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Abstract

A statistical theory of nonlinear-nonequilibrium plasma state with strongly
developed turbulence and with strong inhomogeneity of the system has been developed.
A Fokker-Planck equation for the probability distribution function of the magnitude of
turbulence is deduced. In the statistical description, both the contributions of thermal
excitation and turbulence are kept. From the Fokker-Planck equation, the transition
probability between the thermal fluctuation and turbulent fluctuation is derived. With
respect to the turbulent fluctuations, the coherent part to a certain test mode is
renormalized as the drag to the test mode, and the rest, the incoherent part, is considered
to be a random noise. The renormalized operator includes the effect of nonlinear
destabilization as well as the decorrelation by turbulent fluctuations. The equilibrium
distribution function describes the thermal fluctuation, self-sustained turbulence and the
hysteresis between them as a function of the plasma gradient. The plasma inhomogeneity
is the controlling parameter that governs the turbulence. The formula of transition
probability recovers the Arrhenius law in the thermodynamical equilibrium limit. In the
presence of self-noise, the transition probability deviates form the exponential law and
provides a power law. Application is made to the submarginal interchange mode
turbulence, being induced by the turbulent current-diffusivity, in inhomogeneous
plasmas. The power law dependence of the transition probability is obtained on the
distance between the pressure gradient and the critical gradient for linear instability. Thus
a new type of critical exponent is explicitly deduced in the phenomena of subcritical
excitation of turbulence. The method provides an extension of the nonequilibrium

statistical physics to the far-nonequilibrium states.




§1. Introduction

Strong turbulence in high temperature plasmas is one of the most challenging
problems of statistical physics for systems far from thermodynamic equilibrium. In
particular, the strong turbulence in inhomogeneous plasmas casts problems such as the
very high level of fluctuations which far exceeds the level of thermal fluctuations and
causes the violation of the equipartition law of energy, the existence of internal driving
source associated with inhomogeneity, and transitions between various different turbulent
states.l) Such a far-nonequilibrium state is sustained by the flow of energy, momentum
and particles, being an open system. Near thermodynamical equilibrium, principles that
govern fluctuations (i.e., equipartition of energy, Einstein relation, fluctuation-dissipation
(FD) theorem, etc.) are established.24) These standard methods are not sufficient for the
understanding of these turbulent characteristics, and the extension of statistical theory is
necessary.

An important issue of the plasma turbulence is the phenomena related to its
subcritical excitation. Subcritical excitation means the transition to a different turbulent
state. Under many circumstances, the presence of submarginal instability has been
predicted either by theoretical study or direct nonlinear simulation.5-19 The study of
subcritical excitation of strong turbulence is a challenging theoretical problem. The
importance has also been known in experiments. Very abrupt symmetry-breaking
perturbations, which include both microscopic turbulence and global perturbations, have
often been observed (known as 'trigger event') and the temporal change of the growth
rate of perturbation cannot be described from the slow variation of the global parameters
that govern the linear growth rates. See a review.20) For the understanding of such
trigger events, acceleration of the growth rate by nonlinearlity has been considered to be a
key. (See, e.g., ref.21 and references in ref.20.) The statistical occurrence of transition
was predicted.22) The deductive theory is necessary to fully address the statistical
property of the transition in turbulence.

Problem of the transition probability has been discussed in many area of physics;

e.g., in the deductive analysis of the chemical reaction or the study of nucleation. (See




reviews ref. 23 and 24.) The generalization of Arrhenius law25) has been derived.
There, the characteristic dependence on temperature is recovered; i.e., the exponential
function and the argument of which is inversely proportional to temperature. Such
dependence on temperature is deduced from the thermal noise, and is an example of
application of near-equilibrium thermodynamics. To address the issue of transition
between turbulent states, the extension of statistical theory for far-nonequilibrium system
is necessary .

There has been much work on the turbulence motivated from the problem of
neutral fluids. Theoretical methods such as renormalization or direct interaction
approximations have been developed, and are surveyed in, e.g., ref.26. One method is a
formulation of Fokker-Planck equation for the turbulent fluctuations, and has been
applied to the analysis of homogeneous turbulence.2?-28) In plasma turbulence research,
a line of statistical theory for inhomogeneous turbulence has been developed, being based
upon the renormalization??) and random coupling model,3? so that Langevin equation for
turbulent spectrum was derived.31-33) Recently, the statistical theory for plasma
turbulence has been formulated, in which effects of thermal excitation and turbulent self-
noise effects are incorporated in addition to the effects of collisional drag and turbulent
drag.3437) A Langevin equation is deduced to Fokker-Planck equation, and the Fokker-
Planck equation of a further-reduced variable is made for the macroscopic quantity. The
solution for a stationary state is obtained. The result for the most probable state is
expressed in terms of a principle of 'minimum renormalized dissipation rate', which is
given by the ratio of the nonlinear decorrelation rate of fluctuation energy (a total
dissipation rate) and the random excitation rate which includes both the thermal noise and
turbulent self-noise effects. This result is an extension of Prigogine's principle of
minimum entropy production38) to the system of far from equilibrium state. In addition,
the condition for the turbulence transition is derived, which is analogous to the Maxwell's
construction in the phase transition physics in thermodynamical equilibrium.39)

In this article, we study the transition probability between turbulent states, based

upon a Fokker-Planck equation for the probability distribution function of the magnitude




of turbulence. The Fokker-Planck equation for the coarse-grained fluctuation quantity is
employed, and the formula of transition probability between different turbulence states is
derived. This formula is a generalization of the Arrhenius law to that in the far-
nonequilibrium system. It recovers the Arrhenius law in the thermodynamical
equilibrium limit. The transition probability between the thermal fluctuation and turbulent
fluctuation is obtained, which shows much weaker dependence on the heat bath
temperature than the Arrhenius law. It is found that the turbulent-self noise term
accelerates the transition. In a strong turbulent limit, the transition probability from
turbulent branch to thermal one does not depend on the temperature, and is governed by
the gradient parameter. The dependence of transition probability on the distance of
gradient from the critical gradient for linear instability is also studied. A power-law
dependence on the control parameter is obtained. Thus a new class of critical exponent is
deduced for the problem of transition in turbulent states.

Constitution of this article is as follows. In §2, the derivation of statistical
equation for plasma turbulence is surveyed. Analysis of the transition probability is

developed in §3. In §4, summary and discussion are given.

§2. Basic Equation and Statistical Approach
2.1 Plasma model and basic equation

We consider a slab plasma which is inhomogeneous in the x-direction and is
immersed in an inhomogeneous and sheared magnetic field. The magnetic field is given
as B = B0, sx, 1) with By(x) = (1 + Q'x + - - )B,. In this system, a collective mode,
interchange mode, can be subcritically excited due to the turbulent current diffusivity. !
16,40) The turbulent system of this dissipative instability has been discussed in preceding
articles.34-37) In the following, refs. 35, 36 and 37 are called I, II, and III, respectively.
The reduced set of equations for the electrostatic potential ¢, current J and pressure p is
employed to describe the system.#!) Quantities that are averaged over the (y, z)-plane are

denoted by suffix 0, as pyand ¢y; Weset ¢ =y + ¢, J =J,+ Jand p = p, + p. The




pressure and electrostatic potential could be inhomogeneous (i.e., inhomogeneous in the
X-direction) in the global scale, but the flow velocity shear is not taken into account here,
in order to keep the transparency of the argument. (Introduction of A¢, does not change
the fundamental structure of the theory.) Parameters V p, and Q represent the
inhomogeneity of the system. The scale separation is introduced, in this article, between
the dynamics of the micro fluctuations and macroscopic structures:

|pg ! apyot|<<|p~! ap/at|, and | py 1Vp,y| <<|p~!Vp|. The symbol ~ which
denotes the fluctuating field components is suppressed in the following for the simplicity

of expression. The product of pressure gradient and magnetic field inhomogeneity,
&l (1)

denotes the driving parameter (i.e., one of the main control parameters in this system),
being fixed in the evolution of fluctuating fields under the assumption of the time-space

scale separation.
The derivation of statistical equation, which has been developed in previous

articles, is briefly surveyed. The dynamical equations of fluctuation fields are given as

g;f + Z0f = 2(f)+ S )

where £ denotes the linear operator

-2 20" 0
-u Vi -VPY, -vEQ S

ay
L(O) = %Vll - l-"ecvi 0 ’ (3)
dpy 9 2
~dx 9y 0 —XcV1

JS denotes the fluctuating field,




J= 4
P
and A/(f) stands for the nonlinear terms
vioe. vi¢]
A(f)=- (9. /] . ()

[, Pl

The bracket [ f,g] denotes the Poisson bracket,

[/, g1 = (VfxVg)b,

(b =ByBpy), A| = Vi, Q'is the average curvature of the magnetic field, ¥ is the vector
potential, and 1/& denotes the finite electron inertia, 1/€ = (8/a)* , & being the collisionless

skin depth. Length, time, static potential and pressure are normalized to the global
plasma size a, the Alfven transit time © Ap = @V aVapBp and BgR/ZauO, respectively (a

) 124Rg=1, m; is the ion

and R are minor and major radii of torus, v Ap = By(2ugnn;
mass, and #; is the ion density; see ref.16 for details). (It is also noted that the study of
the response to £00) corresponds to the conventional application of RDT in neutral fluid.)

In studying the subcritical excitation, the electron inertia effect should be kept, but the

classical resistivity is neglected for the simplicity of the argument. The interchange mode

has a quasi-2 dimensional nature, | V{l | << | V2 | nevertheless, the existence of small but
finite V) is essential.

We consider the thermal excitation of fluctuations, $;;,. In the thermal
fluctuations, coherent parts to the microscopic interchange mode are given by the
collisional transport coefficients p., 1, and ¥, (the ion viscosity, electron viscosity and

thermal diffusivity, respectively). Incoherent parts are considered to be a random noise

and expressed as S;,.4)




2.2 Langevin equation

In order to describe the turbulent characteristics, the system which has a large
number of degrees of freedom and has many positive Lyapunov exponents is considered.
A part of the Lagrangean nonlinearity is considered to cause the turbulent drag to this

collective mode and this part is renormalized to the eddy-viscosity type nonlinear transfer

ratey ;. The other part is regarded as a random noise, which has a faster decorrelation

time than y j according to RCM.30) As has been discussed in I-III, a projection operator

2 is introduced to divide the nonlinear interactions into the drag and others. The

nonlinear drag term is written in an apparent linear term as

“’Nvif[ Y1 _f}
2A(f) = | wneVih |=—| Y2 (6)
*wVis Y3/s

and the rest part, § = (I — 2)4/(f), is considered to be a random (self) noise. Then a

Langevin equation is derived as32-37)

%f+£f=§+§,h 7)
with
L=L@ +y3; (8)

(d ij is the Kronecker's delta). Notation here follows the convention in ref.33. In this

article, suffix i, j = 1,2,3 denotes the i-th or j-th field. In the following, Fourier
transformation is used, and K, p, g describes the wave number of Fourier components.

Suffix &, p, q is often omitted unless confusion is caused.




The operator to the k-th component, £y, £if; = £y 1fi — 2 (), is the

renormalized operator, which includes the renormalized transfer rates of
* % | %2
VL=~ % M; jpgM;, qkpeqkplfl,p| - ©)

- - - ~ \T
The self-noise, S = (S 10 2, 53) , has a much shorter correlation time as is discussed in I-

I11, and is approximated to be given by the Gaussian white noise term z(t). The self-

noise term for the k-th component is expressed as

S=a[t)gx (10a)

1]

Bk =2 M, /04, G0, Cio - (10b)

In these expressions, summation A indicates the constraint k + p + g = 0. The explicit

form of the nonlinear interaction matrix is given as, e.g.,
q
Ml.kpq=(pxq).b_—ki— ., of My 3)4pg=(Pxq)-b, (1)

and the propagator satisfies the relation (9/0 + £{k) + c.p.)B,, = 1, where c.p. indicates
the counter part, i.e., Z{p) + £(q) .33 The term € ; , in a random noise represents the j-th

field of g-component in the nonlinear term 4/, and their correlation functions satisfy the
average relations of the mode, which we call an Ansatz of equivalence in correlation in the

following, as
{&L)) = (Ah) (12)

with




(€, 18 q) * pg 13)

where the bracket ( ) indicates the statistical average.

The thermal excitation is also assumed to be a Gaussian white noise,
Sm, i = A8, i (14)

The statistical independence between the incoherent parts of thermal and turbulent

fluctuations is also imposed, that is,
(Sm,S)=0 (15)

2.3 One branch approximation

The basic set of equation describes the unstable (or least stable) branch, but also
contains two others branches of plasma mode. These additional two branches are
strongly damped, and are excited up to much smaller amplitudes. Therefore the excitation
of the two stable branches is neglected. Based on this approximation, the Langevin
equation is reduced to that for only one branch. The detailed procedure of decomposition
is described in the previous articles I-II1.

The matrix exp [— £(t — )] was explicitly expressed as
exp[- £t — )] = A exp(-A(t - 7)) + A2 exp(— Ayt — 1)) + AP) exp(- A5t —T)) (16)

where the elements of matrix A are given as

10




—iky(¥p=rg) -k QFe— M)

(?e_ll)(?p_ )\1)

] k3 k2 |
A = gk (A1-7Vp)  —Ekk,Q
- z-A)) | —ikyE(y, - M ! £ !
(h2-2p) nE(¥p— i) 2 (-1 2
, kikypo  Gok3 (7,-2))
ipgky(Te— M) — 7))
e K3 K (A -7p)
17)

and - A, (m = 1,2,3 and A; < A, < A3) represents the eigenvalue of the non-normal
matrix £, which gives the homogeneous solution of eq.(7) if £ is constant. The

eigenvalue is determined by:
detM + £)=0 (18)

and [ is a unit tensor. The eigenvector with the eigenvalue — A.; corresponds to the least

stable branch, the decay time of which is the longest. Others with (- A,, — A 3) denote

highly-stable branches, which decay much faster. (Elements Agf’-?) are also obtained in a

similar way, and are given in I and II, being not repeated here.)
In the one branch approximation, only the pole of (s + A ;)” L kept. Then, the
Langevin equation is deduced to that of one field, e.g., f; = ¢, as is discussed in I and

I11,

Lo+ rp=35 (19)
with the source of

S = eAt)8x +&m, k) (20)

11




The magnitude of the noise term, for which both the contributions of the turbulent self

noise and thermal noise are retained, is given by use of the matrix A as

3
8k = %LZJ Ajgy k) : (1)
and
3
8t k= JZ A1j8m, j.k (22)

By retaining the real part in eq.(21), the possible problem of complex quantity of g; j is

eliminated, and the diffusion process is assured in the Fokker-Planck equation. The

coefficient gy is statistically independent for each k-component, (g;;) = ( £ )dx &~

(8, k8, k) = (8% Ok, v and (848, k) = O-
From the fluctuation-dissipation (FD) theorem for the thermodynamical

equilibrium, the thermal excitation rate is expressed in terms of the temperature as?8)

% o~ ~ A
% A AL, St j = 2T (23)

where the normalized temperature (with an additional dimension of volume) is introduced

as

poPop T (24)

The thermal contribution to the diffusion term is rewritten as

8 k= 2w, T (25)

12




This term is independent of the choice of test mode number &, so long as collisional
viscosity is independent of the scale size.

Based on the statistical independence of thermal noise and self noise, the
magnitude of the total noise is the sum of two statistically-independent noises, and the

form

GE=88+8h i (262)

1.e.,

ge=gt+on,T (26b)

is employed.

2.4 Langevin equation of coarse-grained quantity

We further reduce the Langevin equations for each k -component, eq.(19), and

employ the dynamical equations of macro variables. The total fluctuating energy, which

is the quantity integrated over some finite-size volume,

Zz

1 Ek] i3 67 27)

is taken as examples.
From eq.(19), one has
%g‘;kiqﬁ?*';)\l,k kiq)x-z:;ki:fkq)k . (28)

t

By introducing a time constant, which denotes the dissipation rate,

13




2 K0y

Astmg—r— | 29
WS Nk

the Langevin equation for the total fluctuating energy is given as

% =4 2AE = ; k2 5,0y - (30)
2.5 Fokker-Planck equation for macro variable (coarse-grained quantity)
Following I-1II, the Fokker-Planck equation for the probability distribution

function of the coarse-grained quantity, P( .’E) , 1s described. (See also refs. 42 and 43

for the basis of reduction of Fokker-Planck equation.)

In the Langevin equation for the average energy Z , the magnitude of the statistical

source term is written as g% = ; Sk 07 x 1B
2
&=, ko +3 (iAg) Ko (1)

where €q.(26) is used. It is also useful to introduce an average of the classical

decorrelation rate

_2VE,
- Z

Ym (32)

Yy = P-wki ). When the fluctuation level changes, this coefficient might deviate form the

value in the limit of thermodynamical equilibrium. The amplitude of the source term is

rewritten as

3 2
g* =4y, 2+ (2 Awg, ) K107 (33)

14




The Fokker-Planck equation for the probability distribution function P( Z) is

obtained as

9p(£)= % (2AZ+ lg a%r g)P(z] (34)

§ 3 Transition Probability

Let us obtain the transition probability between two probable states, the

distribution functions of which are governed by the Fokker-Planck equation eq.(34).

3.1 Flux of probability and transition probability

The equilibrium probability distribution function (PDF) has been discussed in the
preceding article III for the system which has the hysteresis characteristics between the
fluctuation level ¢ and the control parameter G, . One state is characterized by the
thermal fluctuations and the other by turbulent fluctuations. The schematic relation

between the thermal branch and turbulent branch is drawn in Fig.1. For the case where

the gradient parameter G, takes the value in between G. and G, , i.e.,

G.>G,>G, (35)

the system has multiple solutions of thermal branch and turbulent branch. The probability

distribution function of the steady state has been solved for a model function of A(q)) . A
typical example is shown in Fig.2. The peak near ¢ =0 corresponds to the thermal

branch, and the peak with finite amplitude corresponds to the turbulent branch. In the

following, we call A state for the thermal one and B state for the turbulent one. The

associated effective potential S ( 5_‘,‘)

15




S(2) = f 4?25 dz (36)

where the relation Z << ¢* holds, is drawn in Fig.3. The effective potential S( E)
reduces to the potential of the form — ZIT in the thermodynamical limit (i.e., limit of
Z—0). The states A and B in Fig.3 correspond to those in Fig.1. The number density

of state A in the ensemble, N, , of the finite energy width AZ, is expressed by the

probability distribution function (PDF), P( 55) , as

N,y = L " p(2) dz 37)

and is evaluated as %

Na=P Az, (38)
In the same way, the number density of state B in the ensemble, Ny ,

Ny= f T p(2) dz (39)

£g-AEpgl2
where AZ; is the width of energy of the state B. N; is evaluated as
Ny=P(Z,)AZ, (40)

3.1.1 Rate equation
The transition probability in between A and B states, which is governed by the

Fokker-Planck equation eq.(34), is of our interest. The procedure how to obtain the

transition probability is briefly discussed using the rate equations for N, and N . They

are written as

16




.B%NA:_rA—)BNA'l'rB—)ANB-i_hA (41)

and

'g?NB=rA—)BNA_rBaANB+th (42)

where 74,5 and rp_,, are the transition probability from the state A to state B and that
from the state B to state A, respectively, and h, and /15 are the sums of source and sink
for the state A and state B, respectively. In the following, we call r,_, p "transition

probability" and 7, » "back-transition probability".

Consider the stationary state with source and sink
ON,/0t =Nyt =0 . (43)
If the sink of state B is large so that the density of state B vanishes,
Ny=0, (44)
then the transition condition satisfies the relation
2

rA_,,g:F. (45)

A

This relation suggests that the transition probability can be calculated by calculating the

necessary source term from Fokker-Planck equation with the condition eq.(44).

3.1.2 Flux of probability and probability of transition

17




The source (sink) rate is connected to the flux of probability w in the Z space,
which is governed by the Fokker-Planck equation eq.(34). Fokker-Planck equation, in

the presence of some external source /1 , is rewritten as

Lp(z)+ % w=h (46)

with the flux of probability

(2Af+ Lo g)P( z). 47)

If one integrates eq.(46) in the region 0 < Z<AZ, , one has

B—N +w(E A“‘f hdE (48)

In a steady state, one has

W(EA) =h,, (49)

and the flux of probability w is independent of Z and is constant in the region where the

source does not exist. Therefore eq.(45) is written as

w
TasB=3" (50)
A

with the condition (44). The flux of probability w is determined by the probability by

which the barrier at C of effective potential is overcome. (See also Fig.3.)

By use of eq.(36), w can be rewritten in terms of S( E) , P( fE) and g as

18




w=- 72 g exp{- 5 Z)}%'_[gf’( £)exp{S( :E)}] (51)

Since w is constant, we obtain the flux of probability by the integration from the A state

to B state as

A

[gP( Z)exp{S(’E)}] .

o ZLB%exp{S(Z‘)} dZ .

(52)

Analytic estimate of the denominator of eq.(52) is possible by use of the method

of steepest descent in the vicinity of the state C.42) Expansion

é; exp{S(Z)} = exp{S(’E) —In (g)} =elxp{S(f£C) —In (g(fc)) - %2 (2—7— fc)2 +-- }

(53)
provides the evaluation
Zf % exp{S(Z)} dE= QJO%_R g(}b"c) exp{S(Z'C)} , (54)
Recalling the boundary condition at B state eq.(44), N3=0, i.e.,
P( fEB)z 0, (55)

the flux of probability associated with the A — B transition is given from eq.(52) as

Wass=57e= 8( 2J8(Z:) P(2.)er(3(2,) - 5(7)} (56)

19




(The suffix A — B denotes the case of A — B transition.)

3.1.3 Back transition

The probability flux associated with the B— A transition is obtained by the same

procedure with the boundary condition

P(£,)=0. (57)
The result is obtained by replacing A and B in eq.(56) as

Woosn= 5= 8 Ze)g( 2) P Zo)exe{S(2,) - 52} (58)

3.2 Transition probability

The transition probability is further analyzed by use of the model formula of

A(Z) in the effective potential S(Z) . The model formula of A(Z) gives the explicit
expression of the curvature term O in eqgs.(56) and (58). The function A( Zf) is Taylor

expanded in the vicinity of Z¢ as
A(v) = Ave1) - AB(U— U J e (59a)
(=¥Z andv., = VZ; ). Amodel like

Av)=Ag— Agv =74 (v+,-) (59b)

has been successfully applied to study the subcritical excitation of turbulent branch in III,

which is drawn in Fig.4. Based upon this model formula, the equilibrium distribution

20
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function of probability and the effective potential have been obtained in ITI. They are

illustrated in Figs.2 and 3, respectively.

In evaluating S( ’E) near £= £ , as in the case of eq.(53), the change of A is

considered to contribute the most dominant term as

~ 8vs, [
ﬂﬂ_ﬂﬂh?@aﬁﬁhw (60)

The substitution of the Taylor-expansion eq.(59a) into eq.(60) gives the relation

‘13
S(Z') _ S[fc) 3 4A 03 (U* - v)z ' ©61)

A (62)

where quantity A, has the dimension of the time rate and is given as
lo = AIUU* 1 - (63)

In the model like eq.(59b), the relation

?\-o =A, (64)

(65)

21




Substituting eq.(65) into eq.(56), we obtain the flux of probability w,_, 5 as

VAo

waso= 3o 8 22) (2. )ex{S(2) - 5(2)} (66)

The transition rate can be introduced once the flux of probability is obtained.

They have the relation eq.(50). Substitution of eqs.(38) and (66) into eq.(50) gives

m 1 g[’EA)exp{S(fA)—S(ZC]} g (67)

ST AT,

The flux of probability associated with the back-transition (from B state to A state)

is also given by eq.(58). By the help of eq.(65), the flux wp_, 4 is given as

noa] = 22 o 2,) P(2aJexo{s(24) - 5(22)) (©8)

(The symbol of absolute value indicates that the flux wp_, 4 is from large value of Z to

small values of Z.) The transition rate is also given by

|WB—)AI

rB—)A_TB . (69)

Combining eqgs.(40), (68), and (69), we finally obtain the rate of back-transition as

'/A_o 1 g(zﬂ)exp{S(’EB)—S(’Ec)}. (70)

"BA—S AL,

3.3 Competition of forward and backward transitions

22




. TR

The transition probability between A state and B state are to be discussed,
examining the competition between the forward transition probability (from A to B) and
the backward transition probability (from B to A).

The ratio of these transition probabilities is given by egs.(67) and (70) as

ksl AZBg(ZA)
Fooa INE; g(fs)

cxp{S( z,) -8 EEB)} : (71)

If this ratio exceeds unity, i.e., ¥4, 3 > rz_, 4 , the transition from A state to B state

dominantly occurs. If, on the contrary, the ratio is below unity, 74, 5 <75_, 4 , the back

transition is dominant. The equi-probability condition

Picsii =T pai (72)
is given by
_ AZy g( ZA)
CXP{S(EBJ -5 fa)} = m ; (73)
or
S(£:)-5(22) = 1n (82, ¢( 2.)) - n (82, 5(2)) (74)

If the logarithmic contribution is regarded as a small contribution and is neglected, the

rough estimate of the boundary is given by

S(Z5)-S(2,)=0. (75)

23




In fact, the effective potential difference between A and B, i.e., S( fg) = S( ZA) :

dominantly dictates the transition probability. The function S( 55) has been introduced as

the renormalized dissipation rate as the thermodynamical function of turbulent state. (See

the article III.) This fact is also confirmed from the study of the transition probability.

3.4 Transition probability for subcritical excitation
Based on the analysis of §3.2, the time rate for the transition from the thermal

fluctuation to the turbulent fluctuation is calculated.

3.4.1 Transition from thermal fluctuations

In the state A, the distribution function is approximated by the Boltzmann

distribution. Therefore, the width of distribution of fluctuation energy, AZ, , is given by

the relation

~

AZ,=T . (76)

The magnitude of the thermal noise term, eq.(33) of §2, was calculated in III as
S(EA)Z =4y,T", ie.,

8(Z4) =2/7aT . (77)

Substituting eqs.(76) and (77) into eq.(67), one obtains

Fasp= ‘/?117 exp{ - 5(2c)} . (78)

In deriving eq.(78), the relation S( EA) =0 which is evident from the definition of S(Z)

was used.
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This result is an extension of the theory of transition probability which has been
based on the thermal excitations. The Arrhenius law is one of the typical examples of the
thermodynamical equilibrium statistics. The formula (78) provides the more general

solution as is discussed in the following sections.

3.4.2 Thermodynamical limit

Before describing the subcritical excitation to the turbulent state, we study the
thermodynamical limit of eq.(78). The classical formula like Arrhenius law is naturally
recovered.

If the fluctuation is governed by the thermal excitation and the turbulent self-noise

is absent, then the noise term is expressed in terms of heat bath temperature
g* =4I’ (79)
Then the renormalized dissipation integral S( Z‘) is given as
_1["A
S(z) = ?J v dE. (80)

The coefficient CXP{ . S( Zc)} is expressed as

exp{ - S(Zc)} o< exp {— ATQ} (81)

with the effective potential difference

AQ:KCAdz, (82)

m
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When the fluctuation is composed of only thermal fluctuations, then the decorrelation rate

is given as

A=Y, (83)

and the effective potential difference is obtained as

£c
AQ:f dE=%; . (84)
0
Substituting eqs.(81) and (84) into eq.(78), the transition probability is given as l
S RN iy p R . 85
A->B— ’/ﬁ- Y 0 p T ( )

For the thermal fluctuations, if the rate A, is approximated as
Ao=Yn, (86)

then the transition probability is given by a simple formula

_ Zc
Fasp= ﬁ'YmexP{_ T } . (87)

In these formula, eqs.(85) and (87), the exponential dependence exp( = ZJT] is

the strongest, and one recovers the relation

1

ln(rA_,B) oc — —

T (88)

which is the Arrhenius law.
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3.4.3 Transition to turbulent fluctuations

In the presence of turbulent self-noise, both the thermal excitation noise and the
self-noise term are important in determining the transition probability. Cooperative
effects of the thermal excitation and self-noise excitation are studied.

Based on the scaling property of the random self-noise term, the dependence of

the second term of eq.(33) of §2 was derived in III as

2 (i Aug; k)ﬁkicbf <z (89)

Based on this property, the term g* was written as

z )m . (90)

gz . 4TY,".’E+ §§( T

eq

In eq.(90), the coefficient & depends on the plasma parameter, and Z,, is an average
energy at the state B.

By use of this random source term, the probability is calculated. The integral

S(Z) is given as

s(2) =J Az dz . o1

It is sometimes convenient to use the form

S(v) = J R ©2)

2 = 512..3
0 TYn1+gﬁf;q v

where U is fluctuation velocity, Z=v? .
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Renormalized dissipation rate is calculated by specifying the form of the
decorrelation rate. After ITI, we employ the simplest model which describes the

subcritical excitation, eq.(59b),

A(U)=Ao— Agv  (O<v<uv,).

(See Fig.4.) By substituting eq.(59b) into eq.(92), the integral S( Z‘) is obtained. The

explicit form was derived in I1I as

3b,

exp{— S(v)} = %;4%)“ exp | - Zﬁb,{arctan (%) + %} (93)

where the following abbreviations are used:

a1=(1—3d)b,, (94)
*1
_ A, 1
b= g3 (93)
and
d’ =Ty, 23" . (96)

By use of the integral form eq.(93) the transition probability is obtained.

Substituting eq.(93) into eq.(78), one finds

3b,
VAoYn (U*ld_l ki 1) v.,—-d| g
Tass=" (vé‘ld"3+l)al exp | —2¥/3b { arctan 734 e 97)
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where Z-=v?; holds.

In the model of eq.(59), it is natural to choose
AO = Ym . (98)

By the help of this, the transition probability is given as

3,

2v.,—d
— exp —Zﬁbl{arctan( v./jli,_d )+

Yo (U”d_l + 1)
" Tm (vi‘ld'3+ l]a

%} . (99)

From this formula, one sees the fact that the transition rate which is normalized to the time

rate Y, , T4 s/Ym , is controlled by the parameter
Veyld

3.4.4 Case of weak fluctuations
First, the limiting formula in the case of weak fluctuations are discussed. The

limit of weak fluctuation is that the level of fluctuations at the saddle point C is low so that

the relation
Vey <<d (100)

holds.

In this limiting case, one has a Taylor expansion as

(101)

w-d| -n V3uv ﬁ(v)z
6 @ 2ai e

arcta st G+
"( 3d
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Substituting eq.(101) into eq.(99), one has

Y v\’
Fasn =" 1-31;1( ;‘) +oe (102)
i.e.,
2
r,,%:-%(l— S ) (103)

This form converges, in the limit of eq.(100), to the Gaussian form eq.(87),

Ta_p o< €XP (- de') , of the thermodynamical equilibrium limit.

3.4.5 Case of strong turbulence

It is most interesting to study the case that the turbulence level is strong at the

saddle point C, i.e.,

Vg >>d (104)

In this limit, one has

(v. d '+ 1)3!)1

(v3ia? +1)" - -

and

V3d

)-&-%—)%n, (106)

arctan (

Then the dependence is derived from eq.(99) as
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4
?‘A_,3=EGXP(—ﬁb1) (107)

in the limit of eq.(104).
This result shows that the transition probability remains to be finite even in a limit

of ZJd”* — o . Transition probability is explicitly calculated from eq.(99). Figure 5

illustrates the dependence of the function

F(X] =(X+1)1!2(X3+1)|I3X‘1"Gexp —-%3 arctan (%X_%)+%

(108)

by which the transition probability is expressed with variable v.,/d =X as

-2

Fasp=

. {F(v. lld)}m” (109)

3

Characteristic dependence of this function is observed. The Taylor expansion is

discussed in the previous subsection,

FX)=1-1x*  X<<1 (110)

and the asymptotic limit of F (X ) — €Xp (— 21/3V3 ) at X — e holds as is shown by

€q.(107). Important feature is seen in a region of large argument, i.e., this function is

fitted to a power law as

F(X)=x"" 1<X<10. (111)
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The transition probability in the region of this large argument, which is obtained by

substituting eq.(111) into eq.(109), is explicitly obtained as

T (D) Y (Z)
' Jﬁ(d) _Jﬁ(dz) ' o 2

The transition probability is given in a form of power law in the region 1 < £/d” < 100 .
3.5 Back transition probability

Transition probability for the back transition, i.e., the transition from the turbulent

fluctuation to the thermal fluctuation, is also calculated. Evaluations of the width of

distribution at the state B and of the integral S( f) are performed, and back transition

probability is obtained.

3.5.1 Width of distribution at state B

In the preceding article ITI, the width of distribution at the state B, AZj , was

obtained. The result is quoted as

AEB = ZU;ZAU (113)
and
g(Z5)
AV, = ——= .
= v EgYs (%)

In the denominator of eq.(114), the relations

feq: Z-B and Y£q=YB (115)
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are substituted. From eqs.(113) and (114), one has

T (116)

where the relation V., = Z; is used. Equation (116) provides a relation

VYs

—8(%:)=5" (117)

AZ,

Substitution of eq.(117) into eq.(70) provides the formula for the back transition

probability as

ron =0 expls(2,) - 5(20)} (118)

44T

3.5.2 Probability for the back-transition

In order to obtain the analytic form of the integral S( ’E) , the model of

decorrelation rate of III is employed as (see Fig.4)

Alv)=Ao— Ayu (O<v<uv,) (1192)
Av)=-Ko+A\v w.<v). (119b)

In addition to eq.(93), the term exp{— S( Z"B)} is calculated as

b, +3by

(v;I’2a1"3+l)‘tz (vfd“‘+1)
(vesd™' + 1)31’2 (v2a +1)""™ .

exp{— S( £B)} =
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20s, — 2v.—d 2v.—-d
exp { 2V3b, 3I‘Ctan( ﬁdd)—arctan( l:/%d ) - 2V3b (arctan( 5 )+%)

(120)
where
a2=b2(1—3d) (121)
*2
and
A
by=3 Z‘Im a7 - (122)
0

An exponential factor exp{S( Z 3] - S( 'EC)} is given as

)al +as

cxp{S( ZB] - S( z.

)}= [oud +1)™" (o +1)™ ot +1
- (v.?la'”3 + l]ﬂl (Ui‘zd-'3 + 1)02 (vcd“ + 1)3b1+3b2

o= 2v,—d
xexp{ —2¥3b, arctan( vfl_dd)—arctan( O )

2 nq_d 2 (-_d
X exp { —2v3b, arctan( Uﬁd )—arctan (:)/?_d) : (123)

3.4.3 Case of strong turbulence
As is the case of transition from thermal fluctuations, we study the limit of strong

turbulence,

V., >>d V. >>d (124)
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In this limit, one has the limiting form

Py yate-ia;

exp{s(fB)_S(Zr)} = pbi=3ar pIba=3a; - (125)

Substituting this result eq.(125) into eq.(118), the probability for the back transition is

also obtained as

o A Ufi’l‘-’*“l U}gz-kz

Tea= A/ vi-3ar p3by—3a; o (126)
or
r _ VAQYB (U*l)nl(vsz)nz (127)
B—=A™—
W4 c Ve
with
A
n,=3(b,-a,)= ééf;:;” (128a)
DA
N,=3(b,-a,) = - fl” (128b)
0“~eq

This result of back-transition probability is also expressed in a form of the power law. It

is also noticed that the unit of time rate is given by

VAYs

being accelerated in comparison with Y,, . It should also be noticed that the power indices

M, and M, in the expression 7z, 4 do not include the temperature 7 . This is because
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the random noise is dominated by the self-noise of turbulence in the state B: The deviation
of the mean value of fluctuations is governed by the turbulent self-noise and is not

influenced by the thermal excitation.

3.6 Example of subcritical interchange mode turbulence

In this section, the result is applied to the case of subcritical interchange mode
turbulence. By taking an example of plasma turbulence, the transition probability is
explicitly expressed in terms of global plasma parameters. The importance of the

gradient, i.e., the nonequilibrium parameter, is also illuminated.

3.6.1 Turbulent state

Statistical quantities in the turbulent state (state B) have been calculated in the
preceding articles II and ITI. By specifying the volume of integral for Z , the self-noise
term was evaluated. According to III, we choose the region of L* (across the main
magnetic field) for the coarse-graining of fluctuation energy. By use of this scale, the

amplitude of the self noise was given as

8= 250y, 22k, —{;—)_2 (129)
and
Ep = % Gé(%)z(%]z (130)

where K, is a typical wave number of turbulent fluctuations

ko= G, % (131)
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and Yo = Y5 is the characteristic eddy damping rate at the state B

Yo=Go" . (132)

(Detailed argument of the typical wave number and decorrelation rate, the £ - and ® -

spectra of equilibrium turbulent sate is given in refs.44-47 and is not repeated here.) The

magnitude of the noise source term is expressed as

533{2 _ 163C0 ka'(%)_g ,

q

(133)

In expressions (129) and (133), the coefficient Cy is of the order unity, and is defined by

the ratio36.37)

R AR
Co= B . (134)
((pxq)'b)fp2 ¢ ((kx"’)'b) ki—pt\(p.\ P dp
K\ & K2 qi (kl) K

>k
In performing the integral of (134), p and ¢ satisfy the relationk +p +¢g =0 .

3.6.2 Threshold condition for nonlinear instability

Threshold amplitude of the nonlinear instability gives the energy at saddle point

Zc . The study of the subcritical excitation for the interchange turbulence has shown that

the threshold value of the fluctuation amplitude is given as!. 18)

G
_=He 1—5‘: (135)
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in the vicinity of stability criterion

G216, , (136)

On the other hand, the level of potential fluctuation at the state B was also given as

. (137)

and the ratio of fluctuation energy is estimated as

J®

for the common wave number. Combining egs. (135), (137) and (138), one has the

Z. [ /=2
ﬁ—( ¢

)” (138)

expression for Z¢ as

Z -3(8 =4 G
Z=wsar (B 1-2). (139)

c

Substituting egs.(130) and (131) into eq.(139), one has Z¢ for typical wave number &,

as

Z‘C:

M o(LV [, _G
s [1-2). (140)
3.6.3 Transition probability

In the case that state C is in the strong turbulence state, the transition probability is
explicitly calculated.

Combination of eqs.(96) and (133) provides the form
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3 _ 4 2] : AR
& =P, 3~ kL) . (141)

By use of egs.(133) and (141), the index factor b, is also evaluated as

1( 3 2 ain(L)?
b= 318 kv T(H] (142)

Note that parameters d and b, are expressed by the combination of thermal fluctuations

(P T ) and turbulent fluctuations (ko, Co) . Combining egs.(140) and (141), one has

the ratio Z/d” in terms of the global parameters as

Zc Wil 3 Y Gy
~c . Lext (Ty,%cu) -2 (143)

Then the transition probability eq.(112) is given, after substitution of egs.(143) as

___JL'"_ uec -2b, —ab 3 4 3 2b /3 G[) -b,
rA—)B JT_I: ( 2 ) k(] TYru16CD 1 - G . (144)

c

From the result of eq.(144), one sees that the transition probability is obtained as a

function of the critical parameter as

(1 - g") (145)

C

Important feature is that the probability is expressed in terms of the power law

(146)
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The transition probability decreases as the parameter G, becomes smaller than G, .
However, the decay of the probability is much slower, and considerable probability
remains for the onset of transition from the thermal fluctuation to the turbulent

fluctuations.

§4 Summary and Discussion

In this article, the statistical theory for the strongly turbulent system is further
developed. The transition between two probable states of turbulence is examined based
upon the Fokker-Planck equation for the probability distribution function. In the system
where the submarginal turbulence (subcritical excitation of turbulence) is possible, the
probability distribution function of steady state has more than one peak and the transition
from one probable state to another takes place. In order to study the transition
probability, the Fokker-Planck equation for the coarse-grained fluctuation quantity, i.e.,
the averaged amplitude of turbulent energy, is employed. The formula of transition
probability between two probable states is derived. This formula is reduced to the
Arrhenius law in the thermodynamical equilibrium limit. The transition probability
between the thermally-excited branch (thermal fluctuations) and the turbulent branch is
calculated for the generalized model formula of subcritical excitation. The transition
probability from the thermal fluctuation to the turbulent fluctuation can be much larger
than that obtained from Arrhenius law. This is because the transition probability depends
weakly on the heat bath temperature and depends on the nonequilibrium parameter (the
gradient parameter, G, ).

The back transition from the turbulent state to the thermal fluctuation is also
examined. Combining these transition probabilities, so-called probability density matrix
(statistical operator) can be calculated.

The model formula for subcritical excitation is applied to the actual plasma

turbulence of interchange mode. The results are explicitly shown by the global plasma
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parameters. In this system, the gradient parameter plays an essential role and the
transition probability is expressed in terms of the gradient parameter. The distance from
the critical point is expressed by the difference between the critical gradient, 1 — Gy/G, ,
and the dependence of the transition probability on this distance is studied. A power law
dependence is deduced. A critical exponent for the transition to turbulence is obtained.

The results thoroughly come from the fact that the turbulent self-noise as well as
the turbulent drag have the dependencies on the turbulence amplitude. These amplitude
dependencies are the common feature of fully developed turbulence in both plasma and
neutral fluids, regardless of the turbulent mode considered. The similarity can be found
in gaseous fluids turbulence. Therefore the analogy near the critical point in these cases
can be analyzed along the line of this theory.

The critical dependence on the gradient parameter of the system, in turn, is
interpreted as the critical size effect under some circumstances. An application of this
statistical theory to the physics of molecular dynamics as well as the problems of
nucleation is desired, permitting further analysis.

The transition among strong turbulence in plasmas has been reported theoretically
and experimentally. In this paper, focus is made on the transition between the thermal
fluctuations and turbulent fluctuations. The turbulence-turbulence transition, i.e., the
electrostatic turbulence to electromagnetic turbulence, is another issue to be addressed.
The work is left for future.

In the calculation of the transition probability, the typical scale size of the turbulent
fluctuation is assumed to be microscopic and being decoupled form the global scale size
of gradient. In various experimental observations, scale size of fluctuations becomes
large. Inclusion of such effects requires further analysis of turbulent interactions between

the microscopic fluctuations and macroscopic structures.
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Figure Captions

Fig.1 Statistical average of fluctuation level as a function of the pressure
gradient. The case of subcritical excitation is shown. In the case of low gradient, only
thermal fluctuations are realized. In the higher gradient region, hysteresis is shown, and

multiple states of fluctuations (denoted by A and B) could appear in the steady state.

Fig.2 Schematic drawings of the equilibrium probability distribution function for

submarginal turbulence. Probability distribution function P,, has two peaks, i.e., one

for thermal fluctuations and the other for self-sustained turbulence.

Fig.3 Renormalized dissipation rate S(v) as a function of the fluctuation
amplitude. The case in Fig.1 is schematically shown. Owing to the presence of zeros of
A, S(v) takes extremum atv =v., andv =v.,. S(v) has local minimaatv =0 and
v=u,,.
Fig.4 Model of the decorrelation rate A as a function of fluctuation velocity v .
In the low amplitude region, A is a decreasing function of v , representing the subcritical
excitation owing to nonlinear instability. In the large amplitude limit, A is an increasing
function of v , and asymptotic dependence A < v holds. A vanishes at two values of

U,V and V., .
Fig.5 Function F(X) . Ttis a decreasing function of X , but remains finite at

X — oo (a). Anexpanded view in the region of small argument is shown in (b).

Logarithmic scale indicates a fitting to the power law (c).
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