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magnetic field, which reveals a submarginal strong turbulence, is considered.
Nonlinear dispersion relation is extended to a Langevin equation for a dressed test
mode, in which nonlinear interactions are kept as renormalized drag and random self
noise. Based upon the assumption that the random noise has a faster time scale, the
solutions are obtained for the fluctuation level, decorrelation rate, auto- and cross-
correlation functions and spectrum. They are expressed as nonlinear functions of non-
equilibrium parameters like gradient. Extended fluctuation-dissipation theorem
(Einstein relation) is described as statistical relations. Then the Langevin equation is
reformulated into a Fokker-Planck equation of the probability distribution function.
The steady state probability function is solved. Imposing the constraint of the self-
noise, the power-law distribution with respect to the fluctuation amplitude is obtained in
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1. Introduction

The strong turbulence in high temperature plasmas has attracted attentions
motivated by the fusion research or by the observation on extra-terrestrial phenomena
like solar flare. The study of such turbulence is an important issue of physics: the
problems of statistical physics for systems far from thermal equilibrium remain quite
open, in contrast to those near thermal equilibrium in which the principles that govern
fluctuations (i.e., equipartition of energy, Einstein relation, fluctuation-dissipation (FD)
theorem, etc.) are established [1].

The strong plasma turbulence is governed by the V V V Lagrange-nonlinearity,
which is universal to various fluid systems. In the past, turbulence spectrum has been
discussed by choosing the distribution of the Gibbsian thermal equilibrium, where
attention is focused on the conservation property of the V'V V term [2,3]. Several
efforts have been done for the case of plasma turbulence, taking examples of drift
waves [4-7]. For a given 'temperature' of the system, that is introduced as a coefficient
in the exponent of Boltzmann-Gibbs distribution, a Fourier spectrum of fluctuations
has been derived. Power-laws in the wave-number space have been derived for the
energy spectrum. In this framework, however, nonequilibrium property, which causes
the deviation from Gibbsian thermal equilibrium, is not incorporated. The
determination of the 'temperature’ in turbulent plasmas remains open question.

For the study of strongly unstable plasmas, nonlinear theory has been
developed and applied to experiments (e.g., [8-11]), based upon the methodology of
clump and two-point correlation functions [12]. Another approach, to solve the
renormalized nonlinear dispersion relations by the method of dressed-test mode, was
proposed to obtain the mean characteristics of turbulence and turbulent-driven transport
[13]. This method has allowed to analyze the strong subcritical turbulence. These
analyses have given (at least partly successfully) understanding of the anomalous
transport and improved confinement in toroidal plasmas. In particular, the roles of

pressure gradient and the gradient of radial electric field have been considerably




clarified [8-11, 14, 15] (see [16] for a review). Nevertheless, it is still far from
clarifying the statistical physics of strong turbulence in plasmas.

An attempt was made to study the statistical dynamics of homogeneous
turbulence in neutral fluid [17]. Starting from Liouville's equation in the presence of
external random forcing, and introducing the concepts of turbulence viscosity
(Heisenberg type viscosity) as a drag and the turbulent diffusion in a functional space, a
Fokker-Planck equation is formulated for the truncated nonlinearities. The power law
distribution of k-Fourier space was examined with an assumption of the decomposition
of nonlinear interactions. Efforts have been made including studies to resolve a
divergence which appears in the energy equation [18,19].

Within the statistical theory of turbulence, one of the most successful methods
would be the one based on the DIA (direct interaction approximation) with RCM
(random coupling model) [20]. Extension to the two-scale DIA for nonequilibrium
situations is also made [21,22].

One way to study the statistical nature is to utilize a Langevin equation. An
effort has been made to derive the Langevin equation of weak turbulence [23] by the
method of characteristic functional combined with the time asymptotic method of
Bogoliubov and Mitropolski [24]. Based on the DIA method, a Langevin equation for
turbulence is to be derived also for the strong turbulence. To this end various kinds of
closure models to formulate the Langevin equation have been proposed for plasmas and
the validity of models has been examined through a comparison study with numerical
simulations [25-28]. The usefulness of this approach has been investigated for the case
of linearly-unstable drift wave waves.

In this article, a statistical description and analyses are developed for a self-
sustained strong turbulence which is caused by the subcritical excitation of interchange
mode. Langevin equation for the dressed test mode, in which the drag term and the
random noise term due to nonlinear interactions are kept, is formulated. Imposing
ansatz (1) of large degrees of freedom in the turbulence and (2) of the random self-

noise, the level and decorrelation rate of turbulence and the auto- and cross-correlation




functions are solved. Thus the extended FD-theorem (Einstein relation) is explicitly
described by the nonequilibrium-parameter that characterizes the gradient of the system
[29]. The method is applied to the current-diffusive interchange mode (CDIM)
turbulence [13]. Then the Langevin equation is reformulated into a Fokker-Planck
equation of the probability distribution function. The steady state probability function
is solved. Imposing the constraint of the self-noise, the power-law distribution with
respect to the fluctuation amplitude is obtained in the tail of the distribution function.
The method proposed here provides one way to explore the physics of far-

nonequilibrium systems with strong instabilities.

2. Basic Equation and Statistical Approach
2.1 Plasma Model and Basic Equation

We consider a slab plasma which is inhomogeneous in the x-direction and is
immersed in an inhomogeneous and sheared magnetic field. The magnetic field is
given as B = B0, sx, I) with By(x) = (1 + Qx + - - -)BO. In this system, the current-
diffusive interchange mode (CDIM) can be subcritically excited [30]. In the dynamics
of its mode, the electron viscosity prohibits the free-motion of electrons along the
magnetic field line, and makes the system be nonlinearly unstable. This dissipative
instability system is of our interest. To describe the system, the reduced set of
equations for the electrostatic potential ¢, current J and pressure p is employed([31].
The electron inertia effect is kept, because this effect is amplified by the nonlinear
shielding effect of the turbulence [32,33]. The classical resistivity is neglected for the

simplicity of the argument. Three field equations are: equation of motion:

DA 16+[0A,0]= VT + (Qxb)}Vp + p, 829, )
Ohm's law:
%'P b Rt ](a.f/al + [¢’ ‘]] T ueCAJ_J) 2)




and energy balance equation:
2p+[9 Pl = xALP. 3)
The bracket [ f,g] denotes the Poisson bracket,

[/. 81=(VfxVg)b,

(b= By/By), A, = V3, Q' is the average curvature of the magnetic field, ¥ is the
vector potential, and 1/E denotes the finite electron inertia, 1/§ = (8/a)* , & being the
collisionless skin depth. The transport coefficients i, 1. X, are the ion viscosity,
the electron viscosity and the thermal diffusivity, respectively. The suffix ¢ denotes the
contributions from thermal fluctuations (collisional diffusion). Length, time, static

potential and pressure are normalized to the global plasma size a, the Alfven transit time

Tap = AlVyp, AV apBp and BZR/2ay,, respectively (a and R are minor and major radii of
torus, v, = By 2upmn;)” 124Rg~1, m; is the ion mass, and n; is the ion density; see
[30] for details). In this paper, the electrostatic approximation is employed, i.e., the
inductive electric field in the Ohm's law and the nonlinear terms of the form [¥, - - -] are
neglected. (The influence of the inductive electric field could be important, if one
studies the case that the plasma pressure is high. See [34] for the extension to the
plasma with high pressure.) The CDIM has a quasi-2 dimensional nature,
|Vﬁ | << |Vﬁ |; nevertheless, the small but finite V|, is essential.

The dynamics of micro fluctuations are studied in the presence of the global
inhomogeneity of the plasma pressure. Quantities that are averaged over the (y, z)-plane

are denoted by the suffix 0, as py and ¢;.

¢=¢p+ 9, J=Jp+JJandp=py+ p “4)




The pressure and electrostatic potential could be inhomogeneous (i.e., inhomogeneous
in the ®-direction) in the global scale. Parameters V p, and Vi ¢p represent the
inhomogeneity of the system.

The scale separation is introduced, in this article, between the dynamics of the

micro fluctuations and macroscopic structures:

(5-D

|P51 %Po|<<‘f’_1 -

|p5 1Vpo|<<|p1Vp|. (5-2)

With the help of this assumption of space-time scale separation, the dynamical

equations of fluctuation fields are given as
%AJ_‘T) +[00 A 18]+ [ A1) = VT + (D)} VP + p, AT ()
—J + (90 J]+ (9. J]=~EV) § + A T )
%ﬁ + [0 po) + (00 B+ [, ] = %A 1P ®

In this set of equation, parameters V p, and Vi ¢p are assumed constant, so that the

dynamics is decoupled from those of global structures. Equations for global structure

are given
DA 90— 399 =[5 A7) ©
2-po—xcA1po=—[5 Pl (10)



where the symbol [X, Y] denotes the average of the quantity [X, Y] over the magnetic
surface, i.e., the (y, z)-plane. Global magnetic field is kept constant, and the equation
for J, is not considered for simplicity.

In the following analysis, the statistical properties of fluctuations are discussed

based on Eqs.(6)-(8). The symbol ~ which denotes fluctuating quantity is suppressed.

2.2 Derivation of Langevin Equation

Langevin equation is derived by use of the renormalized eddy viscosity type
model and a random coupling model (RCM). The basic set of equations, Eqs.(6), (7)
and (8), has the form

afior+ LOf = x(f), (11)
where £(9) denotes the linear operator

-uV: vV, - Vlzgri

dy
£0) = EV), = l-"ecvi 0 (12)
d
= _d% aiy 0 _Xcvi
Flatl ) (13)
P

and A/(f) stands for the nonlinear terms.

We consider a test mode f; and treat the nonlinear terms as follows: (Fourier
transformation is used, and the suffix k implies the k-th Fourier component.) The
system which has numerous degrees of freedom and has many positive Lyapunov
exponents is considered. A test mode (dressed-test mode) in the presence of turbulence
is subject to the random force of other turbulent modes and is shielded by the

turbulence drag effect. A part of the Lagrangean nonlinearity on f} is considered to




cause the drag and is renormalized, by using the direct interaction approximation (DIA),

to the eddy-viscosity type nonlinear transfer rate (Y j k) in the k-space. The other part of

Lagrangean nonlinearity is regarded as a random noise, which has a faster decorrelation

time than (v ;) according to RCM.

By choosing these procedures, a Langevin equation for a dressed test mode is

formulated. If one symbolically writes
3
O, /o1 + J_ZI Al k= k= 2 M tpafiphia (14)

where A/; ; is the nonlinear interactions that generates / ., then the Langevin equation

was derived as [20,26,35]
aflot+ cf =8 (15)
with
L=k +vi Dy (16)
(6z'j is the Kronecker's delta) and
§ 1k

Se=| 50 |- a7
S3.k

Notation here follows the convention in [35]. In this article, suffix i, j = 1,2,3 denotes
the i-th or j-th field, and &, p, g describes the wave number. Suffix , p, g is often
omitted unless confusion is caused. When a projection operator 2 is introduced to
divide the nonlinear interactions into the drag and others, Egs.(15)-(17) may be written

as




0 fi/0t + Lofi — BNUS) = (L — BN S) (15"

(I is a unit operator) with

Y1, 11k
PN = Y210 & (16"
Y3, 13,k
and
S =(1;— PINJS) (17"

From the definition of 2, Z(1; — 2 )A ;= 0 and 2,2, = 7. (See also appendix.)
The operator £, £y = £g 1Sy — B f), is the renormalized operator, which

includes the effective transfer rates expressed as

Yo k=~ 22 My koM 1 el Fp - (18)

The random self-noise is assumed to have a much shorter correlation time, and is

approximated to be given by the Gaussian white noise term z/(t) as

gi, ko W(I)g Mi, kpgV ekpq Cl, pti, q: (19)

In these expressions, summation A indicates the constraint kK + p + g = 0. The explicit

form of the nonlinear interaction matrix is given as, e.g.,
M ipg =P %q)- b)\pf —q3)k1? (20-1)

or




M3, 3) kpg=(P % q)" b, (20-2)

and the propagator satisfies the relation

(0/01 + (k) + c.p.)Bppq = 1. (21)

where c.p. indicates the counter part, i.e., £(p) + £(g) [35]. The term T , in a random
noise represents the j-th field of g-component in the nonlinear term A/; therefore their
correlation functions satisfy the average relations, which we call an Ansatz of

equivalence in correlation in the following, as

(Gij) = (A1) 22)

and

(Ci, ) q) * Bpg (23)

where the bracket ( ) indicates the statistical average.

It has been pointed out that the "realizability condition" (i.e., the second order
moments (/) should be positive definite) might not be satisfied in this form of
Langevin equation [25]. A similar but alternative form of Langevin equation has been
proposed to satisfy the realizability for drift waves. As is explained in [28,35], this
problem rises from the wave propagation nature of the mode. In the present analysis,
the corresponding linear mode (interchange mode) is purely growing mode, and 6 kpg is
considered to be real. Owing to this basis, the form of Eq.(15) is employed after [35].

In introducing the nonlinear transfer rate, it is assumed that 1) the contribution

from the shorter wave-length components to the test mode plays the dominant role and

that 2) the time rates (y j)’ (yv, Yo Y p)’ which are nonlinear transfer rates in the k-space,

10



are expressed in terms of the diffusion coefficients (i, 1, x) asy, = kai, Yji=Hn eki,

andy, = k3. Explicit derivation of the renormalized coefficients (1, 1,, ) for the

case of CDIM turbulence is given in [32]. The formalism in a previous work of the
dressed-test mode is deduced from Eq.(15) by neglecting the noise term S.

This system has a strong instability source due to the presence of
inhomogeneities, and the product of pressure gradient and magnetic field

inhomogeneity,
Gy = Q' py, (24)

denotes the driving parameter. From the assumption of the time-scale separation, this
parameter is fixed in time in this article.

This system also describes the submarginal turbulence, where the enhanced
dissipation due to the nonlinear transfer rate can be an origin of the dissipative
instability [13, 15, 30]. Solving Eq.(15), we shall determine in this article the typical
nonlinear decorrelation rate of the turbulence and transfer rate in the fluctuation

spectrum, simultaneously.

3. Langevin Equation and Statistical Characteristics
3.1 Solution of Langevin Equation

In order to solve the Langevin equation (15), an ansatz of large number of
freedom in random modes, N, is introduced. The renormalized term y j in £ is the
statistical sum of contributions from N components, so that its relative variation in time
becomes O(N~ 7/2) times smaller in comparison with that of f,. Therefore, in solving
the time evolution of fluctuating f;, £ is approximated to be constant in time in the
limit of N — . Namely, another time scale separation ansatz is introduced in addition
to Eq.(5). With the help of this ansatz, Eq.(15) is solved by use of the Laplace

transformation. The general solution is formally given as

11




7 = ; exp (=N, 1) f(0) + L : exp [— £t —)|8(x) dx (25)

where — A, (in = 1,2,3 and A; < A, < A3) represents the eigenvalue of the non-normal
matrix £, which gives the homogeneous solution of Eq.(15) if £ is constant. The

eigenvalue is determined by:
Det(M + £)=0 (26)

and / is a unit tensor. The eigenvalue — A ; corresponds to a branch of CDIM which
drives the strong turbulence, and others (— A5, — A 3) denote highly-stable branches.

Since Eq.(26) is a third order equation of A, one can also write as
Det(M + £) = (M + M)A + M)A + A3). (27)

This equation (27) provides a relation between A j, y j and global parameters such as
Gy.
The matrix exp [- £(t — )] in Eq.(25) is explicitly expressed in terms of A;, A,

and A3 as
(expl~ £t~ T)]); = Ayexp(~ Ayt =) + APexp(~ At - ©) + APdexp(- A5t - 1) (28)

where the elements of matrix A are given as

—iky(vp—ng) ik, Q- hy)

(re=Ap)vp 1)

1 ki Kkt
A= Ekd (M—vp)  —EkkyQ
A2=ApA3-2p) | —ikyE(y, - I P Y
Ut Ive e iy
R s e Gk (e~ M)
o k3 kg (M-vp)

12




Elements AEJZ:-?] are also obtained in a similar way,

(29)

A2 =
(Ao- ?~3)(?~2 A
—iky(yp—hy) —iky Qe —1)
(Ye_?\'Z)(Yp"_)"Z) kg > k2
1
— ik &y, —ho) Ef (ha—vp)  —BRik)Q (30)
Vet 2o B BT Ve K
. kyikypo Gok (v, - 1)
ipok (Y. — M £
oblre=ha) T S gy
and
AG) = 1 X
A3-Ap)A3-2p)
—iky(yp—h3) — ik, Q. —h3)
\PR®) \ PR ) P! 2
1 1 )
i, —3) g (M3-vp)  —BRikyQ (31
AP k2 ()"3 Ye) ki_
, kiikyPo Gokg (Ye—A3)
ipoky(Ye—N3) =
e & )

The matrices A, A(?) and A(®) have properties as: AA = A, APIA(2) = A2),

AAB) = AB) 442 = AD4 =9, AAC) = AG)A =0 and

AR A3 — A3)4(2) — .

Substitution of §; ; (Eq.(19)) into Eq.(25) gives us the solution of /{z).

3.2 Statistical Quantities

3.2.1 Statistical Average

13




According to the standard procedure of statistical physics, the square average is
calculated. We are interested in the long-time-averaged values. For this purpose, the

initial condition in Eq.(25) is unimportant and is neglected. We write

700 = [ av[ av{emt- cr—oiS)ent- -8 G

where the relation Eq.(19) for § and Eq.(28) should be substituted. Since § is

assumed to be Gaussian white noise, the relation
(§{0)8 f) o Bz ) (33)

holds, and we have

(1) = Z-A0AT +5LAPoa®T* 4 L ADoaT*

2
2 3
1 (2)T* (2) 4 T* 1 (3)T* (3) 4 T*
+ —7\1 . M(AGA + APcATY) + g l3(AO‘A + ABPoATY)
+ L (APoADT* 1 AGIGAT?) (34)
2+ A3

where elements of tensor o is expressed as

The term for the least stable branch is taken as the dominant contribution. In
other words, in obtaining the long time averaged value, rapidly-decaying terms (the
second and third terms in the right hand side of Eq.(28)) are neglected without loosing

the generality. We have the relation

(if) = —AoAT*

27&1; Ap(SyS (36)
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Equation (36) relates the fluctuation level, the correlation rate and random noise.

It is noted that this system includes the interference among the field components
and among the branches. If one explicitly writes the first component of the branch of
A
ik, ik, Q

(YE—KI) S2+ 33 (37)

« 8+
fre S =

one sees that not only the random force in the vorticity equation, $;, but also those in
the current and pressure equations, S, and $3, excite the fluctuation in the velocity. The
partition among the branches of A;, A, and A 3 is governed by the ratio 1/A;, 1/h,, and
1/ 3 as is shown in Eq.(33). The rate of interference is also calculated for the branches

of A, and A3 as

Do+ udl S %y S 38-1

fl( 1 (Ye - )\‘2) 2 (.Y _ 7\'2) 3> ( )
. ik, Q

OPY ik, ortill  382)

respectively. The superscripts (2) and (3) denote the second and third branches,

respectively.

3.2.2 Ansatz of Equivalence of Correlation and Extended Fluctuation
Dissipation Theorem

Equation (36) describes the relation between the decorrelation rate and the
random noise. This relation, Eq.(36), is rewritten as

A= 2(J§f1) 2  A1(SeS )ALy (39)

15




and shows that the decorrelation rate is expressed in terms of the random noise.
Therefore, this relation is considered as an extension of the ﬂuctuation—dissipation
theorem of the second kind.

The relation with FD theorem may be seen by considering the limit of thermal
equilibrium. The plasma velocity of the system of consideration is given by the E x B
velocity, and is in proportion to f;. The auto-correlation (/1, &/, &) is proportional to the
kinetic energy. When the system is in a thermal equilibrium and the equi-partition law
holds, the average kinetic energy is givenby kg7, ie., p( Sieh k) = kgT holds (p

being the proportionality constant). Substituting this relation into Eq.(39) one sees

2 Ai(SySj)Ay;  (thermal fluctuation) (40)

Equation (36") describes the relation between the decorrelation rate, noise and
temperature. In this article, the equipartition law is not assumed, but the properties in
the nonequilibrium turbulence are investigated.

Terms o = (S',-S‘ j) could be given in terms of correlation functions (€;)- The

average (¢; €, qGi, p'SJ, g) @+ a=k p'+q' =k)is decomposed as

(Ci,pzf.qci.p’tflq’) =(§fp> JQCJ q)ﬁpp qq' t lPCJ pXCt ch q) rq qP

(41)
based on the random coupling approximation. This yields relations
(887 = 2; M7 kpqekpq@ipxciq): (42-1)
($182) = 2; M), ipgM2, kpgProg(C3 p)C 1,452,9) (42-2)
(8153 = 2; M, kpgMs3, kpqekpq@?-pxcl .qciq)’ (42-3)

16




(5252) = ; M3, kpgMo2, kpqekpq{@ipxt;%.q) +(§1 -pc2.p)(c1 .qclq)} 1 (42-9)

(8553) = ; M_%, kpqekpq{(cipxti«fi) +<C1-pt3,p>@1,q§3,q‘)} (42-5)

and

(5253) = ; M3, kpgM3, kpqekpq{@ipXCZ.qciq) +(C .pcipxcl.qtm)}' (42-6)

We here employ the Ansatz of equivalence of correlation Eq.(22), i. e.,
(€L j) = foJ) Substituting the expression Eq.(42) into Eq.(36), a closed set of
cquations for A; and (/) is obtained. The correlation (§;5 ) in (1/2\))AcAT™ of
Eq.(36) is expressed in terms of ( f j}) Equations(26), (28) and (36) constitute the
closed set of equations that determines the nonlinear decorrelation rate, A, the
nonlinear transfer rate y ; and correlation functions ( f,jj) simultaneously. This process
corresponds to the extended Fluctuation dissipation theorem.

We would like to note the partition to the highly-damped branches of A, and A ;.
In principle these branches are also excited to the finite levels. This analysis is also
done by forming the closed set of equations, i.c., Eq.(22) (CZ ;) = (/if;) [Ansatz of
equivalence of correlation], Eq.(42) [decomposition] and Eq.(34). Expression
becomes much more tedious, but the logic of the analysis is unaltered. The following
analysis is performed by neglecting the excitation of the highly-damped branches in

order to keep a transparency of the argument.

3.2.3 Auto-Correlation Functions

For the analytic insight of the problem, we employ an approximation that the

cross-correlations (fo;) (i = j) are smaller than the auto-correlations (f/). By this

ordering the equation Eq.(36) is decomposed as

17




1,(k) ; l*ﬁ;’! ApAs ApsAS (2M LipgM 1 kpgBrpgl 1(P)1(q)
*
LK) | = 55— AzjA7; |A3,] ApsAL, M3 kM2 kpeBipgl 1(P)2(9)
* *
I5(k) AzA13A5A5; |A] M 3 106M 3 kpgBkpgl 1(P) 5(q)
(43)
and

Jy5(k) . ApA ApAn AjAS | (2M LipgM 1,kpgOkpal 1PV 1(9)
* 3 *

J15k) | = 2N, ApAgs A12A£3 Aj3A33 ; M3 kpqM 2,kpgB kpgl 1(P)2(q)
* *

J25k) Az1A13AxA)3A53A 33 M 3 kpgM 3, kpgO pg! 1(P)I5(q)

*
; AjAp AAp ApAs,\  [2M LipgM2,kpgBipgl 1(PM 1(q)
* * £ 3
7w Ap1Ax3 A 1A33 A 5A33 ; 2M | koM 3 1pqOkpgl 1PV 1 (9)
* * *
ApjA23A21A33 AxrAs;s M3 kpgM 3, kpgBipgl 1PV 25(q)

(44)
where simplified notations
I{k)=(f; &/; &) (45-1)
Jifk) = (£, x/; 1) (i=)) (45-2)

are used. In Eq.(44), quadratic terms of cross-correlations JijJ j are neglected. The
equations for auto-correlation functions are closed within themselves, and the cross-
correlation functions are given by the auto-correlation and cross-correlation functions.
The latter would be an extended FD theorem of the first kind, that is the transport
quantity (cross-correlation) is expressed in terms of the auto-correlation functions.

The relation Eq.(36) is rewritten in terms of the auto-correlation functions, in a

symbolic form, as

18




1,(k) I)(q)
LK) | = ,%}; 1,(k) = | L{q) (46)
15{k) I5q)

where the matrix % is expressed in terms of the matrix A and other coupling

coefficients as
2 *

Besides the trivial solution, i.e., (£f}) = 0, the consistent solution is obtained
from Eq.(46). For an analytic estimate, let us assume that the spectrum average is a

smooth function, and the ratio between two moments is given by a coefficient C as

(1+ 61'1)2 M, 1pgM j, kpgBrpgl (P {9)

; My, kqu;. kqu;ka 1P k)

e 48)

The denominator of Eq.(48) is rewritten using the relation Eq.(18) for y,, and we have

(1 + 817)2% My, koM ipDipel 1PV () = Coro] (k). (49)

With this analytic estimate, Eq.(46) is simplified as

1,(k) 1;(k)

A

LK) | = f]- 2| LK) (50)
I5{k) I5{k)

with an approximated matrix %, i.e.,

ﬁ *
Rmn = CoVvAmnAnm: GD

19




In an explicit form, one has

* [3%)
LK\ - 5 |AT;| A12AS; ApsAS; \( 1K)
*® *
Ly{k) =—2iv AyAL |A5,] Ax3A% | LK) (52)
I5{k) T\ 4347545455 |42 N0
31413432423 |A33

Equation (50) (or (52)) is a simplified form of the extended fluctuation-
dissipation theorem. The nontrivial solution exists, if A satisfies the following secular

equation
det [N I -R]|=0. (33)
Equation (53) together with Eq.(26) determines the decorrelation rate A; and

transfer rates y ; and closes the analysis. For instance, once the eigenvalue A; is
g y g 1

expressed in terms of y ; by use of Eq.(53), the substitution of the relation A j[y j] into

Eq.(26) provides the solution of y ; together with A;. If v is obtained, the average

fluctuation amplitude {f(z)f{z)) is obtained by solving the integral equation (the first

component of Eq.(18))

Yv=- § M, ipgM], qkpB;kA Jﬂclz.pl G4

as has been performed in [36].
The correlation function (f{#)f{t + ©)) is given, using the decorrelation rate A,

as
(DA + ) = (fifdexp (- Ml <)) - (55)
Namely, the power spectrum I(w) is given by the Lorentzian distribution
(o) o A (w2 + 227, (56)
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The test-particle diffusion coefficient is also directly calculated.

3.2.4 Cross-Correlation and Fluxes
Cross-correlation function is estimated from Eq.(44). From the same spirit of
introducing the spectrum average C, for the auto-correlation function, let us introduce a

parameter C,,, . for the averages of cross-correlations as,

; 2M ) 1M 2, kpgPipgl 1 (PV12(9) = Crrosstol j2K) » (57-1)
zq: 2M ) ipgM 3,kpq9kqu 1PV 149) = Corogstv] 13K) » (57-2)
; MZ,kquikpqekqu 1 (p)‘]23(q) = Ceross¥/. 23(k) . (57-3)

Namely, the approximate relation holds for the second term in the right hand side of

Eq.(44) as

* *

; A1jAz A1 A3 AppAsy \ [ 2M) iMoo Bipgl 1PV 14)
* * *k

2N, AjjAz3 A1 Az3A104A33 2‘ 2M | kpgM 3 kB rpgl 1PV 1 19)
* * *

AzjA23Az1A33 AAs3 M3 3o gM 3 5P ipgd 1PV 23(9)

(58-1)
=gty | 7, (k)
) Jo3k)

with

k3 * E3
AjjAn AjjA3pApAs
) * *
M.=| A;1A23A11A33 412453 |- (58-2)
* * E 3
ApjAr3A1A33A0A 33
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The first term in the right hand side of Eq.(44) is also approximated, as is done for

Eq.(46), as

E 3 * *
» A A ApAn ApAsn | [ 2M) 10aM ) Bl 1(P)(9)
* X *
Py AU 4100 £1505 M kpqM2,kpqBrpgl 1(P)2(9)
E 3 *
A1A13A2A23A23433 M 3 10aM 3 1548 1pq! 1(P)5(9)

1,(k)
g‘;f" M, | Lik) (59-1)
1K)

with

£ 3 * £
AjjA AppAX Al3A s
* *® *
M,=| A;;A13A5A53A 3433 |- (59-2)
* b3 £
Ap1A13AxA3A)3A33

Substituting Eqs.(58) and (59) into Eq.(44), one obtains the simplified (reduced)

relation

J12k)

7o) | = S0t [~ Cerossty g [ gy 12 . (60)
24, 2\ a

To4k) I5(k)

With the help of this analytic decomposition between the auto- and cross-correlation
functions, the cross-correlation function is explicitly expressed. Cross-correlation
function is directly related to the global fluxes in the direction of the gradient. The
result corresponds to FD-theorem of the first kind in turbulent plasmas.

The cross-correlation function J 3 is related to the global heat flux in the £-

direction (across the magnetic surface)

x= 2 (- ikyop), (61)
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The (1,3) component of Eq.(36) is transformed into the second component of Eq.(60),

and gives a relation for J 3 as
ImJ )3 =~ Im{A ;A5 0,Cor T, (62)
(In deriving this simple form, the matrix [/ — (C_,,.5Y,/2h;) M, is approximated as a

unit tensor based on an assumption of C,, ., < C(. and a dominant term is retained.)

This result is used to calculate the heat flux, providing an estimate
90,x= ; (~ ikyop), = Ek: Corp Tk 2L(K)- po) 63)
If one introduces a turbulence-driven thermal diffusivity, x4, in a form of
40, x =~ Yuurb P0 » (64)

Xmrb 18 evaluated by the form

Co
= I(k) . 65
Aturb ; kjki j( ) (65)

3.2.5 Spectrum

Spectral function is solved, once the nonlinear transfer rate y; is given by
solving Egs.(26) and (53). The average fluctuation amplitude I; = (f{(z) /(1)) is obtained
by solving the integral equation Eq.(54) as has been performed in [36].

In the case that y,, shows only a weak dependence on &, and the spectrum of the

kinetic energy of fluctuations,
E;(k) = k(K3 £y 11.00: (66)
is found to be deduced to

23




N ALL )
4. Application to CDIM (Current Diffusive Ballooning Mode)

4.1 Nonlinear Dispersion and Least Stable Branch

Explicit forms of the renormalized operator £ has been derived and the relation
Eq.(26) has been solved in an analytic limit for CDIM branch [37].

Let us examine the effect of self-noise, combining Eq.(26) and Eq.(53). The

simplest case below is taken,
Yv=YNe= Yp- (68)

This approximation implies that the viscosity of perpendicular ion momentum, electron
viscosity and thermal diffusivity are equal in the strong turbulent limit. A detailed study
of Eq.(26) has shown that this approximation is valid. An additional approximation,
i.e., the small A; limit, is used in this article for the analytic insight of the problem.

Then Eq. (26) yields the relations

if A; ~ 0 is substituted. These simplified forms, Eqs.(68) and (69) are used in

evaluating R ,,,,,, which gives an estimate of Eq.(53) as

g == (70)

On the other hand, the solution of Eq.(26) near A ; ~ 0 has been obtained in the

geometry of inhomogeneous magnetic field associated with the magnetic shear [37].
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Detailed analysis is given in [37]. The deviation of A; is obtained in terms of the eddy

viscosity damping rate as
Ay =Ly, —v) (71)
1= Yy —Y=*
where rate y« was already calculated from the relation Det £ = 0 for the least stable
mode in the absence of noise effect. y=x is explicitly given in terms of the gradient
parameter as

yx = G} (72)

This rate y « is related with the effective viscosity on the microscale fluctuation, p, *,

and the representative mode number, &k x, as
Y = Byuks . (73)
The effective viscosity and the representative mode number have been estimated as
m=Gg2s 271, (74)
and
ke = E125G5 12 . (75)
4.2 Self-consistent Solution of Turbulence
Equations (26) and (53) are reduced to the approximate equations, Eqs.(71) and

(70), respectively. Equations (70) and (71) form a closed set of equations for

determining the decorrelation rate A; and the eddy damping rate v,, in inhomogeneous
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plasma. Figure 1 illustrates schematic relation of Eqs.(70) and (71). The self-
consistent solutions of the decorrelation rate and the eddy-damping rate (nonlinear

transfer rate) are obtained in terms of the global parameter G as

__ % 1/2
b = 57 G (76)
and
Vo=~ Gl2. )
TI-Cp °

In this equation, the coefficient C should satisfy the constraint
0<Cp<1 (78)

in order to satisfy the condition that the decorrelation time should be positive and finite.

The solution of Eq.(53) gives the decorrelation rate A in terms of the random
noise. Therefore, it could be interpreted as, in general, the FD-theorem of the second
kind for turbulent plasma. The result Eq.(76) for the case of CDIM turbulence gives
the decorrelation rate in terms of the global parameters, not of the temperature. The
FD-theorem of the second kind in the turbulent plasma is now explicitly given as a
formula that relates the decorrelation rate and the 'global' parameter G, that specifies
the plasma inhomogeneity.

Spectral function has been solved, once the nonlinear transfer rates are given.
As was the case of [36], Eq.(77) shows only a weak dependence on k. Following the

same procedure in [36], the spectrum of the kinetic energy of fluctuations,

E(k) = k (k3. f; & f”c), is deduced as

Efk) = 725 okt (79)
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for k| > k«. (Detail of derivation for given v,, is described in [36].) This is a partition
law in the high-mode number regime (k| > k=) of the turbulent systems, and is not the
equi-partition law.

It may be worth noting the validity of the approximation of Eq.(68). If A; is
small but finite, Eq.(68) is modified as A, =y, and A3 =~ 2y, — A;. If one substitutes

Eq.(76) into these relations, one has

1 12
~ @ :
7‘2‘(1_00) e (80-1)
(4-Co) 2
A 3= —2( 77 CO) GO . (80-2)

The order relation among three eigenvalues, A; < A, < A3, is not violated so long as
Eq.(78) is satisfied. If C,becomes larger, the ratio approachesto 7 - 2 : 3, and a
considerable amount of fluctuation is excited in the branches with A, and A3. Under
such a circumstance, quantitative estimate in this article, which is obtained by keeping
only the first branch, could be modified. Nevertheless, the qualitative conclusion is not

altered.

5. Fokker-Planck Equation and Probability Distribution Function

5.1 Formulation of the Fokker-Planck Equation

Probability distribution function is discussed starting from the Langevin

Equation. In order to illustrate the white noise in the random source term of the

Langevin equation, § is rewritten as

S v =2At)g; & (81)

and
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8i k= ; Mi; kpg¥/ ekpq t_»_l, pCi, q (82)
With this notation, the Langevin equation is written as

aflot+ Lf = wlt)g (83)

From this dynamical equation, the Liouville equation for the probability

distribution function P(/; j, #) is derived. Noting the assumption of the white noise of

wAt), ((t)aAt')) = &(t — t'), the Liouville equation is deduced to a form of the Fokker-
Planck equation. If the independence of the noise source holds, i.e.,

(8i, k8, k') = (| 82k )d; Ok - (like the case of neutral fluids [17, 18]), one may have an

equation [1, 17, 38]

ap_31.0 gu o i
5P = 2 (4 + $ou g 8P (84)

ik

Based on the assumption of statistics of {T; ), the independence of the noise

terms between different k-components holds, i.e., (3:‘. K8 k’) o ék, - However, the

source terms for different fields, could be statistically dependent with each other:

Namely, (gi’ K8, k) does not necessarily vanish even if i # j. The decomposition of the

noise source term is necessary before the Fokker-Planck equation is derived. In

addition, g; ; could be complex, which deserves consideration.

With respect to the interpretation of the random noise, which gives rise to the

diffusion term in Fokker-Planck equation, we follow the model by Stratonovich [39].

62
0
0. 8ik 90 8ik P, in this equation (84) [38, 40]. The Stratonovich definition is
Oy 78 Ay °F

Ito's interpretation of the random noise [40] leads to the term g%y P, instead of

employed here after [41].
The dynamical equation describes the evolution of three fields. As a

consequence, three branches of the mode (for given k) are included in this system.

28




Nevertheless, as is shown in the previous section, one branch (current diffusive
interchange mode branch) could be strongly excited and other two branches remain
highly damped. The nonlinear excitation and statistical nature of this branch are
discussed in preceding chapters. Only the pole of (s + A;)~ Tis kept. The same
approximaﬁon is made. Then, the Langevin equation is deduced to that of one field,

e.g., f1=9¢.

Lo+hg=3 (85)
with the source of
Sk = w(t)gk (86)

In this equation, the magnitude of the noise source is given as in the first row of

Eq.(29), ie.,
3
8k= %eL§I A8, k) , &7

or, in an explicit form, as

gk=9‘te{( (Ye=A) vp—M) g;_k}+fﬁe{( iky(vp =) k}

82,
OELY) (EEU8) 51 RS (FE9) 54
ik QY. -\
y (Ye—2)) 85k (88)
o RY) (F ) a1

By retaining the real part in Eq.(87), the possible problem of complex quantity of g;

is eliminated, and the diffusion process is assured in the Fokker-Planck equation. In

this one-branch approximation, the coefficient g is statistically independent for

different k-component, (g;8x) = { 8% )dx x- Then the Liouville equation is reduced to

a Fokker-Planck Equation as
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dp_B 0 Lo dl
E-EP oy ; a¢k (}"l,k‘bk + 23]{ a¢k gk)P s (89)

5.2 Steady State Probability Distribution Function
The distribution function provides the statistical average. The average
amplitude of fluctuation component ¢y is derived from the Fokker-Planck equation, and

the result is compared to the solution of the Langevin equation.

5.2.1 Probability Function

Steady state probability function F,, satisfies the Fokker-Planck equation in a

stationary limit,

R OO I, S
2 (Mt + J8k 56 8 )Peg = 0 (90)

The solution of this equation is obtained by the help of the ansatz of large number of

freedom.

A possible form of the equilibrium distribution function satisfies the detailed

balance,

(2%,::% + 8 a_%; gk)Peq -0 (for all k) o1)

The constant of integral (right hand side) is chosen to be zero, based on the boundary

condition that the relation PPeq = 0P,/ 04y = O holds as ¢ — . (The condition that
FPg, vanishes much faster than ¢ Tasgp—> wisa necessary condition for the

requirement that an integral of F,,, could be normalized to unity.)

The detailed-balance equation suggests the form of equilibrium distribution

function as
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3 L
Peg () = PLT -exp {* [ 20 s d¢k} ©2)

where P is an normalization constant. This equation is an exact solution if g is
independent of ¢y if £ = k. Although ¢, influences the value of g, the influence from

one particular ¢ on g is weak. This is because many numbers of fluctuating

components statistically contribute to g through y,, v ;and v, so that the most
sensitive dependence of ¢ on P, appears through the term of

*
exp {— ] 2Ng 10k 8%° d¢k}. Based on this fact, an approximate solution of the

equilibrium distribution function is given as Eq.(92).
5.2.2 Characteristics and Power Law

Several characteristic features are drawn from the equilibrium distribution

function of probability, Eq.(92).

The Average

An equilibrium distribution function provides the statistical average. The
statistical average of the amplitude ¢y, (¢y),, = V (¢,§) is given as an example. An

weighted-integral

(97) = [ do Pug? ©3)

yields the average (¢f>, where ¢ represents a set of {¢y} for all the k-th component and
the notation d¢ = H dgy is used. Multiplying ¢y to the relation Eq.(91) and
k

integrating the second term by part, one has

f d¢ Peqd?l% = ] d¢ ngeq %% (%Iblk) : O
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The ansatz of the large degree of freedom is used to approximate g and A; 4 to be

weak functions of ¢y, and the derivative in the right hand side of Eq.(94) is evaluated

by

gkq)k) Sk (95)

Oy (M,k - Ak

Substituting this evaluation into the right hand side of Eq.(94), one obtains the relation

between two moments as

[ a4z f L,ff (96)

In other words, the relation

(0f) = < sz k> 97)

is obtained. This relation is considered as the extended FD Theorem of the second

kind, and is essentially identical to Eq.(36). The Ansatz of equivalence of correlation,

(€C;) = (/if;) of Eq.(22), should be imposed to estimate (g¢) in Eq.(92). This is left

for future study.

The Peak

The peak of the equilibrium probability distribution is given by the condition

3Py =0. (98)

Noting the detailed balance relation, Eq.(91), i.e.,

d - 0
ol ea =~ Feq 8k 2‘(27\1,k¢k i irre Sk): 99)
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the peak of the distribution function is realized for ¢y = ¢y, , which satisfies the

condition

Mk + —o58f=0 (at 4 = by, p)- (100)
P

(The suffix p stands for 'peak’, not the wave number here.)
In the vicinity of ¢; = ¢y, ,, or Eq.(100), the distribution function is
approximated by use of Taylor expansion with respect to (¢k -y p). The distribution

function is approximated as the Gaussian distribution in the vicinity of {¢; p} as

P (k) = Py exp {— 5 25 cen(oe— b p)ow — e, p)} (101)

where Py = Pgy 1, 8k p = 81{al ¢k = ¢, p) and iy is a coefficient given by
Crr = [0%(28% 2hp 10 + 8% 108K/ a¢k)/a¢ka¢k’]¢”'

In the previous analysis, the condition of the nonlinear marginal stability
Ay =0 (102)

was used in an estimate of the level of the self-sustained turbulence [15, 32]. If the

random source term is independent of the fluctuation field (e.g., the case of an external
random force), i.e., the relation 6%)28% = 0 holds. Then the condition, A; = 0,
2 .

provides the exact description for the peak of the equilibrium probability distribution

function.

The Width
«
The denominator gi? in the integrand in the term exp {— f 2N kb g2 dq)k}

dictates the width of the distribution function. Near the peak position, the width is

determined by ¢}, ;- (Eq.(101)). From the relation Eq.(97), the width of the distribution
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is given comparable to the average, i.e., <(¢k —/ ((i)f) )2> ~ (d),f) Namely, the variance

is comparable to the average value itself.

The Tail Component

The fact that the random noise level, g, depends on the turbulence level leads
to a possibility of power-law in the tail of probability distribution. This situation is
different from the case of thermal fluctuation, where the random noise level is
ultimately determined by the temperature.

Let us consider the scaling properties of variables ¢, A; ; and g;. Introducing

a scaling parameter ¢ and changing the variable as

() = {0 ¥ 0} » (110)

where {¢. ,} denotes an initial position, and {¢y} is varied only in the magnitude, by a
factor ¢, and relative ratio between components ¢,/¢; are fixed. We examine the

scaling property. In a large ¢ limit, i.e., the limit of strong nonlinearify, linear terms

become smaller than nonlinear terms in £;;, and the matrix element £;j scales linearly

1;]'3
with the nonlinear term v; as is shown in Eq.(17). Under this circumstance, the relation
Eq.(21) yields the dependence £;; 10, ~ O(1), i.e., Y8ypq ~ O1) & £°. Equation

(18) is interpreted as y; < 6 kpqﬁz . From these relations, one obtains scaling relations

y o« ¢/ (104-1)

B oc 1 (104-2)
and

g2 = 0(¢*8) o 07 . (104-3)
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In addition to it, Eq. (27) gives the relation A;/y; . Combining it with Eq.(104-1),

one obtains
Ao, (104-4)
From these scaling relations, one has a dependence in an asymptotic limit as

gy 82 Ay < 01l

and writes as

; Ay bxc 82 Ay ~m ™1 av (105)

where m,. is introduced as a proportionality constant. The integral

#
; f 2\ yb 82 ddy, has a logarithmic component and is expressed as
&
; f 2N; 1 872 dy ~ m, In(l). Therefore, a power law dependence in the

equilibrium distribution function is found in a large amplitude limit as

: (o3 AT
PI L g fexp {— [ sz d¢k} o g2 (%) +2) (106)

in which the contribution of (¢/dy, 0)_3/ 2 comes from the denominator gi ! in Pogl{4))-
Form these considerations, the equilibrium distribution function F,, is
approximated as a Gaussian distribution function near the peak, and has a finite tail
which is given by a power law distribution. A schematic drawing of the distribution
function is illustrated in the Fig. 2. This power law dependence is caused from the

nature that the diffusion coefficient of the probabilistic function is determined by the

turbulence level.
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5.2.3 Accessibility
Accessibility to the equilibrium distribution function, F,,, is shown by

constructing a Lyapunov function.

#(1) = f do P(¢; 1) "(P((Z(qf))) (107)

where ¢ represents a set of {¢y} for all the k-th components. Taking the time

derivative,
foro ) afr)of 5
Wl s rane o o) oo

and by performing a partial integration, one has

el [ [; (e + 58k 54, g"‘P){ B P"(P(t(d:)))}} o

The terms in the right hand side of Eq.(109) are calculated, noting identities of Eq.(91)
. 9 d
and the relation P) = g¢P n(g,P). We have
8k Oy (8xP) g% 90y n(gyP)

po- o] o

The integrand is positive or zero, and an inequality

4 4

(1)< (111)

holds. The condition ?‘% (t) = O s satisfied if the probability distribution function is

equal to the equilibrium distribution function P(¢, 1) = P,(¢) -
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This result shows that the quantity #(¢) plays the role of a Lyapunov function
for the evolution of probability distribution function. The fact that the construction of
the Lyapunov function is possible means that one of steady state distributions is
guaranteed in a time-asymptotic behaviour.

It is not self-evident whether the equilibrium solution is unique or not: Instead,
it is highly plausible that there exist multiple solutions that satisfy the steady state
condition. This is because that the turbulence-turbulence transition between two
nonlinearly-marginal branches has been predicted in the theory of self-sustained

turbulence [42].

6. Summary and Discussion

In summary, a new method is proposed to study the nonlinear-nonequilibrium
physics for the system with strong (nonlinear-) instability and turbulence. This method
consists of (i) derivation of nonlinear Langevin equation by use of renormalization and
RCM for the nonlinearity, (ii) homogeneous solution, which we call nonlinear
dispersion relation, and the general solution with random self-noise, (iii) the relation
between the correlation functions, random noise and decorrelation rate Eq.(36) based
upon the statistical average, and (iv) derivation of consistent solution. The quantities
such as turbulence level, decorrelation rate, auto- and cross-correlations are explicitly
given as functions of the parameter that characterize the nonequilibrium property. The
step (iii) is an extension of the FD-theorem to far nonequilibrium systems. In this
theoretical framework, the decorrelation rate of turbulence A; and eddy-viscosity
damping rate y,, are different. The analytic forms are derived, at the sacrifice of
accuracy in numerical factor. Quantitative prediction requires numerical calculation of
Eq.(36).

An alternative formulation is presented by deriving an Fokker-Planck equation
for the probability distribution function. By use of the one-branch approximation, the
noise term is decomposed, and the Liouville equation is approximated to a form of

Fokker-Planck equation. The 'drag' and 'diffusion’ coefficients in the Fokker-Planck
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equation are modelled from the renormalization of the turbulent effects. On the basis of
this equation, equilibrium distribution function of turbulence level is derived. The
distribution function is approximated as the Gaussian distribution in the vicinity of its
peak. The width of the distribution function is in the same order as the mean value
itself. The equilibrium distribution function is found to be associated with a small but
finite tail component, and has a power law distribution in its large amplitude limit. This
power law dependence is caused from the fact that the random noise is the self-noise:
namely, the enhancement of the fluctuation level simultaneously increases the noise
pumping, establishing a self-sustained tail distribution. It is also noted that the
Lyapunov function is constructed for the strongly turbulent plasma. The time
derivative of this functional is shown to be negative definite, which indicates that an
approach to a certain equilibrium distribution is expected.

Let us discuss the issue of irreversibility in our formulation. In forming the
Langevin equation, the nonlinear terms are divided into two parts, say the coherent part
and incoherent part. The original nonlinear terms express essentially the time-reversible
processes. In our formulation, an ansatz is introduced for the incoherent part to be
Gaussian white noise, Eq.(19). This ansatz introduces the irreversibility in the model
of nonlinear terms. The system we are considering is irreversible, independence of the
time-reversal property of the nonlinear terms: Namely, (1) the molecular dissipation is
taken into account and (2) the global system is open and the flows exist for the fixed
gradients. Therefore, an apparent irreversibility in a model of nonlinear term is related
to the facts that the rate of dissipation is increased by the enhanced flux in space and
enhanced dissipation owing to the strong cascade to the much more microscopic scale.

The nonlinear transfer rate y = has been obtained in the previous work in the
absence of random noise [6, 14]; in this simple treatment, the turbulent decorrelation
rate could not be obtained and the statistical description was impossible. The present
analysis extends the previous framework for the self-sustained turbulence including the
random noise effect consistently. It confirms that the previous simple model has

provided a qualitatively appropriate estimate for the nonlinear transfer rates.
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Solutions with scaling relations like Eq.(104-1) and (104-2) in the strong
turbulence limit belong to a class with the diffusion which is linearly proportional to the
Kubo number K (K being a ratio of fluctuating E x B velocity to [wavelength divided
by correlation time]) [43], and are based on the Corrsin approximation [44]. It has
been pointed out in the two-dimensional turbulence that the Corrsin approximation is
not a good approximation in a large K limit, and that a linear dependence on K may not
hold but an weaker power dependence appears [43,45]. This deviation from linear
dependence is owing to the trapping of the orbit. In the present study, the fluctuations
have a character of quasi-two dimensional one. However, the presence of a magnetic
shear prohibits the trapping of fluid elements on a constant-potential surface. From this
reason, the linear dependence like Eq.(104-1) is employed here.

Theoretical result of the spectrum Eq.(79), E,(k ) « k7 seems to be in
agreement with the result of the direct numerical simulation of the problem [30],
although the resolution of the simulation might be limited. A detailed two-dimensional
numerical simulation of a different model equation of interchange mode turbulence, in
which the electron nonlinearity in the Ohm's law is not kept, has reported a spectrum of
the velocity ﬁqld as E }cf x k=23 [46]. The nonlinearlity in the Ohm's law, that causes
nonlinear instability, could play crucial role in determining the spectrum. Precise
comparison of the theory with direct numerical simulation of the current diffusive
interchange mode turbulence is left for future study. The comparison with numerical
simulation would also provide a test for the validity of the modelling of the incoherent
part of the nonlinear terms.

It should also be noticed that the presence of the tail in the distribution function
might give a restriction to the decomposition of the correlations like
(Ci, pGi gGi, pGig) = (Ci,pGi p)CigGig) + * - - We assume a statistical independence
between different p and p’ components, therefore the contribution of the small tail
influences little in the case of p = q. For the case of p = p’ = g = ¢, the correlation

function ({_',l pcl-’ qt»i, p’t-‘i, q') could be strongly influenced by a small but finite tail.

According to an ansatz of large degree of freedom, the modification of a particular pair
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correlation (2;,-, PG, 5,55, p) (only one combination among a series) is considered not to .
cause a considerable modification of the total average of (g7) . We in this article do not
go into the details of this problem, and leave it to future study.
In this article, statistical property in a steady state is discussed. Based on the
Fokker-Planck equation, a study on the dynamical property could be studied. By

multiplying ¢§ to Eq.(89) and integrating it, one has

& avaip = [ a7 5 (h e+ o il (112

After partial integration of the right hand side, the equation reduces to

gif d¢IkP=~2f d¢l1.kaP+fd¢Paih(Ikg£) (113)

(I = ($2)). This equation can be interpreted as the wave-kinetic equation for the

turbulent plasma as

5 (1) == 2(Mp i) + (a%{(fkgf» : ()

where gf and A 1, k are renormalized coefficients. If one assumes that gfand Az is a

slowly varying function of Iy, o(I3g£)/dly is approximated by g£ and the equation is
simplified as

(1) =~ 20014 X1D + (2P) (115)

The steady state solution of this equation agrees with Eq.(36). Analysis of the
dynamical evolution is left for the future study.

The present analysis is done by choosing CDIM as one typical example, and the
method itself is applied to much wider circumstances, e.g., the problems of various

instabilities, other external forces (like flow shear) or turbulence-turbulence transition.
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Appendix: On Separation of Effective Damping Term and Random Term

In formulating a Langevin equation, Eq.(14), the nonlinear term is separated
into the effective damping term y;; and the random noise term $;. The process of
separation and the relation with the method of dressed test mode are discussed by
introducing a model projection operator.

One k-Fourier component of Eq.(11) is chosen as

afifot + LOf, = a, = §Mkk-m_y (A1)

wki  ikyk? ik 12Q
9= ik okl 0 (A2)

where the suffix k is suppressed if not necessary. This component of fluctuation is
called the test mode, and the nonlinear term A/}, is divided into two components. The
projection operator 2 is introduced to filter, from 4/, the component which is
statistically dependent on j;. The projected term 24} is correlated with f£. In the eddy
damped quasi-normal representation, the proportionality is written as Z4/; ; =v; fir
The rest, (1 — 2)4/, is statistically independent of f, and is called an incoherent, or,
random source.

A model projection is considered as follows. The fundamental assumption in
the analysis is that the system has large number of positive Lyapunov exponents, and

the excited fluctuations are approximately statistically independent of each other. A

turbulent state is considered to be specified by a set of all components {f ¥}- Choose
one component f; i out of {f ;-}. Small but finite correlation between f, ; and { ;)
exists through the nonlinear interactions between J;, x and background fluctuations. The

projection operator 2 is introduced to extract this statistically-dependent nonlinear
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contribution. Nevertheless, the set {f; -} is considered to be very close to some set
{€;, x} which are statistically-independent of £ ;.

One set of turbulent state, { f; 1}, is chosen and the process, that the test mode
is taken away from this set, is considered. By the reduction of the test mode by the
amount of — 3 f;, the modification in the background fluctuations {— 8 f;~} appear. The

equation that  f; satisfies is

(or0t + O - a)o fir = : . M e JeO S (A3)

‘—_‘k"—

The term 4/ is the nonlinear term on f}», which does not include the interaction

between fi (i.e., A’ = N — My g _fir _iJi)- One solves Eq.(A3) as
3fr =0/t + 2O a7y Tar 5 A4
Jor =\0/0t + L5 - k k" — ki~ 10 & (Ad)

This is the induced variation of the background fluctuations associated with the change
of test mode. This influenced variation, "polarization", is not statistically independent

of fi. With this change, the nonlinear term on the test mode is coherently modified by

the amount of

Oy = ; My _pfilorot + 20— a0 Lot k, k- JeOS & (AS)

From this relation, we formally pose a model projection operator 24/, as

Py = {; My _pLilotor + 20— a0 aty, k'ﬁc'}fiz (A6)

In the previous theory, the method of dressed test mode, the statistically
independent part (2 — 2)A/; was not kept, but the role of the term 24(; was considered
important. In evaluating Eq.(A4), further assumption is made to close Eq.(A6). First,

it is considered that there are a large number of independent fluctuation components.
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This leads the nature that 4 is approximately equal to 4/. And then 4/’ in
(a/az + 0 _ N ’)E f x 1s assumed to be replaced by ZA(y, ;. This assumption needs a
further consideration which is left for our future study. With these procedures,

Eq.(A6) is given in a form of recurrent formula with respect to 24/ as

PNy = {; My, L0/t + 0y — 2 M o '}ﬁc - (A7)

This is approximated by the effective diffusion operator,
PA k=~ W kLS k (A8)

and the renormalization formula of p j, k Was given in [32]. In Eq.(14) in the text the

notation
PN k=Yikhi k (A9)

is used.

The projection of the rest, (7 — 2)4(, is statistically independent of f;. In the
zero-th order approximation, all the fluctuation components are considered to be almost
statistically independent. Therefore, an instantaneous amplitude of 4/ is close to that
of (2 — 2)A(;. The interaction time between two components to generate Ji is short. In
the first step, the short interaction time is modelled by the delta-function. These
considerations are the basis in modelling the statistically independent part (2 — 2)4'; by

the form of Eq.(19) in the text.
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Figure Captions

Fig.1 Relations between the decorrelation rate A ; and the viscous damping rate y,, are
given by Eq.(53) (solid line) and Eq.(26) (dashed line). (Y. Ay.) denotes the self

consistent solution, and y = is the estimate which neglected the noise effect [32].

Fig.2 Schematic drawing of the probability distribution function. (Abscissa X

denotes the fluctuation level.)
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