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Abstract:

Passing particles in toroidal geometry are described in Hamiltonian forma-
lism including time-dependent electric and magnetic fields. These particles
are characterised by a non-vanishing toroidal velocity. The introduction of
the toroidal angle as independent variable instead of the time allows one to
derive a map of the poloidal plane onto itself, which is similar to the Poincaré
map of magnetic field lines. In time-dependent fields the energy of the
particles is not conserved leading to two coupled maps, which is characteristic
for autonomous systems with three degrees of freedom. As a result Arnold
diffusion occurs and KAM surfaces, which in case of energy conservation
separate stochastic regions in phase space, can be bypassed leading to
enhanced radial transport of particles. The mechanism of enhanced
transport is resonance streaming along resonance lines, which build—up the
complex Arnold web. The structure of this web depends on the drift
rotational transform of drift orbits and the toroidal transit time of passing
particles. Numerical examples of Arnold diffusion of test paticles will be
given.




1. Introduction

In non-axisymmetric stellarator configurations absolute confinement of particle orbits
does not exist, in general. Quasi-helical or quasi-axisymmetric configurations are excep-
tions; in real configurations, however, there are always small deviations from the sym-
metry and some particles may exhibit stochastic behaviour, which is the origin of en-
hanced losses.

The standard description of particle orbits in stellarator employs the guiding centre
model in magnetic or Boozer co-ordinates. However, outside the last magnetic surface
and in inner stochastic regions magnetic surfaces do not exist and one must return to a
general co-ordinate system, which does not require magnetic surfaces as co-ordinate
surfaces. Another case, where a proper choice of the co-ordinate system is
recommended, is the problem of trapped particles under the influence of field errors or
electrostatic or electromagnetic fluctuations. Here the transition to action-angle vari-
ables is useful, which allows one to study the long-term behaviour of the particles. In
the present paper we shall outline the general method to describe particle orbits in a
magnetic field and then focus on the orbits of circulating particles in toroidal geometry,
which represent the majority of particles in a toroidal magnetic field. These particles do
not change sign of the parallel velocity and circulate around the torus in one direction.
They approximately follow magnetic field lines. If these particles stay on closed drift
surfaces, their orbits exhibit the same features as magnetic surfaces: they also have a
rotational transform, which in contrast to magnetic surfaces depends on the energy and
the magnetic moment of the particles. Since magnetic surfaces and drift surfaces differ
only by order of gyro radius, the rotational transform of particles differs only slightly
from the magnetic transform. Closed drift surfaces can be destroyed under the
influence of magnetic and electric fields, in particular, poloidal electric fields can lead to
island formation of drift surfaces, while magnetic surfaces are not affected by these
fields. Poloidal and parallel electric field exist in a neoclassical plasma and they are also
an unavoidable by-product of plasma instabilities.

In the following we consider at first the drift surfaces of circulating particles in time-
independent electromagnetic fields. Island formation and island overlap of drift surfaces
is the origin of enhanced radial transport of circulating particles. In case of magnetic
surfaces, islands are separated by KAM-surfaces, which form transport barriers, if the
perturbations stay below a certain threshhold. The destruction of the last KAM surface
opens the path for strong radial diffusion of field lines. The same effect has to be
expected in case of drift surfaces and destruction by time-independent electromagnetic
fields. Mathematically the analysis leads to an autonomous system with two degrees of
freedom. In case of time-dependent fluctuations, which be also considered, the theory of
circulating particles is described by an autonomous system with three degrees of free-
dom. In such a case resonance surfaces, on which islands can arise, are no longer sepa-
rated by KAM-surfaces. The new feature in systems with three degrees of freedom is
the Arnold diffusion, which allows particles to go around the KAM-surfaces.

The aim of the paper is to investigate how the properties of the unperturbed system, the
rotational transform and the shear, affect the stochastisation of particle orbits. In the
literature various descriptions of drift orbits exist. In the paper of Morozov and Solov’ev!
the drift velocity of a guiding centre in a time-independent vacuum field is given by

%:%VX(A+,0"B) ; p..=a—éJn%(E—uB—q¢) Eq. 1.1

1 Morozov, Solov’ev, Rev. of Plasma Physics, Vol. 2, p.229, Consultants Bureau, New York 1966




pyis the parallel gyro radius, A the vector potential of the magnetic field and p the mag-
netic moment of the particle. 6=%1 is the sign of the parallel velocity. The orbits of

circulating particles which do not change sign are the ,field lines” of the divergence free
field

B’ =V x(A+p,B) Eq. 1.2

The Poincaré plot of the intersection points in a poloidal plane is the image of a flux con-
serving map. Therefore the topology of particle orbits is the same as the topology of
magnetic field lines, which means that islands and stochastic regions may occur. White,
Boozer and Hay?2 have criticised the formulation of Morozov and Solov’ev as being not
compatible with Liouville’s theorem and they suggest a slightly different form of the
guiding centre velocity

ax D L Vx(4+pB) ; b=t Eq. 1.3

dt Bl+p,,b0(be) B

This relation can be obtained from a Lagrangian derived by Littlejohn3. The orbits of
circulating particles, however, are described by the same equation 1.2 as in Morozov’s
form. In time-dependent fields the variation of energy has to be taken into account and
the description of particle orbits and their general properties are best described in terms
of Hamiltonian formalism corresponding to Littlejohn’s Lagrangian.

Passing particles under the effect of electrostatic drift waves have been analysed by
Horton et al*. These authors employ a mapping technique to study the long-term
behaviour of the particles. However the variation of particle energy by the waves has
not been retained in this paper.

In the first part of the paper we consider circulating particles in time-independent fields
and start from the drift velocity in eq. 1.3. An area-preserving map will be derived which
by iteration yields the Poincaré plot of circulating particles. In the second part the theory
is extended to time-dependent magnetic and electric fields. The main step is the reduc-
tion of the six-variable Lagrangian of the guiding center to a five-variable Lagrangian
and a four-variable Hamiltonian. A Hamiltionian valid in time-dependent fields has been
derived by Boozer®, the reduction to a four variable Hamiltonian was made by
neglecting the radial component of B. Hazeltine and Meiss® succeeded to eliminate the
radial component by constructing a proper co-ordinate system. In case of time-
dependent fields this co-ordinate system is also time-dependent leading to an additional
term in the Hamiltonian, which was neglected by Hazeltine and Meiss. This additional
term will be rigorously included in the following paper. In practical cases, however, it
turns out that this term is small. Starting from the canonical equations the mapping
equations will be derived and some numerical examples of Arnold diffusion will be
given.

2 R.B. White, A H. Boozer and R. Hay, Phys. Fluids 25, (1982), 575

3 R.J. Littlejohn, Phys.Fluids 24, 1730 (1981)

4W. Horton, H.B. Park, JM Kwon, DI Choi , D. Strozzi and P.J. Morrison, Phys. of Plasmas 5
(11) 3910, (1998)

5 A. Boozer , Phys. Fluids 27 (10) 2441 (1984)

6J.D. Meiss, R.D. Hazeltine Phys. Fluids B2, (1990) 2563




2. Time-independent Fields

In time-independent electromagnetic fields the energy of the particles is conserved, and
the equation of motion can be reduced to two canonical equations. The orbits of circula-
ting particles provide an area-preserving map of the poloidal plane onto itself. To illus-
trate this we start from the drift velocity of a guiding centre as given in eq.1.3. This
equation holds under the condition je B =0, which is satisfied in vacuum fields. The
orbits of circulating particles which do not change sign are the ,field lines® of the diver-
gence free field

B' =V x(A+p,B) Eq.2.1
The Poincaré plot of the intersection points is the image of a flux-conserving map.
Therefore the topology of particle orbits is the same as the topology of magnetic field

lines, islands and stochastic regions may occur. In analogy to field lines of magnetic
fields one can obtain the orbit equations as Euler equations of the variational principle

§[A"edx=0 ; A'=A+pB Eq. 2.2
Let the transformation x,y,z —> r,0,¢ introduce a toroidal co-ordinate system with

r(x,y,z) = const. being toroidally closed surfaces and 0,9 a poloidal and toroidal angle.
Introducing an appropriate gauge the vector potential can be written as

A ={0,A;,A;} Eq.2.3

where the radial covariant component of A has been eliminated by a gauge transforma-
tion. Explicitly the variational principle is

5( 4o +4ydp =0 Eq.2.4
Defining a variable p,

Po = 43(r.6.9) Eq. 2.5
and postulating that

%A; #0 Eq. 2.6
allows one to invert equation 2.5 and to eliminate the radial variable r:

r= r(pe,e,qo) Eq. 2.7
We introduce the function K by

K(p,,0,0) = -4;(r(p,.6.0).6.0) Eq. 2.8

and write the variational principle in the form

8| p,d6 -Kdp =0 Eq.2.9

7 J.R. Gary, R.G. Littlejohn, Annals of Physics (NY)151, 1 (1983)




Kis a Hamiltonian with ¢ replacing the time and the canonical orbit equations are

8 _oK . dp, K

== Eq.2.10
dp dpg do a0 g

.Energy and magnetic moment are fixed parameters. Let Kqo(p,) be the average over the
angular variables.

Pa

K =Ky(po)+Ki(P6:6,0) = [ 1( )i + K,(s.6.0) Eq.2.11

1( P9=E,#) is the rotational transform of the unperturbed drift surface. The canonical
equations are

do ( 8)+6‘K1 . dpe _ 9K, Eq. 2.12

dg = "\ op T Tap T o8

Note that the “perturbation” K, is not assumed to be small. Particle orbits of circulating
particles provide an area-preserving map of the poloidal plane onto itself. This is the
result of Liouville’s theorem, which says that the area

§p9d9 = const Eq. 2.13

along orbits in phase space. This is the analogue to the flux-conserving map of magnetic
field lines.

Fig. 1: Surface of section in the ps—6 plane. In case of constant energy the orbits of
circulating particles generate an area-preserving map of the p,~8 plane onto itself.

We define the surface of section by ¢ = @o and describe the map
T: eo,Po,q)o = Blapb(o()-'-l Eq 214

using the generating function




S=p,90+T;(xyx+&(p,,90) Eq. 2.15

All details of the perturbing Hamiltonian K, are described by the function S,. The
mapping equations are

S, (P] > 60)
a6,

as, (Pl ] 60)
ap,

which is the general form of a twist map. In order to get an approximate expression of
the generating function we formally integrate eq. 2.12 over the particle orbit and find

Po=pi+ i 6 =6+1p)+ Eq.2.16

1
P =po—j%d<o Eq. 2.17
0
Comparing this with eq. 2.15 yields
8, 1
5= de{ [ %‘-d(p} Eq. 2.18
0
Expanding K, in a Fourier series
K = ZK,m(pa)exp[i(le - m(p)] Eq. 2.19
Im
yields
%I;—‘ = Re%K,m(pg)ilexp[i(le - m(p)] Eq. 2.20

In case of small pertubations integration can be made over the unperturbed orbits,
which are described by p,=p, ; 0=6,+ 1( ps)(p , which yields

exp[i(lt - m)] -1

(ll - m)

S, = Tdﬂ{ l ég(—‘dq)} = ReZK,m(pe)ilexp[ilao] Eq. 2.21
Im

)96

2.1. Local Map

The mapping equations 2.16 are implicit because of the occurrence of S, the momen-
tum p; must be computed for instance by Newton iteration or any other root finding
routine. In order to avoid this complication we approximate the map by Taylor
expansion. In the following we assume that an orbit starting at po = P stays in the
neighbourhood of this point. In this case one can use a Taylor expansion of the map
around this point.

S,(p..6,) =SI(P,60)+82(P,90)(p1 -P) Eq. 2.22

which leads to the mapping equations




dS,( P, aS,(P,
+ 2(590 90) ¥, + lo{\ao 90) s 6 =90+1(P)+sy1 +82(P,80) Eq. 2.23

Yo = 1

Here we have introduced y = p,—P as a new variable; s is the shear defined by

§=—- Eq. 2.24

Introduction of a new variable Y = sy yields the equations

Y, =|1+ 3—82-(13:;9") Y,+s&£:(ﬂ ;6 =90+1(P)+Y, +SZ(P,90) Eq.2.25

If in S; the dependence on the variable p is negligible (Sz = 0) this reduces to a twist map
: aS,(6,)
a6,

This formulation shows the important result that shear enhances the effect of a pertur-
bation. The excursions of the orbits in Y-direction grow with increasing shear.

Y, =Y, - ; 9,=90+1(P)+Y, Eq.2.26

2.2. The Role of Shear

In the literature of dynamical system® it is shown that on resonant surfaces, which are
defined by

m
= Eq. 2.27
(po) = q
primary islands exist. The size of these islands is given by
SR AL Eq. 2.28
s dpg

where s is the shear on the resonant surface. The size of the islands grows if the shear
decreases. If there are more than one resonant surface, these islands can overlap and
the region between islands becomes stochastic?. The distance between two resonant
surfaces is

5P, = l(ﬂ ¥ ﬂ) Eq. 2.29
s

which shows that the distance between islands decreases linearily with shear while the
islands size decreases with the square root of the shear. Accordind to the overlap

8 A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion, Springer Verlag 1983

9B.V. Chirikov, A universal instability of many-dimensional oscillator systems, Physics Reports
52, (1979) 263, North-Holland Publishing Company
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criterion of Chirikov the KAM-surfaces between islands are destroyed if the size of
islands is larger than the distance.

2K,s +2K,s (% —%] Eq. 2.30

The relevant parameter for island overlap is the product of shear and the coefficient of
the resonant partubation.
As an example we consider a simple twist map with a linear iota profile

D, =D, —asin(4n90)—bsin(67r90) S0 =0 +I(p1) F l(p) =1, +sp Eq. 2.31

The Poincaré plots are shown in the next figures
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Fig. 2: Poincaré plot of twist map eq. 2.31. a=b=0.022, iota(0) = 0.3, iota(1)=0.7, s=0.4.

The resonant islands in Fig. 2 are the primary islands caused by the two harmonics in
Eq. 2.30. The large islands arise at iota =1/3, 1/2, 2/3. Between these islands KAM-sur-
faces exist. Secondary islands are separated by KAM-surfaces. Increasing the shear to s
= 0.5 makes the islands shrink, however the distance will shrink faster as can be seen
in the next figure.




oo L¥iSE Map! (a_2=0.022,a_3=0.022 )
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Fig. 3: Poincaré plot of twist map 2.30. a=b=0.022, iota(0) = 0.2, iota(1)=0.8, s=0.5.

In figure 3 there are no KAM-surfaces left in the region between the primary resonan-
ces. Although small shear makes the islands grow, overlapping and stochasticity is
reduced by small shear. Adjacent islands are those with m,[ — m/, = 1. The distance of

islands is
1

o Eq. 2.32
Gt d
As an example we consider a sequence of islands with
L 03 Eq.2.33
2m—-1

This sequence converges to 1/2 and all islands of this sequence are adjacent. The
distance between these islands and the resonant surfaces 1=1/2 is

1 1 :
0Py =—F——= =0 — Eq. 2.34
i sZ(Zm-—l) o[sm] 1

Since the Fourier series Eq. 3.18 converges the coefficients Kj,, decrease faster or equal
to 1/ml = 1/m(2m-1) and for large m the size of the island is




mys

5P, = o{i 5} Eq.2.35

ko is a constant. There is a constant ratio between the size of these islands and the
distance to the rational surfaces with 1= 1/2. If the shear is small enough, overlapping
does not occur.

Let us consider a case with a finite Fourier series which is truncated at some I = L and
m =M. In this case a region around 1 = 1/2 exists, in which primary resonances cannot
occur. Since the number of harmonics is finite there exists one harmonic K, where the
ratio m/l has the closest distance to 1/2. No primary resonances exist in this region
closer to 1= 1/2. To prove this we consider the sequence given in Eq. 2.30, which
converges towards 1/2 from above. Let us select any member of the sequence, then all
rational numbers between this 1n and 1= 1/2 have numerators higher than m. This
result is not restricted to the rational surface with « = 1/2, they are valid on any rational
surface. The result can be formulated as follows: In case the Fourier series is finite, any
rational surface has a finite vicinity in which primary resonances do not exist.

KAM-surfaces with irrational rotational transform separate rational surfaces from each
other. If the perturbation is small enough KAM-surfaces between islands are not de-
stroyed and the particle orbit cannot cross the KAM-surfaces. Undestroyed KAM-sur-
faces form a transport barrier and localise the anomalous transport of circulating partic-
les to the region of the islands. The destruction of KAM-surfaces is facilitated by in-
creased shear since island overlap is favoured by increased shear.

In the low-shear stellarator Wendelstein 7-A10 optimum confinement was found in the
neighbourhood of iota = 1/2 and iota = 1/3. A qualitative explanation of this phenomenon
was given by the observation that magnetic surfaces in these regions are particularly
robust against magnetic perturbations!l. The same effect has been observed in the
stellarator Wendelstein 7-AS!2,

3. Circulating Particles in Time-dependent Fields

Let us consider a toroidal equilibrium described by the equation of ideal MHD-equilib-
rium

jxB=Vp Eq. 3.1

There may be islands and stochastic regions and a last magnetic surface surrounded by
a stochastic sea. Flux surfaces do not exist everywhere and therefore the use of magne-
tic co-ordinates or Boozer co-ordinates may not be applicable everywhere. In this case
the so-called canonical co-ordinate system proposed by Hazeltine and Meiss (ref. 6) is
more appropriate to describe particle orbits and to explore the general feature of these.
This co-ordinate system has closed toroidal surfaces r = const., which are nearly tan-
gential to magnetic field lines and they may coincide with magnetic surfaces where
these exist. On these toroidal surfaces labelled by r, two angular co-ordinates are

10g Wobig,H. Maassberg, H. Renner et al. 11* TAEA-Conf. Kyoto 1986, Vol. 2, p. 369
11y Wobig, Z. Naturforsch. 42a, 1054 — 1066 (1987)
12 H. Renner et al. Proc. 16® EPS-Conf. Venice 1989, 1579-1596
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chosen such as to eliminate the radial covariant components of the magnetic field and
its vector potential. The co-ordinate system is defined by r, 08,¢ with

A=(0,4,,4,) ; B=(0,B,,B,) Eq. 3.2

It is always possible to eliminate the radial component of A by a gauge transformation.
Eliminating the radial component of B, however, requires a special choice of either the
poloidal or the toroidal angular co-ordinate. The existence of such angular co-ordinates
is discussed in ref. 6.

Time-dependent magnetic fields and electric fields can strongly disturb particle orbits
and enhanced radial transport is the result of this perturbation. If the magnetic field is
time-dependent, the co-ordinate system, which eliminates the B:-component, is also
time-dependent!®. The guiding centre Lagrangian of charged particles is 14

2
m( dx dx B
L=21Zep| +qg=ena-ypgo ; 5 =8 8.3
Z(dt.] Tat AT B e

In this form it holds in every co-ordinate system. It is also valid in time-dependent elec-
tromagnetic fields as long as the frequency is much smaller than the gyro frequency. In
a general co-ordinate system the Lagrangean is

m
B2

L=

L)

2
(vB.+0'B,+vB,) +q(v'A, +1°4, +17°4,) - uB-q® ; b =~‘§ Eq. 3.4
p is the magnetic moment and q the charge of the particle. v is the velocity of the par-
ticle. @ is the electric potential. In order to anihilate the radial component of the mag-
netic field we introduce a time-dependent transformation of the poloidal angle

8- n= n(x, t) Eq. 3.5
In this new coordinate system the magnetic field is
B=BVr+BVn+ B,Vo Eq.3.6
The condition B, = 0 requires
(Berp)oVn:O Eq. 3.7

which is a differential equation for n(r,0,9,1), where @,t are parameters. If the magnetic
field does not depend on time, this transformation is also time-independent. In the
following we consider magnetic fields with periodic time-dependent terms

B=B,(x)+B(x,1) Eq.3.8

The smallness parameter ¢ is introduced to indicate that B, is a small time-dependent
perturbation. This implies that the time derivative of the co-ordinate transformation nis
of the order &. Normalising to the period 7 of the oscillation we introduce a dimension-
less time variable t which ranges between 0 and 2n. In the following the time has the
same dimension and the same range as the angular variables. The Lagrangian in these
new co-ordinates is

13 In Ref. 3 this transformation has been made for time-independent magnetic fields
1 R.J. Littlejohn, Phys.Fluids 24, 1730 (1981)
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e

Lzﬁ(v""B,T +v"’B¢)- +q(v"A,I +v°’A¢)—,uB—q(I) Eq. 3.9

In writing this Lagrangian in terms of the time derivatives of the co-ordinates we must

take into account that the relations
do

dn an

—=veVp ; —=vyeVp +— 3
A T 8 SpveNpiEe Eq. 3.10
hold and the Lagrangian can be written as
dn do
f=7 21 98 ¢
L(dr g J
m(dn, on, do Y (dn,  an . dp
L=—|—B,-—B,+—B,| +gq| — A4, —— A +—LX 4 |-uB-q® Eq. 3.

ZBz(dr" ot T g e ) YA o At e | B¢ q.3.11

In the paper by Meiss and Hazeltine the last term in eq. 3.10 has been neglected, hence
their results are not valid in time-dependent magnetic fields, strictly speaking. The
canonical momenta derived from the Lagrangian are

pr=%=o Eq. 3.12
muB,
Py = = +44, Eq. 3.13
muB
Pp= B'P+qA¢, Eq.3.14
The parallel velocity is
~L(p syep\=L[(dnp _on,  de
u-B(v B, +v B‘p)_B[dt B, - Ey B, + o B, Eq. 3.15
The Hamiltonian is
dn do
H=pn:it—+p¢'—‘;;'—L Eq 3.16

Inserting eqs. 3.11, 3.13 and 3.14 into eq. 3.16 yields

H =£2’-u2 +UB+q®+p,g ; g(r.n.0.1)= %:l Eq.3.17
The last term is a new term, which arises due to the time-dependent co-ordinate trans-
formation. The Hamiltonian is not yet written in terms of canonical variables. For this
purpose the equations 3.13 and 3.14 must be inverted which yields

uzu(pn,pq,,n,go,t) 7 r=r(pn,pq,,n,(p,r) Eq. 3.18

This inversion is possible provided the Jacobian of the transformation 3.13 and 3.14 is
non-zero. In ref. 6 this condition is mentioned, however, no example is given, when this
condition can be satisfied. In the following we assume, that the toroidal component B, is
much larger than the other ones and B, # 0. We can write eq. 3.14 as

12



B

mB,p

U=

(P, —q4,) Eq. 3.19
The radial co-ordinate r follows from
PyBy = poB, = ‘I(Aanp - quB,?) Eq. 3.20

which in lowest order in B, yields

Py =q4y(r.1.0.1) Eq. 3.21

For inverting this equations it is necessary that
Be =% Eq. 3.22

or

The result can be formulated as follows: If B, #0 and B, << B,,B, << B, there exists a
unique solution of eq. 3.21.

r=r(p,,,p¢,,n, go,r) Eq. 3.23
After eliminating the parallel velocity and the radial co-ordinate r the Hamiltonian is
m
H =Py, 2y 1.0.0)+ HB(P 1, Py 1,0,1) +q®( Py, Py 1,0,) + g Eq.3.24

or

Py =4y +1B(Dy. Py 11,0,1)+ 4Py, 2y, t)+ p,g Eq. 3.25

The Hamiltonian has only four variables, the two angles and their conjugate momenta;
the radial conjugate momentum does not occur in the Hamiltonian. In a paper by A.
Boozer’S, it was only argued that the radial B, —component can be neglected since it is
small. Hamilton's equations are

fﬁz_ﬁﬁrmuﬁ‘i_M_p og Eq. 3.26
dt an an an T on
dpy =_9_H_=_mui9"__M_p 9% Eq.3.27
da ~ dp 9 o "
A uB+q®d
dn = ﬁ = nu{ﬂ-}- (ﬂ ) +g + pfl ag Eq 3.28
dt &)'l &)r; @n al)’l
do _ oH _ ‘9"+a("B+q¢)+ g Eq. 3.29

mu p
at  ap, ap, ap, "adp,

These equations are the Euler equations of the variational principle

15 A. H.Boozer, Phys. Fluids 27, 2441 (1984)
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§[Lat=0 = 5jp,,dn+ Ao — Hdt =0 Eq. 3.30
In the limit of m -> 0 the Hamiltonian is zero and we get the field line equation!é

5[ Aydn+ A,dp =0 Eq. 3.31

4. Passing Particles

In the following we consider particles circulating around the torus without changing the
sign of the parallel velocity. Basically these particles follow the field lines, magnetic drift
and electric drift, however, cause some deviation from the field lines. Particle orbits
even can be stochastic, if field lines are regular. In order to obtain a twist map for
circulating particles the toroidal angle as independent variable is introduced instead of
the time. To do so we invert the Hamiltonian and write the toroidal momentum P, as
function of energy E and the other variables

2mB},

pp=qA¢+G\j 7

which defines a new Hamiltonian K. o is the sign of the circulating particle and it is
either 1 or —1. Equation 4.1 is only a formal solution of this inversion problem since the
magnetic field and the electric field in 4.1 are still functions of p,- However, in case of
circulating particles this inversion is possible since for these we have

(E—;LB—th’—p,,g) =:—K(E,t,pn,n,(p) Eq. 4.1

de _9H _, Eq.4.2
dt dp,
The new variational principle is now
5[ Pydn—Kdp - Edt =0 Eq. 4.3
and the new canonical equations are
%z_a_K ; dn _ 9K Eq.4.4
dp  dn dp dp,
dE_oK . di_ K e

dos. " dp OB

In this formulation conservation of energy is obvious if the fields are time-independent.
Only the first two equations 4.4 are relevant in this case and the problem has been re-
duced to a problem with two canonical variables. The phase space is the D,n-space and
according to basic theorems of mechanics the area

J=§ pydn Eq. 4.6

is conserved around the torus. This property is the equivalent to the flux conservation
of magnetic field lines. It implies that all properties of magnetic field lines also apply to

16 JR. Gary, R.G. Littlejohn, Annals of Physics (NY)151, 1 (1983)
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circulating particles in a torus. In particular stochastisation and island overlap may lead
to enhanced losses if the self-consistent electric field is properly retained. In axisymme-
tric tokamaks there is no dependence on the toroidal angle and eqs. 3.27 says that the
toroidal canonical momentum is conserved. In non-axisymmetric stellarators this is no
longer true, however the conservation of J is still valid (eq. 4.6).

Let us first consider briefly the time independent case in a stellarator and write the
Hamiltonian K in the form
K = Ky(py E)+K\( Py, E.0) Eq. 4.7

where Ko is the average of K over the two angular variables as in Eq. 2.11 and the
energy E is constant. The canonical equations are

dp, K, dn oK, )
—_—t e — ; —_— _— " e (e —— . 4
dp  an do {pa)+ Py {(p) Py S

which are the same equations as in 2.12.

Next, we return to the time-dependent case, where the electromagnetic oscillations
introduce a small correction term K.

K = K,(p,.E)+ K,(p,. E.n.0.2) Eq. 4.9
The unperturbed Hamiltonian Ko describes unperturbed drift surfaces characterised by
the two “frequencies”
x,

U py.E)= . T(p,.E)

_K,

= Eq. 4.10
The term K; describes time-dependent perturbations, which can disturb the orbits as
described in section 2. It also destroys the energy conservation. T is the toroidal transit
time of circulating particles normalised to the period t of the oscillations. This is a
decreasing function of the particle energy since the transit time of fast particles is
shorter than the transit time of slow particles. Particles circulating around the torus
with initial values no,to,po,Eo will change these values to mi,t1,p1,E1 after one toroidal
transit. The map describing this transformation has the generating function

N =S(P1=770!E1”0) =pn, + Ef, +Ko(£1>P:)+ S:(P1= TIOaElJo) Eq.4.11
The four the mapping equations are
(i 9= g as
o t,-t0+T(E,pl)+a—E'1 Eq. 4.12
and
oS aS.
mended o0 =n,+{p,.E, )+ -y Eq.4.13

The perturbation S, is uniquely determined by the perturbation of the Hamiltonian K.
An approximation to this function S; will be given in the next section.
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5. Approximation of the Map

In the analysis above no assumption about the smallness of K or S; has been made. In
the following we assume that magnetic surfaces exist and the magnetic field can be
written as

B =B,(x)+B,(x,1) Eq. 5.1

with nested magnetic surfaces of the lowest order field. The Hamiltonian is

2 mB;

P = qu(p,T)+ A;,(p,,,n,E,t,(p)+ O'J =

(E-—yB—qu—png) Eq. 5.2

Averaging the second and the third term over the angles and the time (which is
periodic) yields

B2
Ko(Pg.E) = g4} (py)+ 0<\/ 2;”’ (E-uB-q@- p,,g)> Eq. 5.3
and
Kl :K —Ko Eq 5.4

The derivative with respect to p, is the rotational transform of the unperturbed drift
surface. Next, we consider K as a small perturbation and integrate equation 4.8 over
the unperturbed orbits. The unperturbed orbits are written as

oK
P=p ;i B=E ; m=m+yE.p)e ; t=n+>2 Eq.5.5

The formal integration of the canonical equation 4.4 over the toroidal angle ¢ and along
the orbit yields

1
P =D —fg—%(lﬂ,p., 1y + 19,0.1(9))dp Eq.5.6
]
Because of 4.13 we obtain the generating function
Mol
5= [ [ 5 H(B.pn-+10.0.1(9))dgan Eq. 5.7
0

Expanding the Hamiltonian K in a Fourier series

K = ZK,,,,,,(E, DI )exp(i[ln -mo+ ncot]) Eq.5.8

nml

yields

1-exp(i[lt—-m +naoT])
S, =Re zfc,mn(El, P, )il exp(iln, + ina)to)( ) Eq. 5.9

imn iflt—=m+naT)
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6. Extended Phase Space

Our canonical equations 4.4 and 4.5 describe a non-autonomous system with two de-
grees of freedom. The Hamiltonian K depends on 4 phase space variables p,N.E,t and
the independent variable ¢. Considering —K and ¢ as new conjugate variables and A as a
new independent variable leads to an autonomous system with 6 phase space variables
(or three degrees of freedom)!”. The new Hamiltonian is

K = K'(p,n.E.t,9,K)=K(p,nE.t,p)~k Eq. 6.1

The new independent variable A does not occur in the Hamiltonian K* which implies
that K* is conserved. The canonical equations are now

d, K . dn_oK Eq. 6.2
dA an diA dp,
ali gk o cdt ik Eq. 6.3
dr dA OE
dk _oK . de__dC _, Eq. 6.4
dir~ dp dA ok

The new Hamiltonian K* is constant and defines a five-dimensional plane in the six-
dimensional phase space. The Hamiltonian can be written as

K' =K,(p, E)-k+K,(p,n,E,t0) Eq. 6.5
The unperturbed Hamiltonian is

K;(p,.E.k)=K,(p, E)-k Eq. 6.6
and the resonance surfaces are defined by

ll(pn,E)+an(pn,E)—m =0 Eq.6.7

On these resonance surfaces islands can arise if the Fourier spectrum of perturbations
contains resonant components or by non-linear coupling of non-resonant harmonics. In
contrast to time-independent case discussed above resonant surfaces can intersect.
They are no longer separated by KAM surfaces. This property is the origin of the Arnold
diffusionl8,

The resonance surfaces according to eq. 6.7 are independent of the co-ordinate k, the
projections onto the k-plane describe curves in the p,-E-plane.

17 See Lichtenberg and Lieberman, Regular and Stochastic Motion, Chapter 6.
18 V.I1. Arnold, Mathematical Methods of Classical Mechanics, Springer -Verlag
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Fig. 4: Arnold web in the nwT-iota plane, m=1, ...5, 1=£1,... ,+4.

In a time-independent system this resonance condition 6.7 reduces to k-m = 0 and the
resonant lines do not intersect for constant energy E. In general, the surfaces defined
by eq. 6.7 do intersect. These intersection points are indicated by vertical lines on the x-
axis in Fig 4. Particles stay on surfaces of constant K* and by slow diffusion along the
resonance layers — the Arnold diffusion — they can diffuse from one resonance layer to
another. The effect is similar to collisions, which change the energy of the particles in a
random fashion. By changing the energy the particle can jump from one drift surface
onto another one. Without islands the radial step width of these random processes is of
the order gyro radius and leads to classical diffusion or Pfirsch-Schliiter diffusion. If
islands in drift surfaces exist, the KAM surfaces between islands can be “tunneled” by
collisions leading to enhanced radial transport. The transport barrier formed by KAM
surfaces can be “torn down” by collisions. Arnold diffusion in action space has the same
effect.

A classical example exhibiting Arnold diffusion is the billiard ball problem with a ball
bouncing between a plane wall and a rippled walll®. The resulting four mapping equa-
tions have the same structure as eq. 4.12 and eq. 4.13.

Let us assume that the function S, is independent of the energy E and p. The mapping
equations are

ED=EI+% ; h=4+7(E,p,) ' Eq. 6.8

and

19'AJ. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion, Springer Verlag 1983
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oS
Po=D + 8}71 s nm=n+ l(pl 'El) Eq_ 6.9
0

Her oT has been replaced by T. These equations describe two coupled area-preserving
maps. The first map 6.8 is area-preserving if we keep p; and Mo fixed, the second map

6.9 is area-preserving if £, and t, are kept fixed. Such kind of coupled maps have been
studied by C. Froeschlé? and Kaneko?!.

6.1. Numerical example

As an example of teo coupled maps we consider circulating particles in a torus. The
model of the unperturbed case is

1(p)=p X T(E)ZTI_E_ Eq. 6.10

The toroidal transit time scales inversely with the parallel velocity , which has been
approximated by sqrt(E). The generating function is in lowest order

SO:pln0+Elt0+%p12+2vE| Eq.6.11
and the perturbation is

S =

b
— aEI cos(Zﬁno) + o cos(27r(n0 = to)) Eq. 6.12

which leads to the mapping equations

E,=E, + bsm(zn(n0 - xo)) i ob=t,+T(E,)- 2};& cos(27m, ) Eq.6.13
1
Po =Dy _ﬁSin(zmo) = bsin(zﬂ(no 2 to)) 5 Th=10,+p Eq. 6.14

Setting b to 0 makes the energy constant and the remaining two equations describe the
standard map. This is shown in Fig. 6. The time-independent part of S, describes a mag-
netic drift or electric drift, which causes the drift orbits to deviate from magnetic sur-
faces. This difference scales inversely with the parallel velocity of the particles. The first
equations 6.13 yield an area preserving map if 1) is a fixed parameter. This map is shown
in Fig. 7. There are two resonances, the upper one is defined by

7(E,) -z—élmcos(zmo) =1 Eq. 6.15
1
and the lower one by
7(E,)- 2;3{_2 cos(2mm, ) =2 Eq. 6.16
1

2 C. Froeschle, Astron. Astrophys. 16 (1972) 172
21 R, Kaneko, R.J. Bagley, Physics Letters 110 A, 435-40 (1985)
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A third (small) resonance occurs at 1.5.
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Fig. 5: Arnold web in the p-E-plane. Horizontal axis: energy, vertical axis: poloidal
momentum (radial co-ordinate).
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Fig. 6: Standard map with a = 0.066, E = 0.444. Solid black line: Start line of particles.
The particles start in the island with iota = 0.5. b =0.002, E,t fixed.
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Fig. 8: Arnold diffusion of 10 particles, 20000 transits, b = 0.002, Eo = 0.444. x, =
0.05.The particles start in the iota = 0.5 island.
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Fig. 10: Poloidal momentum vs energy, 5 particles, 20000 iterations. The solid curves

are the lines of the Arnold web.

Fig 9 shows the energy variation of the particles, the chaotic behaviour of the energy is
evident. The resonance condition 6.7 is written as
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Ll Eq.6.17
D ] l\/E'- q

The resonance streaming visualized in Fig. 10 mainly occurs along these lines. The main
line in Fig 10 is described by m/l = -1 and n/l = -1. The other two curves of relevance in
Fig 10 are given by m/l=-1/2, n/l = -1/2 and m/1=2, n/I=1. The particles crossover at the
intersection point of the resonance curves.

The particles in Fig. 10 start at p = 0.5 and E = 0.444. Most of the particles stay on the
resonance line

e Eq. 6.18
E
One of the particles follows the resonance line
ol Eq. 6.19
VE
and makes a crossover to
e b g Eq. 6.20
2NVE

The example given here employs only one harmonic in  and one time-dependent
Harmonic. Increasing these numbers leads to a more complex pattern of resonance
streaming. If the particles start in the region with closed KAM surfaces, the Arnold
diffusion is very weak. This is demonstrated in the following figure.
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Fig. 11: Arnold diffusion of 5 particles, 20000 transits, b = 0.002, E; = 0.444. x, =
0.05.The particles start on the line 39 (iota =0.413).
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7. Electrostatic Oscillations

Drift waves in toroidal systems are generally considered as the reason of anomalous
transport. In lowest order approximation drift waves are electrostatic oscillations, the
variation of the magnetic field is neglected. Particle orbits under the effect of drift waves
have been studied by Horton et al.22 employing the mapping technique. In this article,
however, the variation of energy due to the interaction with the electric field has not
been retained.

In the following we consider a time-independent magnetic field, which has closed flux
surfaces. The flux surfaces are used as radial co-ordinates and by introducing flux co-
ordinates the magnetic field lines become straight lines. Since the poloidal magnetic field
is small compared with the toroidal one we may approximate the poloidal canonical
momentum by

Py =qV¥ Eq.7.1
and the toroidal momentum by
mubB,
Py =—5=+qx(v) Eq. 7.2
The Hamiltonian K of circulating particles becomes
mB, |2
-K =qx(yf)+ B“’ J;(E-uB—qd)) Eq. 7.3

The magnetic field strength and the electrostatic potential are functions of the canonical
variables qy,0,-E,¢, the independent variable is the toroidal angle ¢. The poloidal angle is
denoted by @ instead of n, the reason is to distinguish this case from the time-dependent
magnetic field discussed section 3. The magnetic field strength has a small toroidal and
poloidal variation

B=B0(w)+63(w,9,(p) Eq.74
and the electric potential can be written as
@ = @y(y)+50(y.6,9,1) Eq.7.5

The last term describes the inhomogeneity of the electric potential and the time-
dependent oscillations. Expanding the Hamiltonian with respect to 8B and &® leads to
the lowest order Hamiltonian

mB 2
-k, =QX(W)+TTO'J;(E"FLBO_Q(D0) Eq. 7.6
and a perturbation
B,
K, = 20 (n8B+ g50) Eq. 7.7

Bo\/%(E—uBo - 4®,)

22 vef 4
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The variation of B,/B has been neglected. The perturbation is the sum of a time-
independent and a time-dependent part.

B, u6B B, ,qo®@
K= oall ;K= eod Eq. 7.8
2
Bo\f;n-(E—uBo - q®,) Bo\/;(E—uBo -q®,)
The lowest order Hamiltonian describes the motion in magnetic surfaces
dy _ K, do _ K,
—_—t a2 = y —= = - .
: do a0 dp qdy 1(:;1) LT

The rotational transform of the particle is the sum of two terms: The first term is the
rotational transform of the magnetic field 1g(y) and the second term is the result of
magnetic drift and electric drift. Especially a lowest order electric field will modify the
drift rotational transform.

_ddy) 5 (mB,, \l2
Lo +an[ 7 ;(E-—uBo—q(I)o)] Eq. 7.10

If the electric field is large enough the drift rotational transform can be approximated by
e dx(‘}f) + Bw.O 1 a‘i[:'o
dy B, udy

Taking into account the finite perturbation leads to the following set of canonical
equations

L

3 u=‘jn%(E—~uBo—q<Do) Eq.7.11

qdy _ _9K, K,  do _ l(Vf) 9K,

; —= +—L Eq. 7.12
do a0 d0 do qoy ¥,

dE _ K, ; ﬂ=T( ,E)_.‘E{&
dp d do oE

T is the toroidal transit time of the circulating particles. This time is a decreasing func-
tion of the energy. The action generating function of the toroidal map has the form

§ =S(W1,n0sEnfo) = YM + Efy +K0(E1a Wl)+Sl,l(%:-nO’El)+Sl.2(Wl=norE’t0)Eq' 7.14

and the mapping equations are

Eq. 7.13

a5, 95,

a3,
= —= - nE, o L es Eaq. 7.15
E=E+ afo L=+ (E W]) aE, + aE, q
ds,, . a5, 3s,, . 35,
v, =W, +——+—= 6 =60.+1 W:E; 4+ —LL 22 Eq. 7.16
T an,  am, =6 +1(vi.E) dy, dy, g

The time-independent part S, describes the perturbation of drift surfaces by magnetic
drifts and electric drifts. The Fourier spectrum of time-dependent electrostatic drift
waves in general is very rich and has many frequencies, which are not always multiples
of each other. The resonance condition (eq. 6.7) becomes
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ll(pn,E)+a),T(pn,E)-m=0 Eq. 7.17

8. Summary and Conclusions

The Hamiltonian theory of guiding centre orbits in time-dependent electromagnetic
fields has been revisited. By using a time-dependent co-ordinate system the radial cova-
riant component of the magnetic field in the guiding centre Lagrangian can be elimina-
ted. Similar to the procedure described by Hazeltine and Meiss (ref 6) the resulting
Hamiltonian has two canonical momenta and two conjugate co-ordinates. An additional
time-dependent term in the Hamiltonian is the result of the time-dependent co-ordinate
transformation, this term has not been retained in the theory of Hazeltine and Meiss.
However, this term is small, in general. In describing the effect of electrostatic oscilla-
tions on particle orbits, a time-independent transformation as in ref.6 can be used and
the additional term does not occur.

In describing circulating particles in toroidal geometry the toroidal angle has been intro-
duced as the independent variable instead of the time. Energy and time have been
introduced as conjugate variables. The 4 canonical equations can be replaced by 4
mapping equations, which can be reduced to an area-preserving 2-dimensional map if
the fields are time-independent and energy is conserved. This system of 4 phase space
variables and the toroidal angle as independent variable is equivalent to an autonomous
system with three degrees of freedom. Arnold diffusion is predicted in systems with
more than two degrees of freedom and the diffusion mainly occurs in the
neighbourhood of the Arnold web, which is defined by the resonance condition. A simple
model has been established which describes the basic features of passing particles in a
torus. Numerical solutions of the mapping equations showed the expected effect of
Arnold diffusion. This diffusion along the stochastic layer leads to a fast radial transport
of those particles, which satisfy the resonance condition. Since Coulomb collisions
change the energy of particles, there is a chance that particles diffuse onto the Arnold
web and are lost from the confinement region. These computations confirm the
existence of Arnold diffusion for passing particles in a torus. How much the total plasma
loss is enhanced by this mechanism must be investigated in more detail. The result
depends on the amplitude and the Fourier spectrum of the fluctuations. To assess the
effect on plasma losses it is necessary to include Coulomb collisions.
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