature and the gradient, the phase diagram of fluctuations has been obtained.

In this article, we further extend the analysis to formulate the Fokker-Planck
equations for the probability distribution function, including the effects of nonlinear
instability, nonlinear self-noise as well as thermal fluctuations. In the treatment of
thermal fluctuations, their coherent interactions with the plasma collective mode (e.g.,
interchange mode or current-diffusive-interchange mode, CDIM [12]) are represented
by the collisional drags, and their incoherent interactions are considered to be a random
noise being characterized by plasma temperature 7. Taking a certain test mode from
turbulence modes, the coherent interactions to the mode are represented by the
renormalized turbulent drags, and the incoherent interactions are considered to be a

random self-noise. From a Langevin equation, a Fokker-Planck equation is formulated



in the presence of both the thermal excitations and the inhomogeneous turbulent
excitations. The probability distribution function of fluctuation amplitude is solved.
Distribution function of fluctuation for the case of coexisting thermal fluctuation and
turbulent fluctuation is obtained. The characteristic features, €.g., the double peaks and
their widths are illustrated. Transition from thermal fluctuation to the turbulent
fluctuation occurs at a certain critical gradient. It is also shown that the probability
distribution function has a power-law tail. This is caused by the self-sustaining
mechanism of turbulence through nonlinearlities. The index to the power is obtained.
Formulation is also developed for coarse-grained quantities. The probability
distribution function of macro variable (say volume averaged fluctuation energy) is
obtained. The result shows that the most probable state of turbulence is dictated by the
principle of minimum renormalized dissipation rate of fluctuation energy. This
minimum principle reduces to, if the self-noise disappears, the Prigogine's minimum
entropy production rate which was derived for the case of nonequilibrium but near
thermodynamical equilibrium. Thus the thermodynamical law is extended to the system
with strong turbulence, being a theoretical deduction based on statistical description.
The application is made to CDIM turbulence. However, the method developed in this
article is applicable to more general circumstances. Application to the other example
would lead to a quantitative difference. However, the qualitative conclusions like the
existence of power law tail or the minimum principle hold in general. These results of
turbulence transitions and the power law distribution are characteristic features of strong

plasma turbulence, which is far from thermal equilibrium.

§2. Basic Equation and Statistical Approach
2.1 Plasma model and basic equation

We consider a slab plasma which is inhomogeneous in the x-direction and is
immersed in an inhomogeneous and sheared magnetic field. The magnetic field is given
as B = By(0, sx, I) with Bg(x) = (7 + Q'x + - *)By. In this system, a collective mode,

interchange mode, can be subcritically excited due to the turbulent current diffusivity.12.




30) (It is also called the current-diffusive interchange mode, CDIM.) In the dynamics of
its mode, the electron viscosity prohibits the free-motion of electrons along the magnetic
field line, and makes the system be nonlinearly unstable. This dissipative instability
system in the presence of thermal fluctuations is of our interest. The reduced set of
equations for the electrostatic potential ¢, current J and pressure p is employed to
describe the system.31)

The dynamics of micro fluctuations are studied in the presence of global
inhomogeneity of plasma pressure. Quantities that are averaged over the (y, z)-plane are
denoted by suffix 0, as py and ¢p; Weset ¢ =¢p+ ¢, J =Jp+ Jand p=pp + P.
The pressure and electrostatic potential could be inhomogeneous (i.e., inhomogeneous
in the £-direction) in the global scale. Parameters V pp and V_zL $p together with Q'
represent the inhomogeneity of the system. The scale separation is introduced, in this
article, between the dynamics of the micro fluctuations and macroscopic structures:
|p5 1 dpy/at|<<|p~ ! aplat|, and | p5 1V pp| << |P" Iyp|. The symbol ~ which
denotes the fluctuating field components is suppressed for the simplicity of expression.

This system has a strong instability source due to the presence of
inhomogeneities, and the product of pressure gradient and magnetic field

inhomogeneity,
Go=Q'pp ¢))

denotes the driving parameter, being fixed in time in this article.
With the help of assumption of space-time scale separation, the dynamical

equations of fluctuation fields are given as

S 1+ 20f = H(£)+ S @

where £(9 denotes the linear operator
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J denotes the fluctuating field,

¢
f=(J). @)
p

and 4/(f) stands for the nonlinear terms

Vi, vi¢]
A(f)=- [ J] : (5)
(9, P]

The bracket [ f,g] denotes the Poisson bracket,

[/, 8] =(VfxVg)b,

(b=ByBy), A| = Vi, Q'is the average curvature of the magnetic field, ¥ is the
vector potential, and 1/E denotes the finite electron inertia, 1/& = (8/a)* , d being the

collisionless skin depth. Length, time, static potential and pressure are normalized to

the global plasma size a, the Alfven transit time T4, = a/vy,, ava,Bp and B3R/2ay,,

- 2apg-1,

respectively (@ and R are minor and major radii of torus, v Ap = B0(2 Kot
m; is the ion mass, and #; is the ion density; see ref.30 for details). (It is also noted that
the study of the response to £() corresponds to the conventional application of RDT in
neutral fluid.)

The electron inertia effect should be kept, because this effect is amplified by the

nonlinear shielding effect of the turbulence.32-33) The classical resistivity is neglected




for the simplicity of the argument. Three field equations in the presence of thermal
excitations are now employed: i.e., the equation of motion, the Ohm's law and the
energy balance equation. The electrostatic approximation is used, i.e., the inductive
electric field in the Ohm's law and the nonlinear terms of the form [¥, - - -] are
neglected. (See refs. 34 and 35 for high-B cases.) The interchange mode (CDIM) has
a quasi-2 dimensional nature, |va | << | V2 |; nevertheless, the existence of small but
finite V|, is essential.

We consider the thermal fluctuations in the range of plasma frequency w,, and
the time scale between microscopic mode considered here (CDIM) and the thermal
fluctuation is well separated. In the thermal fluctuations, coherent parts to the
microscopic CDIM are given by the collisional transport coefficients ., K and X (the
ion viscosity, electron viscosity and thermal diffusivity, respectively). Incoherent parts

are considered to be a random noise and expressed as Sy,.3)

2.2 Langevin equation
The system which has a large number of degrees of freedom and has many
positive Lyapunov exponents is considered. A part of the Lagrangean nonlinearity is

considered to cause the drag to this collective mode (CDIM) and this part is
renormalized to the eddy-viscosity type nonlinear transfer rate y J The other part is

regarded as a random noise, which has a faster decorrelation time than y ; according to

RCM.29) As has been discussed in I-III, a projection operator 2 is introduced to divide
the nonlinear interactions into the drag and others. The nonlinear drag term is written in

an apparent linear term as

21((f) = | uweVih |=-| v2b (6)

and the rest part is rewritten as




S=(1-2)A(f) )
Then a Langevin equation is derived as23.26-29, 36)
g—zf+Lf=§+§,h (8)

with
L= i)+ 1y ©)

(61-1- is the Kronecker's delta) and

ahl"fzhl'_‘l_:t

(10)

Notation here follows the convention in ref.36. In this article, suffix i, j = 1,2,3
denotes the i-th or j-th field. In the following, Fourier transformation is used, and
k, p, q describes the wave number of Fourier components. Suffix &, p, g is often
omitted unless confusion is caused.

The operator to the k-th component, £y,
Life = Lo, kJie = BAUS): (11)

is the renormalized operator, which includes the renormalized transfer rates of

s % | %2
L y== ; M; kqui. qkpeqkplfl.pl : (12)

The self-noise has a much shorter correlation time as is discussed in [-II1, and is

approximated to be given by the Gaussian white noise term A7) as

9




Sk =208 k= W(U% M; kpgy/ Okpq 1, pGi g - 13)

In these expressions, summation A indicates the constraint k + p + g = 0. The explicit
form of the nonlinear interaction matrix is given as, €.g.,
My, kpg = (P x ) BYp? - qi1% - or M(y, 3) kpg = (P x 4) " b, and the propagator

satisfies the relation (3/3t + £{k) + ¢.p.)Bypq = 1, Where c.p. indicates the counter part,

ie., Lp)+ £q) 29

The term T j, p in arandom noise represents the j-th field of g-component in the

nonlinear term 4/, and their correlation functions satisfy the average relations of the

mode, which we call an Ansatz of equivalence in correlation in the following, as
L)) =Aih) (14)
with
(i, 54 4) * Opg (15)

where the bracket ( ) indicates the statistical average.

The thermal excitation is also assumed to be a Gaussian white noise,
S, i = A0, i (16)

The statistical independence between the incoherent parts of thermal and turbulent

fluctuations is also imposed, that is,
(Sm,i8j) =0 17

2.3 One branch approximation and Fokker-Planck equation

10



I

The basic set of equation, which describes interchange mode (or CDIM), also
contains two others branches of plasma mode. These additional two branches are much
more stable, and are considered to be excited up to much smaller amplitude. Based on
this approximation, the Langevin equation is reduced to that for only one branch. The
detailed procedure of decomposition is described in the previous articles IT and III.

The matrix exp [ £(t — )], which provides the solution of the Langevin

equation, was explicitly expressed as
expl— £(t — 7)) = A exp(~ A1 — 1)) + AP exp(= Ayt - 1)) + AP exp(= At - 7)) (18)
where the elements of matrix A are given as

—iky(fp-2g) —iky Q.- M)

Fe=2)¥p—M)

. k3 k3
A= Ekz (7\.]—-? ) "—Eknk Q
Ao-Aph3-2p)| —ikyEF, -2 - i >
Opb) 0 A
; ky ik ypp Go"? Fo—Aj)
ipoky(¥e— M) —
Ae 2 & (h-1,)

(19)

where — A, (m = 1,2,3 and A; < A, < A3) represents the eigenvalue of the non-normal
matrix £, which gives the homogeneous solution of eq.(8) if £ is constant. The

eigenvalue is determined by:
det(M + £)=0 (20)

and / is a unit tensor. The eigenvector with the eigenvalue — A; corresponds to the least

stable branch, the decay time of which is the longest. Others with (— A, — A 3) denote

highly-stable branches, which decay much faster. (Elements Ag’ﬂ are also obtained in

a similar way, and are given in II, being not repeated here.)

11




In the one branch approximation, only the pole of (s + A;)” T'is kept. Then, the

Langevin equation is deduced to that of one field, e.g., f; = ¢, as is discussed in II,
o+ r=5 @1)
with the source of
Sy = 2A1)8k +&m, k) (22)

In this expression, both the contributions of the turbulent self noise and thermal noise

are retained. The magnitude of the noise source is given by use of the matrix A as
3
8k = fRe()Z] A8 k) , (23)

and

3

8ih k= JZI Ajj8ih, j k 24)

By retaining the real part in eq.(23), the possible problem of complex quantity of g; 4 is

eliminated, and the diffusion process is assured in the Fokker-Planck equation. The

coefficient gy is statistically independent for each k-component, (g;gy) = (82 D0k ks

(81n, k8, ) = (| 8%, k)Ok,  and (8x8m, k) = 0- Then the Liouville equation is reduced
to a Fokker-Planck equation [37]. For the probability distribution function P({(bk}) ’

one has a Fokker-Planck equation as
Ip_H 9 1y 9 5
ﬂtP ¥ % I (}“j,kq)k + 23]@: a¢k gk)P . (25)
The diffusion coefficient, £, contains two statistically independent noises and the form

12




Bt =gF+ 8« (26)

is employed.
From the fluctuation-dissipation (FD) theorem for the thermodynamical

equilibrium, the thermal excitation rate is expressed in terms of the temperature as28)

A

Y ~
2 ApjA1pSih, S, j = 2T - 27
i

where the normalized temperature (with an additional dimension of volume) is

introduced as

)

y
P

kgT . (28)

The thermal contribution to the diffusion term is rewritten as
8, k= 2myc T (29)

This term is independent of the choice of test mode number %, so long as collisional

viscosity is independent of the scale size.

§3 Steady State Solution of Fokker-Planck Equation and Characteristics

3.1 Probability distribution function

Steady state probability distribution function P,, satisfies the equation
k

Z%}: (ki.k¢k+%§k%§k)})eqzo (30)

An equilibrium distribution function satisfies the detailed balance,

13




(2ll.k¢k+gk'§%_k§k)‘peq=o (for all k) (31)

The constant of integral (right hand side) is chosen to be zero, based on the boundary

condition that the relation ¢ P, = 0F,,/d¢; = 0 holds as ¢, — <. (The condition that
P, vanishes much faster than ¢ I a5 ¢y — o is a necessary condition for the
requirement that an integral of P, could be normalized to unity.)

The detailed-balance equation suggests the form of equilibrium distribution

function as
Pof{0}) = PIT —-exp {— [ d%} (32)
i ko 8

where P is a normalization constant. This equation is an exact solution if g is
independent of ¢y for k' = k. The solution is obtained by the help of ansatz of a large
number of degrees of freedom. Although ¢4 makes an influence on the value of g, the

influence from one particular ¢+ on g is weak. This is because many numbers of

fluctuating components statistically contribute to g through y,, y jand y,, so that the

most sensitive dependence of ¢y on P, appears through the term of

o
exp {—J. 2N, i g‘;’ d¢k} . Based on this fact, an approximate solution of the

equilibrium distribution function is given as eq.(32).

3.2 Overview of distribution function

Let us discuss the qualitative characteristics of the equilibrium distribution

function P

e+ taking an example analysis on current-diffusive interchange mode

(CDIM). The basic concepts of this method apply to other modes of plasma turbulence.

The analysis has been done by solving the Langevin equation .27 By employing a one-

14




pole approximation, where only the least stable branch is considered, the eigenvalue has

been obtained [27], and the interpolation formula to fit the eigenvalue A, is given as

GZ° (5)2/5

A, =2_(9
1=75275

O Rl - i3 6

where [i, = uy + R and fi, = Py, + W38 The first term in the right hand side is
destabilization by the current diffusivity (turbulent one as well as collisional one), the
formula for which was derived for the small dissipation limit near marginal point. The
second term in the right hand side represents the damping by the effective viscosity.
The nonlinear marginal stability condition, A ; = 0, which is deduced from this

interpolation formula, provides qualitatively correct result in comparison with the direct

solution of original equation. The decorrelation rate A, is plotted in Fig.1 against the
eddy damping rate v, (both being normalized to Y,. ) for various values of G, that
represents the plasma gradient. The fluctuation level /; = ¢f and the eddy damping rate
Y, are related to each other. The fluctuation spectrum is a rapidly decaying function of

k, and an approximate relation has been derived as3%. 39
Yu{Yy + Yo,0) = k31 (34)

In the presence of both the thermal and turbulent excitations of CDIM, the

relations between the fluctuation level of this branch I, and the nonequilibrium
parameter G, and the temperature has been obtained in II. One example with the
hysteresis characteristics between I, and G, is shown in Fig.2 for a fixed temperature
of T =0.003 . (In Fig.2, normarived parameters for gradient fluctuation level and
temparature are used following the convention of III as G, = (Sk l)ms'm'ﬁc‘” Gy,
I=kSv;21, and T=k1v;2 T )28 This system is subject to subcritical excitation of
turbulence.3) In Fig.3, the statistically-averaged values (being normalized) of eddy
damping time v,, and decorrelation rate A.; are shown as functions of the gradient G,,.

In the branch (left) which is connected to the thermodynamical equilibrium limit

LS




(Go —> 0), the decorrelation rate A; decreases as the gradient parameter Gy increases.
This decrease corresponds to an access to the linearly unstable regime, showing that the
correlation time becomes longer. As G becomes large, A; does not converge to zero,
but starts to increase again owing to the bifurcation to the branch of strong turbulence
(right).

A bird's eye view of statistical average of fluctuation amplitude, the relation

(f)[@o, T] . is shown in Fig.4 (conceptual). The cusp type manifold structure is seen.

In the low temperature limit, the function (f )[Go; fixed T] has a hysteresis. The upper

plane represents the turbulent fluctuation Jevel, and the lower plane corresponds to the
one excited by the thermal fluctuation. The middle one satisfies the neutral condition,
but is an unstable branch: a small deviation from this branch leads to convergence to
either upper or lower branch.

These features of the fluctuation level and eigenvalue A illustrate an important

role of gradient parameter Gy. Dependencies on the global plasma parameters have

been obtained.32) Typical values of the wave number, k, , turbulent visocsity, ly, e »
and the eddy damping rate, Yy ., , and fluctuation amplitude ¢f, eg » 4T€ given in a strong

turbulence limit as40 41

ko= G;'"sad”" (352)
TIEAEN ¢ g o (35b)
Vezg=Mw.cko=Go- (35¢)
and |
02 .y = 02 o(kulko) " = Gk’ . (ky>ko) (35d) |

16




By use of these expressions, order-of-magnitude estimate of various terms are
available.

The eigenvalues A; (in the limit of 7 — 0 ) for cases (a), (b) and (c) in Fig.1
correspond to those along the lines (a), (b) and (c) in Fig.2. The solid line in Fig.2 is
the statistical average of spectrum, being given by the solution of the Langevin
equation. The distribution function along lines (a)-(c) are discussed as typical examples

below.

3.2.1 Nonequilibrium but near thermodynamical equilibrium (case A)

If the turbulent driving force is small as in the case of (a) in Fig.2, the mode is
mainly excited by thermal excitations. The noise term of eq.(26) which causes the
diffusion is determined by g7, and the damping rate A; approaches to Y. = n.k: in
the thermodynamical equilibrium limit. Substitution of these estimates into eq.(32)

gives a limiting solution

*A(02 >0
P({o})=PIT JL-exp —J —"‘(ql:—) a0} (36)

th, k

Noting the relation A= !ivcki and eq.(29) in this limit, eq.(36) is rewritten as

5 1 kide
Peq({q},‘}) —)Pl:[ o exp (— 2} ) (37a)

By using the kinetic energy of fluctuations,

Zy

3 kiol,

eq.(37a) is expressed as




Pf{Z})= f—exP{ ZE} (37b)

i.e., the Boltzmann relation. The gaussian distribution near thermodynamical
equilibrium in refs.42-45 is confirmed, and it is clear from eq.(37b) that the

equipartition law holds for fluctuation energy.

3.2.2 Regimes of nonlinear excitation and linear excitation (case (b) and (c))
As the turbulent excitation becomes stronger, i.e., Gy becomes larger, the
turbulence is excited nonlinearly and is sustained. In the case of (b) in Fig.2, both the

thermal fluctuation and turbulent fluctuation are possible to exist, and determins the

distribution function P,, as an average. Two paths of integration are considered in
evaluating the equilibrium distribution function. On one path, ¢; is varied and others

are fixed

0 =0 00 but {¢) = fixed (@llk’, K’ #k) pathl (382)

On another path, all the fluctuation components change as

{be) = {C b, o}» (all k) path I (38b)

. e : R
In the latter case, the term g; in eq.(26) is in proportion to |¢ | , in astrong turbulence

limit. The dependence of A, on the fluctuation amplitude is also deduced from egs.(33)
and (34). As aresult, the schematic drawings of equilibrium probability distribution
functions are shown in Fig.5(a), (b) and (c). Figure 5(a) corresponds to the case near
the thermodynamical equilibrium, showing that the distribution function is close to the
Gaussian. Figure 5 (b) and (c) represent cases of (b) and (c) in Fig.2. In the case of

(b), A, vanishes at two values of the fluctuation amplitude as is shown in Fig.1, and

18




accordingly a pair of local minimum and local maximum are observed in Fig.5(b). Two

peaks are observed; the one near

|| =0 (39)
comes from the thermal excitation, and the other peak around

A =0 (40)
is contributed from the nonlinearly excited turbulence fluctuation. Both peak values and
widths vary depending on the plasma parameters. The case (c) corresponds to the

strong turbulent limit, where the thermal excitation is unimportant. In this case, g+ and

A ; have asymptotic dependencies gi o< | O |3 and A, < | ¢k| , respectively, along the path

II. Substitution of these estimates into eq.(32) shows that the asymptotic relation
7\'1,@& 9;2 o5 q);l
holds along the path II. The integral has a logarithmic dependence as
Ok n
f 20,0, & df o< In (l ¢ |) (41)
Namely, the equilibrium distribution has the tail component in a large | ¢k| regime as

P {0 >} = o oF “2)

where 0t is a numerical factor, and is discussed later. Equation (42) shows the power-

law dependence of equilibrium distribution function.

19




3.3 Characteristics of distribution function
Several characteristic features are drawn from the equilibrium distribution

function of probability.

The average
An integral (¢£) = f do Peqcbf yields the average (¢2), where ¢ represents a set

of {¢y} for all the k-th component and the notation d¢ = H d¢y is used. Multiplying
k

¢y, to the relation eq.(31) and integrating the second term by part, one has

f do P,0; = J do g,P., g?ﬂ (ffi) : (43)

The ansatz of a large number of degrees of freedom is used to approximate gz and Aj

to be slowly varying functions of ¢y, and the derivative in the right hand side of eq.(43)
is evaluated by 3(§k7\-7_1¢k]/ 0P, = ¢ JLT_;I: . Substituting this evaluation into the right hand

side of eq.(43), one obtains the relation between two moments as
gz
do ¢7P,, = | do =>*-P,, .
f q) ¢k eq J ¢ zxu eq (44)

This relation, <¢f ) = (g‘lell,O , is considered as an extended FD Theorem of the
second kind. If an Ansatz of equivalence of correlation, (C;C j> = ( fi j}) and the

decomposition approximation like <¢¢¢¢> i <¢¢)(¢¢> are imposed to estimate (§f> as

in I-I1L, the relation equation by use of the Langevin equation approach is obtained.

The peak
The peak of the equilibrium probability distribution is given by a%)k Ppy = 0,

which satisfies the condition

2ll.k¢k+§ka%¢k g:=0 (at ¢ = Py, p)- (45)

20




f

If the random source term is independent of the fluctuation field (e.g., the case of an

external random forcing), the relation 0£:/00; =0 holds. Then the condition, A 7 =0,

provides the peak of the equilibrium probability distribution function. This estimate has

been used in refs 38-41, 46, 47 to obtain the kK — and @ — spectrum of fluctuations.
In the strong turbulence limit, A, and g: in eq.(45) are modelled along the

path II of eq.(38) as

Ay =Ao+ )| ] and g7 =g 0| . (46)

Using this approximate fitting form, one can obtain the peak position as

A
pek Ny +3gh/4

| s 47

instead of l 0N ~— loll', which is deduced from the condition A; = 0.

peak

The width

Pk
The denominator & in the integrand in the term exp {— f 20,04 8% d(bk}

dictates the width of the distribution function.
Near the thermodynamical equilibrium limit, like the case of (a) in Fig.5(a), the

width is well approximated by the plasma temperature. In the case of (b), the width of

the peak near ¢ =0 becomes broader and is modified to have a power dependence due

to the turbulent excitation. In the strong turbulent limit, cases of Fig.5(c) as well as the
second peak in Fig.5(b), the width of the distribution is given comparable to the

2
averaged value, i.e., ((d)k — (q),?) ) ) ~ (qyf) Namely, the variance is comparable to the

average value itself.

The tail component
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The fact that the random noise level, g, depends on the turbulence level leads to
a possibility of power-law in the tail of probability distribution. This situation is
different from the case of thermal fluctuation, where the random noise level is ultimately
determined by the temperature.

The rough estimate of the tail component of eq.(42) is done by use of the

approximation eq.(46) with A, =0 . This gives the relation between the power index

of O in eq.(42) and the coefficients ., and giy in eq.(46) as &= 20.85

3.4 Accessibility

Accessibility to the equilibrium distribution function, Peq, is shown by

constructing a Lyapunov function

(1) = f a6 P(6: ) Qn(‘”(“”' i 48)

where ¢ represents a set of {¢y} for all the k-th components. Taking the time derivative

and assuming the Markov process [1], one has

Lalr) = f d¢ [{%P(qa; 1) En(f,(t(;)) )} @2

Substituting dP/dt of eq.(25) into eq.(49) and performing a partial integration, one

obtains

»

& = P(0; ¢
éj;”(f]=— do ;(ll.kq)kP*‘%gk'a%ngp) —a%;Qn( })Eq(q)))) (50)

The terms in the right hand side of eq.(50) are calculated. By use of the relation
£ B%Jk (ng) =5 P gd& En(g?kP) , €q.(50) is rewritten as
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Noting identities of eq.(31) together with g, (ngeq)/aq)k = gP., 0 Qﬂ(gkp eq)/ do, , one

has the relation

20, 085" =~ 0 lng,P., )99, . (52)

Substituting this expression into eq.(51), we have
d - [ 465 82F ¢: 1))\ ?
dorn=- | w2 (ol &

The integrand is positive or zero, and an inequality

d
vl (=0 (54)
holds. The condition fﬁf (£) = 0 is satisfied if the probability distribution function is

equal to the equilibrium distribution function P(¢; ) = (¢) The fact that the

construction of the Lyapunov function is possible means that one of steady state

distributions is guaranteed in a time-asymptotic behaviour.

§4 Extension to thermodynamical quantities
4.1 Fokker-Planck equation for macro variable (coarse-grained quantity)

In order to study the statistical property of thermodynamical quantities, we
employ the dynamical equations of macro variables which are quantities integrated over

some finite-size volume. The total fluctuating energy in this voulme
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15 3242
j;kj_q’k

and the average potential

@? =3 ¢f
k
are taken as examples.

4.1.1 Langevin equation

From eq.(21), one has

% 3"? kaicbf + ka,,k ki0; = Zklkifk%

By introducing a time constant

kzkl.kki :

T

A

n

the Langevin equation for the total fluctuating energy is given as

il D&
—5I—E+2AZ‘:§klsk¢k

In a similar manner, one obtains from eq.(21) as

DN WHRIED L

t

B

The equation for the average potential is derived as

9 2 4 20, D? = 2, 51y
ot ¢ =

24

(35)

(56)

(57

(38)

(39)

(60)

(61)




with another time constant

2kt
o

1]

Aq (62)

4.1.2 Fokker-Planck equation

Following the similar procedure of §3, the probability distribution function of
the coarse grained quantity, Z = % 2 k?id);? or @2, is described by the Fokker-Planck
k

equation. In the Langevin equation for the average energy %, the magnitude of the

statistical source term is written as g2 = ; Siior | ie.,
2
g= Lo Tkl + (54,0, Kol (63

where the cross terms between the thermal noise and self noise vanish based on the
assumption of mutual statistical independence. The cross terms between different k-
components also vanish, owing to the independence property of the source term. In
deriving this expression, €q.(29) is used to rewrite the contribution of thermal

excitations. It is also useful to introduce an average of the classical decorrelation rate

. 2.5,
m f

(64)

(Yoe = lecki ). When the fluctuation level changes, this coefficient might deviate form

the value in the limit of thermodynamical equilibrium. The amplitude of the source

term is rewritten as

3 2
g2=4ry,,,z+>;(; A, k} k10 (65)
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The Fokker-Planck equation for the probability distribution function P( E) is

given as

-%P@j=§%PA5+%g§%gy{@ (66)

4.1.3 Amplitude dependencies of the drag term and noise source term

4.1.3(a) Thermodynamical equilibrium limit

In the thermodynamical equilibrium limit, ¢, — O , the self-noise term vanishes,

and the relation
TnZ = LV Eim (67)
holds, where Z, ,, is the amplitude in the thermodynamical equilibrium. One has

g = 4TV By - (68)

In the limit of zero-amplitude fluctuation, the eigenvalue A, approachesto Y,.. Asa

result, the average damping rate A converges as

A, or  AZ-SXVE,. (69)

4.1.3(b) Strong turbulent with large amplitude limit

It is generally shown in a strong turbulent limit [II] that the relation

3 2
Gﬂmﬁﬂmwf (70)

holds. Based on this property, one has a dependence
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% (Z A, k)-k‘iqaf <|of. (71)

Noting the relation Z o< | ¢ [2 , we write the asymptotic form of the second term of

eq.(63) as
S y 4,2 E 2
; (/z ) A18), k) ki of = go(f—eq") (72)

=2 . g 5 i
where &, is a coefficient and Z,, is the most probable value of the average fluctuation

energy Z. Combining with the thermal excitation term, the amplitude of the noise

source term is written as

5 _ 5n
g?= 4Ty, Z+ g?,( Z ) (73)

eq

. =2
The coefficient £, is calculated as

I

-5n 3 -
(£ T (F A k102 %

eq

=2
8o
and an order of magnitude estimate is given as

=g

3 2
g ~[Zk? (JZ‘.] A8 k) kicbf] - (75)

Based on the general dimensional analysis, one has the relation A o< ] o | wie.

A « £12 in a strong turbulence limit. We rewrite as

g

A= (ZZ )1/2 (76)

eq
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where the coefficient A is given as

= 5 E -1/2
K= lim A ( feq) (77)

Order-of-magnitude estimates of coefficients A and ég are available by use of
eq.(35). One has an estimate A~ max(?L,) , because the coefficient A is an average of
A, over a spectrum and the spectrum is peaked near k, = ko . The maximum value of
A, is of the order of Yy 4 - Therefore, one has an estimate

x 12

N Ywg 2 Go (78)

The coefficient Z¢ and average energy Z,, depend on the volume of integration of

concern, because they contain the sum over the k-space. This is discussed later in

detail, but a dimensional argument is available. From a dimensional analysis, we have

estimates

Zo o< Ory. okoYs, eq (79a)
and

Z,, % 02y 0ko (79b)

apart from a proportionality coefficient which depends on the volume of the coarse-

grained average. This provides parameter dependences

g2 o G578 " | (80a)

and
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Z,, o G(d/sa)’ . (80b)

Dependencies (78) and (80) illustrate the importance of plasma gradient G, for the

evolution of the probability distribution function of the turbulent fluctuations.

4.2 Probability distribution function

The equilibrium probability distribution function for the average energy P,, is

obtained by putting 0P/0t =0 in eq.(66). It is expressed as

g E) = P % exp (— ‘;—é\ zdf) (81)
0

where P is a normalization constant.

An exponential function exp (—f 4 Ag? Z‘df) dictates the distribution
0

function. When A is positive, it is a decreasing function of Z. On the contrary, when
A is negative, this function is an increasing function of Z. At zeros of A , the
function takes the extremum values. As is illustrated in Fig.1, A is always positive
when the gradient, which is parameterized by G, , is very small. The probability
distribution function is peaked near zero Z, as is the case of thermodynamical
equilibrium. In the large gradient limit, A is negative at smaller value of Z
(representing the existence of linear/nonlinear instability) but becomes positive at larger

value of Z. In this case, the probability distribution function mainly peaks at the finite

and large value of Z . In the region of intermediate values of the gradient, A might

vanish at two values of Z. This is the case of subcritical excitation of fluctuations. In
such a case, the probability distribution has two peaks. These properties are

summarized in Fig.5.

4.2.1 Thermodynamical equilibrium limit
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In this case, limiting formula hold as eqgs.(68) and (69). The integrand in the
equilibrium probability distribution function, eq.(81), converges to
4AE 1

— =
g’ T

(82)

Substituting this relation into eq.(81), the thermodynamical equilibrium limit is obtained

as

“dE

£
P|ZE)>P Al exp —jT ) 83)
q( ) V 4T; wak. th 0 r (

The equilibrium distribution function satisfies the relation
1 z
P, |E|o< —exp|—= 4

i.e., the probability distribution function of the fluctuation amplitude satisfies the

Boltzmann relation. This result agrees with eq.(37b).

4.2.2 Large amplitude limit and tail of distribution function

One important feature of the strong turbulence limit is the tail component in the
distribution function as is discussed in §3.

Substituting the power law relations of the large amplitude limit, i.e., egs.(73)

and (76), into eq.(81), one has the formula in the large amplitude limit as

3 = A 12
4A( )
P, (Z)=P ! exp| - = r ZAZ
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In a strong turbulent limit,

sn N
éé( £ ) >> 41y, %, (86)

exp (— f 485° ez dz). (87)

This equation provides a power law

(88)

~
5
t
vl
OQu
St
&

)_ 514 -4 R g’ 2

for the tail of the distribution function.

4.2.3 Multiple peaks of distribution function

The probability distribution function Peq( ’E) can have multiple peaks, associated

with the hysteresis in the average level versus the pressure gradient (Fig.2). This is the
case (b) in Fig.2. The study of distribution function in such a case is important in order
to understand the transition of turbulence state.

In order to have an analytic insight of the problem, we model the form of A of

case (b) of Fig.1 as a function of 'fluctuation velocity' U ,
E=v (89)
as is shown in Fig.6:

Alv)=A,- Ay O<v<u,) (90a)

ol




Ap)=Av-K,  (@©>V.) (90b)

This model form of A vanishes at two values of U

_Ao

A
vt]_ Ar aI‘ld v#zzA—'o (91)
0 1

The function A is a decreasing function of v in the region 0 <v <V, , representing the
subcritical excitation by nonlinear instability mechanism. In the region of U > V., , the
function A is positive and is an increasing function of U . This dependence models the
fact that decorrelation rate increases as the fluctuation level becomes larger in the large
amplitude limit. The asymptotic form of this model A satisfies the scaling relation
eq.(76), i.e., Aee VZ |, in the large amplitude limit. By use of eq.(73), the equilibrium

probability distribution function eq.(81) is rewritten as

_ * 2Av
Peq(v) = % ex0 "J Ty + §§(ZT)' 572y, vdv | . ©2)
m eq

Substituting the model form of A , €q.(90), into eq.(92), an analytic form of Pg,‘,(v) is

obtained.

Performing the integral one finds

v +d?)" w-d
( 3):. exp (— /3. blarctan( »I}BTd (O<v<v,) (93a)

(v+d) '

E (U) =P

_(v+a)” 2v-d
Peq[v) =P ((v—-l-_:f))_bz exp (ZEbzarctan ( %d )) v>v.) (93b)

In these expressions the parameter d is defined as
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d’ =Ty, 5 2*

and other numerical coefficients are introduced as

P ¥ (L_ZAB D A I
= = - -_-2
ggz:qm 3d A, 2 G E." 3d
and
a,= A, ( 1 2A, _1 B Ay 1
= A 27 =2
dELP\3d Ay ) 2 3.2, 3d

94)

(95a)

(95b)

From the result of eq.(93), several features of the equilibrium distribution

function are observed. In the low amplitude region the distribution function deviates

from the Boltzmann distribution, owing to the reduction of A by the finite-value effect

of fluctuation amplitude. By this effect, although the probability distribution is a

decreasing function of v in the region 0 <v <wv, , it deviates from an exponential

function and has a tail element. The exponential part has an argument

2v-d . .
~24/3barctan Ba ) therefore, the characteristic value of v for the variation of

P,(v) is estimated by the values of |d/b, | and @, b, .

This distribution function has the second peak near

(96)

which represents the most probable turbulent state. The variation of the distribution in

this region is dictated by the parameters | dlb, | and a, - b, . If one expands the

integrand of eq.(92) in the vicinity of U«, as,
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2 A( ) 2v.,A, (U*z _ v)

Ty, + &Y 3T Ty, + 35z, v, | L
the exponential part of €q.(92) is given as
The half width of the peak Av is approximately given as
s \/ T+ 8o E, 03, . (99)
Vaghy

In a strong turbulence limit where the thermal excitation is neglected, one has

Av =/ § 2PN (100)

Finally, this distribution function has tail as P,,(v) e v**2=*2~' | This recovers the

asymptotic form in a strong turbulence limit. Evaluation of the width of peak and

power index is discussed in the next subsection.

4.3 Evaluation of the width of peak and power index

4.3.1 Evaluation of self-noise term

To estimate the width of the peak, Av , or the power index, N , the evaluation of
the magnitude of self noise éfi , €q.(75), is necessary. We approximate the magnitude
go by the average of the noise amplitude which was obtained by the substitution of a

statistical average (d)f > of Langevin equation [ILIII]. By use of this procedure, one

has an estimation as

=2
g3~ Co; K4y, et e (101)
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where C, is of the order of unity, and y k, eq is the decorrelation rate at the most

probable fluctuation amplitude. Detailed argument together with the estimation for the
coefficient Cy is discussed in the appendix A.

Statistical characteristics vary depending on the choice of volume of average. In
order to clarify the dependence on the volume of observations, we consider the average
over the flux tube, the cross-section of which is given as L* . Fourier sum is
performed, noting the fact that we are interested in the average in the volume with
cross-section L* . Since all the length (including k ) is normalized to a , the Fourier
mode number in this averaging volume takes an integer multiplied by a/L . Therefore,

the summation over k is estimated by

):...=J:D. (&), dk, (102)

k

The power-law spectrum was obtained,27- 40) which is given as a statistical average of

the turbulent state as §; ., = ¢z, O(k,,/k l)ﬁ . For this spectrum, the coefficient §o and

Z,, are calculated (see Appendix A for detail) as

G 2
8o = g2k oYe e, /%) (103)
and
2
£,=1 oz aL) . (104)

If one sums up all the fluctuation energy in the volume of plasma, L — a , one has

& G§(5lsa)2/4 . This recovers the previous estimate of fluctuation energy.

By use of the estimate of characteristic values of fluctuations, eq.(35), results
eqs.(103) and (104) are expressed in terms of the global plasma parameters including

the gradient explicitly. Substituting eq.(35) into eqs.(103) and (104), we have
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and
Zeg= % G;(%)z(%)z ’

4.3.2 Width of the peak of strong turbulence

With the help of the order estimate

- 'Yk.e
Aoz

eq

one has the expression

=2
8o
AV =[] =—— .
feleq

Substituting egs.(35c), (105) and (106) into eq.(108), one has

a=1/2c, c(L)

It is compared to the average velocity, V-2 =y Z,, , which is given as

Go 2

]

-

~

I
DO [—
Qe

by the help of eq.(106). One has
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(106)

(107)

(108)

(109)

(110)
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or

-3 () a1

As is discussed in the end of §3.3, the width of distribution is given comparable to the

average value if the local value is discussed.

4.3.3 Power index
The analysis in the large amplitude limit has shown the existence of a tail

component as is shown by eq.(88), i.e.,

P(2)~ (g )'“ , (113)

with
N=54+4A3; 2 . (114)

eq

Substituting eqs.(105) and (106) into eq.(114), we have the relation for the power

index as

=g+t YT\ s(—%—)zcg' , (115)
or

=3+ YZ (ko L) (116)

4.3.4 Impact of plasma gradient

These results clearly illustrate the important role of plasma gradient.
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From the result, we have the following; First, the plasma gradient G, is
essential for determining the distribution function. For instance, the location of the
peak, V., , shifts to the higher values, the width Av becomes broader and the power
index | becomes smaller, as the gradient becomes steeper, for a fixed value of

integration size, L’ . This is understood by noticing the dependencies

V., o< G, (117a)

Av < G? (1176)
and

(n-5/4) < Gy (117¢c)

Then the volume of observation is also important. When one studies the probability
distribution of the energy which is averaged over the global scale length (whole plasma

volume),

L=a |, (118)

the relative width Av/v., is of the order of k(_,1 (i.e., &/a ), and the power index M is

of the order of kg (i.e., @*/8”). The width is narrow, and the index M is much greater

than unity, and the distribution function is close to the delta-function. There is almost
no probability to observe the tail distribution in the total-volume-averaged fluctuation

energy. In contrast, if one is intersted in the average over the correlation scale length,

L=k;' (119)

the relative width and the power index are given as
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Av _ /8
b=V 30 (120a)
and
5.3 A
N=3+5~ 120b
472Gy, ., (120b)
Noting the evaluations that
C=0(1), B-<1 (121)
Yk. eq
the relative width and the index are given to be of the order of unity as
Av - o1) (122a)
vt 2
and
n=%+0(1) : (122b)

Noticeable width and power-law tail are predicted in the distribution function.

§5 Extension of Thermodynamical Relations
5.1 Principle of minimum renormalized dissipation
5.1.1 Minimum renormalized dissipation
The probability distribution function of the turbulent state is an extension of the
Boltzmann distribution in a thermodynamical equilibrium. The equilibrium distribution

function has the form of
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P, ~exp (- S) (123)

with the exponential part as

S=J i—g’\z—fdz, (124)
0

The integrand is a ratio of the dissipation rate (or action) AZ to the magnitude of
random sources. The probability becomes large when the functional S is small. When

S takes a local minimum value, the distribution function takes a local maximum. An

example is given in Fig.7.

This result shows the fact that the most probable solution of turbulent state
(being subject to the thermal excitations) satisfies that the integral of renormalized

dissipation rate

S is minimum. (125)

5.1.2 Critical condition for turbulent transition

There are two minima of S , one corresponds to the thermodynamical

equilibrium and the other is in the turbulent state. In such a case, one out of two is the
dominant solution. A critical condition for turbulent transition can be obtained in terms

of the probabilities of states. The selection rule is drawn from the condition
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P(0)~P,[v.,) (126)

This is simplified as

S(v.,) =0 (127)

assuming that g is a slowly-varying function of the fluctuation level. If

S(v.,)>0 (128)

holds, the thermal fluctuation near thermodynamical equilibrium is a dominant solution.

If the condition

S(v.,) <0 (129)

is satisfied, the turbulent state becomes the dominant state.

This rule, eq.(127), is analogous to the rule of "Maxwell's construction"43) for

thermodynamical equilibrium, and is an extended version to the turbulent state.

5.2 Comparison with near-thermodynamical equilibrium
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5.2.1 Thermodynamical equilibrium limit

The principle of minimum renormalized dissipation rate, eq.(125), is compared
to the thermodynamical equilibrium limit. In this limit, the probability distribution
reduces the Boltzmann distribution as is shown in eq.(84). The Boltzmann distribution

in a thermodynamical equilibrium could be reformulated as

(130)

where X is a thermodynamical variable and Se,,,(X ) is the entropy.4?) One can reform

it via a relation Se,,,(X ) fkg = - (Z‘/'f' + '/zln(f)) . In stead of the entropy, which is

difficult to be defined in the turbulent state being far-from-thermal equilibrium, the

integral of renormalized dissipation rate S plays the role in controlling the probability

distribution function.

5.2.2 Nonequilibrium but near-thermodynamical equilibrium

It should also be noted that our result is also a natural extension of the 'principle
of minimum dissipation rate' in the near equilibrium. Prigogine has proposed a rule for
the near thermodynamical equilibrium that the 'minimum principle of the entropy
production (dissipation) rate'.4% 50 This principle is valid if the random noise is

governed by the thermodynamical equilibrium temperature. The result of this article can

be reduced to such a situation. When the self-noise is absent, we have g* = 4Ty, % as

is given in eq.(82), and the coefficient Y,, is independent of the fluctuation energy.

Therefore, we have the limiting formula
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S=J AAZ 4p , ] fAdz (131)
o & Ty, Jo

in this case. The integral in eq.(131)

f/\df (132)

is the dissipation rate of the fluctuating energy. One can define the entropy production

rate as

OSen
ot

" =%J; AdE . (133)

If one uses this definition, one finds that the relation

aSem
Coen (134)

irr

S oc

holds near the thermodynamical equilibrium, where Y,, is the damping rate close to

thermodynamical equilibrium. Therefore in this limit, the minimum principle of S in
this article reduces to the principle of the minimum dissipation rate of nonequilibrium
but near the thermodynamical equilibrium. Our result corresponds to an extension of

the Prigogine's formula.
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§6. Summary and Discussion

A statistical theory of nonlinear-nonequilibrium plasma state with strongly
developed turbulence and with strong inhomogeneity of the system has been further
developed to include the thermal fluctuations. A unified theory for both the thermally
excited fluctuations and the strongly turbulent fluctuations is presented. With respect to
the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the
drag to the test mode, and the rest, the incoherent part, is considered to be a random
noise. In the thermal fluctuation analysis, the coherent part to some mode is denoted by
the collisional drag, and the rest (incoherent part) is considered to be the thermal noise
of the temperature T. Combining both the contributions, we make a bridge between
thermal fluctuations and turbulent fluctuations. The turbulent fluctuations are treated
with the similar line of thought of the statistical physics approach.

In this article, formulation is presented by deriving a Fokker-Planck equation
for the probability distribution function. By use of the one-branch approximation, the
Liouville equation is approximated to a form of Fokker-Planck equation. The 'drag'
and 'diffusion’ coefficients in the Fokker-Planck equation are modelled based upon the
renormalization of the turbulent effects. On the basis of this equation, equilibrium
distribution function of turbulence level is derived. The Lyapunov function is
constructed for the strongly turbulent plasma. The time derivative of this functional is
shown to be negative definite, which shows that an approach to a certain equilibrium
distribution is assured.

The equilibrium probability distribution function is obtained and the
characteristic features are discussed. The difference from the thermal excitation is that
the turbulent level is determined not by the heat-bath temperature but by the internal
balance of turbulence-driven drag and the turbulent self-noise. The width of the
distribution function for the turbulent fluctuation is in the same order as the mean value
itself. This is because the excitation by the self-noise becomes larger as the mean

fluctuation level increases.
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Transition from the thermodynamical fluctuations, that is governed by the
Boltzmann distribution, to the turbulent fluctuation is clarified. The subcritical
excitation is possible, because the renormalized operator includes both the effects of
nonlinear destabilization due to turbulent drag as well as the decorrelation by turbulent
fluctuations. It is shown that the cusp-catastrophe is constructed in the average
amplitude of spectrum on the plane of gradient and temperature. In the case that the
average amplitude has a hysteresis, the probability distribution function has multiple
peaks. The criterion is obtained for the transition from one state to the other, each of
which is characterized by a peak of the distribution function.

The obtained equilibrium distribution function is found to be associated with a
small but finite tail component. It has a power law distribution in its large amplitude
limit. This power law dependence is caused from the fact that the random noise is the
self-noise: namely, the enhancement of the fluctuation level simultaneously increases
the noise pumping, establishing a self-sustained tail distribution. This result is obtained
by keeping the self-noise term in the denominator of the integral which appears in the
probability function. In a similar way of physics picture, the distribution function was
discussed in the neutral fluid theory [8]. In this work, the self-noise term is treated to
be small and is expanded. Therefore, no tail distribution was derived there.

Furthermore, coarse-grained volume-integrated quantities, like a total fluctuating
energy, the total dissipation rate and the associated time constant, are introduced and the
Fokker-Planck equation is reformulated. The equilibrium distribution function is
obtained and is expressed in terms of the macro variables.

These results show that our theory corresponds to an extension from the
previous theory of 'nonequilibrium but near thermodynamical equilibrium' into the one
of 'far nonequilibrium' systems. According to the distance from the thermodynamic
equilibrium, the probability distribution function deviates from the Boltzmann
distribution function. The power-index of the tail distribution is also expressed in terms
of global parameters. (It depends on the volume over which the fluctuation average is
made.) The distinction between the 'near' and 'far' nonequilibrium systems (the

distance from the thermodynamical equilibrium) is made by use of the nonequilibrium
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parameter of gradient. For instance, the critical gradient G,. in Fig.2, divides the
system near thermal equilibrium (G, < Go- ) and the one far from thermal equilibrium
(G >0G,: Y.

The most probable state is inferred from the equilibrium probability distribution
function of fluctuating energy. The most probable state is expressed in terms of
'minimum renormalized dissipation rate', which is given by the ratio of the nonlinear
decorrelation rate of fluctuation energy to the random excitation rate which includes
both the thermal noise of T and the self-noise effects of turbulence. If one takes the
limit of the thermodynamical equilibrium, this minimum principle reduces to the
"minimum entropy". For nonequilibrium but near equilibrium state, the fluctuation
source is given by the thermal excitation; then this renormalized dissipation rate is in
proportion to the entropy production rate. In this way, our result recovers, in the limit
near the thermodynamical equilibrium, the Prigogine's principle of minimum entropy-
production rate.

In the presence of hysteresis in the average spectrum, the probability
distribution function can have multiple peaks. The critical condition is derived, which
governs the transition from thermal fluctuation to the turbulent fluctuation. This rule
has a similarity to the 'Maxwell's construction’ of conventional transition theory.

Application is made for example to the current-diffusive interchange mode
turbulence in inhomogeneous plasmas. The applicability of this method is not restricted
to this case, but could cover plasma turbulence in much wider circumstance as well as
neutral fluid turbulence. The method of the analysis in this article could also be
developed even in the presence of oscillating modes, by use of the model of self-noise
which satisfies the realizability.22-29) The analysis which utilizes the realizable models
is discussed in the Appendix B. We would therefore conclude that the methodology of
this article has a wider applicability than the example which is explicitly shown in this
article.

Based on the results in I-I1] and this article, this method of analyzing strong

turbulence has succeeded to extend principles of statistical physics, i.e., Kubo-formula
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and Prigogine's principle of minimum entropy production rate. Also presented is a
criterion that is analogous to the Maxwell's construction. These considerations show
that the method and result in this article provide the extension from the nonequilibrium
statistical physics to the far-nonequilibrium one.

It is noted that the theory in this article is developed based on the assumption of
scale separation between the microscopic fluctuations and macroscopic structure. In
more general cases, this assumption does not always hold. If this scale separation does
not hold, the system of fluctuating elements might not satisfy the extensiveness, so that
the Gibbs-Boltzmann distribution is not valid even in the thermodynamical equilibrium
state. This direction of extension in the statistical physics has also attracted attentions,
and Tsallis has developed a statistical physics of nonextensive systems.>!) Extension
of the present theory of far-nonequilibrium systems to the case of nonextensive systems
is left for future study.

The transition probability between the two peaks in the probability distribution
function can be calculated by extending the method in this article. This subject is
essential in the understanding of turbulence-turbulence transition,32) and shall be

discussed in a forthcoming article.
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Appendix A: Evaluation of the power index

In the analysis of the statistical average based on the Langevin equation, the

decomposition approximation was used as

(giz.k> - 2; Mlz. kpqekpq(g‘l‘!.p)(gzla.q) (Al)

where { is an independent statistical variable which has the common averaged-
magnitude as the fluctuating quantities. That is, the relations (Q‘}z P) = ¢2 4 2nd

(t-'?.q> = ¢§, ¢q are imposed, and one has

=2 4
8o= ,% 2kM7 kpqekpq‘i’g. eq‘i’g- eqd’ﬁ eq- (A2)

When one further uses the diagonalized approximation,27. 28)

(1+ 511)2(,: M ipqM}j, kpgBipgl 1(P{9) = CovyI fK), (A3)

one has an estimation as

5= CoZk‘. K4Yk, eq¥f o (Ad)

where C, is a numerical coefficient and vy ,, is the decorrelation rate at the most

probable fluctuation spectrum. The coefficient in the diagonalized approximation

€q.(A3) was calculated for the spectrum that is given as a statistical average of the

solution of Langevin equation. When the fluctuation spectrum / 1(k) = <¢: ) and eddy

damping rate v, obey the power laws with respect to &, i.e.,

I,(k) = Ik V)™ (AS)

and
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Yolk) = vuolk L /ko)P, (A6)

the coefficient C, is calculated by the integral as

—_
]
X
L~
S—
o>
—
(%]
—
S
|
0y
=t
e

B Koo\ K
CO_. >k : (A7)
((p)(q)b){pz q2 [(k)(p)b](k} pf & —Q'B%
oo\ K e W (k) K

>k

which shows that C, is order unity. In performing the integral, p and ¢ satisfy the
relationk +p +q =0,

If one employs the form of spectrum
¢I§ eq ¢ k16 and g g * k?_’ (A8)
the approximate estimate for g is made. Substituting the form

02 g = 02, oko/ky)" (A9)

into eq.(A4), one has

=9 2
B = kbt athn=Co| Kiveatyolkoie)” (B)ude.  (al0
0

Performing the integral, we have an estimate as

=5 2
8= Lkl &) (Al1)
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The energy £ eq = —-]2— Z kiq)f eq 1s evaluated by use of eq.(A9) as
T .

2

z,=L T, =1 KOG dkt) (§) ks dt (A12)

B9

The expression for energy is obatined as

2

Z,=% ¢:q.ok3(%)2 . (A13)

Combining results of &0 and Ze , €gs.(A12) and (A13), we have the relation

= 8C, ,-2 -2
&=L k. L] (A14)

From these estimates, one obtains an evaluation as

= __ A 2
4R & g Ak (Z) . (A15)
, €
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Appendix B: Other Models of Self-Noise Term
It has been shown that the model of self-noise term in eq.(13) might not be
realizable when the excited modes have real frequency.22-25) Applicability of eq.(13)
might be limited to fluctuations without real frequency (e.g., interchange mode). In
order to resolve this difficulty, several models have been proposed. By use of an
alternative model, similar analysis is possible based on the Fokker-Planck equation.
Krommes has proposed a generalization for the self-noise term which is

symbolically written as23)

%W'FLW:'?K:M(‘;“‘WO)(C—WJ (B

where V¥ is a fluctuating field variable, £ is a renormalized operator, M isthe
coefficient of nonlinear interaction, { is a random variable, and Y, is a newly
introduced (non-Gaussian) variable which is statistically dependent on k.

Normalization is employed as <1|101|f0> = (llﬂll) . The superfix K in 5 represents the

model by Krommes.

. ak . . -
If one uses this model of random source term S~ , similar analysis is developed

by use of the Fokker-Planck equation. The assumption of short correlation time is

employed, §* = W(l‘)gK , and the result of the probability distribution function is

recovered by replacing the magnitude of self-noise term by | g~ |2 . By this procedure,

the important conclusion on the probability distribution function of the turbulence is not
altered qualitatively. For instance, the derivation of the tail distribution of the strong
turbulence is unchanged. This is because the scaling dependencies of g5 and | gr |2 on
the fluctuation amplitude are the same. (This can be understood from the fact that the
dimensional dependence in the right hand side is equals to the one in eq.(13)).
Therefore the logarithmic dependence on the fluctuating amplitude appears in the
argument of exponential function of the distribution function. The tail distribution with

power law is recovered. Itis noted that the estimation of the power index depends on
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the coefficient C, which is given by an evaluation of integrals. This coefficient could

be modified by the introduction of the new random variable.
Another type of realizable model was proposed by Bowman et al., which is

given in a moment equation24-25)

% Y, + 2Ry, ¥, = 2Ff’ (B2)

where ¥, = (W‘) is the spectrum of fluctuating field, Ry, is a real part of ¥, and E

denotes the magnitude of the self-noise term. The superfix B in the random source term
denotes the model of Bowman et al. The magnitude of the self-noise term and the

eddy-damping rate are expressed as

F{ =2 My, |'RO,,7,"¥," , (B3)

Ye=Vo + Y5, (B4)
and

vE=—_ § M, M, RO, FVP (B5)

where a new propagator ©,,, is introduced as
do,,+ [vk + Av, )+ Av, )}% = A, (B6)

In this equation, the operator ;{Yk ) =9y.H (‘iRYk) + 13y, is used where H (SRYI:) isa
Heaviside function and 3y, denotes the imaginary part of Y, . By this modification, the

realizability of the spectrum ‘¥, is recovered even in the case of fluctuation with real

frequency.
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T

The structure of the analysis in this article is not modified even if this model of

the self-noise term is employed. Firstly, the eigenvalue of the renormalized operator £

is obtained by the same procedure, by replacing Y, of eq.(9) by Yi . The derivation of

eigenvalues from eq.(20) and the decomposition of the matrix
exp ( £ t)

in terms of matrices A , A® and A”) are straightforward and unaltered. Therefore the
nature of the subcritical excitation and self-sustaining process are deduced into the same
form. The term A is defined accordingly. The dependencies of A on the gradient
parameter as well as on the fluctuation amplitude is not modified. Fokker-Planck
equation is constructed, in the same manner, by replacing the self-noise term. The
background of this equation (B2) is that the random source in the Langevin equation is

expressed as

(S‘f[:)Sf(t’)) = 8(t-1)F2 . B7)

A similar procedure can be developed in analyzing the distribution function. In the
Fokker-Planck equation, the variable is changed to ¥, (or a coarse grained quantity

¥Y= ; ¥, ), and the magnitude of the noise g2 is replaced by Ff . As in the case of

(B1), the qualitatively same conclusion is drawn.
For instance, the argument of the exponential function in the probability

distribution function is expressed as

J- Ag%’-dva Au g, (B8)
L]

where u is 'velocity' of perturbation field, u = V¥ cand F? isa weighted sum of Ff .

In a large amplitude limit, the dependencies hold as
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From these relations, one recovers a dependence

Au

Dc.l
F? o u

i.e.,

P(u) o J;?_Bexp (J; % du) oy~

(B9)

(B10)

(B11)

(B12)

(B13)

in the limit of strong turbulence. The power index M" can also be calculated if one

employs the diagonalization approximation of eq.(A3),

Fy put ;lemrg{@kmlP;n‘P;ﬂ <
Ye¥e -2 My My, RO, Y,

From these considerations, we see that the method of the analysis in this article
could also be developed based on the model which satisfies the realizability even in the
presence of oscillating modes. We would therefore conclude that the methodology of

this article has a wider applicability than the example which is explicitly shown in this

article.
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Figure Captions

Fig.1 Nonlinear decorrelation rate as a function of the fluctuation level. Fluctuation

level is represented by the turbulent eddy damping rate Yy . Cases (a)-(c) show various
values of pressure gradient. In (a), Go is small, so that A, is always positive. If Go
increases, (b), A, is positive in the zero-amplitude limit, but can be negative for finite
values of fluctuation level. This represents the nonlinear instability mechanism. When
GU becomes large enough, A, becomes negative in the zero-amplitude limit. This

corresponds to the linear instability. In the large amplitude limit, A, is positive and an

increasing function of the fluctuation level.

Fig.2 Statistical average of fluctuation level as a function of the pressure gradient.
The case of subcritical excitation is shown. In the case of low gradient, only thermal
fluctuations are realized. Hysteresis is shown, and (a)-(c) correspond to those in Fig.1,

respectively.

Fig.3 Rate of nonlinear decorrelation A, and the eddy damping rate Yy as a function
of the pressure gradient parameter G, . Inthe zero-amplitude limit, Yy vanishes and

A, converges to the damping rate owing to the molecular viscosity.

Fig.4 Schematic illustration of the statistical average of fluctuation level (I ) as a

function of the global gradient and temperature. (See [II] for derivations.)

Fig.5 Schematic drawings of the equilibrium distribution function for cases (a), (b)

and (c) of Figs.1 and 2. In (a), P., is an monotonic decreasing function of the

fluctuation level. In (b), it has two peaks, i.e., one for thermal fluctuations and the
other for self-sustained turbulence. In the case (c), distribution shows that of strong

turbulence.
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Fig.6 Model of the decorrelation rate A as a function of fluctuation velocity v . In the
low amplitude region, A is a decreasing function of U , representing the subcritical
excitation owing to nonlinear instability. In the large amplitude limit, A is an

increasing function of v , and asymptotic dependence A e v holds: A model form of

A(v) =A,v—-A, ischosen here. A vanishes at two values of v , v., and V., .

Fig.7 Renormalized dissipation rate S (v) .as a function of the fluctuation amplitude.

The case of (b) in Fig.1 is schematically shown. Owing to the presence of zeros of A,
S(v) takes extremum at v = v., and U =U., . S(U) has local minima atv =0 and

V=U.,.
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