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The strong turbulence in high temperature plasmas has attracted attentions
motivated by the fusion research or by the observation on extra-terrestrial phenomena
like solar flare. The study of such turbulence is an important issue of physics: the
problems of statistical physics for systems far from thermal equilibrium remain quite
open, in contrast to those near thermal equilibrium in which the principles that govern
fluctuations (i.e., equipartition of energy, Einstein relation, fluctuation-dissipation (FD)
theorem, etc.) are established [1].

The strong plasma turbulence is governed by the V'V V Lagrange-nonlinearity,
which is universal to various fluid systems. In the past, turbulence spectrum has been
discussed by choosing the distribution of the Gibbsian thermal equilibrium, where
attention is focused on the conservation property of the V'V V term [2,3]. In this
framework, nonequilibrium property is not incorporated. For the study of strongly
unstable plasmas, nonlinear theory has been developed and applied to experiments,
based upon the methodology of clump and two-point correlation functions [4,5].
Another approach, to solve the renormalized nonlinear dispersion relations by the
method of dressed-test mode, was proposed in ref.[6]. These have given (at least
partly successfully) understanding of the anomalous transport and improved
confinement in toroidal plasmas. Nevertheless, it is still far from clarifying the physics
of strong turbulence in plasmas. Within the statistical theory of turbulence, one of the
most successful methods is the one based on the DIA (direct interaction approximation)
and RCM (random coupling model) [7]. Extension to the two-scale DIA for
nonequilibrium situations is also made [8]. By using the DIA and RCM methods, a
Langevin equation for turbulence was derived. Various kinds of closure models to
formulate the Langevin equation have been tested for plasmas and the validity of
models has been examined through a comparison with numerical simulations [9,10].

In this article, a statistical description is developed for the self-sustained strong
turbulence which is caused by the subcritical excitation of interchange mode. Langevin
equation for the dressed test mode, in which coherent drag term and incoherent random

term are kept, is solved. The level and decorrelation rate of turbulence and the auto and




cross-correlation functions are derived. Thus the extended Einstein relation and FD-
theorem are explicitly described by the nonequilibrium-parameter that characterizes the
gradient of the system. The method proposed here provides one way to explore the
physics of far-nonequilibrium systems with strong instabilities.

We consider a slab plasma which is inhomogeneous in the x-direction and is
sustained in a sheared magnetic field. The magnetic field is given as B = By(0, sx, I)
with By(x) = (1 + Qx4 -)Bo. In this system, the current-diffusive interchange mode
(CDIM) can be subcritically excited [11], which is of our interest. The reduced set of
equations for the electrostatic potential ¢, current J and pressure p are employed[12].
The electron inertia effect is kept. The classical resistivity is neglected. Three field
equations are: equation of motion:

(/DAL & + [0 A 6] = VT + (Q'xB)}Vp + p, AT, Ohm's law:

dW/at = -V, ¢—E~1(8J/9t + [¢, J]+ meeA J) and energy balance equation:

aplot + [, p] = x.A p. The bracket[f.g] denotes the Poisson bracket,

[f, g] = (VfxVg)b, (b= ByBy), A, = Vi, Q' is the average curvature of the magnetic
field, W is the vector potential, and /€ denotes the finite electron inertia, 1/5 = (ES/a)2 ,
8 being the collisionless skin depth. The transport coefficients pyc, Wec X are the ion
viscosity, the electron viscosity and the thermal diffusivity, respectively. The suffix ¢
denotes the contributions from thermal fluctuations (collisional diffusion). Length,
time, static potential and pressure are normalized to the global plasma size a, the Alfven
transit time T4, = @/V4p B3R/2ap.pand av 4pBos respectively (see [11] for details). In
this letter, the electrostatic approximation is employed and the nonlinear terms of the
form [, - - -] are neglected. The CDIM has a quasi-2D nature, | V{ | << | V7 ;
nevertheless, the small but finite V), is essential.

Langevin equation is derived by use of the renormalization and random
coupling model (RCM). The basic set of equations has the form
aflot + £ f = Nonlinear Terms, where £ denotes the linear operator and
T = (4, J, p). We consider a test mode fi and treat the nonlinear terms as follows:

The coherent contribution of the nonlinearity on f; is renormalized, by using the direct




interaction approximation (DIA), to the nonlinear transfer rate (y " k) in the k-space. The

incoherent part (rest of Lagrangean nonlinearity) is considered as a random noise
according to RCM. (The system which has numerous degrees of freedom and many
positive Lyapunov exponents is considered.) The test mode (dressed-test mode) is
shielded by the turbulence effect and is subject to random force of other modes. By
following these two procedures, a Langevin equation for a dressed test mode is

obtained as
aflot+ £f =8 (1)

with §{ = (8;x) and Ly, x = Lg-f)k + y;, 3y is the renormalized operator and the effective
* x| =2 L
transfer rates are expressed as y; = % M; 1poM; qkpﬁ) q,,p\ fi,p l, the random noise 1s

given by use of the Gaussian white noise term w/(t) as

5‘1-, = w(t)§ M; kpq\/’% 7 pf;i’ q and summation A means the constraint
k+p+q=0. (ﬁij is the Kronecker's delta. In this letter, suffix i, j = 1,2,3 denotes
the i-th or j-th field, and k, p, g descries wave numbers. Suffix kpq is omitted unless
confusion is caused.) In these expressions, the nonlinear interaction matrix is given as,
eg, M p=(pxa) b)p? - g3 k7% or M3, 3), kpg = (P % ) - b, and the propagator
satisfies the relation (9/7 + £{k) + ¢.p.)B g = 1. The term €, p ina random noise
represents the j-th field of g-component; therefore their correlation functions satisfy the
relation (C.C ;) = (f fj)and (€; ,C;, q) % 0pg[7.9,13]. Inthe calculation of the
nonlinear transfer rate, it is assumed that 1) the contribution from the shorter wave-
Jength components to the test mode plays the dominant role and that 2) the time rates

(v j), (Yo Yo ¥ p), are expressed as the diffusion coefficients uvki, ueki, xkzl. This
system has a strong instability source due to the presence of inhomogeneities, and the
product of pressure gradient and magnetic field inhomogeneity, Gy = Q' p('), denotes the
driving parameter (p being the equilibrium pressure profile). This system also

describes the submarginal turbulence, where the nonlinear transfer rate can be an origin




of the instability [6]. Solving Eq.(1), we shall determine the nonlinear decorrelation
rate and transfer rate of fluctuations, simultaneously.

In order to solve the Langevin equation (1), we introduce an ansatz of large
number of random modes, N. Renormalized terms y j in £ is the sum of contributions

L 2) times smaller in

from N components, so that its relative variation in time is o(N-
comparison with that of f;. Therefore, in solving the rapidly fluctuating time evolution
of jf, £ is approximated as constant in time in the limit of N — . Then, Eq.(1) is

solved by use of the Laplace transformation. The solution is formally given as

1) = e (20 + [ expl- At -8R e @

where A, (m = 1,2,3 and Aj < A < Aj3) represents the eigenvalue of the non-normal

matrix £. The eigenvalue is determined by the nonlinear dispersion relation:
Det(M + £)=0 3)

and I is a unit tensor. The eigenvalue A; corresponds to the branch of CDIM which
drives strong turbulence, and others (A, A 3) denote highly-stable branches. Since
Eq.(3) is a third order equation of A, one can also write as

Det(M + £) = K2 (M + MY + Ay A + A3). This equation (3) provides an explicit

relation between A, y ; and global parameters such as Gy. The matrix exp [ £(t — )] is

explicitly written as
(exp[— £t — )]y = Ayexpl- A (1 - 7)) + APlexp(- Myt — 7)) +APexp(- Aot -T)) (@)

where the elements of matrix A are givenas A;; = (v, — A )y, — M )ds
Apy = iky(vp—hj)d, Az = ik Q v~ A, Az =—EAp,
Agy = —EkFd(h; Y )N Yol A3 =Ekik,Qd, A3y = ppA /2,




Azr=—PoAryEQ’, A3z = Gok2d(h; ~ v Y(hs —vp)and d = 1/(hy - hyYh3 - A ki,
Elements Ag,?ﬁ) are also obtained in a similar way, but is not reproduced here.
According to the standard procedure, the statistical average is calculated. For

this purpose, the initial condition in Eq.(2) is unimportant and is neglected. We write
1070 = [ axf av (et do- W@ derl- de-FBEY; 6

where the relation for § and Eq.(4) should be substituted. After the long time average,

we have

() = —-AGAT o= (53)) (6)

In deriving Eq.(6), rapidly-decaying terms (the second and third terms in the right hand
side of Eq.(4)) are neglected without loosing the generality. Equation (6) relates the

fluctuation level, the correlation rate and random noise; in other words it corresponds to

the Einstein-relation in the thermodynamics. Terms o;; = (5,8 ;) could be given in terms
of correlation functions (€,C j)' The average (€; ,Cj 4G;, pCiq) @+ a=k

p' + q' = k) is decomposed as

Cip5sbinSra) = CopXCidera®ppdaq + (Gipbr.pCigh a)dpgdqp Dased on the
random coupling approximation. This yields relations

(S151) = 22 M f kpqekp¢1<c§ p)(fﬁ q) (8152 = 22 M), ipgMo2, kpqekpq@ip)(tf.q@zq}’
(8183) = 22 M}, kpgM3, kpPipalC1.pNC1.4E3.0)

(8252) = 2 My, kpgM2, kpPrpa 3. pXE2a) + 1552, KE B2

(8353) = 2 M3, ipePrpal (C1.p0C0) +C1.553,p)C1.403.0) )} and

(283) = 2 M3, kpgM3, kol (C1.pC2.aC3.0) *+(E1.553.XC1.452.0) ))- Substituting

these expressions into Eq.(6), a closed set of equations for A; and ( fd})




functions ( i ]}) For the analytic transparency, we employ an approximation that the
cross correlations (/) (i = j) are smaller than the autocorrelations (ff). By this
ordering the statistical equation Eq.(6) is simplified for the reduced variables Fy,
Fip={fiahig)i=1-3) as

Fk=;%“, (f, ph. p) R Fy ™

where the matrix £ is given as R ;; = (1 +98; I)Mf kpg® kquqA; (The cross-
correlations are derived later in relation with the induced dissipation.) Besides the
trivial solution, i.e., () = 0, the consistent solution is obtained from Eq.(7). For the
analytic estimate, we assume that the spectrum average is a smooth function, and the

ratio between two moments are given by a coefficient as

(1 + 8,02 M oM, iy a7, oK) {25 Mo o, N (ST (S '=6,
e, (I+98; j); M 1oaM; 1 Oipg(C3 pXC20) = Cor (T2 ). With this analytic
estimate, Eq.(7) is simplified as F = A7 '@ Fwith R, =~ CoypApmAnm M is

determined by the secular equation
det |\ I -R]=0 (8)

Equation (8) together with Eq.(3) determines the decorrelation rate A; and transfer rates

v For instance, once the eigenvalue A is expressed in terms of'y ; by use of Eq.(8),
the substitution of which into Eq.(3) provides the solution of v ;. If v is obtained, the
average fluctuation amplitude (f{z)/{2)) is obtained by solving the integral equation

Yo = ; M; kqu; qkpe;kpl f]:‘jp| as has been performed in [14].

Explicit forms are derived in an analytic limit. Let us show the simplest result
for the case of v, = Y, = Y Additional approximation, small A ; limit, is used.
Equation (3) yields the relations A, =y, and A 3 = 2y,, if A; = 0 is substituted, which
are taken in evaluating ® ,,,,. This simplification gives an estimate of the eigenvalue

equation Eq.(8) as




Mty = Cyl2 ©

Nonlinear eigenvalue equations (3) has been solved in the geometry associated with the
magnetic shear [15]. In the vicinity of the marginal stability condition, nonlinear

dispersion relation has been solved, providing

M =(1/2)vy—Y0) (10)

where yo = p,okg = G and g = Gg'%s~ 26~ and k = £7%5Gp 1”2 for the
representative mode number. Combining Eqgs.(9) and (10), we finally have the
decorrelation rate and nonlinear transfer rate as

_ Co 1/2 _ 1 1/2
hf_z(]_co) GO and Yv_(]_co) GO (11)

This result is the FD-theorem of the second kind in the turbulent plasma. Spectral
function has been solved, once the nonlinear transfer rates are given. As was the case

of [14], Eq.(11) shows only a weak dependence on k, and the spectrum of the kinetic
energy of fluctuations, E (k) = k J_(ki fieh, k)’ is deduced as

E (k) = 2(1 - Co) ' Gpk7? (12)

for k; > k. (Detail of derivation for given v, is described in [14].) This is a partition
law (in the energy-containing regime) for the turbulent systems, and is not given by the
equi-partition law. By use of these results, various physics quantities could be derived:
correlation function (f(7)/(z + T)) is given as (f{1)f{t + T)) = (ff)exp (— A/ t|), and the
power spectrum /() is given by the Lorentzian distribution /(o) = A Ho? +73)” I.

The test-particle diffusion coefficient is also directly calculated.



Cross correlation function is given from the off-diagonal elements of Eq.(6).
The (1,2) component of Eq.(6) provides (f;5), i.¢., the dissipation term associated

with the parallel electron motion. The (1,3) component gives a relation for (fify) as

iy f3) = Im(A ;A3 . CoMp () (13)

which is used to calculate the heat flux, providing an estimate
; (- ikyop), = ; Coy k1% f)= po). Detailed derivation will be reported in a
separate article. The result corresponds to FD-theorem of the first kind.

In summary, a new method is proposed to develop the nonlinear-
nonequilibrium physics for the system with strong (nonlinear-) instability and
turbulence. This method involves (i) derivation of nonlinear Langevin equation by use
of renormalization and RCM, (ii) solution of nonlinear dispersion relation for the
coherent part, (iii) consistency relation between the random noise and decorrelation rate
based upon the statistical average, and (iv) derivation of consistent solution. The
quantities such as turbulence level, decorrelation rate, auto and cross correlations are
explicitly given as functions of the parameter that characterizes the nonequilibrium
property. The step (iii) is an extension of the Einstein-relation, and the results are the
extension of FD-theorem to far nonequilibrium systems. In this theoretical framework,
the decorrelation rate and eddy-viscosity damping rate y, can be different. The analytic
forms are derived, at the sacrifice of accuracy in numerical factor. Quantitative
prediction requires numerical calculation of Eq.(6).

The nonlinear transfer rate v, has been obtained in the previous work in the
absence of random noise [6, 14]; in this simple treatment, the turbulent decorrelation
rate could not be obtained and a statistical description was impossible. The present
analysis extends the previous framework for the self-sustained turbulence including the
random noise effect consistently. It confirms that the previous simple model has

provided a qualitatively appropriate estimate for the nonlinear transfer rates.



The present analysis is given by choosing CDIM as one typical example, and
the method itself could be applied to much wider circumstances, e.g., the problems of
various instabilities, other external forces (like flow shear) or turbulence-turbulence

transition.
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