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Summary

A first study on high-temperature-superconductor (HTSC) current leads for the nuclear
fusion experiment WENDELSTEIN 7-X is performed, based on reasonable assumptions
concerning design and materials.

The report describes an analytical and a numerical model to calculate the temperature
distribution and heat inleak for copper current leads and HTSC current leads at steady
state conditions.

Analytical solutions are given for conduction cooled and forced-flow cooled current leads,
using the Wiedemann-Franz law.

The numerical model is based on a variational method to solve the two-point boundary value
problem in an ordinary differential equation. Nonlinear properties (i.e. specific heat, thermal
conductivity) are approximated by polynomial fit functions.

A comparison of results of the analytical and numerical calculation shows good agreement for
both, conduction cooled and forced-flow cooled current leads. Small differences in solutions
are mainly due to the approximation by the Wiedemann-Franz law. In generall, the analytical
method is well suited for parameter studies on different current lead configurations, since
the calculating time is much shorter than for the numerical method.

Zusammenfassung

Es wurde eine vorlaufige Untersuchung tiber Hochtemperatursupraleiter-Stromzufithrungen
fur das Kernfusionsexperiment WENDELSTEIN 7-X durchgefiihrt, die auf realistischen An-
nahmen beziiglich Design und Materialien basiert.

Der Bericht beschreibt ein analytisches und ein numerisches Modell zur Berechnung der
Temperaturverteilung und Warmeeinleitungsverluste von Kupfer- und Hochtemperatursu-
praleiter Stromzufithrungen bei stationarem Betrieb.

Die analytischen Losungsansatze beziehen sich auf leitungsgekiihlte und zwangsgekihlte
Stromzufihrungen unter Anwendung des Wiedemann-Franz Gesetzes.

Das numerische Modell basiert auf einer Variationsrechnung zur Losung des Zwei-Punkt
Randwertproblems der gewohnlichen Differentialgleichung. Nichtlineare Materialeigenschaf-
ten (z.B. spezifische Warme, thermische Leitfahigkeit) werden durch Polynome angenahert.
Der Vergleich von analytischer und numerischer Berechnung zeigt sowohl fiir leitungs- als
auch fir zwangsgekihlte Stromzufiihrungen gute Ubereinstimmung. Kleine Abweichungen
in den Losungen sind bedingt durch das Wiedemann-Franz Gesetz. Im allgemeinen eignet
sich die analytische Losung gut fiir Parameterstudien an unterschiedlichen Stromzufithrungs-
konfigurationen, da die Rechenzeit sehr viel kiirzer ist als fiir die numerische Methode.
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Chapter 1

Introduction

The superconducting magnet system of the W7-X stellarator contains fifty nonplanar main
field coils and twenty planar ancillary field coils. The coils form a pentagonally shaped torus
of 10 identical segments. Each segment contains five different nonplanar and two planar
coil types. Identical coils, distributed regularly over the torus circumference, are connected
electrically in series. The design current for powering the superconducting coils is 16 kA. Each
group of coils is connected to a separate power supply. Fourteen current leads are needed
to power the seven independent main circuits. The current leads generate the majority of
heat loss in the cryogenic system [18][19]. The heat leak at the cold end of a current lead is
mainly caused by the conducted heat from the hot end at room temperature and from the
ohmic loss.

An objective of the current lead design is to minimize the heat leak. A reduction can be
attaind by inserting a superconductor shunt at the current lead cold end. This idea is
wellknown [2] and led already to considerable success in the development of current leads
using low temperature superconductors (LTSC) [4][5]. However, a major improvement could
be achieved by using high temperature superconductors (HTSC) not only as shunt for the
lower end copper lead but as an independent part of the current lead between the LTSC coil
cable and an intermediate temperature level. The advantages of HT'SC materials are the
high electrical conductivity while acting as thermal insulator at the same time. The height
of the intermediate temperature level depends on the proposed cooling concept and on the
critical temperature of the superconductor. Experiments on HTSC current leads have been
successfully performed for the CERN LHC project up to 13 kA [1][21]. The study shows
methods to calculate and optimize the heat inleaks on current leads.

1.1 Overview

This study describes an analytical and numerical model to calculate the temperature dis-
tribution along a current lead and the heat inleak at the cold end for steady state conditions.

The analytical model is used to optimize the current lead in length and helium mass flow
rate with the drawback of loosing accuracy due to approximating the material properties by
the Wiedemann-Franz law. It determines the relation between thermal conductivity A(7")
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and electrical resistivity p(7")

AT)p(T)=LoT (1.1)

with the Lorentz number Lo = 2.445 - 1078[WQ/K?]. Most metals obey the Wiedemann-
Franz law fairly well [2][23].

The numerical model is based on a finite element method without using the Wiedemann-
Franz law. Within one segment the temperature dependence of the material properties and
the variation of AT = (T — 0) are neglected. T is the lead temperature and 0 is the coolant
temperature. Fig. 1.1 shows three reasonable current lead designs [22][24].

(o] o o
upper current L T upper current - T upper current L~ T
pp fo) h ‘PP o h ‘pp le) h
connection T connection connection * >
He out H eau/

| » | »  »
copper lead copper lead _~ copper lead
24 24
; He ;
hzlmm / heat exchanger - hzlmm /
channe : :
at intermediate - channe <=
temperature T He,, T He,,
optional i i
LTSC shunt
HTSC part HTSC part
lower current He,, lower current lower current
connection to NbTi connection to NbTi connection to NbTi
superconductor Tc superconductor T, c superconductor T, c
a) Gas cooled copper b) Combined copper/HTSC ¢) Gas cooled combined
current lead current lead with copper/HTSC
heat exchanger at T, current lead

Fig. 1.1: Basic current lead configurations

Forced-flow cooled copper current lead: This type of current lead (Fig. 1.1a) will be
used as reference model to compare the different current lead designs. Supercritical
helium enters the lead at the cold end with temperature 7. and leaves the current lead
at the hot end with a temperature of around T}. The heat leak depends on the current
lead geometry lo,/Acy, the electrical current I and the helium mass flow rivse [17][23].
Equipping the copper conductor with a NbsSn insert at the low temperature part
reduces the helium mass flow. As a consequence of the use of superconductor inserts
the helium mass flow rate at zero current will be drastically reduced due to the enlarged
length of the current lead [8][9].
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Combined copper/HTSC current lead with heat exchanger: Fig. 1.1b shows a con-
duction cooled binary current lead, using a HTSC between the cold end at 7., and an
intermediate temperature level at 7;. In order to keep the heat inleak small at the cold
end of the lead, the heat exchanger has to absorb the heat at intermediate temperature
level. The required helium mass flow in the heat exchanger increases by reducing the
temperature difference (6,u: — 0in) [22][24].

Forced-flow cooled combined Cu/HTSC current lead: In configuration Fig. 1.1c, the
superconducting section of the current lead is conduction cooled, while the copper
section is cooled by gazeous helium. Helium enters at the intermediate temperature
level and leaves at room temperature [22].

1.2 Material properties

1.2.1 Electrical resistivity

At low temperatures the electrical resistivity o trends to a constant value, which is strongly
dependent on metal purity and amount of lattice imperfections. The value of the residual
resistivity ratio

(273 K)

RRR = —/———+
0(4.2 K)

is used often as a measure of the purity of the metal. The electrical resistivity of copper is
for instance calculated by use of the approximation formula (Unit = [Q2m])

1.545 1
ocu( B, RRR,T) = . ~| 108 +05107°B
RRR 2.3257:157 10 + 9.57}111337 10° + 1.627}3‘5 10

(1.2)

with an accuracy better than one percent over the temperature range 0 to 1000 K [12][14].
Fig. 1.2 indicates the electrical resistivity of copper as a function of temperature for different

values of RRR.

HTSC materials show an unmeasureable low electrical resistance below the critical temper-
ature T,.;;. It increases rapidly after exceeding T..;. Fig. 1.3 shows a plot for an YBCO
superconductor with a critical temperature of 80 K [3].
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Fig. 1.2: Electrical resistivity of copper versus temperature for different values of RRR
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Fig. 1.3: Electrical resistivity of a high temperature superconductor versus temperature
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1.2.2 Thermal conductivity

Approximation formulas are given for different temperature ranges [3] (Unit = [W/(mK)]):
Copper:

T <60K:

T 2.5
/\cu(Ba RRR’T) = o(B,RRR4.2K) +3.3510-773 (RRR + 1) (13)

2.4510-8

60K < T < 200K

. 60 25 N\ (3L, B
" 2(B,RRR4.2K) +3.35 10-7 603 RRR RRR? 100 RRR

2.45 108

—3.36 101° 4+ 1,02 108 £ — 6.87 103 ¢2

Aeo(B, RRR,T) = 415 + i

(1.4)

T > 200K

Au(B, RRR,T) = 415 (1.5)
Fig. 1.4 shows the thermal conductivity of copper. In case of an Ag-Au alloy, sheathed
Bi-Pb-Sr-Ca-Cu-O (Bi-2223) superconductor tape, the thermal conductivity of the alloy is
about two orders of magnitude higher than that of Bi-2223 (see Fig. 1.5) [6][13][16].
The thermal conductivities of Ag-Au alloy and Bi-2223 [10] are approximated by the following
polynomial fit functions (Unit = [W/(mK)]):
BiySry;CagyCus O, (Bi-2223):

T < 113K:
MT)=0194+94210"3T +34107*T%-6.2310° ¢T3 +2.67 1078 T
(1.6)

113K < T < 200K

ANT)=479-01T7+49.910"*T? - 4.17107°7° + 6.53 10°T"* (1.7)
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Iig. 1.4: Thermal conductivity of copper versus temperature for different values of RRR
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Fig. 1.5: Thermal conductivity of high temperature superconductors versus temperature
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Alloy (Ag 3at.%Au):

T <400K:

MT)=26.71+2.14T —2.27 1073 T% 4 2.99 107° T° (1.8)
Alloy (Ag 11at.%Au):

T <400K:

MT)=541+84810"'T —1.331073T? +9.03 1077 T3 (1.9)

1.2.3 Specific heat

500 ! T ' T !
450
400

350

w
o
o

Specific heat [J/(kg K)]
nN
(4]
o

150

1 1 1 1
0 50 100 150 200 250 300
Temperature [K]

Fig. 1.6: Specific heat of copper and HTSC versus temperature

The specific heat is defined as the heat capacity per unit mass. The heat capacity represents |
the amount of energy needed to raise the temperature of a material one degree and is a ‘
fundamental state property of matter [20].
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For modelling, the following approximations have been used (Unit = [J/(kgK))):
Copper (Cu):
T <20K:

ep(T) = — 2921072 +3.49 107> T — 5.44 107° T* + 1.29 107°7°
—2.651075 7" +4.59 107" T°

20K < T <100K:

&) =192 — 104 —6.17 107272 +2.16 1074T° — 8.96 107° T

+4.0910787°
100K < T < 300K:

¢,(T) = — 306.88 + 10.24 T — 6.53 107 T + 2.13 Mo =T
3551077 T* +2.421071°T°

300K < T < 1000K:

¢,(T) =351.88 + 0.14T — 1.24 107> T* + 3.37 107°7°
— 92841077 4+ 1.18 10712 T°

BigSl‘QC&QCU@;OI (B1—2223)
40K < T < 300K:

(1.10)

(1.11)

(1.12)

(1.13)

¢p(T) = —11.46 + 1.12T — 1.58 107> T — 6.91 107° T + 7.42 107871

Bi,Sr,CaCuy 0, (Bi-2212):
40K < T < 300K

¢p(T) = —28.09 +2.44T — 3.68 107> T* — 9.68 107" T°
YBay;Cuz07-, (YBCO):

40K < T < 300K

e,(T) = —11.48 + 1.18 T + 1.03 107> T* — 6.42 10772 +9.76 107 T

(1.14)

(1.15)

(1.16)

The specific heat of helium ¢y is a function of temperature and pressure. Above 10 K and

ambient pressure (~ 10° Pa) the specific heat is c;,, = 5193 J/(kg K).
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Analytical model

2.1 Conduction cooled current lead

Th x=L
Aop | 9+d0
}\'sp dx

Fig. 2.1: Scheme of a conduction cooled current lead with heat exchanger

Applying the Wiedemann-Franz law (see Eq. (1.1)), the basic differential equation for calcu-
lating the one-dimensional temperature distribution along the axis of the conduction cooled
current lead (Fig. 2.1) during steady state conditions is [2][17]

4
dz

dT (T)
MTYA—| + === 2.1
amag]+rEl o (2.)
with the cross section area A, the current I, and the temperature 7. For an optimized
current lead the heat flux at the cold end

dT

Qc = /\(T) A

should become a minimum. From Eq. (2.1) follows



CHAPTER 2. ANALYTICAL MODEL 10
. i?p(T)
dQ = — ) dz

and further

dr . i2p(T)
—dQ = ———=dT. (2.3)

From this and Q = M\(T') A dT/dz follows

QdQ = —\T) p(T)i*dT. (2.4)

The minimum heat flux may be found for constant cross section area across the length.
Integration of Eq. (2.4) gives

Ty

@2 =2 [ MT) (1T + G, (2.5)

T.

The minimum heat flux QC at the current lead cold end is obtained when Qh = 0 or the
temperature gradient dT'/dz is zero at the hot end (see also [15]). This leads to the additional
boundary condition

ar _
dz

Il
-

0 at T

The substitution

dz
MNT)A

dz =
and Eq. (1.1) simplify Eq. (2.1) to

d*T

dz?

+I’LyT =0. (2.6)

It has the general solution

T'(z) = Cysin(az) 4+ C; cos(az) with a = 1+/Lo. (2.7)
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In general, the following boundary conditions are required:

r=0 z=
z=L 2=z, T=T, £=0.

to minimize the heat flux. The cold and hot end temperatures are

T, = Cy

Ty, = Cysin(az,) + Cz cos(azy)

with the constants

T, -T. cos(azy)

Oy = and G =1..

sin(azyp)

The temperature profile as a function of the substituted length z is

() = T, 5292 | 1 [ cos(az) — S2@2) (2.8)
sin(azp) tan(azy)
Hence, the heat leak at the cold end of the current lead becomes
. Ty, o T.
— . , 2.9
@ sin(azy)  tan(az) (29) |
The heat flux changes with z; and has an optimum at z; |
T2 -T2
Bt B= {arctan—h———c i (2.10)
T. «a

Hence, the length of the current lead section is given by the temperature dependent integral

lopt = / MT) Adz. (2.11)

z=0
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2.2 Forced-flow cooled current lead

With use of the Wiedemann-Franz law the basic differential equation for calculating the
one-dimensional distribution along the axis of the forced-flow cooled current lead (Fig. 2.2)
during steady state conditions is [2]

d dT , T p(T)

—IMTYAZ=—| - . el RS 2:12
L a%] - pinee, Gl =0 212
with A the cross section area of the current lead, c,,, the specific heat of helium, ;. the
helium mass flow rate, I the current, and T the temperature. The value 3 defines the

efficiency of heat transfer between the current lead and coolant.

Th x=L
Ap [Q'erQ
well yflme LR L
|0
T x=0

Fig. 2.2: Scheme of a forced-flow cooled current lead

With the substitution

Eq. (2.12) can be written in the form

T Bripecy, dT
- < — = 2.1.
1.2 7 7 + Lo T =0. (2.13)

The characteristic equation of the 2"¢ order differential equation Eq. (2.13),

/8 Thhe Cohe

2T_
¢ I

ET +LoT =0

has the solutions

1 Mipe €5 B Mg Gy =
§1,2=—T—'i 57 — Lo = a; £+ as.

Dependent on the coefficients in the solution, three different cases have to be considered.
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. 2
Case 1: (Eﬁl—';‘}—c”"—’@) > Lo

The general solution is

T(z) = Cy el®Fe2)z 4 O, el1=e2)? (2.14)
with
a:_ﬂm_ﬂ___ and  ap=+/a? — Lo.

Boundary conditions for the current lead:

The cold and hot end temperatures are

Tc:CI+CQ

Th = CI e(a1+a2)zh + 02 e(a;—az)zh.

For C; and C, follows

=T ela1taz)zp

ela1—a2)zp _ glartaz)zn

m (a1—02)z
C,=- Th = Loem = and C, =

elor—o2)zn _ elartaz)zp

The temperature profile along the substituted length z is

e(oq—ag)z - e(a1+012)2 e(al—ag)zhe(al+a2)z _ e(a1+a2)zhe(a1—-ag)z

C

T'lz) =Tk .

(a1—02)zn _ glartaz)zn elar—az)zp _ elontaz)zn

(2.15)
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The heat leak at the cold end of the current lead becomes

' : dT
c = — 0 = [ ——
Q. =Q(z =0) %
. 2Ty g + T, [(al L a2) elar—az)zn _ (al _ a2) e(al+a2)zh]
Q.=1 [ e P P (2.16)
. (Brnecpy, \2 _
Case 2: it ] = Lo
The general solution is
T(Z) = (CIZ + 02) eaz (2.17)
with
— ﬁmhecphe
21

Boundary conditions for an optimized current lead:

z=0 z=
e=L z=2z, T=T,.

The cold and hot end temperatures are

T.=C,

Ty = (Crzp + Cy) e

with

Ty, — T, e**h

Zp €%%h

C and Co=T.,.

The temperature profile along the substituted length z is

R
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T(2) = Th —— + T, (1 —~ i) e |,

ZpeYch Zh

The heat flux at the cold end of the current lead becomes

5 2
Case 3: <%> < Lg

In this case the general solution is

T'(z) = [C}sin(aqz) + C; cos(azz)] e
with

ﬁmhe C
a; = Phe

The cold and hot end temperatures are

Tc:CQ

T, = [Cysin(agzy) + Cy cos(agzy )] 2175,

C1 and C5 become

¢y = Tz Lo coslaaz)em™

sin( gz, )e*1%n

2[ and QQZQILO—Q%.

Boundary conditions for the optimized current lead:

The temperature profile along the substituted length z is

15

(2.18)

(2.19)

(2.20)
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T(z) =T sin(agz)e®1® T (027 sin(azz) | 4. (2.21)
N=T, —————— " |cos(agz) — ———= . 2
h sin(agzp )ex1% OBl tan(aqzp) ¢

The heat leak at the cold end of the current lead becomes

Th g

. Qs
—1|- T, _ i 2.22
¢ sin(agzp, )ex17r i (al t"m(aﬂh))} | ) !
|

Cases 1 and 2 consider the current lead operation at reduced electrical current / and mass

flow-rate mpe,. |

The heat flux Qc has a minimum at zj, = 2z, and is determined by numerical optimization.
The real length of the lead is given by the result of the integral

Zopt
lopp= 1 //\(T)Adz. (2.23)
z=0
Operation without current:

In case of zero current the differential equation Eq. (2.12) is written in the form

dT . dT ‘
?Z;:| - ,Bmhe Cphe E = 0. (224)

Eq. (2.24) becomes

pT L ar_
dzz ! Mthe Cpne dz

0. (

DO
[\]
Ut
S/

With a = B mpe ¢p,,, the common solution is

T(z)=C1+ Cye™.
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Boundary conditions:

=0 2z=0 T=T,
=1 Z = Zp T=Th
T L

The temperatures at the cold and hot end of the current lead are

Tc:CI+C2

Th = Cl + 02 eaz”.

Calculated from the equations above, the constants become

Ty —T. and o, = et

exon — 1 T e — 1

CVI = Tc -

The temperature profile as a function of the substituted length z is

T(z) =Ty —1+Tc<1—e _1>. (2.26)

exr — e%*h — ]

The heat leak at the cold end of the current lead becomes

Qo= (Th = T.) ———|, (2.27)

e*h — ]
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Numerical model

3.1 Boundary value problem

The numerical design of the current lead is based on a slab, fixed at the temperatures 7.
and T} at the cold end and hot end respectively. This fact leads to a variational method to
solve the "boundary value problem” in the ordinary differential equation [11]

a4
dz

d ' @
NTYASL] —hp (7 —0) 4 22

dz A
with A the thermal conductivity, p the electrical resistivity, A the cross section area, p the
wetted perimeter, h the heat transfer coefficient, T' the slab temperature, and 6 the helium

gas temperature. Eq. (3.1) has the boundary conditions

=0 (3.1)

T(0) =T, and T({) = Tj. (3.2)

Such a numerically sensitive two-point boundary value problem can be solved by applying a
finite difference method. The finite difference equation must incorporate both specific initial
and terminal conditions in the finite set of equations. Thus, the resulting solution of these
equations is constrained to satisfy these boundary conditions.

3.2 Segmentation of the slab

The slab interval [0, (] is discretized with N + 1 nodes and N elements, as shown in Fig. 3.1.
Ohmic loss generates joule heat @, inside the element. Heat @, is conducted along the
axis of the slab. In case of gas cooling, @ is the part of heat which is absorbed by the
surrounding gas.

The second derivative at z; may be approximated by

(12T ~ Tj_l - 2Tj + Tj-H

~ 2
’ (Zjt1 — z5)

dz

18
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Element
T=T, J . T=T,,
[ T T I T ]
a=xy X X X Xigg b=xy
+er
0, =2
X b3

Fig. 3.1: Segmentation of the current lead

Applied to Eq. (3.1) gives for a single element

h hpd+ 3% p/A
~T_5 + <2+_£(A$)2> Tj—Tj+1:p—_:i—p/—

N A (Az)?:, j=1,2,...,N.

(3.4)

The two-point boundary value problem, given by Eq. (3.1) and the boundary conditions in
Eq. (3.2) may be approximated by N equations of Eq. (3.4), where the boundary conditions
are included. In matrix form the equations appear as

2+ 22 (Az)? -1 0 T "p—gf,@M (Az)? 4T,
-1 2+ 22 (Az)? -1 T, hpiti o/ (Ag)?
. . : = : . (3.5)
! TNz BpOte o/ d gi’;" A (Az)?
h !
: - 2 g o] el el a0 )
This is a set of IV linear algebraic equations with the N unknowns Ty, Ts,...,Tn_1, TN,
whose solution is an approximation to the solution Eq. (3.1) at the points z;.
In matrix expression, Eq. (3.5) is written as
A-T=b (3.6)

where A and b are N x N and N x 1 matrices respectively. A is a matrix of three-diagonal
character. The temperature in each element is

T=A"1.b. (3.7)
Steps for calculating the temperature profile:

e Before solving Eq. (3.7), the temperature distribution along the current lead is as-
sumed as a linear function of temperature in order to estimate the non-linear material
properties.
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e Determining the temperatures according to Eq. (3.7) and updating the material prop-
erties. This step will be repeated until the difference between the previous and the
new calculated temperature value is less than a specified margin e (i.e. € <0.1 K).

e The heat flux at T = T, in Fig. 3.1 is approximated with

. T, — Ty

o — 1
3.3 Coolant Temperature
The temperature of the coolant is calculated from the energy balance
mec,dd = hp(T —0)dz (3.9)

with ¢, the specific heat of the coolant, m the coolant mass flow rate, p the wetted perimeter,
and h the heat transfer coefficient.
In finite element modelling, the change in coolant temperature over an element 1s

o, = 2T =0 pg (3.10)

Cpm

Then, the coolant temperature is

0; = 0,_1 + A;. (3.11)




Chapter 4

Results from modelling

4.1 Conduction cooled current leads

Calculations have been performed for a single conduction cooled binary current lead (Fig. 1.1b)
by varying the intercept temperature level. The intercept temperature

aout - ein

Oout
In .

T = (4.1)

depends on the inlet and outlet temperature of the cooling gas. The mass flow rate, required
to absorb the heat loss at intercept level is

. Qi
m=-———— 4.2
hout - hin ( )
with Q; the heat loss at intercept temperature, h;, and h,,; the coolant enthalpy at the heat
exchanger inlet and outlet, respectively. The equivalent value of the heat leak at 7. is

: T =T, T,
Qi = Qs T, Tn-T.,

with 7. = 4.5 K and 7}, = 300 K. The hot end of the HTSC is assumed to have the
temperature 6,,,. Hence, the critical current has to be determined for 6,,;.

Table 4.1 contains the required mass flow for the heat exchanger and the heat leaks at
intercept temperature and at cold end. For calculating the current leads a RRR = 30 for
the copper section and a current density of J., = 10" A/m? at 16 kA was assumed, so

(4.3)

I 16-10°

7 —o = 1.6 - 1073m?2.

Acu =

The length of the copper section is optimized at nominal current with the Neumann condition
dT'/dz = 0 at the hot end. The calculations on conduction cooled current leads assume a

21
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Table 4.1: Results for a single conduction cooled binary current lead

Units | case 1 case 2 case 3 case4d cased case 6
Oin [K] 10 20 30 40 50 60
0wt K] | 64 64 64 64 64 64
T, K] | 291 37.8 449 511 567  62.0
Cu lead section length [m] 045 043 041 040 039  0.38
HTSC lead section length [m] 0.6 0.6 0.6 0.6 0.6 0.6
1=20 ki
Mthe [g/s] | 3.4 41 5.1 72 121 417
Q; (at Tursc—_cu) [W] | 960 930 903 893 883 867
Q:. (Q; equiv. at 4.5 K) (W] | 136 98 78 66 58 51
Qres. (resist. loss at 4.5 K) | [W] | 0.8 0.8 0.8 0.8 0.8 0.8
Qeond, (cond. heat at 4.5 K) | [W] | 04 07 0.9 1.2 1.4 1.7
S Q. (loss at T.) (W] | 1382 995 797 68.0 602 53.5
=16 kA:
The [g/s] | 25 30 38 54 91 317
Q: (at Tyrsc—cu) [W] | 701 687 678 671 665 657
Qi. (Qi equiv. at 4.5 K) (W] | 99 72 59 50 44 39
Qres, (resist. loss at 4.5 K) | [W] | 0.5 0.5 0.5 0.5 0.5 0.5
Qeond, (cond. heat at 4.5 K) | [W] | 04 07 0.9 1.2 1.4 L7
S Q. (loss at T%) [W] | 99.9 732 604 51.7 459  41.2
1=12.5 kA:
Mhe [g/s] | 21 25 32 45 7.6 265
Qi (at Tyrsc—cu) [W] | 587 574 568 560 556 550
Q:. (Qi equiv. at 4.5 K) W] | 83 61 49 42 36 32
Qres. (vesist. loss at 4.5 K) | [W] | 0.3 0.3 0.3 0.3 0.3 03
Qeona, (cond. heat at 45K) | [W] | 04 07 09 1.2 14 1.7
S Q. (loss at T.) [W] | 83.7 620 502 435 37.7  34.0
1=0 kA:
Mhe [g/s] | 1.7 20 25 35 58 199
Q: (at Tursc—cu) (W] | 465 452 445 432 420 414
Qi. (Q: equiv. at 4.5 K) (W] 66 48 39 32 28 24
Qyes, (resist. loss at 4.5 K) | [W] | 0.0 0.0 0.0 0.0 0.0 0.0
Qcona, (cond. heat at 4.5 K) | [W] | 04 07 0.9 12 1.4 1.7
S Q. (loss at T;) W] | 66.4 487 399 332 294 257
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heat exchanger outlet temperature of 64 K, while the inlet temperature is varied from 10 to
60 K.

The current lead section between the intercept temperature level and the cold end has been
simulated for Bi-2223 tapes stabilized with Ag-Au alloy. The cross section area has been
fixed for a current density of Jp9203 = 17-10° A/m? at 16 kA and a superconductor fraction
of 65 % [9]. The cross section area of the Bi-2223 superconductor is

I 16-10°

- =941 - 107%m?
Tpimes | 17-10° 0m

ABig3 =

and the cross section area of the Ag-Au alloy is

0.35 -
Apg11%Au = 065 ABigzes = 507 - 107%m?.
Compared to the heat load at intercept temperature level, the resistive loss at this level
is negligible. At the cold end of the current lead, the resistive loss lies in the same order
than the conducted heat and has to be considered. The contact resistance between the
superconducting cable and the HTSC at the current lead cold end is assumed with ~2 n{2 [9].
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Length of C.L. copper section [m]

Ilig. 4.1: Temperature distribution along the copper section of an optimized conduction
cooled current lead (analytical and numerical solution)

Fig. 4.1 shows the temperature distributions along a conduction cooled copper lead at nomi-
nal current 7, for a helium inlet temperature of 40 K. The values are deduced from analytical
and numerical model, respectively (see chapters 2 and 3). Both characteristics are in good
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Fig. 4.2: Temperature distribution along the copper section of optimized conduction cooled
current leads (Heat exchanger inlet temperature: 4.5 K, 20 K, 40 K, and 60 K)

agreement. The differences between both solutions appear due to linearization of the ana-
lytical model by applying the Wiedemann-Franz law.

In case of optimizing the relation between copper cross section and copper lead length to
fulfil the Neumann condition, the length decreases with increasing helium inlet temperature
(Fig. 4.2).

Fig. 4.3 shows the temperature distribution for currents in the range 0 < I, < 1.251,. At
current greater than the nominal value I, the temperature gradient d7'/dz at the hot end
becomes negative and the lead may overheat. The supercondutor fraction in the tape is
assumed with 0.65 for a current density of 17 - 10¢ A/m?.

The heat leak at intercept temperature level is a function of electrical current and intercept
temperature. In order to get a common base to compare the heat leaks for different intercept
temperatures, the equivalent value is determined at 4.5 K. (Fig. 4.4).

Increasing the helium inlet temperature level at fixed helium outlet temperature requires a
higher helium mass flow rate in order to absorb the loss at intercept temperature (Fig. 4.5)

The heat leak at the current lead cold end becomes higher by increasing the intercept tem-
perature level (Fig. 4.6). Responsible for this effect is mainly the heat conductivity of the

alloy, as shown in Fig. 1.5. It is more than one order of magnitude higher than that of the
superconducting material.
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Fig. 4.3: Temperature distribution along the copper section of an optimized conduction

cooled current lead at 0 kA, 12.5 kA, 16 kA, and 20 kA (Intercept temperature: 50 K)
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Fig. 4.4: Heat leak Qz- equivalent at 4.5 K for different intercept temperature values (Current:
0 kA, 12.5 kA, 16 kA, and 20 kA)
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4.2 Forced-flow cooled current leads

This section describes the solutions for forced-flow cooled 16 kA current leads. Calculations
have been performed with parameters as given in Table 4.2.

Table 4.2: Input parameters for forced-flow cooled current leads

Nominal current [A] 16000
Current density [Am~?] 107 [22]
Copper cross section [m?] 16 - 1073

RRR ] 30

Contact resistance at T; [n9] ~15 9]
Contact resistance at T, [n§] ~2 [9]
Helium pressure [Pa] 4-10°

5 - W/(mK)] 5000  [22]
rel. refrigerator efficiency [%)] 25 [7]

In forced-flow cooled current leads, a temperature difference between the lead and the coolant
of (T'—0) < 2 K seems a good approximation in order to determine the heat leak at the
cold end of the copper part above the interconnection to the HTSC [22].

The input power to a given refrigerator is a function of a number of criteria. The most im-
portant of which is the amount of refrigeration being produced by the refrigeration plant [7].
The refrigeration input power can be stated as

N Qcip
Qrip = m (4.4)

where Qcip is the carnot input power for helium gas recooling and 7 is the relative refrigerator
efficiency. For the WT7-X refrigerator n &~ 0.25 can be assumed. The carnot input power for
recooling of forced-flow cooled current leads is

Qeip = [T (sh — s¢) — (A — he)]. (4.5)

The heat flux at intercept temperature Qi referred to the hot end temperature T}, gives

T, —T;
T

Qih == Qi (46)

The refrigeration power, to be minimized for an optimized operation of the current leads, is
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Qref = Qcip + Qih- (47)

The loss due to contact resistance is calculated by

Qres = [2 R (48)

with 7 the current and R the contact resistance at intercept level and current lead cold end,
respectively.
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Fig. 4.7: Temperature distribution along the copper section of an optimized forced-flow
cooled current lead at nominal current (analytical and numerical solution)

Fig. 4.7 compares the solution of analytical and numerical simulation of the temperature
distribution along the copper current lead section. Differences in the results are mainly de-
termined by the influence of heat exchange between copper and helium.

Forced-flow cooled current leads can be optimized by applying the Neumann condition
dT/dz = 0 at the current lead hot end by varying the length and the coolant mass flow
rate. Therefore, the required helium mass flow rate is calculated for a given length of the
copper section. The shorter the current lead section, the smaller becomes the helium mass
flow rate. On the other hand, the conducted heat from the current lead hot end rises with
decreasing length. Carnot input power and loss are listed in Table 4.3.

Fig. 4.8 shows the carnot input power for recooling the forced-flow cooled current leads with
helium by minimizing the heat leak at intercept temperature (d1'/dz = 0 at T' = T}).
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Table 4.3: Results for a single forced-flow cooled binary current lead at I = 16 kA and
T; = 60 K by varying the length of the copper section

Copper section:

Length [m] 0.50 0.60 0.70 0.80 0.90 1.00 1.10
L/A [m~1) | 312.5 375.0 437.5 500.0 562.5 625.0 687.5
Mhe [g/s] | 045 0.62 082 092 1.00 1.08 1.15
Carnot input power:

Qcip (CIP for recooling) (W] 571 780 1030 1159 1262 1361 1452
Heat load at intercept temperature:

Q. (heat flux at T3) (W] 514 342 219 154 117 93 7
Qres, (resist. loss at T) (W] 4 4 4 4 4 4 4

> Q: (loss at T; equiv. at 300 K) [W] 2070 1382 893 629 483 385 322
Superconductor section:

Length [m] | 060 060 060 060 0.60 0.60 0.60
Heat loads at cold end:

Q. (heat flux at T})) W] | 1.6 16 1.6 16 16 1.6 1.6
Qres. (resist. loss at 4.5 K) W] | 05 05 05 05 05 05 05

5" Q. (loss at T, equiv. at 300 K) W] 138 138 138 138 138 138 138

Qres (refrig. power at 300 K) [W] | 2779 2300 2061 1926 1883 1884 1912
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Fig. 4.8: Carnot input power for versus current lead length for d7'/dz = 0 at the current
lead hot end
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The intercept temperature level of a forced-flow cooled current lead (Fig. 1.1¢) is margined
by the cold end temperature of the current lead and the critical temperature of the HTSC.
In order to determine the helium mass flow rate dependence on the intercept temperature
level, the solutions in Fig. 4.9 consider a fixed length of the copper section. The helium mass
flow rate grows with increasing intercept temperature level (Fig. 4.10) while the required
refrigeration power at room temperature decreases. From the point of refrigeration power,
the intercept temperature should be as high as possible. Table 4.4 lists the carnot input
power and loss for current lead operation at different intercept temperature levels. The first
column shows the data for a 1 m long conventional copper lead without HTSC part [7].
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Fig. 4.9: Temperature distribution along a forced-flow cooled current lead at nominal current
(Intercept temperature: 10 K, 20 K, 40 K, and 60 K)

The stellarator W7-X will be operated at different current levels. The required helium mass
flow rate depends on the current level. Fig. 4.11 shows the helium mass flow rate dependency
on current levels between 0 < [, < 1.251,. Carnot input power and loss for current lead
operation at different supply current levels are listed in Table 4.5.
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Fig. 4.10: Helium mass flow rate versus intercept temperature in the forced-flow cooled
copper section at nominal current

Table 4.4: Results for a single forced-flow cooled binary current lead at I = 16 kA and
=1 m by varying the intercept temperature

Intercept temperature: (K] | 4.5 10 20 30 40 50 60

Carnot input power:

Tihe [g/s] | 0.72 0.78 0.84 090 0.97 1.05 1.15
Qi (Carnot input power) [W] | 3605 2958 2323 1967 1735 1568 1450

Loads at 4.5 K:
Qeinsi (equiv. CIP at 45 K) | [W] | 54.9 451 354 29.9 264 23.9 221
Qres. (resist. loss at 4.5 K) (W) | 08 08 08 08 08 08 038

Qcond. (cond. heat at 45 K) | [W] | 43.0 20 19 1.7 14 1.2 09

S Q. (loss at 7T%) [W] | 98.7 47.9 381 324 286 259 23.8

Room temperature:

Qr¢ (refrig. power n. = 0.2) kW] | 324 157 125 106 94 85 7.8
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Fig. 4.11: Helium mass flow rate versus current in the forced-flow cooled copper section

Table 4.5: Results for a single forced-flow cooled binary current lead at 7; = 60 K and
[ =1 m by varying the current

Current [kA] | 0 125 16 20
Carnot input power:

M he [g/s] | 0.15 0.75 1.15 2.0
Q.; (Carnot input power) (W] | 189 946 1450 2522
Loads at 4.5 K:

Quissk (equiv. CIP at 4.5 K) | [W] | 2.9 144 22.1 384
Qres, (resist. loss at 4.5 K) W] | 0.0 04 08 1.0
Qeona, (cond. heat at 4.5 K) | [W] | 22 2.0 09 0.7
S Q. (loss at ;) W] | 5.1 16.8 239 40.1
Room temperature:

Q,: (refrig. power 7. = 0.2) kW] | 1.7 55 79 132




Chapter 5

Conclusions

For the preliminary assumed materials and concepts, use of high temperature supercon-
ductors reduce the heat leak at the current lead cold end by a factor of 4, compared to a
conventional gas-cooled copper current lead.

The equivalent loss at 4.5 K for conduction cooled current leads is larger than for forced-flow
cooled current leads. But, conduction cooled current leads just require helium gas cooling
from heat exchanger outlet temperature (< 70 K) down to it’s inlet temperature level. In
forced-flow cooled current leads, refrigeration is necessary from room temperature down to
intercept temperature level.

The cooling concept depends mainly on the refrigeration environment. The higher the inter-
cept temperature level, the lower will be the required refrigeration power. From the point of
current lead, the intercept temperature should be below 60 K. Above this temperature, the
current density of the HTSC decreases dramatically.

Most of the simulations have been performed for a current lead length of 1 m. The real

length for the W7-X will be determined later. Accurate calculations have to be performed
dependent on proper current lead design and materials, and the specified refrigeration plant.
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