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Abstract

The resistive ballooning mode equations are cast in a new form appropri-
ate for evaluation near the plasma edge of toroidal (axisymmetric as well as
three-dimensional) configurations, where the resistive ballooning effects out-
weigh the diamagnetic effects. Explicit evaluation is carried out for cylindri-
cally symmetric plasmas and for a tokamak model with circular cross-sections.
Owing to the large electric resistivity of the regions considered, resistive bal-
looning modes with growth rates comparable to the characteristic growth rate
of ideal ballooning modes are possible. A general feature is that modes with
large growth rates are localized around the regions of bad curvature and be-
come less unstable with increasing shear, while those with smaller growth
rates are extended along the magnetic field lines and are insensitive to shear.
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I. INTRODUCTION

The purpose of the present paper is to formulate the general ballooning mode
equations [1, 2] for conditions valid near the edge of toroidal plasmas, i.e. of ax-
isymmetric tokamaks as well as stellarators. In the region of interest, the ratio a. of
the characteristic electron diamagnetic frequency to the characteristic growth rate
of resistive ballooning modes is small, and diamagnetic effects can be neglected [3].
The plasma beta, 3 = 8mp/B?, where p is the plasma pressure and B is the magni-
tude of the magnetic field, is also small, and the electric resistivity is so large that
there is a substantial reduction of the stabilizing effect caused by magnetic field
line-tying. Under this circumstances, resistive ballooning instabilities can grow on
time scales faster than those usually considered and comparable to those of ideal
ballooning modes. As far as tokamaks are concerned, and when diamagnetic effects
are neglected, it is thus possible to identify the modes which were described as a
new branch of resistive ballooning modes in Ref. [4], as modes contained in the usual
resistive ballooning equations.

In Sec. II, the resistive ballooning mode equations of Refs. [1, 2] are reformulated.
Reference units for time and length which are particularly appropriate to describe
the region considered are introduced. This is done in a similar way as in Refs. [4, 5];
the expressions introduced here are, however, valid for general configurations, and
not only within the framework of a tokamak model. In Sec. III, general properties
properties of the growth rate are derived. In Sec. IV, the results are applied to the
case of a cylindrically symmetric plasma. Though this paper is mainly concerned
with general configurations, the cylindrical case is particularly clear and illustrative,
and it shows general interesting features of the modes. The axisymmetric case is
studied in Sec. V with the help of a simple tokamak model, using both analytical
and numerical methods. The results are summarized in Sec. VI. A comprehensive
derivation of the tokamak model considered is given in Appendix A. The geometric
and physical plasma parameters assumed in the axisymmetric case are given in
Appendix B.

II. RESISTIVE BALLOONING EQUATIONS

Expressed in Gaussian units, the resistive ballooning mode equations given in
Ref. [1, 2], read
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with ¢ the velocity of light.

This representation is based on the coordinates v,9,¢ = ( — go¥, where v,9,(
are Hamada coordinates and qo = M/N(M, N integers) is the safety factor of an
arbitrary reference rational surface. In these coordinates, single-valued physical
quantities G satisfy the conditions G(J,¢)= G(d,p + 1)= G(V¥ + 1,90 — M/N)=
G(9 4+ N, ), and are thus periodic in ¢ with period N and in ¢ with period 1. The
coordinate y is defined in Fourier-transformed ( “ballooning”) space and corresponds
to the coordinate ¥ in physical space.

The equilibrium magnetic field B and the gradient along a field line can be then
expressed as B = y [V X Vv + (¢ — q) VvXV¥] and B-V = x[05 + (¢ — @) 0],
respectively, with ¢ = 7,b/ x. ® and y are the longitudinal and transverse fluxes,
respectively. Dots mean derivatives with respect to the volume. Derivation with
respect to ¥ corresponds to derivatives along the field line v = v, ¢ = po.

Further equilibrium quantities are the pressure p, the density p, the (small) re-
sistivity 77, the ratio of the specific heats 4y and the curvature & = [(B/B) - V]| B/B
with covariant components &, = & - VXV and k, = & - VoX V1, which is the
geodesic curvature. The vector C is defined as C = Vg — qyV.

In the ballooning equations, all equilibrium quantities are taken at v = v,
© = @o. The perturbations are described in Fourier space by the quatities F' (related
to the perturbed electric potential), and D, related to V - §, where § is the usual
displacement. The “mode number” a (which is not to be confused with a. defined
in the Introduction) describes the transverse variation of the perturbations with
respect to the magnetic field (a/27 is essentially the toroidal mode number nor.
in axial symmetry, but, in addition, it also describes the radial variation of the
perturbations). The growth rate v appears in the original perturbations as exp [iv1],
and is, in general, a complex quatity.

Length and time normalization units can be introduced by balancing the different
terms in these equations. For this purpose, it is convenient to introduce reference
quantities, e.g. a mean radius Ry and the corresponding parallel length Lo,
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the pressure scale length L,
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a characteristic reference curvature kychay. appropriated to the problem, e.g. the
Vo
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v
ture ,
" T < B >” 5)
har. = — :
Kchar Koy char. (82)1/2 lvv|2

The brackets denote mean values on the closed field line v = vy, ¢ = o : (B?) =
(B*)(vo,0) = § B2dd/ § d¥. In axisymmetric systems, these are equal to the sur-
face averages since all closed lines on a surface are equivalent. The expressions
introduced here are convenient when treating general configurations; they reduce to
the usual ones when a simple model, e.g. a large aspect-ratio tokamak with circular
cross-sections, is invoked.

By balancing the curvature and inertia terms in Eq. (1), one obtains a charac-
teristic growth rate vchar., which can be defined as
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where ¢; = |/p/p is the thermal velocity and (1/x?) <BQ/ |Vv|2> ~ C? has been used
to estimate C?. ~char. is obviously the characteristic growth rate of ideal ballooning
modes.

The field line-tying term in Eq. (1), when reduced by resistivity, tends toward
(4my/a*c*n) (d/dy) [(1/B*) dF/dy]. By choosing this term of the same order as the
inertia term, one obtains a characteristic number g,y for the transversal variation
of the perturbations,
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where (d/dy) has been estimated with a characteristic parallel length,
(d/dy)char.=(B + V)char./X(v = vo, = o) ~ B/(XLjjchar.) ~ 1. In an equilibrium
with cylindrical symmetry, Ljichar, is the parallel length corresponding to the imposed
periodicity length zp in the z-direction; in a tokamak, Ljchar. is usually chosen as
‘ Lo, though Lj;o/2m would probably be more appropriate. In a stellerator, Lj|char.
could be chosen as the width of a local well, or as the width of a less localized well.




The characteristic number acha,. also defines a characteristic scale length L,,
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where (1 = (ec/vrn(.,,,)(B?)I/2 and ps = ¢/, with m,, the average particle mass and
ps the gyroradius. Note that achar. Ly ~ (277)/q in a simple tokamak model with
circular cross-sections, local small radius r, R, = Ro and Ljjchar. = Ljjo-

It is convenient to introduce the scaled mode number £,

7= wl (Bt ) 5 (9)

and the scaled growth rate @,
Q = 'Y/')'char. 5 (10)

This scaled growth rate Q is not the same as the growth rate ) often used when
studying resistive modes since the latter is defined with respect to the characteristic
growth rate of resistive interchanges (see, for example, Ref. [1]).

Equations (1) and (2) can now be written as
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and (3) = 8mp/(B?) have been defined.
The condition

Lﬁchar./(R’iLP) o 1? (14)

which usually is very well satisfied near the edge, yields, to leading order,
D=0, (15)

which is equivalent to neglecting the compressibility effects [6, 7], and only Eq. (11)
remains. More details about the parameters involved will be given in Sec. V. It is
assumed here that also the inequality

R.L
—_Lﬁhp <1. (16)
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1s satisfied. The condition
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is equivalent to neglecting the perpendicular magnetic field perturbation; when it is
satisfied, the perpendicular perturbation of the magnetic field owing to convection is
nearly compensated by magnetic diffusion owing to resistivity, and (V x §E), = 0,
with JE the electric field perturbation. To lowest order, Egs. (11) and (12) then
yield
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which, in coordinate-independent form, can be written as
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with the local shear
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and (B - V) the derivative along the reference line v = vy, ¢ = ¢o. The integral
{ (s/B) dl has an arbitrary integration constant co(vo, ¢0), which correaponds to the




arbitrariness in choosing the origin of the coordinate y. Equations (18) and (19 are
valid not only in cylindrical and axisymmetric configurations, but also in stellarators
as long as the inequalities (14) and (16) are satisfied.

The boundary conditions for Eq. (18) are limjy ;oo = 0. Further, the integrals
described in Sec. III. must exist. '

II1. THE GROWTH RATE Q

General properties of the growth rate @ can be obtained without explicitly solv-
ing Eq. (18). Multiplication of this equation by F™*, the c.c. of F', and integration
between —oo and +oo results in a quadratic equation for Q whose solution yields

1/2
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Clearly, only the sign of the curvature integral I, determines the character of Q.

A. Li>0

In this case, the two roots Q4 are real and @, > 0, which means instability.
Since for all interesting configurations there are always regions of bad curvature,
I. > 0 can always be obtained by localizing the perturbations to these regions. The
same is not valid in the case of ideal modes because, for localization along B, there
is a strong stabilizing effect owing to magnetic field line-tying. It is precisely this
effect which is here considerably reduced by resistivity.

B. I, <0, 1+64n*i* L} I? L/ (Ljia Iit) > 0

||char.

In this case, both roots Q. are real and negative (stable).




C. I.<0, 14+64m* @ L 21/ (Lfpar Iit) <O
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In this case, both roots Q4 are complex with negative real part (stable).

Therefore, localization of the perturbations along B around regions of bad cur-
vature always leads to real, positive Q’s. However, the question remains of how
strong this localization must actually be to obtain a certain Q.

Although Eq. (21) is useful for deriving general properties of the growth rate,
evaluation with arbitrary test functions will not, in general, yield the correct de-
pendence of Q on 1. The actual perturbation must be a solution of the eigenmode
equation, Eq. (18), and depends explicitly on Q. Thus, the r.h.s. of Eq. (21) also
depends on Q. For this reason, the correct dependence Q(7n) was not obtained in
Ref. [8]. This can easily be illustrated in cylindrical symmetry.

IV. CYLINDRICAL SYMMETRY

In cylindrical symmetry, the curvature is always destabilizing and &y char. = £y =
const.. Based on the usual cylindrical coordinates r, @, z, with basis vector e, eg, €,
the Hamada coordinates are given by v = mr?z;, 9 = ®/27, ( = z/z, where 2 is
the periodicity length in the z-direction. With B given by B = Bg(r)eq + B.(r)e,,
one obtains q = (27rB,) /(20Bs), Ro = (20B) /(27 B,) and Kychar. = Ky = K -
(VU/ |Vv|2) = —r/(¢*R%|Vv]|). Evaluation of the vector K? yields

K2-1-|—X—2|V =1 2%5 : (25)
= ey =it TP

where the shear S,

S =202 ; (26)
q
has been introduced.

Equation (18) can then be written as
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Figure 1: Dispersion relation in cylin. geometry. Figure 2: Eigenfunctions in cylindrical geometry.

The solutions which satisfy the boundary conditions are F, = H,.(§)exp (—7°/2),
with H, (i) the Hermite polynomial of order n, and Q given by the dispersion relation

1 o\ g 1 ,
s 1+(7”")E  n=0,1,2..., (30)

QS[Q E:_
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1-Q?
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and, therefore,

y_21r .5’\/1-{-211@ (31)
Because of the symmetry and assumed periodicity in the z-direction, & — 27n.,
with n, the “toroidal”mode number. Therefore i = n./cchar. The modes with
small growth rates Q decay slowly and are extended along y, while those with large
growth rates (Q — 1) are localized.

Note that n is used here to count the number of nodes of F' along B, while n,
or Nor, is used for the toroidal mode number.

If the r.h.s. of Eq. (30) is small, then Q%2 =~ (Bp)/[(1+ 2n) B.S] < 1, which
is the growth rate of resistive interchanges. These modes have Q ~ n'/? and are
extended along B with decay length yq, ~ B/ ( 2(1 4 2n) T['.BZSQ), a result which
was also obtained in Refs. [1, 2], where the general resistive ballooning mode equa-
tions were evaluated assuming very small resistivity, an thus @ < 1.

When the r.h.s. of Eq. (30) is large, the growth rate becomes independent of
n, and Q = 1, which is the ideal ballooning growth rate. These modes are local-
ized anywhere along B with decay length yq). = (Bv1 — Q)/ (Tl’\/l + ZnBzS), and
appear when the stabilizing line-tying effect is considerably reduced by resistivity.
However, for large values of ji it might be necessary to take gyroradius effects into
account. Figure 1 shows the dispersion relation calculated with (277)/20 = 0.3,
¢g=3,5=3,n=0.InFig. 2, the eigenfunctions corresponding to @ = 0.4, n =0
and @ = 0.01, n = 2 are presented.




V. AXIAL SYMMETRY

The details of the derivation of the resistive ballooning mode equation for an ax-
isymmetric, large aspect ratio equilibrium with shifted, circular magnetic surfaces
are given in Appendix A. The expansion parameter used is the inverse aspect ratio
em = r/Rum(r), with 7 the small radius of the particular cross-section under consid-
eration, and Ry(r) the distance of its center from the axis of symmetry. Equation
(19) then takes the form given by Eq. (A45), which contains the equilibrium quan-
tities em, R, the safety factor ¢ and the shear S. The perturbation F is described
by the scaled mode number i and the scaled growth rate Q, which, at given f, is
the eigenvalue of the mode equation.

The value of the parameters assumed for the calculations are given in detail in
Appendix B, and it can be seen that they are consistent with the assumptions made
to derive the equations.

Equation (A45), though considerably less complex than the original ballooning
equation, is still rather involved. Without claiming rigour, further simplification can
be achieved if one discards all small terms, keeping, however, the stabilizing mean
toroidal curvature. This is represented here by —¢, considered to be a free parameter
of order o(ey). Under these circumstances, the ballooning equation can be written
as d2 F —2

@+”§[_e+cos@ +50sin® - Q% (1 +5%0%)| F =0, (32)
to be solved with the boundary conditions F' — 0 for |@| — oco. This equation
essentially agrees with results obtained for a similar model within the framework of
two-fluid, electrostatic theory when the diamagnetic effects are neglected, as given
in Ref. [4], Eq. (20) (with minor discrepancies. In particular, the term Q2 is given
there as Q?/2), and Ref. [5], Eq. (14). In the last reference the boundary condition
are, however, different from those imposed here.

Equation (32) can be solved by analytic approximations when the solutions are
assumed to be localized along B (as in the cylindrical symmetric case, this turns
out to be the case of large growth rates ~ 1), and also when the shear is small. Not
being interested in the latter case here, only the first one will be treated analytically.

A. Analytic localized solutions

By assuming that the eigenfunctions decay fastly, and expanding around © = 0,
Eq. (32) can be written as

dQF ﬁ2 ; c
Tt gh-e-@-N2-s+s2err=0, (33)
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which is Hermite’s differential equation if the condition
(25 —1)/(25*) < @*<1—¢ (for §>1/2), (36)
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is satisfied. The eigenvalues and the eigenfunctions are then
1/2 _
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9 8"
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respectively. Note that in the axisymmetric case the growth rates are bounded from
above by 1 — ¢ (in the cylindrical case, by 1 ) owing to the stabilizing effect of the
mean normal curvature (—e).

B. Numerical solutions

Given the scaled mode number ji, Eq. (32) is an eigenvalue equation for the
growth rate @. However, it is more convenient to write

d’F . 2 202
@+V{—E+COSO+S@SIHG——Q (l—l—S@)]F:O, (40)
with

=

i
— 41
Q ) ( )

and solve for the eigenvalue Q at given v. Formulated in this way, Eq. (40), together
with the boundary conditions, is a singular limit point Sturm-Liouville eigenvalue
problem [9], which is solved here using the SLEIGN2 code [10, 11, 12]. After having
determined the eigenvalue Q at given v, the resulting i, Eqs. (9) and (B3) might not

11




correspond to an integer value of the poloidal mode number m. This is, however, of
no consequence since a very small change in v, and thus in f, is sufficient to obtain
an integer value of m.

For the numerical calculations, a value € = 0.3 is used throughout. Figure 3 shows
the dispersion relation for S = 0.5 and n = 0 (i.e. no zeros of F in —oo < O < o0),
while Figs. 4, 5 and 6 are calculated with § = 1.0, n = 0, S = 2.0, n = 0 and
S = 3.0, n =0, respectively.

o 0.1 0.2 0.3 0.4 0.2 0.6 0.7
&

Figure 3! Dispersion relation in axial symmetry for Figure 4: Dispersion relation in axial symmetry for
€e=03,5S5=05and n=0. e=0.3,S=10and n=0.

The effect of shear can better be assessed by drawing the four curves on a single

figure. This is done in Fig. 7 and Fig. 8. For small mode numbers (f S 0.1 , M S

40), the shear is not important in the dispersion relation. However, for very small
and Q, the condition (17) might not be satisfied. In such a case, it is necessary to
consider the full equations, Eqs. (11) and (12), and this could modify the results.
For higher values of i, the shear is destabilizing. Then, for intermediate values of

i, (@ = 25, m R 95 ), it is first destabilizing (Q increases with S), but becomes
stabilizing again when it is further increased (Q decreases again). Even higher values
of i are stabilized by increasing shear.
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Figure a: Dispersion relation in axial symmetry for
e=03,5=20andn=0

1.25¢

i
0.75¢
0.5

0.25

Figure T: Effect of shear on the dispersion relation

Figure 6: Dispersion relation in axial symmetry for
e=03,S=30andn=0

Figure 8: Effect of shear on the dispersion relation
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Figures 9, 10 and 11 show the eigenfunction F for S = 1.0 and three different
values of [, corresponding to the poloidal mode numbers m = 235 (z = 0.611),
m = 88 (& = 0.229) and m = 49 (a2 = 0.127). These pictures show the direct
correspondence between the extension of the perturbation along B and the growth
rates: stronger localized perturbations have the larger growth rates. The pictures
also show how the perturbations tap the energy from the curvature, becoming large
where the curvature is positive, decreasing where it is negative and then vanishing
with increasing ©.
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Figure 10: REigenfunction for § = 1.0, m

Figure 9: Eigenfunction for § = 1.0, m = 235 and
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Figure 11:
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Figure 15: Eigenfunction for S = 2.0, m
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VI. CONCLUSIONS

The resistive ballooning mode equations for general (symmetric as well as non-
symmetric) toroidal plasmas have been transformed by introducing space and time
length scales which are appropriate for evaluation near the plasma edge of present-
day configurations. In many interesting cases, the effect of sound wave propagation
can be neglected owing to the low plasma [ near the edge, and the two coupled
resistive ballooning mode equations reduce to a single one (however, as pointed out
in earlier work, the acoustic effects should be included when very small growth rates,
Q << 1, are considered.)

Owing to the large resistivity near the edge, the stabilizing effect of the perpen-
dicular magnetic field perturbations is considerably reduced; this makes possible a
further simplification of the equations. General properties of the growth rates can
then be derived straightforwardly. Unstable solutions are always possible when-
ever there is a region of unfavourable field line curvature, which is the case for all
interesting configurations. The resistive growth rates are then comparable to the
characteristic growth rates of ideal ballooning modes.

A cylindrical plasma and a simple model of an axisymmetric tokamak with
shifted, circular cross-sections were studied in detail. Eigenfunctions, growth rates
and dispersion relations were calculated both analytically and numerically. The high
mode numbers were found to become less unstable with increasing shear, while the
low mode numbers are insensitive to shear. The numerical calculations were made
taking into account parameters consistent with those of an Asdex Upgrade edge
plasma, and for which the resistive ballooning mode effects should dominate over
the diamagnetic effects. Finite Larmor radius effects should not be important for
the modes considered, which have small or at least moderate values of fi (kypion =1
corresponds here to m = 1000, iz = 2.6.) The modes studied should then play a
major role in transport near the plasma edge.

For stellarators, the calculations are much more involved. Since the field lines
on a rational surface are not equivalent, contrary to the symmetric cases, evaluation
of the resistive ballooning mode equation, Eq. (19) must be done, in principle, for
each line. Also, the choice of the origin of the y or @ coordinates, which was not
considered here, could play an important role. This quantity enters the equations
as an additional parameter.
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APPENDIX A: AXISYMMETRIC CONFIGURA-
TIONS WITH CIRCULAR CROSS-SECTIONS

The quantities needed to evaluate Eq. (18) or Eq. (19) will now be derived for
the case of an axisymmetric tokamak with shifted, circular cross-sections, whose
geometry is illustrated in Fig.16.

magnetic axis

Ry ~A() ™

‘)u

Figure 16: Tokamak with shifted circular surfaces

Let R,®,z be the usual cylindrical coordinates with unit basis vectors ep =
cosPe; +sin®ey, epg = —sinPe, + cos e, and e,, where e,, e, and e, are the
usual Cartesian basis vectors. Let the magnetic axis of the equilibrium be R, and
the geometrical center of a cross-section with small radius r be Ry(r), shifted by a
distance A(r) from Ra. Polar coordinates r,® with origin at Ry are defined on the
planes of the cross-sections. Then, the distance R(r, ©) of a point P from the z-axis
is

R(r,0) = Ru(r) +rcos® = Ry — A(r) + rcos O (A1)

and the radius vector of P is
x = R(r,0)eg —rsinOe, . (A2)

Denoting derivatives with respect to r by ’, the coordinate system r,®,® has the
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covariant basis

grz%:( '\{1+cos®)eR~sin@e3:Meﬁ—sin@ez, (A3)
or ' ar
:QE——‘['HE)e +cosOe,| (Ad)
g@_ a@ - sl R z 3 4
ax dep

gy = 35 = R% = Reg = [Rum(r) + rcosOleg . (A5)

The functional determinant D is given by

1
e g goXgs =TR(r,0)[1+ Ry cosO] , (A6)

and the contravariant basis is given by

1
- - —sin@e,] , AT
Vr =DgoX8gs T i, cos O] [cos@er —sin O e, ] (AT)
1
= — == 1 d z 5 AS
VO = Dgg Xg- Tt Ry cos O] [sin®egr + [Ry + cos O] e;] (A8)
V@:Dg,Xg@:eji-—-gj. (A9)
R R
This allows one to calculate the metric coefficients

2 , 1

Grr =1+ 2Ry cosO+ Ry, ¢ = (A10)

[1 + R} cos O]’

1 + 2R}, cos © + Ry
Joo = 7'2 ’ gc-)e - [ M : 2M] ’ (All)
721 + R}y cos O]
o _ Ry sin ©
r[1 + R} cos ©)°
It is straightforward to derive the following relations which are needed for the cur-
vature:

(A13)

gro = —TRysin®, ¢

Bg@ . 1

76 r[cos @ eg —sin O e, ] RDV? ; ( )
Qg_g = —7T Sineecp = ATRS..IH@V@ ) (AIS)
0P
%%" = —rsin@eg = —rRsin@ V& | (A16)
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ag@
I e = —RVE. AlT
9% ReR RVR ( )

The general axisymmetric magnetic field can be written as

B ziv'@wirf(v)vqn (A18)
™
Since v = 2w2r? Ryi(r) depends only on 7, B can also be expressed as
X' XD I
B = -VOXVr+ f(r)Ve =S—go+ 280 , (A19)
and ) )
/ rr
2 X g f
=|&]| =— = . 20
B [%] = +lR] (A20)
The derivative along B is
XD 0 f 0
TR} i A21
B-V)= %56t w oo (A21)

With these expressions, the calculation of (B - V) B is straightforward. One obtains
B? U'DRy | r
I 0| s,
R[1 + R} cos O] {2%(13] RM+COS ]g
n® [[VDRy]* r2
+sm [[ M] T

(B-V)B =

cos©® +1

7 2mqB % M

ge] ; (A22)

The components of the curvature £ = [(B/B) - V] B/B are then

'  k-Vv_  k-Vr
Vo> |Vuff v |Vr]?
[1+ Rl cos @] |[U'DRy]? r
- — A2
v'R 2rqB | Ry +eosO) (A23)
VuxB v'D
TP = P2 (B-V)B] [Besol
rRe & ! N 2
_ _U B sin @ ds I_Z}?L ,I\fl \j DRN_[ (AQ&i)
B? [1+ Rj;cos O] Ry [1+ R} cos O] | 2ngB
From the expression for the differential flux d¥(r),
2r B .
d¥(r) = dr f V®io, (A25)
0
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one obtalns

xp':: B o = f]

10 — o [1+ Ry cos 0] do
D

DR2 RM o [1+ (r/Rwm)cos Q) 27

(A26)

the safety factor g

o’ 1 %J—Bf—d@:if% 1 4O — 2rf 2 [1+4 Ry cos O] dO

1= X' - Y Jo DR~ x'RuJo [L+4(r/Ru)cos O] 27
(A27)
and the relation
B* _ o _ffz”_l g0 4 2t 34 = d@]
B®  \'DR? DR? X! DR2 21 Jo DR?
onf [ 1 1o 1
= = . A28
d==F [DR? 27 Jo DREd@] (A28)

By expressing Vr in terms of covariant basis vectors and multiplying by B, one
obtains

1
VrXB = = [gf@B°I’Vr —¢"B*Vo + g”‘B@V¢>] (A29)
and
r@ nd rr R® rr b
VerxB:V[gD XVT—VlgD xve+v[9 Bl xvo. (a30)

After some transformations, these equations yield

| XD [0 [B*] 9 [q°B°
| v ) . : A3l
|Vr14 [VrxB]- VX [VrxB] = [&n l ] 4+ — 76 [g'"’“ 5o (A31)

Assuming ey = r/Rym(r) € 1 and Ry ~ o(em), the quantities needed to evaluate
the ballooning equation are now calculated to first order in ey. Straightforward
expansion yields

1+ Ry, cos© ; ;
T_ﬁ-c\TTs@ =1+ (“‘ﬁm + RM)COS C) + o0 (612\,1) . (A32)

v’ 5 ‘
e =1t [EAR (A33)

B<I>
5o =1 (14 (Ry — €em)cos O] + - - (A34)
B27

g [F] - r;} 1+ (Ry — em)cos O] + (Ryr — en)cos© + -+ . (A35)

21




Since dl/B = 27d©/ (x'D), one then obtains

1 dl
B|-V —
/IV?"|4 [VrxB] X [Vr¥B] 5

lI,l ! :
[—% [© + (Ry — em) sin ©] + (em — B}y — rRY) sin© + -- ] (A36)

- 2rr

with the arbitrary integration constant (the origin of the © or y coordinate) Oy =
0, as seems appropriate for a tokamak with circular cross-sections. The following
quantities are also needed:

2
B*=(B*)[1 —2epqcosO]+--- , (B? :f—, (A37)
5 | (&) =17,
UDRy]* 1 )
[ 27qB ] =g +old) (A38)
i3 = <B2> 1+2(Ry—em)cosO] +--- | (A39)
|vr|®

vrlt 2mr]? ;

|32| :[qﬂ] 1+2(em—2Ry)cosO] + - . (A40)
Choosing the characteristic curvature of Sec. II. as

= (A41)
Ky char. = RM'U’ 3

Equations (A23) and (A24) yield

KY M ' 2

—— = Kychar. © + — + (Ry — em) cos 0}+--- A42
o b |03 " (Ry — em) (A42)

and (VoxB] )

X ’ . / ‘
R‘%—:ﬁ;vchar.vz ;T sin®[1 — Ry cos O]+ --- . (A43)
Since, along the localization line,

B-V oV __0 ’ d _
—X_ = gp% =27 [1 _(GM'{'RM)COSG]E +0(E§l) 3 (A44)

the resistive ballooning mode equation, Eq. (19), can be written as

d ; dF
e [1 4 (em — Ry) cos O] )
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=9

1 "o
+% [1 + (em + Ryy) cos O] [cos@ —em (1 - ?) + Ry + rRy;sin® ©

+Ssin@ [0 (1 — Ry, cos O) + (Ry; — em) sin O]
-Q? [1 + 5%0% 4 2(em — Rjy) 5*0%cos ©

+2[(Ry — em) (1 + S) + rRyf] SO sin © 4 2Ry, cos @]] =0, (A45)

where Lichar. = Lo (as is appropriate for a tokamak) has been used, and where S is
the shear as defined by Eq. (26), S = 2v¢/q = rq'/q + o(ey).
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APPENDIX B: PLASMA PARAMETERS FOR
THE AXISYMMETRIC CASE

For the axisymmetric case, the plasma edge parameters are chosen to be consistent
with those of Asdex Upgrade [13, 14] and are shown in Table 1.

Large plasma radius Ry = 165¢m
Small plasma radius a = 50em

Small radius of reference surface | r = 48cm

Aspect ratio €, e, = (.3

Aspect ratio €, e = 0.29

Safety factor g=23

Electron temperature T, =40eV

lon temperature T; = 40eV
Electron density ne =2 x 10 fem?
lon density ng = 2 X 10" fem?
Ion mass 1Y = 2Myroron
Effective charge Deg = 2.5
Magnetic field 2.5 x 10*gauss
Density decay length Ly = dcrid
Temperature decay length Lt =4cm
Pressure decay length Ly =2cm

en = (2L,)/ Ro & = 0.05

Table 1: Edge plasma parameters.

For the shear, the values S = 1 and S = 2 are used in the numerical calculations.
With the help of Table 1, it is straightforward to calculate further quantities needed.
These are given in Table 2. In axial symmetry, the mode number a, the toroidal
mode number ny,,., the poloidal mode number m and the poloidal wave number k;
are related by the following expressions:

a = 2T Nor, = 2rmfq = 2rkg[q . (B1)

The characteristic drift frequency is then

eI ni(r)

_ PsCs Cchar.q PsCs
Wschar. — k'ﬁchar. =
eB

Ne " Ly 2mr T Lo,

(B2)
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Resistivity n=1,45 x 10" sec

Mean thermal velocity cs = 0.62 x 107em/sec
Electron gyrofrequency Q. = 4.4 x 10" /sec
Ion gyrofrequency 0 = 1.2 x 10%/sec
lon gyroradius pi = 0.05cm

Local plasma 3 B=10"
Characteristic growth rate Yehar. = 0.48 x 108 /sec

Characteristic drift frequency | wWechar. = 0.98 x 10°/sec
Characteristic resistive length | L, = 0.79cm
Q, = wxchar./')’char. Oy = 0.2

Table 2: Calculated equilibrium and characteristic quantities.

Since a. = 0.2 and €, = 0.05, one is in a region of parameter space where the
resistive ballooning modes are dominant [3].

The relation between the scaled mode number i and the poloidal mode number
mis 2 I

o
i=— = 21— 0.0026m . (B3)

O Qchar, 2T T
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